

การพัฒนาระบบผลิตไฟฟ้าแรงดันต่ำด้วยกังหันลมแนวแกนตั้งขนาดกะทัดรัด

The Development of Low Voltage Generation System Using a Compact Vertical Axis Wind Turbine

พงษ์พันธุ์ อุกษ์ชุมทรัพย์* และ เพ็ญลักษณ์ ยิ่มสมอจิต

สาขาวิชาชีวกรรมแมคคาทรอนิกส์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีปทุมธานี

833 ถ.พระรามที่ 1 แขวงวังใหม่ เขตปทุมธานี กรุงเทพฯ 10330 E-mail: pongpun@ptwit.ac.th

Pongpun Rerkkumsup* and Penlapas Yimsamerjit

Department of Mechatronics Engineering, Faculty of Engineering, Pathumwan Institute of Technology

833 Rama I Rd., Wangmai, Pathumwan, Bangkok 10330, Thailand. E-mail: pongpun@ptwit.ac.th

บทคัดย่อ

งานวิจัยนี้กล่าวถึงการพัฒนาระบบผลิตไฟฟ้าแรงดันต่ำโดยใช้กังหันลมแนวแกนตั้งขนาดกะทัดรัดเป็นตัวขับเคลื่อน ระบบที่พัฒนาขึ้นประกอบด้วยกังหันลมแนวแกนตั้งขนาดเส้นผ่าศูนย์กลาง 1 เมตร สูง 1 เมตร เครื่องกำนันไฟฟ้าชนิดแม่เหล็กถาวร และชุดควบคุมไฟฟ้า ผลการทดลองและวิเคราะห์กังหันลมแนวแกนตั้งที่มีโครงสร้างต่างกัน 3 ชนิดด้วยซอฟต์แวร์ SolidWorks Flow Simulation แสดงให้เห็นว่ากังหันลมชนิด Lenz 3 ใน มีสมรรถนะสูงที่สุด จึงถูกสร้างและต่อตระหง่านเครื่องกำนันไฟฟ้าชนิดแม่เหล็กถาวร 5 เฟส 350 รอบ/ชด ผลการทดลองแสดงให้เห็นว่าระบบที่พัฒนาขึ้นรับผลิตแรงดันไฟฟ้าที่ความเร็วลม 0.6 เมตร/วินาที และเพิ่มแรงดันไฟฟ้าอยู่ในระดับที่สามารถนำไปชาร์จแบตเตอรี่เมื่อความเร็วลมตั้งแต่ 5.2 เมตร/วินาทีขึ้นไป ผลการทดลองแสดงให้เห็นว่าระบบที่พัฒนาขึ้นมีประสิทธิภาพเพียงพอที่จะพัฒนาต่อเนื่องและประยุกต์ใช้ในภาคสนามได้ในอนาคตอันใกล้

คำสำคัญ: กังหันลมแนวแกนตั้งขนาดกะทัดรัด, ระบบผลิตไฟฟ้าแรงดันต่ำ

Abstract

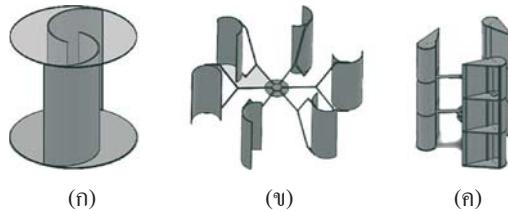
This research describes the development of the low voltage generation system using a compact vertical axis wind turbine (VAWT) as a prime mover. The

developed system consists of a VAWT with diameter of 1 meter and height of 1 meter, a permanent magnet alternator and a load control unit. The results of simulation and analysis of 3 VAWT with different structure using SolidWorks Flow Simulation software illustrate that 3 blades - Lenz type VAWT has the highest performance then it is constructed and direct coupled to a 5 phase permanent magnet alternator with 350 turn/coil. The experimental results show that the developed system starts to generate the electrical voltage at wind speed of 0.6 m/s and increases the electrical voltage to the level that can use for battery charging when the wind speed is of 5.2 m/s or higher. The experimental results illustrate that the developed system has sufficient efficiency to continuously develop and to apply in the sight in the near future.

