

ความสัมพันธ์ทางสรีริวิทยาของต้นข้าวกับการนำพาแก๊ซมีเทนจากนาข้าวสู่บรรยากาศ

Relationship between Rice Plant Physiology and Methane Transmitting in Paddy Field

กุญจน์ ศิลป์ประสิทธิ์*

ศูนย์วิจัยและการจัดการความรู้ทางพุกยศาสตร์

คณะวัฒนธรรมสิ่งแวดล้อมและการท่องเที่ยวเชิงนิเวศ มหาวิทยาลัยศรีนครินทรวิโรฒ

63 ม. 7 ถนนรังสิต-นครนายก ต. องครักษ์ อ. องครักษ์ จ.นครนายก 26120 โทรศัพท์ 0-2649-5000 ต่อ 21204

E-mail: Kun@swu.ac.th

Kun Silprasit*

Environment and Natural Resources Institute

Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University

63 M.7 Rangsit-Nakhonnayok Rd., Ongkharak, Nakhonnayok 26120, Thailand. Tel (662) 649-5000 Ext. 21204

E-mail: Kun@swu.ac.th

บทคัดย่อ

การเกิดแก๊ซมีเทนในนาข้าวมีหลายปัจจัยได้แก่ ปัจจัยด้านการจัดการในนาข้าว ของเสียและชาข้าวในนา ระบบชลประทาน ปัจจัยด้านสิ่งแวดล้อมได้แก่ ความอุดมสมบูรณ์ของอาหาร ความร้อน แสง นอกจากนั้นยังมีปัจจัยที่เกี่ยวข้องกับลักษณะของต้นข้าว เช่น ลักษณะสัณฐานวิทยา สรีริวิทยา และสายพันธุ์ของข้าว โดยเฉพาะตามความแตกต่างของสรีริวิทยาจะชัดเจนมากระหว่างสายพันธุ์ข้าวและสภาพแวดล้อมที่ต่างกัน ซึ่งเกิดจากการทำงานที่แตกต่างกันของพันธุกรรม ดังนั้นการศึกษาความสัมพันธ์ระหว่างระบบสรีริวิทยาของต้นข้าวที่เกี่ยวข้องกับการปล่อยแก๊ซมีเทนสามารถนำไปสู่การพัฒนาสายพันธุ์ข้าวที่ปล่อยแก๊ซมีเทนได้น้อยแต่ยังคงคุณสมบัติที่ดีของสายพันธุ์ข้าวไว้ เพื่อพัฒนาระบบการทำงานที่เป็นมิตรกับสิ่งแวดล้อมได้สืบไป

คำสำคัญ: แก๊ซเรือนกระจก นาข้าว แก๊ซมีเทน ต้นข้าว สรีริวิทยา

Abstract

Production of methane in paddy field depends on many factors such as factors of paddy field

Tutorial Paper

*Corresponding author.

management including wastes from post harvesting and irrigation system, and factors of environment including nutrition, heat and light intensity. Moreover, there are factors of rice properties such as morphology, physiology and rice variety. Especially, the difference of rice physiologies is clearly related to rice varieties and habitat because of genetic function. Therefore, the study of relationship between rice physiologies and methane emission leads to the development of rice varieties for reducing methane emission but maintaining rice phenotype to improve the environmentally friendly paddy field system.

Keywords: Greenhouse gas, Paddy fields, Methane, Rice, Physiology

1. บทนำ

แก๊ซมีเทน (CH_4) เป็นหนึ่งในแก๊ซเรือนกระจกที่ส่งผลกระทบต่อบรรยากาศโลกมากที่สุด เนื่องจากเป็นแก๊ซที่ไวต่อปฏิกิริยา ดังนั้นเมื่ออยู่ในบรรยากาศ แก๊ซมีเทนสามารถเกิดปฏิกิริยา กับองค์ประกอบทางเคมีในบรรยากาศ ส่งผลให้

Received 8 September 2012

Accepted 21 December 2012

เกิดการเปลี่ยนแปลงสัดส่วนขององค์ประกอบทางเคมีในชั้นบรรยากาศได้ ตัวอย่างเช่น ในชั้นโตรโพสเฟียร์ (troposphere) ก๊าซมีเทนจะทำปฏิกิริยา กับอนุมูลอิสระของสารในกลุ่มไฮดรอเจล (hydroxyl radicals) ซึ่งอนุมูลอิสระกลุ่มนี้ เป็นสารที่ช่วยในการกำจัดมลพิษต่างๆ เช่น chloro-fluoro carbons (CFCs) ได้ [1] พ布ว่า 70 – 80 % ของก๊าซมีเทนในบรรยากาศ เกิดจากกิจกรรมของสิ่งมีชีวิต ซึ่งในกิจกรรมของการเกยต์กรรม เช่น ปศุสัตว์และนาข้าว ก็เป็นส่วนหนึ่งในการปลดปล่อยก๊าซมีเทน การเกิดก๊าซมีเทนในนาข้าวมีหลายปัจจัยได้แก่ ปัจจัยด้านการจัดการ เช่น การจัดการในนาข้าว ของเสียและซากข้าวในนา และระบบชลประทาน ปัจจัยด้านต้นข้าว เช่น ลักษณะสัณฐาน สุริวิทยาและสายพันธุ์ของข้าว ปัจจัยด้านสิ่งแวดล้อม เช่น จุลชีพพวกที่ผลิตก๊าซมีเทนและพวกที่ใช้ก๊าซมีเทน ในการศึกษาจีโนมในพืชพบว่า ไม่มีขึ้นที่สร้างเอนไซม์ในการผลิตก๊าซมีเทน ดังนั้นพืชทั่วไปไม่มีระบบชีวเคมีในการผลิตก๊าซมีเทน อย่างไรก็ตาม รากพืชคุณน้ำที่มีก๊าซมีเทนละลายอยู่ มีอิทธิพลให้น้ำไปจึงปลดปล่อยก๊าซมีเทนสู่บรรยากาศ ซึ่งก๊าซมีเทนที่เกิดขึ้นต้องอาศัยต้นข้าวเป็นช่องทางผ่านจากดินขึ้นสู่บรรยากาศ ดังนั้น สุริวิทยาของต้นข้าว ได้แก่ ระบบเนื้อเยื่อลำเลียงอาหาร ระบบการหายใจ ซึ่งว่างระหว่างเซลล์ ปากใบ รูพรุนขนาดเล็กที่อยู่ตามส่วนต่างของต้นข้าว รวมถึงรูปร่างลักษณะของอวัยวะ เช่น ใน ราก ลำต้น ซึ่งปัจจัยเหล่านี้จะส่งผลต่อการเคลื่อนที่ของก๊าซมีเทนได้ เช่นกัน การศึกษาความสัมพันธ์ทางสุริวิทยาของต้นข้าวกับการนำพา ก๊าซมีเทนจากนาข้าวสู่บรรยากาศจะเป็นประโยชน์ ต่อการปรับปรุงพันธุ์ข้าวที่จะช่วยลดการปลดปล่อยก๊าซเรือนกระจกได้ต่อไป

