

บทความวิชาการ

ไฮโดรเจน – แหล่งพลังงานแห่งอนาคต

Hydrogen as a Future Energy Source

ณาวดี ศรีศิริวัฒน์

สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีปทุมธานี

833 ถนนพระราม 1 เขตปทุมธานี กรุงเทพฯ 10330 E-mail: navadee@hotmail.com

บทคัดย่อ

ปัจจุบันโลกกำลังเผชิญกับปัญหาสภาวะโลกร้อน ผลกระทบจากการเผาไหม้เชื้อเพลิงฟอสซิล และรากของพลังงานที่สูงขึ้นอย่างต่อเนื่อง ระบบพลังงานยังยืนในอนาคตซึ่งอยู่บนพื้นฐานของพลังงานหมุนเวียนที่ไม่มีจันทร์ต่อสิ่งแวดล้อมดังเช่นไฮโดรเจน จำเป็นความสำคัญอย่างยิ่ง การใช้ไฮโดรเจนเป็นแหล่งพลังงานแห่งอนาคตเป็นแนวทางหนึ่งที่จะสร้างไฮโดรเจนอีกครั้งในมีซึ่งกีด้วยระบบเศรษฐกิจที่มีไฮโดรเจนเป็นตัวขับเคลื่อนแทนเชื้อเพลิงฟอสซิล ไฮโดรเจนและเชลล์เชื้อเพลิงเป็นหนทางสำคัญที่ถูกคาดหวังเป็นอย่างมากในการที่จะแก้ปัญหาด้านพลังงานในอนาคต เทคโนโลยีเหล่านี้จะช่วยลดปัญหาด้านสิ่งแวดล้อม พร้อมทั้งทำให้เกิดความมั่นคงทางพลังงาน และการสร้างอุตสาหกรรมด้านพลังงานใหม่ บทความนี้จะกล่าวถึงมุมมองของไฮโดรเจนอีกครั้งในมีซึ่งดังอยู่บนพื้นฐานของวงจรสะอาดและง่าย ประกอบด้วย การแยกน้ำเป็นไฮโดรเจนและออกซิเจน โดยใช้พลังงานหมุนเวียน เช่น แสงอาทิตย์ การจัดเก็บและขนส่ง และการใช้ไฮโดรเจนเป็นเชื้อเพลิงในเชลล์เชื้อเพลิงสำหรับผลิตกระแสไฟฟ้าและมีน้ำเป็นผลพลอยได้โดยปราศจากซึ่งมลพิษ ก้าวค้าร์บอนไดออกไซด์ และฝุ่นละออง บทความนี้ยังนำเสนอเทคโนโลยีการผลิตไฮโดรเจน การจัดเก็บและการขนส่ง หลักการทำงานของเชลล์เชื้อเพลิงและการประยุกต์ใช้งาน ภายใต้ขอบเขตของวิศวกรรมพลังงานที่ยั่งยืน

คำสำคัญ: ไฮโดรเจน พลังงานหมุนเวียน เชลล์เชื้อเพลิง

Abstract

Nowadays, the world confronts many serious problems about greenhouse gas emission and atmospheric pollution from the direct fossil fuel combustion and continuously increasing energy prices. In a future sustainable energy system based on renewable energy, environmentally harmless energy carriers like hydrogen, will be vital importance. The use of hydrogen as a future energy source is a way to support the hydrogen economy instead of fossil fuel economy. Hydrogen and fuel cell are now extensively expected as one of the key energy solutions in the future. These technologies will contribute considerably to depletion in environmental problems, enhanced energy security, creation of new energy industries. This paper describes the vision for hydrogen economy based on a clean and simple cycle: separate water into hydrogen and oxygen using renewable energy such as solar; storage and

distribute; use hydrogen to power a fuel cell to produce electrical energy and water. This process produces no pollution, no carbon dioxide and no particles. This paper also presents technologies of hydrogen production, hydrogen storage and distribution, and fuel cell operation and application within a sustainable energy vision.

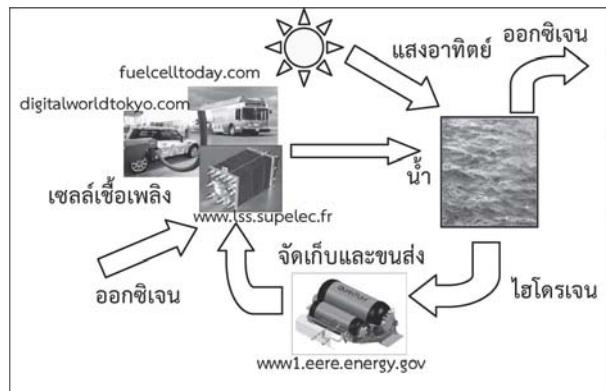
Keywords: hydrogen, renewable energy, fuel cell