Keywords: compact VAWT, low voltage generation system

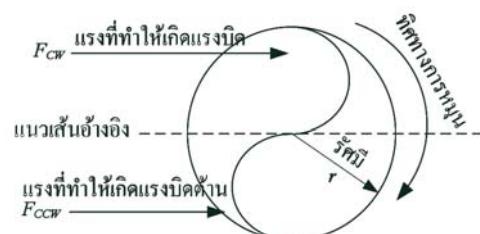
1. บทนำ

วิกฤตการณ์พลังงานในประเทศไทย [1] ทำให้หลายภาคส่วนทุ่มเทกับการพัฒนาเทคโนโลยีเพื่อใช้พลังงานทดแทนให้เกิดประสิทธิภาพสูงสุด พลังงานลมเป็นหนึ่งในพลังงานหมุนเวียนที่ได้รับความสนใจและเกิดการพัฒนาอย่างต่อเนื่อง


Research Paper

*Corresponding author.

Received 13 February 2013


Accepted 30 April 2013

และติดตั้งเพื่อใช้งานในหลายพื้นที่ [2] อย่างไรก็ตาม ลมมีลักษณะเฉพาะตามแต่ภูมิประเทศและภูมิอากาศของแต่ละพื้นที่ [3] – [4] ทำให้อุปกรณ์และชุดผลิตพลังงานไฟฟ้าด้วยพลังงานลมเกิดการใช้งานที่ไม่คุ้มค่า [5] โดยเฉพาะอุปกรณ์จากต่างประเทศที่นำมาประยุกต์ใช้ในประเทศไทยได้อย่างไม่เต็มประสิทธิภาพ ลมในเขตกรุงเทพฯ และปริมณฑลเป็นลมความเร็วต่ำถึงปานกลาง และมีลมกริโซ่เป็นครั้งคราว [6] การติดตั้งกังหันลมแนวแกนตั้งชนิด (g) Savonius 2 ใบ (h) C 6 ใบ และ (k) Lenz 3 ใบ

รูปที่ 1 กังหันลมแนวแกนตั้งชนิด (g) Savonius 2 ใบ

(h) C 6 ใบ และ (k) Lenz 3 ใบ

รูปที่ 2 แนวคิดการวิเคราะห์แรงบิดของกังหันลม

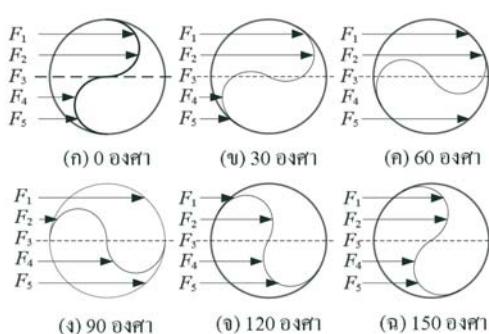
ในรูปที่ 1 การจำลองเพื่อเปรียบเทียบศักยภาพของกังหันลมก่อนทำการสร้างขึ้นทดสอบคำนึงถึงตัวแปร 2 ตัว ได้แก่ ความเร็วรอบเชิงมุม (Angular velocity, ω) และแรงบิด (Torque, T) โดยที่

$$\omega \propto \frac{v}{r_e} \quad (1)$$

เมื่อ v คือ ความเร็วลมในแนวเชิงเส้น (m/s)

r_e คือ รัศมีประสิทธิผลที่ลมเข้าปะทะกับกังหันลม (m)