2. การเกิดก๊าซมีเทนในนาข้าว

คืนในการทำนาประกอบไปด้วยสารอินทรีย์ที่เกิดจากการสลายจากออกอินทรีย์ต่ำ ได้แก่สารประกอบในกลุ่มให้อิเล็กตรอน (electron donor) เช่น อะซิเตต (acetate) ฟอร์เมต (formate) เมธานอล (methanol) และเมทิลเอดีเมิน (methylatedamines) ขณะที่สารอีกกลุ่มเป็นตัวรับอิเล็กตรอน เช่น ไอโอน NO_3^- , Mn^{4+} , Fe^{3+} และ SO_4^{2-} ซึ่งแบคทีเรียบางชนิด

สามารถใช้อินทรีย์ต่ำเหล่านี้เพื่อไปใช้ในการสร้างพลังงานในการดำรงชีวิตโดยผ่านกระบวนการเปลี่ยนสารอินทรีย์แบบไม่ใช้ออกซิเจนทำให้เกิดก๊าซมีเทนเป็นผลพลอยได้ออกมา [2] โดยเฉพาะอย่างยิ่งต้นข้าวเองก็เป็นอีกปัจจัยหนึ่งที่ส่งเสริมให้เกิดสภาวะไร้ออกซิเจนในดิน โดยออกซิเจนจะแพร่จากบริเวณคืนเข้าสู่รากและจากรากเข้าสู่ลำต้นและใบ เพื่อให้เซลล์พืชนำออกซิเจนไปใช้ในกระบวนการเมตานอเรชีนของระดับเซลล์ นอกจากนี้เมื่อเซลล์รากของต้นข้าวที่อุดมไปด้วยสารต่างๆ และเยื่อเมือกบริเวณรากหรือที่เรียกว่า root exudates เมื่อเกิดการเสื่อมสลายไปนั้นจะส่งเสริมการเพิ่มปริมาณสารอินทรีย์ให้กับคืนซึ่งแบคทีเรียจะนำสารเหล่านี้ไปใช้สร้างก๊าซมีเทนได้อย่างไรก็ขึ้นกับคุณภาพในการจัดการนาข้าว เช่น

รูปที่ 1 แบบจำลองแสดงการเกิดวัฏจักรก๊าซมีเทนจากนาข้าว ดัดแปลงจาก Dubey [3] สารอินทรีย์ในคืนและที่รากของต้นข้าวถูกใช้เป็นสารตั้งต้นในการสร้างก๊าซมีเทน ก๊าซมีเทนบางส่วนถูกสลายด้วยปฏิกิริยาออกซิเดชัน ส่วนที่เหลือจะแพร่เข้ารากพืชหรือแพร่ขึ้นสู่ผิวดินและบรรยายต่อไป

ปริมาณก๊าซมีเทนที่เกิดในนาข้าวสัมพันธ์กับการย่อยสลายของเซลล์รากในช่วงเก็บเกี่ยว (ripening stage) ในการศึกษาการใช้คาร์บอนไดออกไซด์ (CO_2) ในต้นข้าว โดยใช้วิธีการติดตามธาตุรังสี ^{13}C ที่เป็นไอโซโทปแทนการใช้ ^{12}C ปกติ ใน CO_2 แสดงให้เห็นว่าสารประกอบการรับอนที่เป็นผลพลอยได้จาก

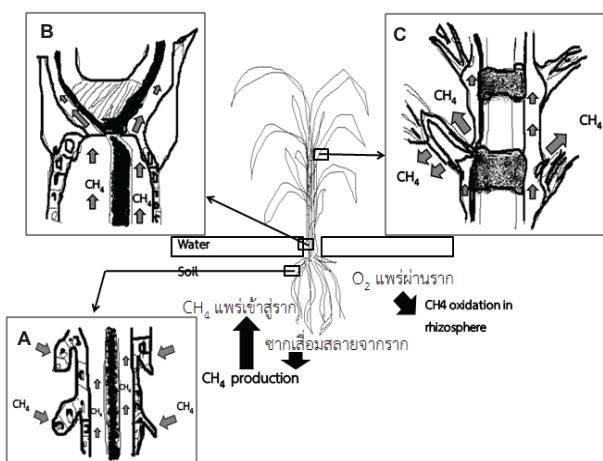
การสังเคราะห์แสงหรือเรียกว่า plant photosynthates เป็นสารกลุ่มหลักที่ถูกนำไปใช้ในกระบวนการสร้างก้าซมีเทนของแบคทีเรีย [4] ซึ่งมีการสันนิษฐานว่า photosynthates ถูกปลดปล่อยจากรากและรากที่เน่าเปื่อยกล้ายเป็นแหล่งสารประกอบการรับอนในดิน ส่งผลให้กุลินทรีย์ในดินนำสารดังกล่าวไปใช้และเปลี่ยนเป็นก้าซมีเทนได้ ดังรูปที่ 1 โดยสามารถกล่าวได้ว่าก้าซมีเทนกุลินทรีย์ในดินและที่รากของต้นข้าวถูกใช้เป็นสารตั้งต้นในการสร้างก้าซมีเทน [5] โดยกระบวนการสร้างก้าซมีเทน (Methanogenesis) เกิดจากการทำงานของแบคทีเรียในกลุ่มเมทาโนเจน (Methanogen) ที่อาศัยในดินซึ่งเป็นบริเวณที่มีออกซิเจนต่ำหรืออาจไม่มีออกซิเจนเลย (Anoxic layer) อย่างไรก็ตามก้าซมีเทนบางส่วนถูกใช้ในกระบวนการเมตาบอเรชั่นของแบคทีเรียพอกเมทาโนโทป (Methanotroph) ที่อาศัยอยู่ในดินและในระบบรากของต้นข้าว (rhizosphere) โดยใช้ก้าซออกซิเจนและก้าซมีเทนเข้าร่วมในปฏิกิริยากล้ายเป็นการรับอนโดยออกไซด์และน้ำดังสมการที่ (1)