1. บทนำ

พลังงานเป็นสิ่งจำเป็นอย่างยิ่งในการดำรงชีวิตของทุกคน และเป็นปัจจัยพื้นฐานสำหรับการผลิตทั้งในภาคธุรกิจและอุตสาหกรรม พลังงานที่เราใช้มากที่สุดในปัจจุบันก็คือเชื้อเพลิงฟอสซิลซึ่งเป็นแหล่งพลังงานใช้หมุนหรือพลังงานสัมบูรณ์ อย่างไรก็ตามเชื้อเพลิงฟอสซิลเป็นแหล่งพลังงานที่ก่อให้เกิดปัญหาด้านสิ่งแวดล้อม เช่น มลพิษทางอากาศและการปล่อยก๊าซเรือนกระจก [1] ซึ่งก่อให้เกิดวิกฤตภัยคุกคามที่สำคัญที่สุดในปัจจุบัน นอกจากนี้ปัญหาความขาดแคลนพลังงานและราคาพลังงานที่สูงขึ้นทุกวัน ทำให้มีความจำเป็นที่จะต้องหาพลังงานอื่นเพื่อมาทดแทนหรือใช้ควบคู่กับแหล่งพลังงานที่ขอยูในปัจจุบัน ทั้งนี้ต้องคำนึงถึงผลกระทบต่อสิ่งแวดล้อม พลังงานทางทางเลือกนี้ควรลดปริมาณการปล่อยก๊าซคาร์บอนไดออกไซด์ซึ่งเป็นตัวการสำคัญที่ก่อให้เกิดปรากฏการณ์เรือนกระจกอันเป็นสาเหตุของสภาวะโลกร้อน แสงอาทิตย์ ลม และชีวมวล เป็นแหล่งพลังงานหมุนเวียนที่หลายคนรู้จักและเป็นที่นิยมใช้กันอยู่ในปัจจุบัน แต่แหล่งพลังงานเหล่านี้มีข้อจำกัดด้านพื้นที่การใช้งาน ขาดความต่อเนื่องในการใช้งาน และมีการเปลี่ยนแปลงอยู่เสมอ ยกตัวอย่างเช่นการติดตั้งกันหันลมต้องการพื้นที่ที่มีลมแรงและมีลมสม่ำเสมอ ดังนั้นไฮโดรเจนจึงเปรียบเสมือนตัวกักเก็บพลังงานในอุดมคติที่สนับสนุนการพัฒนาด้านพลังงานอย่างยั่งยืน [2] จึงกล่าวได้ว่าไฮโดรเจนเป็นพลังงานทางเลือกใหม่ที่ได้รับความสนใจกับการเป็นพลังงานในอนาคต เนื่องจากสามารถผลิตจากแหล่งพลังงานที่นำกลับมาใช้ใหม่ได้และไม่หมดไป เช่น น้ำ ชีวมวล และแสงอาทิตย์ เป็นต้น จึงก่อให้เกิดการพัฒนาด้านพลังงานไฮโดรเจนอย่างยั่งยืน ไฮโดรเจนถูกนำไปใช้ในระบบผลิตกระแสไฟฟ้าที่มีประสิทธิภาพสูง อย่างเชลล์เชื้อเพลิง ซึ่งประยุกต์ใช้กันทั้งยานพาหนะและโรงไฟฟ้า โดยเชลล์เชื้อเพลิงเปลี่ยนพลังงานเคมีของเชื้อเพลิง (ไฮโดรเจน) และออกซิเจน (ออกซิเจนบริสุทธิ์หรือออกซิเจนจากอากาศก็ได้) เป็นพลังงานไฟฟ้าได้โดยตรง โดยที่ไม่ก่อให้เกิดมลภาวะต่อสิ่งแวดล้อม เพราะผลิตภัณฑ์ที่ได้คือไฟฟ้าและน้ำ ซึ่งต่างจากเชื้อเพลิงอื่นที่มีการปล่อยก๊าซคาร์บอนไดออกไซด์หรือแม้แต่ในไฮโดรเจนออกไซด์ [3]

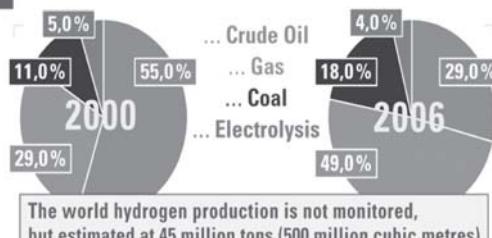
ความน่าสนใจของการใช้ไฮโดรเจนอยู่ที่มันสามารถถูกใช้เป็นตัวกลางกักเก็บสำหรับผลิตไฟฟ้าจากแหล่งพลังงานหมุนเวียน ดังเช่น พลังงานแสงอาทิตย์ พลังลม พลังคลื่น และพลังงานน้ำขึ้น-ลง ไฮโดรเจนสามารถผลิตได้จากสารตั้งต้นที่มาจากเชื้อเพลิงฟอสซิล เช่น ก๊าซธรรมชาติ

หรือไม่ใช่เชื้อเพลิงฟอสซิล เช่น น้ำ เอทานอล เมทานอล รวมถึงชีวนิวคลีน เช่น ฟางข้าว ข้าวอ้อย กาummันสำปะหลัง เป็นต้น ทำให้การใช้พลังงานไฮโดรเจนในอนาคตเป็นการเพิ่มความมั่นคงทางพลังงานและเศรษฐกิจอย่างมีศักยภาพอีกด้วย [3]


2. ไฮโดรเจนอีค่อนโน้ม (Hydrogen Economy)