เนื่องจากเงื่อนไขการออกแบบกังหันลมกำหนดให้กังหันลมทั้ง 3 ชนิดมีขนาดเส้นผ่านศูนย์กลางเท่ากัน การวิเคราะห์ความเร็วเชิงมุมของกังหันลมแต่ละชนิดซึ่งมีรัศมีประสิทธิผล r_e ต่างกันเพียงเล็กน้อย การวิจัยครั้งนี้จึงพิจารณาให้ความต่างนี้ ละเลยได้ รูปที่ 2 แสดงแนวคิดการวิเคราะห์แรงบิด T ที่เกิดจากการปะทะของแรงลม


$$T = (F_{CW} - F_{CCW})r_e \quad (2)$$

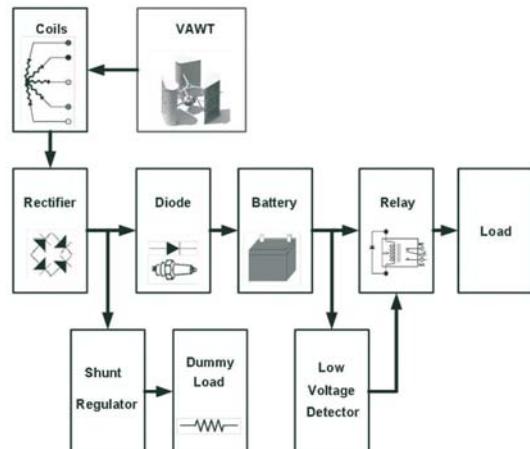
2. ระบบผลิตไฟฟ้าด้วยกังหันลม

ระบบที่ออกแบบประกอบด้วยกังหันลมแนวตั้งขนาดเส้นผ่านศูนย์กลาง 1 เมตร เครื่องกำเนิดไฟฟ้าแรงดันต่ำ และชุดควบคุมการชาร์จแบตเตอรี่และตัดต่อโหลดในระบบผลิตไฟฟ้า

2.1 กังหันลมแนวแกนตั้ง

กังหันลมแนวแกนตั้งขนาดเส้นผ่านศูนย์กลาง 1 เมตร ความสูง 1 เมตร 3 ชนิด ได้แก่ ชนิด Savonius 2 ใบ ชนิด C 6 ใบ และ ชนิด Lenz 3 ใบ ถูกออกแบบและวิเคราะห์เพื่อเปรียบเทียบแรงบิดที่เกิดขึ้นจากการปะทะของลมด้วยซอฟต์แวร์ SolidWorks Flow Simulation [9] ดังแสดงด้านล่าง

รูปที่ 3 แนวคิดการวิเคราะห์แรงบิด ณ ตำแหน่งหันลมปะทะแบบ
หลาขเฟรมเพื่อวิเคราะห์แรงบิดรวมต่อครึ่งร่องรอบการหมุน


รูปที่ 4 ตัวอย่าง โรเตอร์ชนิดแม่เหล็กถาวร

เมื่อ F_{cw} คือ แรงลมที่ปะทะในทิศทางทำให้กังหันหมุนตาม
เข็มนาฬิกา (N)

F_{ccw} คือ แรงลมที่ปะทะในทิศทางทำให้กังหันหมุนทวน
เข็มนาฬิกาหรือแรงต้านการหมุน (N)
การวิเคราะห์แรงบิดของกังหันลมอาศัยหลักการแบ่งครึ่งรอบ
การหมุนของกังหันลมออกเป็น 6 เฟรม โดยในแต่ละเฟรมจะ
หมุนตำแหน่งของกังหันลมต่างไปจากเดิม 30 องศา ดังแสดง
ตัวอย่างการหมุนกังหัน และการแบ่งแนววิเคราะห์แรง 5
เส้นในรูปที่ 3

2.2 เครื่องกำเนิดไฟฟ้าและชุดควบคุม

เครื่องกำเนิดไฟฟ้าชนิดแม่เหล็กถาวร มีความเหมาะสม
และประสิทธิภาพสูงสำหรับประยุกต์ใช้งานร่วมกับกังหัน
ลม [10] – [11] เครื่องกำเนิดไฟฟ้าที่พัฒนาขึ้น ประกอบด้วย