จากนั้นก้าซมีเทนที่เหลือจะแพร่จากดินขึ้นสู่บรรยายกาศและบางส่วนแพร่เข้าไปยังรากต้นข้าวและเข้าสู่ต้น ยิ่งไปกว่านั้นในดินที่มีน้ำท่วมขังหรือเปียกชื้นมักเกิดภาวะไร้อากาศซึ่งเป็นภาวะที่เหมาะสมต่อการสลายสารอินทรีย์แบบไม่ใช้ออกซิเจนและทำให้เกิดก้าซมีเทนได้ยิ่งขึ้น อย่างไรก็ตามปรากฏการณ์มีเทนออกซิเดชันที่เป็นอีกปัจจัยหนึ่งที่ส่งผลต่อปริมาณก้าซมีเทนที่ปลดปล่อยจากต้นข้าวได้ชั่นกัน โดยมีเทนออกซิเดชันในนาข้าวจะเกิดในดินบริเวณรากข้าว (rhizosphere) ซึ่งเป็นบริเวณที่มีก้าซมีเทนกับออกซิเจนแพร่กระจายไปบนก้อนอู๋ ปรากฏการณ์มีเทนออกซิเดชันเกิดจากการเคลื่อนที่ของออกซิเจนผ่านเนื้อเยื่อแบบแօเรงคิมา (aerenchyma) ที่ราก ซึ่งมีรูพรุนหรือเป็นโพรงเชื่อมต่อกัน ทำหน้าที่ในการระบายอากาศและเป็นช่องว่างในการลำเลียง

อากาศหรือก้าซต่างๆ ในขณะเดียวกันที่ก้าซมีเทนหลุดจากดินไปสู่บรรยายกาศทำให้ก้าซมีเทนประทับกับก้าซออกซิเจนและเกิดปฏิกิริยาออกซิเดชันกันได้เป็นการบอนโดยออกไซด์กับน้ำตามสมการที่ (1) ส่งผลให้มีก้าซมีเทนลดลงและพบว่าบริเวณรากต่อจากรากกับลำต้น (root to stem transition) จะเป็นบริเวณที่เกิดออกซิเดชันของก้าซมีเทนได้มาก ดังนั้นรูปร่างสันฐานและสีริวิทยาในบริเวณดังกล่าวจะเป็นตัวกำหนดคปริมาณการเคลื่อนที่ก้าซมีเทนและมีผลต่อปรากฏการณ์ก้าซมีเทนออกซิเดชันได้ชั่นกัน อย่างไรก็ตามข้าวมีความหลากหลายทางสันฐานวิทยาและสีริวิทยา เช่น สารของ root exudates จะต่างกันไปตามสายพันธุ์ข้าวหรือความสามารถในการนำก้าซให้ผ่าน (gas transfer capacity) จะต่างกันไปตามสายพันธุ์ [6] จึงส่งผลให้ความสามารถในการนำพา ก้าซมีเทนหรือการปลดปล่อยก้าซมีเทนจะแตกต่างกันไปในต้นข้าวได้ชั่นกัน ตัวอย่างเช่น สายพันธุ์ Rattan เป็นสายพันธุ์ที่มีอายุการเจริญเติบโตยาวนาน จะทำให้เกิดการปลดปล่อยก้าซมีเทนมากกว่าสายพันธุ์ Ananda ที่มีอายุการเจริญเติบโตสั้น [7] เป็นต้น

3. บทบาทสำคัญของต้นข้าวในการปลดปล่อยก้าซมีเทน

3.1 เป็นแหล่งสารตั้งต้นในการผลิตก้าซมีเทน โดยสารที่หลังออกมายังรากจะอุดมไปด้วยมีอีกและเอนไซม์ที่หลังออกนอกเซลล์ (ecto-enzymes) และยังมีสารประกอบอินทรีย์ต่างๆ เช่นกรดอินทรีย์ สารประกอบในกลุ่มฟีโนลและกรดอะมิโน โดยกรดอินทรีย์และกรดซิตริกจะมีมากที่สุด รองลงมาคือ เมลลิก (malic) ซัคซินิก (succinic) และกรดแลคติก (lactic) ตามลำดับ อย่างไรก็ตามองค์ประกอบเหล่านี้จะแตกต่างไปตามสายพันธุ์ข้าว [8] สารที่ต้นข้าวสร้างและส่งไปสะสมที่ผิวราก (root exudates) ที่เป็นอีกปัจจัยหนึ่งที่เกี่ยวข้องกับการเพิ่มสารอินทรีย์ในดิน โดยปกติสารที่สะสมที่ผิวรากในข้าวจะทำหน้าที่เป็นกลไกป้องกันตัวเองเมื่อมีเชื้อทั่วไป โดยเมื่อปริมาณสารดังกล่าวสะสมมากขึ้นจะเพิ่มความสามารถในการต้านทานต่อสารที่เป็นพิษกับเซลล์ เช่น ตะกั่ว แคนเดเมียมและอัลミニียม โดยสารที่สะสมที่ผิวรากที่เป็น


สารเมือกจะช่วยตึงสารพิษไม่ให้เข้าสู่เซลล์ [9] ในทำนองเดียวกันในสภาวะที่ขาดธาตุอาหาร สารที่สะสมที่ผิวราชจะช่วยดูดซับและตึงสารอาหารในดินให้อยู่ใกล้กับราก จากนั้นจะมีการหลั่งสารประกอบอินทรีย์ไม่เหลืองขนาดเล็กและกรดอินทรีย์บางชนิด เพื่อช่วยให้เข้าทำละลายสารอาหารเหล่านั้น เช่น การหลั่งกรดซิตริกและเมลิกจำนวนมากทำให้เกิดภาวะเป็นกรดในดินบริเวณรากซึ่งจะช่วยให้เกิดการละลายของสารอนินทรีย์ได้แก่ ฟอสเฟต เหล็ก แมงกานีส และสังกะสีได้ดีมากขึ้น [10] ในขณะที่เมื่อเกิดสภาวะที่ดินแห้งสารเมือกเหล่านี้จะช่วยให้เกิดกลไกการนำพาสารอาหารแบบ facilitate transport ทำให้สารอาหารจากอนุภาคดินเคลื่อนที่ไปยังผนังเซลล์ของรากได้ดียิ่งขึ้น