หากในอนาคตโลกของเรามาการณ์เข้าสู่ระบบเศรษฐกิจที่มีก้าชไฮโดรเจนเป็นตัวขับเคลื่อนแทนเชื้อเพลิงฟอสซิลที่จะหมดไปจากโลกของเรารายในอีกประมาณสี่สิบปีข้างหน้า ในขณะที่ถ่านหินก็มีให้ใช้อีกเพียงประมาณสองร้อยกว่าปีเท่านั้น [4] ไฮโดรเจนคือพลังงานทดแทนสะอาดไม่มีปัญหาสิ่งแวดล้อม ไม่ต้องกังวลว่าจะขาดแคลนพลังงาน เพราะตราบได้ที่มีน้ำในโลกนี้ครบั้นก็มีไฮโดรเจน (สูตรของน้ำคือ H_2O โดย H คือไฮโดรเจน และ O คือออกซิเจน) หากไฮโดรเจนสามารถหาซื้อได้ทุกหนทุกแห่ง รวมถึงการมีสถานีบริการไฮโดรเจนมากมายเหมือนปั้มน้ำมันในปัจจุบัน มีโรงไฟฟ้าพลังไห้ไฮโดรเจนขนาดใหญ่แทนโรงไฟฟ้าแบบเดิม ไร้เชื้อก้าชพิษและฝุ่นควัน โรงงานอุตสาหกรรมที่ไม่ปล่อยควันดำ รถยนต์เซลล์เชื้อเพลิงวิ่งกันอย่างดายดีนั้นตามท้องถนน นั่นคือ ไฮโดรเจนอีค่อนโน้ม (Hydrogen Economy) ที่มาของไฮโดรเจนอีค่อนโน้มก็มาจากความต้องการระบบพลังงานอุดมคติแห่งอนาคตที่จะส่งผลทางบวกต่อเศรษฐกิจและสิ่งแวดล้อม ถ้าการเปลี่ยนแปลงนี้เป็นไปอย่างรวดเร็ว ก่อนที่เชื้อเพลิงฟอสซิลจะรอยหรอลงไปมาก ก็จะก่อให้เกิดผลกระทบในด้านภูมิศาสตร์ การเมืองระหว่างประเทศอย่างมาก หมายความว่าชาติอย่างมากที่จะประเมินได้ [5] ไฮโดรเจนอีค่อนโน้มเป็นตัวส่งเสริมความมั่นคงของระบบพลังงานด้วยการใช้ไฮโดรเจนเป็นเชื้อเพลิงแก่เซลล์เชื้อเพลิงแทนการพึ่งพาหัวน้ำมัน เป็นการสร้างแหล่งพลังงานที่ก่อให้เกิดความมั่นคงของมนุษยชาติ

รูปที่ 1 แสดงวิสัยทัศน์สำหรับไฮโดรเจนอีค่อนโน้มที่ชี้อยู่บนพื้นฐานที่ว่า วงจรสะอาดและใช้งานง่าย โดยวงจรเริ่มจากการใช้อิเล็กโตรไลซิส (Electrolysis) เพื่อแยกน้ำได้เป็นไฮโดรเจนและออกซิเจนโดยใช้พลังงานหมุนเวียนคือแสงอาทิตย์เป็นแหล่งความร้อน ไฮโดรเจนที่ได้จะถูกจัดเก็บด้วยวิธีการต่างๆ เช่น การจัดเก็บในรูปของเหลว การอัดก๊าช ด้วยแรงดันสูง การเก็บด้วยวิธีการสร้างพันธะระหว่างโลหะผสมกับไฮโดรเจนหรือที่เรียกว่า Metal hydride เป็นต้น [6, 7] หลังจากนั้น ไฮโดรเจนจะถูกขนส่งไปยังสถานที่ใช้งาน ไฮโดรเจนจะถูกใช้เป็นเชื้อเพลิงป้อนเข้าสู่หัวอนดองเซลล์เชื้อเพลิง ในขณะที่ออกซิเจน(จากอากาศ) จะถูกป้อนเข้าสู่หัวໂໂໂໂໂໂ (ผลิตภัณฑ์ที่ได้คือกระแสไฟฟ้า ความร้อน และน้ำ) โดยน้ำจะกลับเข้าสู่หัวอีกครั้งหนึ่ง ด้วยวงจรนี้เราระจะได้พลังงานโดยปราศจากฝุ่นละออง ไม่มีการปล่อยก๊าซการบูนไดออกไซด์ และไม่มีมลภาวะเกิดขึ้น


3. การผลิตไฮโดรเจน

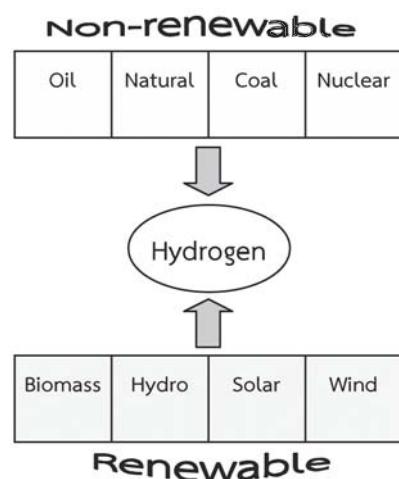
ไฮโดรเจนเป็นธาตุที่มีมากที่สุดในโลกเป็นอันดับสาม [3] แต่ มันจะอยู่ในรูปของสารประกอบเคมี ซึ่งมีมากที่สุดในน้ำและสารประกอบไฮโดรคาร์บอน ปัจจุบันนี้การผลิตไฮโดรเจนทั่วโลกรวมแล้วมากกว่า 700 พันล้านลูกบาศก์เมตร ซึ่งเพียงพอ กับการใช้เป็นเชื้อเพลิงให้กับรถเซลล์เชื้อเพลิงถึง 600 ล้านคัน [7] ปัจจุบันไฮโดรเจนผลิตจากก๊าซธรรมชาติ เป็นส่วนใหญ่ดังแสดงในรูปที่ 2 ไฮโดรเจนที่ผลิตได้ถูกใช้เป็นสารตั้งต้นในอุตสาหกรรมปิโตรเลียมและปิโตรเคมี ในปีค.ศ. 2006 ไฮโดรเจนผลิตจากก๊าซธรรมชาติเพิ่งขึ้นจากปีค.ศ. 2000 ถึง 20% ในขณะที่ปริมาณการใช้น้ำมันดิบเพื่อผลิตไฮโดรเจนก็ลดลงจาก 55.0 % เป็น 29.0%

รูปที่ 1 วิสัยทัศน์ไฮโดรเจนอีค่อนโน้ม

Actual Worldwide Hydrogen Production from ...