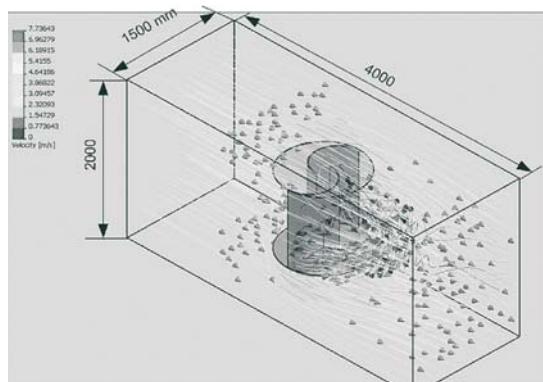
รูปที่ 5 บล็อกไซด์ของระบบกำเนิดไฟฟ้าด้วยกังหันลม

แม่เหล็กถาวรจำนวน 12 ถู จัดวางอยู่บนโรเตอร์ทั้ง 2 แผ่น ดัง
แสดงด้วยรูปที่ 4 แผ่นในรูปที่ 4 เส้นแรงแม่เหล็กบนโร
เตอร์จะวิ่งตัดกับดลเวลาทั้ง 10 ชุดที่แบ่งออกเป็น 5 เฟสบน
สเตเตอร์เพื่อผลิตแรงดันไฟฟ้า E

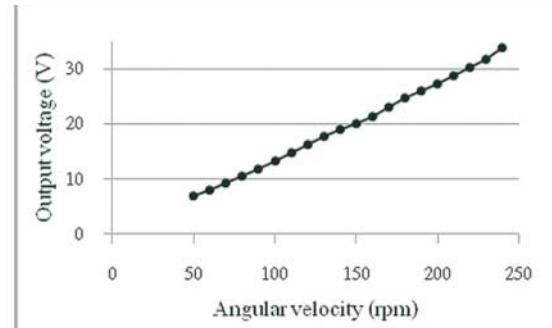
$$E = \frac{nNAPB\omega}{60} \quad (3)$$

เมื่อ n คือ จำนวนชุดเวลา (รอบ/ชด)

N คือ จำนวนรอบของดลเวลา (รอบ/ชด)

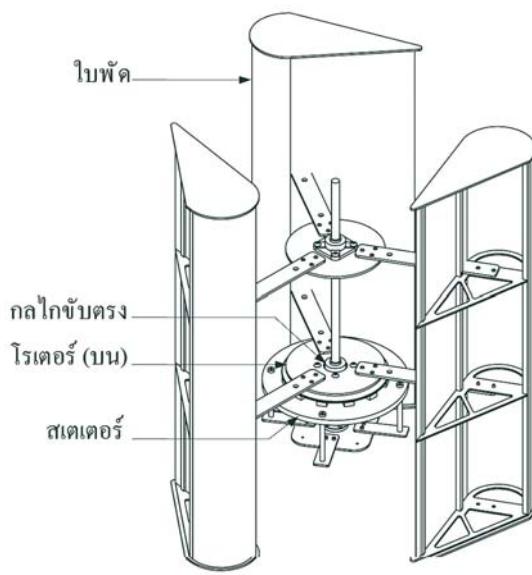

A คือ พื้นที่หน้าตัดของแม่เหล็กถาวร (m^2)

P คือ จำนวนชีวแม่เหล็กถาวร (ชีว)


B คือ ความหนาแน่นของเส้นแรงแม่เหล็ก (T)

ω คือ ความเร็วรอบเชิงมุม (รอบ/นาที)

แรงดันไฟฟ้าที่ผลิตได้จากดลเวลาทั้ง 5 เฟสถูกจ่ายไปยังชุด
ควบคุมดังแสดงในรูปที่ 5 ซึ่งประกอบด้วยวงจรเรียงกระแส
(Rectifier) วงจรปรับระดับแรงดัน (Shunt regulator) คัมมี่
โหลด (Dummy load) วงจรตรวจสอบแรงดันต่ำ (Low voltage
detector) และรีเลย์ (Relay) ควบคุมการตัดต่อโหลดออกจาก
วงจร ด้วยการปรับตั้งระดับแรงดันไฟฟ้าไว้ ณ ค่าที่ต้องการ
 V_{sp1} แรงดันไฟฟ้าส่วนเกินจากค่าที่ปรับตั้งไว้จะถูก TL431
ระบบไปที่คัมมี่โหลด ทำให้สามารถควบคุมแรงดันที่จ่าย
ให้กับโหลดหรือชาร์จแบตเตอรี่คงที่ ณ ค่าที่ต้องการได้ ใน
กรณีที่แรงดันไฟฟ้าที่จ่ายให้กับวงจรต่ำกว่าระดับที่ปรับตั้งไว้
 V_{sp2} วงจรจะส่งการให้รีเลย์ตัดโหลดออกจากระบบทันที