โดยสรุปได้ว่าสารอินทรีย์ที่ข้าวหลังอุดมและสารที่สะสมที่ผิวราช บางส่วนจะเป็นแหล่งอาหาร แหล่งคาร์บอน และแหล่งพลังงานให้จุลชีพใช้เจริญเติบโต หรือใช้ในกระบวนการเมตานอริซึมให้ได้พลังงาน จะส่งผลให้มีการสร้างก้าซมีเทนเป็นผลผลิต ซึ่งการหลั่งสารอินทรีย์ของข้าวจะขึ้นกับความอุดมสมบูรณ์ของสารอาหารในดินหรือสภาวะขาดอาหารของข้าว หากขาดอาหารข้าวจะหลั่งสารอินทรีย์มาก จะอื้ออำนวยให้เกิดก้าซมีเทนมากขึ้นด้วย การสร้างก้าซมีเทนโดยจุลชีพในดินจะพบมากบริเวณที่มีสารอินทรีย์สะสมจากเศษพืชหรือสารอินทรีย์จากรากข้าวดังนั้นหากรากข้าวยาวลงลึกลงในดินห่างจากต้นข้าวมากจะส่งผลให้เพิ่มการเกิดก้าซมีเทนบริเวณนั้นมากด้วย [11]

3.2 การปลดปล่อยก้าซมีเทนในนาข้าวสู่บรรยากาศ นั้นพบว่า 90% เกิดจากการที่ก้าซเคลื่อนที่ผ่านต้นข้าว ต้นข้าวเป็นตัวกลางสำคัญที่ให้ก้าซมีเทนผ่านจากดินสู่บรรยากาศโดยผ่านระบบ intercellular air spaces หรือที่เรียกว่า เนื้อเยื่อแบบแอร์เอนกิมา (aerenchyma) ซึ่งมีรูพรุนหรือเป็นโพรงเชื่อมต่อกันทำให้เป็นช่องทางการเคลื่อนที่ของก้าซต่างๆ จากรากสู่ใบหรือจากบรรยักษ์ผ่านเข้าสู่ในมาขังรากได้ โดยสามารถพบได้หลายๆ ส่วนของต้นข้าว ได้แก่ ใบใบข้าว (leaf blades) ก้านใบข้าว (leaf sheaths) และลำต้น (culm) ดังนั้นขนาดและรูปร่างของระบบเนื้อเยื่อแบบแอร์เอนกิมา มีผลต่อปริมาณการเคลื่อนที่ก้าซมีเทนเช่นกัน

4. กลไกการเคลื่อนที่ของก้าซมีเทนผ่านต้นข้าว

ระบบเนื้อเยื่อแบบแอร์เอนกิมาของข้าวและพืชอื่นๆ เป็นส่วนที่ให้ก้าซต่างๆ เคลื่อนที่ เช่น O_2 , CO_2 , N_2 , N_2O และ CH_4 ปรากฏการณ์นี้เริ่มจากการที่ก้าซมีเทนที่ละลายในน้ำจะแพร่เข้าหาผิวน้ำใกล้ จานน้ำจึงเคลื่อนเข้าสู่น้ำในผนังเซลล์ของราก แล้วเคลื่อนที่ไปยังชั้นคอร์เท็กซ์ (cortex) ซึ่งเป็นชั้นที่เป็นอาณาเขตระหว่างชั้นเอปิเดอร์มิส (epidermis) และสเตล (stele) ซึ่งชั้นคอร์เท็กซ์ (cortex) ประกอบด้วยเนื้อเยื่อพาร์คิม่าที่ทำหน้าที่สะสมน้ำและอาหารเป็นส่วนใหญ่ การเคลื่อนที่ของก้าซเหล่านี้เกิดขึ้นจากแรงขับดันของความแตกต่างระหว่างปริมาณน้ำในดินรอบๆ รากและท่อลำเลียงในราก ก้าซมีเทนจะออกมายกน้ำที่ชั้น root cortex และเคลื่อนไปยังลำต้น (shoots) ด้วยช่องว่างระหว่างเซลล์ที่เรียกวิดกัน (intercellular spaces) และระบบเนื้อเยื่อแบบแอร์เอนกิมา ก้าซมีเทนส่วนมากถูกปล่อยออกมายกจากพืชที่รูเล็กๆ ที่เรียกว่า microspores ในก้านใบล่างและข้อต่อระหว่างก้านใบกับลำต้น

รูปที่ 2 ภาพของรูปแบบของการรับและปลดปล่อยก้าซมีเทนในนาข้าว ดัดแปลงจาก Nouchi และ Mariko [12] โดยเริ่มจากก้าซมีเทนแพร่ผ่าน เนื้อเยื่อแบบแอร์เอนกิมาจากบริเวณราก (A) ไปยังบริเวณรอยต่อรากกับลำต้น (root-stem transitionzone, B) และออกสู่บรรยากาศตามบริเวณรอยต่อก้านใบในข้าว (stem-leaf section zone, C) ลูกศรแสดงทิศทางการเคลื่อนที่ของก้าซมีเทน

ซึ่งเป็นที่ร่วมของก้านใบโดยจะไม่พบรากคลปดล้อยก้าซมีเทนทางปากใบ (stomata) [12] โดยเฉพาะในข้าวจนน้ำพบว่า ฟองอากาศส่วนมากจะออกมาส่องทางคือ (1) ชั้นผิวของก้านใบ ในบริเวณด้านที่รับแสงแดดเรียกว่า upper epidermis cell (adaxial epidermis) และ (2) บริเวณรอยต่อของแผ่นผิวลำต้นกับก้านใบข้าวดังรูปที่ 2C