The world hydrogen production is not monitored, but estimated at 45 million tons (500 million cubic metres) per year.

Sources: Chemical Economics Handbook, SRI – July 2001 and Industrial Gases by the Chemical Economics Handbook, SRI – October 2007


Go to where the market is! www.fair-pr.com IMPLEMENTING NEW IDEAS

First released: October 2007, update: Dec. 2008

VERS

รูปที่ 2 สารตั้งต้นสำหรับผลิตไฮโดรเจนในปีค.ศ. 2000 และ 2006 (www.hydrogenambassadors.com/background/facts.php)

การผลิตไฮโดรเจนสามารถผลิตได้จากการตั้งต้นทั้งจากแหล่งพลังงานใช้หมุน เช่น น้ำมันดิบ ก๊าซธรรมชาติ ถ่านหิน และแหล่งพลังงานหมุนเวียน ยกตัวอย่างเช่น ชีวนิวคลีน พลังงานน้ำ พลังงานแสงอาทิตย์เป็นต้น [7-8] ดังแสดงในรูปที่ 3

รูปที่ 3 การผลิตไฮโดรเจนจากแหล่งพลังงานใช้หมุน และแหล่งพลังงานหมุนเวียน

การอิเล็กต์โรไลซิสของน้ำ การปฏิรูปแก๊สธรรมชาติ แก๊สซิฟิเคชั่นของถ่านหิน เป็นเทคโนโลยีสำหรับผลิตไฮโดรเจนที่ใช้อย่างแพร่หลายในโรงงานอุตสาหกรรมทั่วโลก การปฏิรูปด้วยไอน้ำของก๊าซธรรมชาติเป็นกระบวนการที่ถูกใช้มากที่สุดในอุตสาหกรรมปิโตรเคมีและปิโตรเคมี เพราะว่าเป็นวิธีที่ถูกที่สุดและมีการปล่อย CO_2 น้อย ส่วนอิเล็กต์โรไลซิสมีความสามารถจึงถูกประยุกต์ใช้เมื่อต้องการผลิตไฮโดรเจนที่มีความบริสุทธิ์สูงกว่าเดิม จากรากค้าก๊าซธรรมชาติที่มีแนวโน้มเพิ่มขึ้น จึงคาดว่าในค.ศ. 2030 แก๊สซิฟิเคชั่นของถ่านหินจะเป็นทางเลือกหนึ่งที่ประหยัดคุ้มค่า อย่างไรก็ตามแก๊สซิฟิเคชั่นของชีวมวลซึ่งยังอยู่ในช่วงเริ่มต้นนั้นถูกคาดการณ์ว่าจะเป็นอีกทางเลือกในการผลิตพลังงานไฮโดรเจนหมุนเวียนที่ถูกที่สุดในทศวรรษหน้า การผลิตไฮโดรเจนสามารถแบ่งได้ทั้งลักษณะเป็น 3 เทคโนโลยี คือ

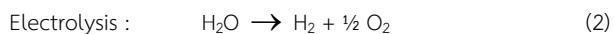
- Thermal Processes เทคโนโลยีนี้เป็นกระบวนการใช้ความร้อนกับแหล่งพลังงานเพื่อผลิตก๊าซไฮโดรเจน เช่น ถ่านหิน ชีวมวล ก๊าซธรรมชาติ เป็นต้น กระบวนการผลิตไฮโดรเจนด้วยความร้อนได้แก่

O Steam Reforming – กระบวนการรีฟอร์มมิ่ง หรือกระบวนการปฏิรูปด้วยไอน้ำมีสารตั้งต้นคือสารประกอบไฮโดรคาร์บอน และน้ำ การใช้ตัวเร่งปฏิกริยาและสภาวะการทำปฏิกริยาขึ้นกับชนิดของสาร เช่น การปฏิรูปอ่อนล็อกใช้ตัวเร่งปฏิกริยาจาก Non-noble metal เช่น $\text{Ni}/\text{Al}_2\text{O}_3$, $\text{Ni}/\text{La}_2\text{O}_3$, Ni/MgO , $\text{Ni}/\text{CeO}_2\text{-ZrO}_2/\text{Al}_2\text{O}_3$ หรือจาก Noble metal เช่น $\text{Ru}/\text{Al}_2\text{O}_3$, Rh/MgO ทำปฏิกริยาที่อุณหภูมิประมาณ $450 - 700^\circ\text{C}$ [1, 9-10]

O Partial Oxidation – กระบวนการออกซิเดชั่นบางส่วนมีสารตั้งต้นคือสารประกอบไฮโดรคาร์บอนและออกซิเจนหรืออากาศ ยกตัวอย่าง การออกซิเดชั่นบางส่วนของเอทานอลใช้ตัวเร่งปฏิกริยา เช่น $\text{V}_2\text{O}_5/\text{TiO}_2\text{-SiO}_2$, $\text{V}_2\text{O}_5/\text{TiO}_2\text{-ZrO}_2$, $\text{Ni}/\text{ZrO}_2\text{-Al}_2\text{O}_3$, $\text{Ru}/\text{Al}_2\text{O}_3$, Rh/CeO_2 ทำปฏิกริยาที่อุณหภูมิประมาณ $550 - 850^\circ\text{C}$ [11-13]