รูปที่ 6 แนวคิดการวิเคราะห์แรงลมในแบบจำลอง

รูปที่ 8 ผลการทดสอบเครื่องกำเนิดไฟฟ้าด้วยการขับตรง

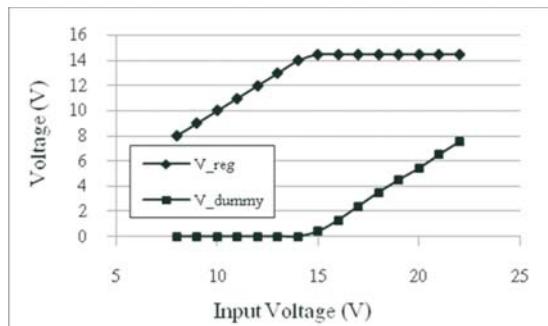
เมื่อ $N = 350$ รอบ/ชด

รูปที่ 7 กังหันลมแบบ Lenz 3 ใบ

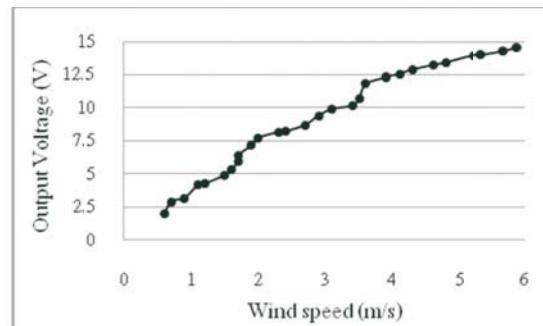
3. การสร้างระบบผลิตไฟฟ้าแรงดันต่ำด้วยกังหันลม

3.1 การจำลองและวิเคราะห์กังหันลม

จากรูปที่ 3 การวิเคราะห์แรงลมที่กระแทกกังหันในแบบจำลองตามสมการ (2) เพื่อคัดเลือกกังหันลมที่มีศักยภาพมากที่สุด พิจารณาโดยกำหนดให้เส้น F_3 เป็นแนวอ้างอิง เส้น F_1 และ F_2 เป็นกุ่มแรงที่ทำให้กังหันลมหมุน และกำหนดให้เส้น F_4 และ F_5 เป็นกุ่มแรงที่ด้านการหมุนของกังหันลม โดยคุ้มแรงระหว่าง F_1 กับ F_5 และ F_2 กับ F_4 หักลบกันโดยตรงเนื่องจากอยู่ในแนวที่มีรัศมีประสีทิศผลเท่ากัน รูปที่ 6 แสดงตัวอย่างการจำลองและการอ่านค่าแรงลม ณ จุดที่ลมในแต่ละเส้นเข้าไปทั้งกันในกังหัน ผลการอ่านแรงลมในแต่ละจุด และ


คำนวณผลต่างที่เกิดจากการหักล้างกันระหว่างกุ่มแรงในทิศตรงข้ามสำหรับกังหันลมทั้ง 3 แบบตลอดช่วงการหมุนครึ่งรอบที่แบ่งเป็น 6 เฟรน แสดงให้เห็นว่า กังหันลมแบบ Lenz 3 ใบมีดัชนีที่ให้แรงบิดมากที่สุด คะวิจัยจึงสร้างกังหันลมแบบ Lenz 3 ในต้นแบบเพื่อนำไปทดสอบกับเครื่องกำเนิดไฟฟ้าและชุดควบคุมต่อไป รูปที่ 7 แสดงแบบร่างของกังหันลมดันแบบที่สร้างขึ้นตามโครงสร้างของ Lenz 3 ใบ