5. ปัจจัยที่ควบคุมการนำพา ก้าซมีเทนผ่านต้นข้าว

ระบบสืริริวิทยาของต้นข้าวเป็นปัจจัยที่สำคัญในการปลดปล่อยก้าซมีเทน โดยการเคลื่อนที่ของก้าซมีเทนอาศัยกลไกของการแพร่ ซึ่งขึ้นอยู่กับความเข้มข้นของก้าซมีเทนที่ละลายน้ำอยู่ในดินและในดินรอบตัวบนราก นอกจากนั้นยังขึ้นอยู่กับช่วงการเจริญเติบโต ขนาด รูปร่าง และวิธีการเพาะปลูก เช่น อัตราการปลดปล่อยก้าซมีเทนในข้าวที่มี 9 กอ จะมากกว่า 3 กอ นอกจากนี้อัตราการปลดปล่อยก้าซมีเทนจะสัมพันธ์ของพื้นที่บนใบ (leaf area) โดยเฉพาะในช่วงแตกกอ เช่นกัน [13] นอกจากนี้ระบบเนื้อเยื่อแบบแօเรงคิมา ยังมีส่วนสำคัญต่อการปลดปล่อยก้าซมีเทน โดยพบว่าข้าวและพืชน้ำ (hydrophytes) ส่วนมากจะพัฒนาระบบนื้อเยื่อแบบแօเรงคิมา ทึ้งในรากและลำต้นทำให้สามารถหายใจในสภาพแวดล้อมที่ขาดออกซิเจน เพื่อให้ได้พลังงานในการดำรงชีพ โดยออกซิเจนจะแพร่และเคลื่อนที่ผ่านเนื้อเยื่อแบบแօเรงคิมาไปยังราก ขณะที่ก้าซมาร์บอนไดออกไซด์และก้าซมีเทนจะเคลื่อนที่ส่วนทางจากรากขึ้นสู่ชั้นบรรยักษ์ อย่างไรก็ตามขนาดของช่องว่างในระบบเนื้อเยื่อแบบแօเรงคิมาเป็นส่วนสำคัญที่สามารถควบคุมการเคลื่อนตัวของก้าซออกซิเจนได้และเมื่อ ก้าซออกซิเจนเคลื่อนที่ไปถึงระบบราก ก็จะเริ่งการทำงานของแบบที่เรียกว่าสามารถออกซิไดซ์ (oxidize) ก้าซมีเทนในบริเวณรากข้าว ทำให้ส่งผลต่อปริมาณก้าซมีเทนที่จะผ่านขึ้นมาออกสู่ชั้นบรรยักษ์ อย่างไรก็ตามอัตราการปลดปล่อยก้าซออกซิเจนจะแปรผูกผันกับอุณหภูมิ เมื่ออุณหภูมิสูงการปลดปล่อยก้าซออกซิเจนจะลดลง ในขณะที่เมื่ออัตราการสัมเคราะห์แสงและอัตราการหายใจมากขึ้นจะทำให้การปลดปล่อยก้าซออกซิเจนจะมากขึ้น [14]

นอกจากนี้ลักษณะข้าวจะแตกต่างกันไปตามสายพันธุ์ส่งผลต่อการปลดปล่อยก้าซมีเทน เช่น ข้าวพันธุ์ Monohar Sali ซึ่งมีต้นความสูง จำนวนใบต่อต้นมาก มวลชีวภาพของลำต้นและรากมาก ทำให้มีการเกิดก้าซมีเทนมากที่สุด ตรงกับข้าวพันธุ์ IR-36 ที่มีลักษณะต้นเตี้ย มวลชีวภาพน้อย นอกจากความแตกต่างของสายพันธุ์จะส่งผลต่อปริมาณการปลดปล่อยก้าซมีเทนแล้วนั้น ช่วงอายุหรือช่วงวัยต่างๆ ยังส่งผลต่อปริมาณการปลดปล่อยก้าซมีเทน เช่นกัน โดยในช่วงที่ข้าวออกวงจร มีการสะสมสารอาหารมาก ทำให้มีสารประกอบอินทรีย์ให้กูลชีพสร้างก้าซมีเทนได้ดี [15]

6. ลักษณะทางสิริริของข้าวที่เกี่ยวข้องกับการปลดปล่อยก้าซมีเทน

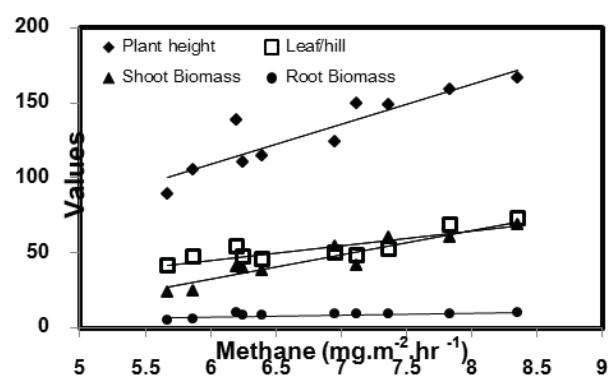
การปลดปล่อยก้าซมีเทนจะพบมากในภาวะที่มีน้ำท่วมบังติดต่อ โดยเฉพาะเมื่อข้าวเข้าสู่ช่วงแตกกอ (tillering) ออกดอก (flowering) และออกรวงข้าว (ripening) [16] โดยพบว่า 90% ของการปลดปล่อยก้าซมีเทนในนาข้าวเกิดจากการที่ก้าซมีเทนเคลื่อนที่จากดินผ่านต้นข้าวสู่บรรยักษ์ ดังนั้นลักษณะต้นข้าวจึงมีผลอย่างมากต่อปริมาณก้าซมีเทนที่ออกมายังสีกษาพบว่าข้าวต้นเตี้ย (semi-dwarf varieties) จะปลดปล่อยก้าซมีเทนน้อยกว่าสายพันธุ์ที่ลำต้นสูง ซึ่งได้ทำการศึกษาในหลายสายพันธุ์ข้าวทั่วโลก เช่น อินเดีย จีน ญี่ปุ่นและสหรัฐอเมริกา ซึ่งอินเดียได้จากการที่มีมวลชีวภาพมากกว่าในเมือง นอกจากนั้นพบว่า ความสามารถในการเคลื่อนที่ของก้าซมีเทนจะเพิ่มขึ้นสัมพันธ์กับขนาดช่องท่อในระบบเนื้อเยื่อแบบแօเรงคิมาของ root-shoot transition zone (รูปที่ 2B) นอกจากนี้การปลดปล่อยก้าซมีเทนและในโตรเจนไดออกไซด์ จะสัมพันธ์กับพื้นที่ใน จำนวนใบ จำนวนต้นต่อ กอ และน้ำหนักแห้งของราก [17] ตัวอย่างเช่น ข้าวสองสายพันธุ์ คือ Dular และ IR 72 จะมีการปลดปล่อยก้าซมีเทนคล้ายกันในการเพาะปลูก ขณะที่สายพันธุ์ IR 65598 จะปลดปล่อยก้าซมีเทนน้อยกว่าสายพันธุ์ที่ต่างกันส่งผลต่อลักษณะทางสิริริวิทยาที่ต่างกันไปส่งผลต่อปริมาณก้าซมีเทนที่ปลดปล่อยออกมายังลักษณะทางสิริริวิทยาของข้าวที่ส่งผลให้มีการนำพา ก้าซมีเทน