O Autothermal Reforming – กระบวนการออกอ็อกซิเดชั่นที่เกิดขึ้นกับปฏิกริยาออกซิเดชั่นบางส่วน มีสารประกอบไฮโดรคาร์บอนออกซิเจนหรืออากาศ และน้ำเป็นสารตั้งต้น ยกตัวอย่าง กระบวนการออกอ็อกซิเดชั่นที่เกิดขึ้นกับปฏิกริยา เช่น Rh/CeO_2 ทำปฏิกริยาที่อุณหภูมิประมาณ $550 - 650^\circ\text{C}$ [14] ปฏิกริยาส่วนใหญ่จะเกิดขึ้นภายใต้ความดันไนโตรเจนหรืออากาศ และน้ำเป็นสารตั้งต้น ยกตัวอย่าง กระบวนการออกอ็อกซิเดชั่นที่เกิดขึ้นกับปฏิกริยา เช่น $\text{V}_2\text{O}_5/\text{TiO}_2\text{-SiO}_2$, $\text{V}_2\text{O}_5/\text{TiO}_2\text{-ZrO}_2$, $\text{Ni}/\text{ZrO}_2\text{-Al}_2\text{O}_3$, $\text{Ru}/\text{Al}_2\text{O}_3$, Rh/CeO_2 ทำปฏิกริยาที่อุณหภูมิประมาณ $500 - 850^\circ\text{C}$ ตัวเร่งปฏิกริยาที่ใช้คือ $\text{Ni}/\text{CeO}_2\text{-ZrO}_2/\text{Al}_2\text{O}_3$

O Gasification – กระบวนการแก๊สซิฟิเคชั่นเป็นกระบวนการที่ใช้ในการเปลี่ยนชีวมวล ของเสียอินทรีย์ ถ่านหิน หรือวัสดุที่มีคาร์บอนเปลี่ยนเป็นก๊าซผสมของ H_2 , CO , CO_2 และอื่นๆ โดยการให้ความร้อนภายใต้บรรยากาศที่มีไอน้ำและออกซิเจน หรือที่เรียกว่า *gasifier* ในปริมาณที่เหมาะสม ปฏิกริยาแก๊สซิฟิเคชั่นจะเปลี่ยนองค์ประกอบทางเคมีของชีวมวลด้วยความร้อนของ *gasifier*, น้ำ และออกซิเจนได้เป็น *synthesis gas* หรือชีนแก๊ส (*syngas*) มีองค์ประกอบของ H_2 , CO , CO_2 เป็นหลัก โดย CO ที่ผลิตได้จะทำปฏิกริยากับน้ำเพื่อผลิตไฮโดรเจนที่มากขึ้นและ CO_2 หรือที่เรียกว่า ปฏิกริยา water-gas


shift (สมการที่ 1) ไฮโดรเจนจะถูกแยกออกด้วยการผ่านแม่เปรนชนิดพิเศษ [17]

O Pyrolysis – กระบวนการไฟโรไลซิสเป็นกระบวนการแก๊สซิฟิเคชั่นของชีวมวลโดยปราศจากการอัดอัด กระบวนการไฟโรไลซิสและกระบวนการแก๊สซิฟิเคชั่นนั้นมีความคล้ายคลึงกันมาก เมื่อพิจารณาแล้วกระบวนการไฟโรไลซิสนั้นบัวว่าเป็นกระบวนการเริ่มต้น ซึ่งโดยทั่วไปแล้วกระบวนการไฟโรไลซิสจะเกิดได้เร็วกว่ากระบวนการแก๊สซิฟิเคชั่น [17]

O High-Temperature Water Splitting [18] – การแยกน้ำด้วยอุณหภูมิสูงหรือเรียกอีกอย่างว่า “Thermochemical Process” การทำงานของกระบวนการนี้ต้องการความร้อนในช่วงอุณหภูมิ $500 - 2,000^\circ\text{C}$ ในการทำปฏิกริยาเคมีอนุกรรษเพื่อผลิตไฮโดรเจน สารเคมีที่ใช้ในกระบวนการจะสามารถนำไปใช้ใหม่ได้ ความร้อนสูงที่ต้องการได้มาจากการปฏิกรณีไฟฟ้านิวเคลียร์ (1000°C) หรือใช้แสงแดดจาก Solar Concentrators ซึ่งได้อุณหภูมิสูงถึง 2000°C สำหรับการวิจัยเบื้องต้น High-temperature water splitting เหมาะสำหรับระบบขนาดใหญ่ที่ใช้เป็นศูนย์กลางการผลิตไฮโดรเจน กระบวนการที่ใช้แสงอาทิตย์เป็นแหล่งให้ความร้อนจะใช้ Solar Concentrators ซึ่งทำจากกระจกและเลนส์สะท้อนเพื่อเก็บและรวมแสงให้สามารถเพิ่มอุณหภูมิได้ถึง $2,000^\circ\text{C}$ ที่อุณหภูมินี้จะสามารถใช้ขั้นตอนปฏิกริยาเคมีสำหรับการผลิตไฮโดรเจนได้

● Electrolytic Process [19] เทคโนโลยีแยกน้ำด้วยกระแสไฟฟ้า ซึ่งจะผลิตไฮโดรเจนได้จากการแยกไฮโดรเจนและออกซิเจนจากน้ำ โดยกระบวนการนี้จะไม่กระทบต่อธรรมชาติโดยไม่ก่อมลพิษทางอากาศ ซึ่งกระบวนการจะสะอาดเพียงใดก็ขึ้นอยู่กับว่าแหล่งที่ผลิตกระแสไฟฟ้าที่นำมายังกระบวนการผลิตแบบใด ในกระบวนการอิเล็กต์โรไลซิสนั้นการแยกน้ำ 1 โมลด้วยไฟฟ้าจะได้ไฮโดรเจน 1 โมลและออกซิเจน 0.5 โมลตั้งสมการเคมี

ไฮโดรเจนที่ผลิตด้วยกระบวนการอิเล็กต์โรไลซิสจะมีความบริสุทธิ์สูงมาก แต่ก็มีต้นทุนการผลิตที่แพงมากเช่นกัน