3.2 เครื่องกำเนิดไฟฟ้าและชุดควบคุม


เครื่องกำเนิดไฟฟ้าในการทดลองครั้งนี้ประกอบด้วยแม่เหล็กการจำานวน 12 คู่ จัจจงอยู่บนโรเตอร์ 2 ชิ้น ชิ้นละ 12 ก้อน โดยเลือกใช้แม่เหล็กชนิดนีโอดิเมียมขนาดพื้นที่หน้าตัดชิ้นละ 0.001275 ตรม. ซึ่งระบุค่าความหนาแน่นเส้นแรงแม่เหล็กโดยประมาณไว้ที่ 0.4 T เมื่อกำหนดเงื่อนไขในการทดลองให้ขาด漉แต่ละเฟสประกอบด้วยขด漉 2 ชด ความเร็วรอบการหมุน 90 รอบ/นาที และแรงดันไฟฟ้าที่ต้องการค่า 12 โวลท์ สามารถใช้ (3) คำนวณจำนวนรอบของขด漉แต่ละชดได้ 327 รอบ โดยในการทดลองนี้เลือกใช้漉ทองแดงขนาด 18 AWG จำนวนรอบ 350 รอบ/ชด

4. ผลการทดลอง

รูปที่ 8 แสดงผลการทดสอบเครื่องกำเนิดไฟฟ้าที่พัฒนาขึ้นโดยการขับตรงกับกลไกที่ปรับเปลี่ยนความเร็วรอบด้วยอินเวอร์เตอร์เพื่อให้ได้ความเร็วรอบระหว่าง 50 ถึง 240 รอบ/นาที แรงดันไฟฟ้าที่ผลิตได้ ณ ความเร็ว 90 รอบ/นาที มีค่า 11.9 โวลท์ ซึ่งต่างจากค่าที่คำนวณในระดับที่ข้อมูลนี้ได้

รูปที่ 9 แรงดันไฟฟ้าที่ผ่านการควบคุมระดับแรงดันไฟฟ้า และแรงดันไฟฟ้าที่ตัดกรวยดัมมี่โหลด

รูปที่ 10 แรงดันไฟฟ้าที่ผลิตได้จากเครื่องกำเนิดไฟฟ้า และกังหันลมที่พัฒนาขึ้น

รูปที่ 9 แสดงผลการทดสอบการควบคุมระดับแรงดันไฟฟ้า ค่าที่ปรับตั้งไว้ V_{sp1} 14.5 โวลท์ โดยทำการป้อนแรงดันไฟฟ้า จากแหล่งจ่ายเข้าสู่วงจรควบคุมระหว่าง 8 ถึง 22 โวลท์ ผลการทดสอบแสดงให้เห็นว่าวงจรควบคุมสามารถรักษาแรงดันแรงดันไฟฟ้าไว้ที่ V_{reg} 14.5 โวลท์ โดยระบบแรงดันไฟฟ้า ส่วนเกิน V_{dummy} ไปที่ดัมมี่โหลด ผลการทดสอบว่างานตรวจจับแรงดันไฟฟ้าต่ำกว่าค่าที่ตั้งไว้ V_{sp2} 11.9 โวลท์ แสดงให้เห็นว่าเรียลไทม์เปลี่ยนสถานะเพื่อตัดแบตเตอรี่และโหลดออก จากร่องจด ได้อย่างแม่นยำเมื่อแรงดันไฟฟ้าที่ป้อนเข้าสู่วงจรมีค่าต่ำกว่า 11.9 โวลท์ การทดสอบศักยภาพของระบบผลิตไฟฟ้า โดยรวมด้วยกังหันลมแนวตั้งแบบ Lenz ที่สร้างขึ้นดำเนินการภายในห้องทดลองที่ปราศจากมรบกวน คณวิจัยสร้างลมสำหรับใช้ในการทดสอบขึ้นจากใบพัดและมอเตอร์เห็นได้ชัดเจน ขับเคลื่อนด้วยอินเวย์เตอร์เพื่อปรับเปลี่ยนความเร็วรอบและป้อนให้กับกังหันลม ผลการทดสอบด้วยการป้อนความเร็วลมระหว่าง 0.6 ถึง 5.9 เมตร/วินาที ให้กับกังหันลมดังแสดงในรูปที่ 10 แสดงให้เห็นว่าระบบที่พัฒนาขึ้นสามารถรักษาแรงดันไฟฟ้าได้ระหว่าง 2.91 ถึง 14.57 โวลท์ โดยกังหันลมเริ่มหมุนเมื่อความเร็วลมตั้งแต่ 0.6 เมตร/วินาที เข้าไป และผลิตแรงดันไฟฟ้าป้อนสู่โหลด 12 โวลท์ ตั้งแต่ความเร็วลม 3.9 เมตร/วินาที โดยระบบสามารถผลิตแรงดันไฟฟ้าที่ 13.98 โวลท์เพื่อนำไปชาร์จเข้าสู่แบตเตอรี่เมื่อความเร็วลมมีค่าตั้งแต่ 5.2 เมตร/วินาที ขึ้นไป