ผ่านต้นข้าวออกสู่บรรยายการได้ดี คือ ต้นข้าวและรากที่มีขนาดใหญ่ รากมีน้ำหนักรวมมาก รากมีความยาวและจำนวนแขนงมาก จำนวนและขนาดช่องว่างระหว่างเซลล์ ในสอดมีน้ำหนัก และพื้นที่ผิวมาก กอข้าวมีขนาดและจำนวนต้นมาก โดยเฉพาะความสูง น้ำหนักแห้งของลำต้น น้ำหนักแห้งของราก และจำนวนใบบนก้าน ดังตัวอย่างภาพแสดงความสัมพันธ์ในรูปที่ 3 การศึกษาความสัมพันธ์ของความสามารถในการปลดปล่อยก๊าซมีเทนกับสันฐานและสารวิทยาของข้าว จะช่วยให้น้าไปปรับปรุงพันธุ์เพื่อหาพันธุ์ข้าวที่ลดการปลดปล่อยก๊าซมีเทนได้

6.1. ใบและก้านใบขนาดและความหนาแน่นของช่องว่างขนาดเล็กที่ผิว (micropore)

จำนวนในมากและในมีขนาดพื้นที่มากจะส่งเสริมให้มีจำนวนช่องว่างขนาดเล็กต่อหน่วยพื้นที่มากและช่วยให้เกิดการเคลื่อนที่ออกของก๊าซมีเทนได้ดี เช่นเดียวกับก้านใบ ซึ่งก๊าซมีเทนส่วนมากถูกปล่อยออกมายจากช่องว่างขนาดเล็กที่ผิวของก้านใบ โดยพบว่าข้าวสายพันธุ์ Basmuthi เป็นสายพันธุ์ที่มีใบกว้าง ยาว ทำให้มีพื้นที่ใบมาก ส่งผลให้ก๊าซมีเทนปลดปล่อยออกมากได้ [12] อย่างไรก็ตามพบว่าปากใบในบริเวณก้านใบอาจเป็นจุดสำคัญที่เป็นทางปล่อยก๊าซมีเทนได้ เช่นเดียวกับปากใบที่อยู่บนใบ โดยภาพจากกล้อง Scanning electron micrograph แสดงให้เห็นช่องว่างขนาดเล็กในบริเวณผิวส่วนที่ได้รับแสงของส่วนล่างของก้านใบ [12] ซึ่งเป็นบริเวณที่มีการปลดปล่อยก๊าซมีเทนได้เช่นกัน

อย่างไรก็ตามการศึกษาการปลดปล่อยก๊าซมีเทนที่ปากใบยังไม่ชัดเจน ซึ่งหากปากใบเป็นทางปล่อยก๊าซมีเทนได้ ความหนาแน่นของปากใบและจำนวนต้นในกออาจจะส่งผลต่อการปลดปล่อยก๊าซมีเทนได้เช่นกัน

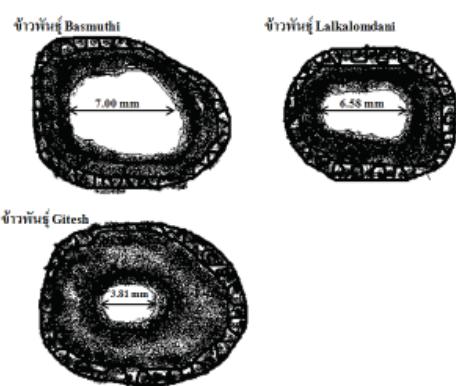

6.2 ระบบราก

รากข้าวเล็กลงไปในดินมากซึ่งเป็นบริเวณที่มีก๊าซออกซิเจนน้อย จะเพิ่มโอกาสให้มีสารอินทรีย์ให้แก่กระบวนการสร้างก๊าซมีเทนโดยกระบวนการไม่ใช้ออกซิเจนของแบคทีเรียได้เพิ่มขึ้น เช่นเดียวกับความหนาแน่นของ

รากและรากที่มีมวลมาก ย่อมมีสารอินทรีย์สะสมมากในรากซึ่งเพิ่มโอกาสให้มีสารอินทรีย์เป็นสารตั้งต้นให้แก่จุลินทรีย์เพื่อสร้างก๊าซมีเทนเช่นกัน นอกจากนี้จำนวนแขนงของรากหากมีจำนวนมากทำให้มีสารอินทรีย์สะสมมาก เมื่อเน่าเปื่อยลายไปปึงเป็นอาหารให้แก่ จุลินทรีย์และการผลิตก๊าซมีเทนได้เช่นกัน นอกจากนี้ สารอินทรีย์สะสมที่ผิวรากหรือ root exudates หากมีมากจะส่งผลต่อการเกิดก๊าซมีเทนได้มาก เช่นกัน อย่างไรก็ตามความสามารถในการนำพา (transfer capacity) จะเพิ่มขึ้นสัมพันธ์กับขนาดช่องว่างในระบบเนื้อเยื่อแบบแอลองค์มีนาในบริเวณของ root-shoot transition zone (รูปที่ 2 B)