● Photolytic Technologies [20] เป็นเทคโนโลยีการผลิตไฮโดรเจน โดยใช้แสงอาทิตย์แยกไฮโดรเจนออกจากน้ำ และยังมีการศึกษาใช้แสงอาทิตย์ และแสงประดิษฐ์กับเอมิจิมิสำหรับสาหร่ายเพื่อผลิตไฮโดรเจน หรือเรียกว่าเทคโนโลยี Photobiological นอกจากนี้ยังมีเทคโนโลยี Photoelectrochemical Water-Splitting Systems สำหรับผลิตไฮโดรเจนอีกด้วย

จากเทคโนโลยีที่ใช้ในการผลิตไฮโดรเจนดังที่กล่าวมาแล้วข้างต้น โดยเฉพาะกระบวนการใช้ความร้อนและกระบวนการอิเล็กต์โรไลซิส จำเป็นต้องใช้พลังงานจากแหล่งพลังงานอื่น เช่น จากไฟฟ้า หรือน้ำมันในการให้ความร้อน นั่นหมายความว่าเนื่องจากผลิตไฮโดรเจนเพื่อเป็นเชื้อเพลิงให้กับเซลล์เชื้อเพลิงในการผลิตกระแสไฟฟ้าแล้ว จะต้องคำนึงถึงปริมาณของพลังงานที่ต้องให้กับกระบวนการผลิตไฮโดรเจนด้วย นอกจากนี้หากมองภาพรวมของระบบเซลล์เชื้อเพลิงควบคู่กับกระบวนการผลิตไฮโดรเจนที่ต้องอาศัยเชื้อเพลิงฟอสซิลในการให้พลังงานกับกระบวนการแล้วนั้น จะเห็นได้ว่าการนำไฮโดรเจนมาใช้งานเป็นเชื้อเพลิงนั้นอาจจะไม่ได้ทำให้เกิดมลพิษน้อย

กิจกรรมน้ำยาเชื้อเพลิงฟอสซิลไปผลิตเป็นไฟฟ้าหรือไฟไนโตรเพื่อให้พลังงานโดยตรง อย่างไรก็ตามการพัฒนาเทคโนโลยีการผลิตไออกอิโอดรเจนที่อาศัยพลังงานฟอสซิลซึ่งเป็นสาเหตุหลักของการปลดปล่อยมลพิษให้น้อยที่สุดเท่าที่จะเป็นไปได้น่าจะเป็นมุมมองสำคัญ หากต้องการให้เกิดการใช้งานของไออกอิโอดรเจนอย่างแท้จริง

นอกจากนี้ระบบสำหรับทำให้ก๊าซไออกอิโอดรเจนที่ผลิตได้มีความบริสุทธิ์มากยิ่งขึ้น (ความบริสุทธิ์ของก๊าซไออกอิโอดรเจนที่ต้องการขึ้นอยู่กับประเภทของเชลล์เชื้อเพลิง) เป็นสิ่งจำเป็น แต่นั่นก็หมายถึงเงินลงทุนที่เพิ่มขึ้นด้วย ยกตัวอย่างเช่น ตัววัสดุก๊าซ CO_2 เพื่อลดปริมาณ CO_2 หน่วยสำหรับปฏิริยาเปลี่ยนน้ำเป็นก๊าซ (Water-gas shift reaction) เพื่อลดปริมาณ CO และเพิ่ม H_2 เป็นต้น

4. การจัดเก็บและการขนส่ง

ไออกอิโอดรเจนมีค่าพลังงานจำเพาะ (พลังงานต่อกิโลกรัม) สูงที่สุดซึ่งเป็นเหตุผลที่ไออกอิโอดรเจนถูกเลือกให้ใช้สำหรับยานอวกาศ แต่ไออกอิโอดรเจนมีความหนาแน่นต่ำมาก และมีค่าความหนาแน่นพลังงาน (พลังงานต่อปริมาตร) ต่ำที่สุด นั่นคือจะต้องใช้ความดันสูงมากในการอัดก๊าซไออกอิโอดรเจนปริมาณมากลงในถังขนาดเล็กทำให้การเก็บไออกอิโอดรเจนเป็นสิ่งที่ยากและต้องใช้พลังงานในการอัดมาก เช่นกัน โดยเฉพาะการทำก๊าซไออกอิโอดรเจนให้เป็นของเหลวซึ่งมีขั้นตอนการอัดที่ยุ่งยากและต้องทำที่อุณหภูมิต่ำสิ่ง 22 เคลวิน และเมื่ออยู่ในสถานะของเหลวไออกอิโอดรเจนยังคงมีความหนาแน่นค่อนข้างต่ำถึง 71 กิโลกรัมต่อลูกบาศก์เมตร ถึงแม้ว่าจะสามารถเก็บไออกอิโอดรเจนในรูปของก๊าซที่ถูกอัดหรือของเหลว หรือการเก็บโดยวิธีทางเคมีก็ตาม สิ่งสำคัญที่ต้องพิจารณาคือวิธีการเก็บที่ง่าย มีต้นทุนของกระบวนการและพลังงานในการเก็บต่ำ และมีความปลอดภัยในการจัดเก็บ [21] วิธีในการจัดเก็บไออกอิโอดรเจนมีหลายวิธี ยกตัวอย่างเช่น การเก็บไออกอิโอดรในรูปของเหลว (Liquid H_2) การเก็บโดยใช้แรงดันสูง (Compressed H_2) การเก็บด้วยวิธีการสร้างพันธะระหว่างไออกอิโอดรเจนกับโลหะ (Metal hydride) เป็นต้น