5. สรุป

งานวิจัยนี้กล่าวถึงการพัฒนาระบบผลิตไฟฟ้าแรงดันต่ำโดยใช้กังหันลมแนวตั้งขนาดกลางที่ดัดรีเป็นตัวขับเคลื่อนโดยต่อระบบเข้ากับเครื่องกำเนิดไฟฟ้าชนิดแม่เหล็กถาวร ระบบที่พัฒนาขึ้นประกอบด้วยกังหันลมแนวตั้งแบบ Lenz 3 ในขนาดเส้นผ่านศูนย์กลางและความสูง 1 เมตร เครื่องกำเนิดไฟฟ้าชนิดแม่เหล็กถาวร 5 เฟส และชุดควบคุมการทำงานและตัดต่อโหลด ผลการทดสอบด้วยการจ่ายลมซึ่งมีความเร็วระหว่าง 0.6 ถึง 5.9 เมตร/วินาที เข้าไปที่กังหันลมแสดงให้เห็นว่าระบบที่พัฒนาขึ้นเริ่มผลิตแรงดันไฟฟ้าที่ความเร็วลม 0.6 เมตร/วินาที และเพิ่มแรงดันไฟฟ้าจนถึงระดับที่สามารถจ่ายโหลด 12 โวลท์ ได้เมื่อความเร็วลม 3.9 เมตร/วินาที และสามารถผลิตไฟฟ้าในระดับที่ชาร์จแบตเตอรี่ได้ที่ 13.98 โวลท์ เมื่อความเร็วลมตั้งแต่ 5.2 เมตร/วินาที ขึ้นไป การทดสอบชุดควบคุมแสดงให้เห็นว่าวงจรควบคุมสามารถตรวจสอบจับระดับแรงดันไฟฟ้าต่ำกว่า 11.9 โวลท์ และตัดโหลดออกจากระบบได้อย่างถูกต้อง อีกทั้งควบคุมระดับแรงดันไฟฟ้าให้คงที่ที่ 14.5 โวลท์ ตามที่ปรับตั้งไว้ได้อย่างแม่นยำ ผลการทดสอบแสดงให้เห็นว่าระบบที่พัฒนาขึ้นมีประสิทธิภาพเพียงพอที่จะพัฒนาต่อเนื่อง และคาดว่าจะสามารถรายงานผลการทดสอบภาคสนามได้ในอนาคตอันใกล้

6. กิตติกรรมประกาศ

คณวิจัยขอขอบคุณ นายณฤพงษ์ วัฒนไชย นายศักดิ์ธนกร ช่ำนุกุล นายพิรพัฒน์ เกรวอวัลย์ และ