6.3 ระบบลำต้น

ปัจจัยที่เกี่ยวกับลำต้นทั้งขนาดและความสูงของลำต้น จำนวนกอ ซึ่งพบว่าจำนวนกอน้อยและข้าวต้นเตี้ย (semi-dwarf varieties) จะปล่อยก๊าซมีเทนน้อยกว่าสายพันธุ์ที่ลำต้นสูงถึง 36% นอกจากนี้จำนวนของข้อต่อของก้านใบกับลำต้น (node leaf-sheath junctions) ที่มีจำนวนมากจะส่งผลให้มีการปลดปล่อยก๊าซมีเทนได้มากเช่นกัน



รูปที่ 3 ความสัมพันธ์ของลักษณะทางประการกับการปลดปล่อยก๊าซมีเทนด้วยแปลงจาก Baruah และคณะ [17] แกนแนวตั้งแสดงตัวเลขของความสูง น้ำหนักแห้งของลำต้น น้ำหนักแห้งของรากและจำนวนใบบนก้าน แกนแนวนอนแสดงปริมาณก๊าซมีเทนที่ปลดปล่อยออกมาน เป็นมิลลิกรัมต่อตารางเมตรในเวลา 1 ชั่วโมง

6.4 ระบบช่องว่างในลำต้น (medullary cavity)

ความเข้มข้นของก้ามีเทนในระบบช่องว่างในลำต้นของข้าวมีสูงมากกว่าบรรดาศักดิ์อื่นๆ 2900 เท่า [14] ดังนั้นก้ามีเทนจะแพร่ออกสู่บรรดาศักดิ์ได้โดยง่าย การศึกษาขนาดของระบบช่องว่างในลำต้นจากข้าวสามสายพันธุ์ที่มีความสามารถในการปลดปล่อยก้ามีเทนมากน้อยต่างกันคือ สายพันธุ์ Basmuthi (ปลดปล่อยก้ามีเทนได้มากที่สุด) สายพันธุ์ Lalkalomdani (ปลดปล่อยก้ามีเทนได้ในระดับกลาง) และสายพันธุ์ Gitesh (ปลดปล่อยก้ามีเทนได้น้อยที่สุด) พบว่าสายพันธุ์ Basmuthi ซึ่งเป็นสายพันธุ์ที่ปลดปล่อยก้ามีเทนมากที่สุด มีขนาดของระบบช่องว่างในลำต้นหรือ medullary cavities มากที่สุด โดยมีความกว้าง 7 มิลลิเมตร ซึ่งใหญ่ที่สุดเมื่อเทียบกับขนาดต้นที่เท่ากันจากข้าวสายพันธุ์อื่นๆ ดังรูปที่ 4

นอกจากนี้ ภาพ Scanning electron micrographs แสดงขนาดของ vascular bundles จากสายพันธุ์ Basmuthi ซึ่งมีช่องขนาดใหญ่ที่สุด ถัดมาคือสายพันธุ์ Lalkalomdani และ vascular bundles ที่มีช่องขนาดเล็กที่สุดคือสายพันธุ์ Gitesh พบว่าปริมาณการปล่อยก้ามีเทนมีความสัมพันธ์กับขนาดของช่อง vascular bundles ด้วยเช่นกัน [19] นอกจากนี้ความหนาแน่นของปากใบในข้าวสายพันธุ์ Basmuthi และ ข้าวสาย

รูปที่ 4 ภาพตัดขวางแสดง medullary cavity ของ สายพันธุ์ Basmuthi มีความกว้าง 7 มิลลิเมตร สายพันธุ์ Lalkalomdani มีความกว้าง 6.58 มิลลิเมตร และ สายพันธุ์ Gitesh มีความกว้าง 3.81 มิลลิเมตร คัดแปลงจาก Hsu และคณะ [18]

พันธุ์ Bogajoha มากกว่า ข้าวสายพันธุ์ Prafulla และ ข้าวสายพันธุ์ Gitesh ยิ่งไปกว่านั้นข้าวที่มีการปลดปล่อยก้ามีเทนสูงมากจะมีการขยายตัวมากกว่าข้าวสายพันธุ์ที่ปลดปล่อยก้ามีเทนต่ำ อี่างไรก็ตามการผลิตข้าวที่ได้ผลผลิตไม่เต็มประสิทธิภาพนั้นจะส่งผลให้มีสารประกอบ carcinogen ที่เกิดจาก การสังเคราะห์แสงในต้นข้าว เหลืออยู่มากและจะกลับคืนสู่ดิน ซึ่งจะกลายเป็นแหล่งการสร้างก้ามีเทนได้ [5]

ปัจจัยทางสรีรวิทยาของต้นข้าวจะส่งผลต่อปริมาณการปลดปล่อยก้ามีเทน ดังนั้นการคัดเลือกสายพันธุ์ข้าวหรือต้นข้าวที่มีลักษณะสรีรวิทยาที่ส่งผลให้มีการปลดปล่อยก้ามีเทนต่ำ จะสามารถนำไปสู่การปรับปรุงพันธุ์ให้ได้พันธุ์ข้าวที่มีลักษณะที่ช่วยลดการปลดปล่อยก้ามีเทนในกระบวนการได้

7. สรุป

พื้นที่ที่ทำนามีบริเวณกว้าง ดังนั้นการปลดปล่อยก้ามีเทนจากนาข้าวจึงเป็นอีกปัจจัยหนึ่งที่ส่งผลต่อปริมาณก้ามีเทนในบรรดาศักดิ์ โดยทั่วไปก้ามีเทนจะเคลื่อนที่จากนาข้าวสู่ชั้นบรรดาศักดิ์โดยใช้ต้นข้าวเป็นทางผ่านออกไป สรีรวิทยาของต้นข้าวจึงเป็นปัจจัยสำคัญอีกปัจจัยหนึ่ง ที่สามารถควบคุมการปลดปล่อยก้ามีเทนจากนาข้าวได้ ดังนั้นการเรียนรู้ความสัมพันธ์ระหว่างระบบสรีรวิทยาของต้นข้าวและพันธุกรรมที่เกี่ยวข้องกับการปลดปล่อยก้ามีเทน สามารถนำไปสู่การพัฒนาสายพันธุ์ข้าวที่ปลดปล่อยก้ามีเทนได้น้อยแต่ยังคงคุณสมบัติที่ดีไว้ เพื่อพัฒนาระบบการทำงานที่เป็นมิตรกับสิ่งแวดล้อมได้ต่อไป

เอกสารอ้างอิง

- [1] L.M. Jean, R. Pierre. "Production, oxidation, emission and consumption of methane by soils: A review." *European Journal of Soil Biology*. vol. 37, 2001, pp. 25-50.
- [2] D. C. Parashar, J. Rai, K. G. Prabhat and N. Singh. "Parameters affecting methane emission from paddy fields." *indian journal of radio & space physics*, vol. 20, 1991, pp. 12-17.