วิธีการเก็บไออกอิโอดรเจนนอกจากต้องคำนึงถึงค่าราคาในการเก็บความสะอาด และง่ายในการใช้งาน หากในอนาคตไออกอิโอดรเจนใช้กันอย่างแพร่หลาย ผู้ใช้งานควรเข้าใจถึงหลักการและวิธีการใช้งาน อย่างไรก็ตาม หากไม่มีระบบการจัดเก็บไออกอิโอดรเจนที่มีประสิทธิภาพมากพอ ไออกอิโอดรเจนอีกอนึ่งมีภัยคุกคามที่จะสำเร็จได้ สำหรับอุตสาหกรรมด้านยานยนต์ดูเหมือนว่าการจัดเก็บไออกอิโอดรเจนแบบ On-Board (การผลิตไออกอิโอดรเจน ณ จุดที่เป็นสถานีเติมเชื้อเพลิงหรือจุดที่ต้องการใช้เชื้อเพลิง) เป็นหนึ่งเทคโนโลยีที่ได้รับความสนใจมาก แต่ด้วยสมบัติทางพิสิกส์ของความหนาแน่นในการจัดเก็บไออกอิโอดรเจนแบบการอัดไออกอิโอดรเจน และการเก็บไออกอิโอดรเจนในรูปของเหลวนั้นต้องใช้พลังงานปริมาณมาก ในขณะที่วิธีการเก็บไออกอิโอดรเจนด้วยวัสดุของแข็ง เช่น Metal Hydride ยังอยู่ระหว่างการพัฒนาให้มีศักยภาพด้านการใช้งานให้ดียิ่งขึ้น ดังจะเห็นว่ามีงานวิจัยจำนวนมากที่พัฒนาวัสดุและกระบวนการจัดเก็บไออกอิโอดรเจนเพื่อให้สามารถเก็บไออกอิโอดรเจนได้มากขึ้นและลดน้ำหนักของถังเก็บให้เหลือ [7, 21-22]

ตารางที่ 1 แสดงทางเลือกในการจัดเก็บไออกอิโอดรเจนแบบ On-Board การขนส่งและจำหน่ายไออกอิโอดรเจนมีหลายทางเลือก เช่น การขนส่ง Compressed H_2 และ Liquid H_2 ใช้รถบรรทุก หรือรถไฟฟ้า ส่วนการขนส่งผ่านทางระบบไฟฟ้าสำหรับส่งก๊าซไออกอิโอดรเจนมีนานาชนิดกว่า 50 ปีlon ปัจจุบัน การส่งก๊าซไออกอิโอดรเจนทางท่อ มีความยาวประมาณ 16,000 กิโลเมตรทั่วโลก แต่จุดประสงค์หลักของการสร้างท่อส่งไออกอิโอดรเจนก็เพื่อ

ป้อนให้กับโรงแกั่นน้ำมันและโรงงานอุตสาหกรรมเคมี เครื่องขับการส่งน้ำมีอย่างหนาแน่นในประเทศเบลเยียม ฝรั่งเศส เนเธอร์แลนด์ และประเทศเยอรมัน หรือต่อไปยัง Gulf coast ในสหรัฐอเมริกา [7] อย่างไรก็ตามระบบท่อที่มีอยู่ในขณะนี้ทำให้มองเห็นโอกาสของการนำระบบห่อตั้งกล่าวมาใช้กับการขนส่งก๊าซไออกอิโอดรเจนที่จะนำมาใช้เป็นเชื้อเพลิงให้กับเซลล์เชื้อเพลิงได้ด้วย

ตารางที่ 1 ทางเลือกการจัดเก็บไออกอิโอดรเจนแบบ On-Board [23]

Fuel	Gasoline	Compressed H_2	Liquefied H_2	Metal Hydride
Energy (MJ)	1,408	664	664	664
Fuel weight (kg)	29.5	4.7	4.7	4.7
Tank weight (kg)	13.4	63.3-86	18.6	120
Volume (liters)	40.1	409-227	178	120
Vehicle range (km)	600	600	600	570
Development status	Commercial	Commercial Prototype	Initial Prototype	Initial Prototype

การแข่งขันทางเทคนิคและราคาของแต่ละทางเลือกในการขนส่งขึ้นกับปริมาตรที่ขึ้นส่งกับระยะทาง หลักการที่ใช้ในการตัดสินใจว่าควรเลือกใช้วิธีการแบบใดมีดังนี้ [7, 24]

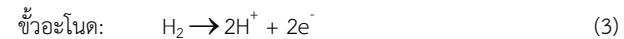
- การขนส่งก๊าซผ่านท่อ หมายความว่าการส่งปริมาณมากและระยะทางไกล
- การขนส่งไออกอิโอดรเจนเหลวด้วยรถบรรทุก ใช้สำหรับการส่งปริมาณน้อยและระยะทางใกล้
- การขนส่งไออกอิโอดรเจนในถังเก็บความดันสูงด้วยรถบรรทุก หมายความว่าการส่งปริมาณน้อยและระยะทางใกล้
- การใช้ Metal Hydride สำหรับระยะทางใกล้

หากเปรียบเทียบการขนส่งก๊าซไออกอิโอดรเจนด้วยรถบรรทุก ก๊าซซึ่งปกติสามารถบรรทุกได้ประมาณ 2,400 กิโลกรัม เพื่อไปส่งยังสถานีเชื้อเพลิง จะสามารถบรรทุกได้เพียง 288 กิโลกรัม เท่านั้น และส่วนต่อไปใช้รถบรรทุกถึง 15 คันสำหรับรถบรรทุกไออกอิโอดรเจนเพื่อให้ได้ปริมาณพัฒนาเท่ากับก๊าซธรรมชาติ 1 คัน ถ้าบรรทุกไออกอิโอดรเจนเหลว ก็สามารถลดลงจาก 15 คันเหลือเพียง 3 คัน เพื่อขนส่งพัฒนาจำนวนเท่ากับรถบรรทุก ก๊าซธรรมชาติ 1 คัน [25]