นาขศศิพงษ์ วงศ์ประเสริฐ นักศึกษาสาขาวิชาวิศวกรรมเมคคานิคส์ สำหรับความอุดตสาหะในการจำลองและสร้างอุปกรณ์ในระบบทดลอง และขอขอบคุณงบประมาณสนับสนุนการดำเนินงานวิจัยนี้จากสถาบันเทคโนโลยีปทุมวัน

เอกสารอ้างอิง

- [1] ศูนย์พยากรณ์และสารสนับสนุนพลังงาน. สถานการณ์พลังงานไทยในช่วง 6 เดือนแรก และแนวโน้มปี 2555. [Online]. Available: http://doceppo.eppo.go.th/EnergySituation/EnergyForecast/2012_06_energyforecast.doc [February 1, 2013].
- [2] การไฟฟ้าส่วนภูมิภาค. การผลิตไฟฟ้าด้วยพลังงานทดแทน. [On-line]. Available: <http://www.pea.co.th/dstd/renewable/home.php> [February 1, 2013].
- [3] สำนักงานนโยบายและแผนพลังงาน. พลังงานลม. [Online]. Available: [http://www.eppo.go.th/power/powerN/File/\(17\).pdf](http://www.eppo.go.th/power/powerN/File/(17).pdf) [February 1, 2013].
- [4] กรมพัฒนาและส่งเสริมพลังงาน. *Wind resource assessment of Thailand*. [On-line]. Available: <http://www2.dede.go.th/renew/Twm/main.htm> [February 1, 2013].
- [5] Z. Ming, A. Sikaer, G. Weiting and L. Chen, "Economic analysis of the stability in the wind turbine selection," in *IEEE Proc. APPEEC 2010*.
- [6] กรมพัฒนาพลังงานทดแทนและอุตสาหกรรม. แผนที่ศักยภาพพลังงานลมของประเทศไทย. [On-line]. Available: http://www.dede.go.th/dede/images/stories/windmap53/531112%20Windmap_Thailand_90%20m.pdf [February 1, 2013].
- [7] แผนที่ร่วมระบบทางค่อน. [On-line]. Available: http://longlat.tripod.com/exp_all.html [February 1, 2013].
- [8] C. Ke, W. Zhongwei, H. Yanchen and Y. Guangjing, "The comparison of theoretical potential application of two types of wind turbines in northern Shaanxi," in *IEEE Proc. APPEEC 2012*.
- [9] SolidWorks Flow Simulation[®] is a registered trademark of the Dassault Systemes.
- [10] E. Spooner and A.C. Williamson, " Direct coupled, permanent magnet generators for wind turbine applications," in *IEE Proc.-Electr. Power Appl.*, Vol. 143, No. 1, January 1996.
- [11] J.R. Bumby, N. Stannard, J. Dominy and N. McLeod, "A permanent magnet generator for small scale wind and water turbines," in *IEEE Proc. ICEM 2008*.

ประวัติผู้เขียนบทความ

พงษ์พันธ์ ฤกษ์ชุมทรัพย์ สำเร็จการศึกษาระดับปริญญาตรี จากภาควิชาวิศวกรรมการวัดคุณ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง และระดับปริญญาเอก Mechanical Engineering – Nonmetrology จาก Nagaoka University of Technology ปัจจุบันดำรงตำแหน่งอาจารย์ประจำสาขาวิชาวิศวกรรมเมคคานิคส์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีปทุมวัน
งานวิจัยที่สนใจ: Automation & Mechatronics system, Nanometrology, Precision Engineering, Control engineering

เพ็ญลักษณ์ ยิ่มสมอจิต สำเร็จการศึกษาระดับปริญญาตรี ภาควิชาเทคโนโลยีการวัดคุณ สถาบันเทคโนโลยีปทุมวัน สำเร็จการศึกษาระดับบัณฑิตวิญญาณ สถาบันเทคโนโลยีพลังงาน มหาวิทยาลัยเทคโนโลยีปทุมวัน สำเร็จการศึกษาระดับบัณฑิตวิศวกรรมเมคคานิคส์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีปทุมวัน

งานวิจัยที่สนใจ: Control engineering, Measurement & Calibration system, Renewable energy solution