[3] S. K. Dubey. "Microbial ecology of methane emission in rice agroecosystem : A Review." *Applied Ecology & Environmental Research*, vol. 3, 2005, pp. 1-27.

[4] T. Minoda and M. Kimura. "Contribution of photosynthesized carbon to the methane emitted from paddy fields." *Geophysical Research Letters*, vol. 21, 1994, pp. 2007-2010.

[5] D. SImone and C. Ralf. "Effect of rice plants on methane production and rhizospheric metabolism in paddy soil." *Biogeochemistry*, vol. 45, 1999, pp. 53-71.

[6] R. Wassmann, R.S. Lantin, H.U. Neue, L.V. Buendia, T.M. Corton and Y. Lu "Characterization of methane emissions in Asia III: Mitigation options and future research needs." *Nutrient Cycling in Agroecosystems*, vol. 58, 2000, pp. 23-36.

[7] T.K. Adhya, A.K. Rath, P.K. Gupta, V.R. Rao, S.N. Das, K.M. Parida, D.C. Parashar and N. Sethunathan. "Methane emission from flooded rice fields under irrigated conditions." *Biology and Fertility of Soils*. Vol. 18, 1994, pp. 243-248.

[8] A. Watanabe, Y. Satoh and M. Kimura "Estimation of the increase in CH₄ emission from paddy soils by rice straw application." *Plant and Soil*. vol. 173, 1995, pp. 225-231.

[9] W.J. Horst, A. Wagner, and H. Marshner. (1982, Mar). "Mucilage protects root meristems from aluminium injury." *Zeitschrift fur Pflanzenphysiologie*. [online] 105(5), pp. 435-444. Available: <http://www.Science direct.com/science/article/pii/S0044328X8280041X>.

[10] E. Hoffland, G.R. Findenegg, and J.A. Nelemans. (1989, Sep). "Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation." *Plant and Soil*. [online]. 113, pp. 161-165. Available: <http://link.springer.com/article/10.1007%2FBF02280176?LI=true#page-1>.

[11] R.L. Sass, F.M. Fisher, F.T. Tuner, and M.F. Jund. "Methane emission from rice fields as influenced by solar radiation, temperature and straw incorporation." *Global Biogeochemical Cycles*. Vol. 5, 1991, pp. 335-350.

[12] I. Nouchi, and S. Mariko. Mechanism of methane transport by rice plants. In: Oremland RS (ed) *Biogeochemistry of global change*. New York: Chapman & Hall, 1993, pp. 336-352.

[13] B. Wang, H.U. Neue and H.P. Samonte. (1997, Oct). "Role of rice in mediating methane emission." *Plant and Soil*. [On-line]. 189, pp. 107-115. Available: <http://link.springer.com/article/10.1023%2FA%3A1004219024281?LI=true#page-1>.

[14] I. Nouchi, M. Shigeru, and A. Kazuyuki. (1990, Sep). "Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants." *Plant Physiology*. [On-line]. 94(1), pp. 59-66. Available: <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1077189/>.

[15] N. Gogoi, K. K. Baruah and P.K. Gupta. (2008, Jan). "Selection of rice genotypes for lower methane emission." *Agronomy for Sustainable Development*. [On-line]. 28, pp. 181-186. Available: <http://link.springer.com/article/10.1051/agro%3A2008005?null#page-1>.

[16] S.S. Yang, H.L. Chang. (1998, May) "Effect of environmental conditions on methane production and emission of paddy soil." *Agriculture, Ecosystems & Environment*. [On-line]. 69(1), pp. 69-80. Available: [http://dx.doi.org/10.1016/S0167-8809\(98\)00098-X](http://dx.doi.org/10.1016/S0167-8809(98)00098-X).

[17] K.K. Baruah, G. Boby and P. Gogoi. (2010, Jan). "Plant physiological and soil characteristics associated with methane and nitrous oxide emission from rice paddy." *Physiology and Molecular Biology of Plants*.

[online]. 16(1), pp. 79-91. Available: <http://link.springer.com/article/10.1007%2Fs12298-010-0010-1?LI=true#page-1>.

[18] Y.W. Hsu, S.K. Singh, M.Y. Chiang, Y.Y. Wu and I.F. Chang. (2009, Jan). "Strategies to lower greenhouse gas level by rice agriculture." *African Journal of Biotechnology*. [online]. 8(2), 2009, pp. 126-132. Available: <http://academicjournals.org/ajb/PDF/pdf2009/19Jan/Hsu%20et%20al.pdf>.

[19] K. Das and K. K. Baruah. (2008, Oct). "Methane emission associated with anatomical and morphophysiological characteristics of rice (*Oryza sativa*) plant." *Physiologia Plantarum*. 134(2), pp. 303-312.

ประวัติผู้เขียนบทความ

ดร. กิจอน คิลป์ประสิทธิ์
วท.บ. ชีวเคมี มหาวิทยาลัยขอนแก่น
วท.ม. ชีวเคมี จุฬาลงกรณ์มหาวิทยาลัย
ปร.ค. พันธุ์วิศวกรรม
มหาวิทยาลัยเกษตรศาสตร์
สถานที่ทำงานศูนย์วิจัยและการจัดการ
ความรู้ทางพุกศาสตร์ คณะวัฒนธรรมสิ่งแวดล้อมและการ
ท่องเที่ยวเชิงนิเวศ มหาวิทยาลัยศรีนครินทรวิโรฒ 63 หมู่ 7
ตำบลองครักษ์ อำเภอองครักษ์ จังหวัดนนทบุรี 26120
งานวิจัยที่สนใจ ชีวเคมีและพันธุศาสตร์ระดับโอมากุล
ชีวเคมีสิ่งแวดล้อม พันธุศาสตร์ในระบบนิเวศ