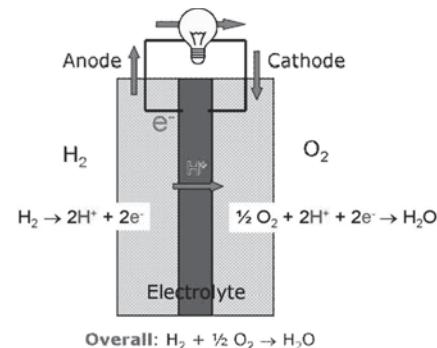
เมื่อพิจารณาค่าใช้จ่ายในการขนส่งก๊าซไออกอิโอดรเจน แม้จะต้องต้นทุนการดำเนินงานต่ำ ซึ่งส่วนใหญ่เป็นค่าพลังงานสำหรับการอัดก๊าซ แต่เมื่อต้นทุนด้านเงินลงทุนสูงมาก ส่วน Liquid H_2 มีต้นทุนการดำเนินงานสูง เนื่องจากค่าไฟฟ้าที่ใช้ทำให้ก๊าซไออกอิโอดรเจนกล้ายเป็นไออกอิโอดรเจนเหลว (Liquefaction) (คิดเป็น 30-60% ของต้นทุน Liquefaction) แต่สำหรับเงินลงทุนจะขึ้นกับปริมาณไออกอิโอดรเจนและระยะทางการขนส่ง ระยะทางเป็นตัวแปรสำคัญที่จะใช้ตัดสินใจว่าจะเลือกการ

ขนสั่งในรูปแบบของเหลวหรือก๊าซ ค่าขนสั่งไฮโดรเจนโดยทั่วไปอยู่ในช่วง 1 – 4 ct/kWh (0.3 – 1.3 \$/kg) [24]

วัสดุที่นำมาใช้สร้างระบบห่อจะต้องเป็นวัสดุคุณภาพสูงไม่พูนตัว เช่น เหล็กกล้าไร้สนิม ถ้าเปรียบเทียบที่ขนาดท่อเท่ากันจะพบว่าเงินลงทุนในการสร้างระบบห่อสำหรับไฮโดรเจนจะสูงเป็นสองเท่าของระบบห่อที่ใช้ขันสั่งก้าชธรรมชาติ ต้นทุนอาจลดลงหากโครงสร้างพื้นฐานที่ใช้สำหรับก้าชธรรมชาติสามารถปรับให้ใช้ได้กับไฮโดรเจน แต่หากใช้ห่อเหล็กกล้ากับไฮโดรเจนก็อาจก่อให้เกิดความเสียหายได้ เพราะไฮโดรเจนสามารถแพร่กระจายอย่างรวดเร็วผ่านวัสดุและประเก็นทำให้เกิดการแตกร้าวจากไฮโดรเจน (Hydrogen Embrittlement) การใช้ห่อสั่งก้าชธรรมชาติที่มีอยู่อาจก่อให้เกิดปัญหาได้ การเคลือบท่อภายนอกหรือการเติมออกซิเจนเพียงเล็กน้อยอาจแก้ปัญหาเพื่อให้สามารถใช้ห่อเหล็กสำหรับสั่งก้าชธรรมชาติระยะไกลที่มีอยู่แล้วได้ นอกจากนี้ยังต้องมีการปรับเปลี่ยนวาร์ล์ แม่นิฟล์ด โดยเฉพาะคอมเพรสเซอร์ที่จะต้องสามารถใช้ได้กับไฮโดรเจนด้วย อีกทางเลือกหนึ่งคือการผลิตก้าชไฮโดรเจนกับก้าชธรรมชาติให้สามารถส่งผ่านทางห่อที่มีอยู่แล้วไปแยกที่จุดใช้งานหรือใช้ก้าชผลมนีลย์กีดี เช่น การประยุกต์ใช้กับระบบการเผาไหม้แบบอยู่นิ่ง กับที่ แต่ทางเลือกนี้ไม่ได้แก้ปัญหากับการประยุกต์ใช้กับเซลล์เชื้อเพลิง จึงสรุปได้ว่าเพื่อรองรับการใช้งานเซลล์เชื้อเพลิงในอนาคตระบบห่อสั่งก้าชไฮโดรเจนเป็นสิ่งสำคัญที่จะต้องสร้างขึ้น [7] แต่ก็จะมีต้นทุนระบบห่อที่สูงมาก [25]


เมื่อคิดต้นทุนการจัดเก็บและขนส่งรวมกันแล้ว การเก็บไฮโดรเจนในรูปของเหลวได้รับประโยชน์อย่างเห็นได้ชัด สำหรับอัตราการผลิตไฮโดรเจน 450 กิโลกรัมต่อชั่วโมง ที่ถูกกักเก็บหนึ่งวันและมีระยะเวลาขนส่งประมาณ 160 กิโลเมตรนั้น การขนส่งไฮโดรเจนเหลวจะถูกกว่าการขนส่งด้วยวิธีการอัดลงในถังที่บรรจุด้วยวัสดุ Metal hydride แต่ที่ระยะเวลาใกล้ 1,600 กิโลเมตร ราคาต้นทุนการจัดเก็บและขนส่งแบบไฮโดรเจนเหลวจะถูกกว่าแบบ Metal hydride ถึง 4 เท่า และถูกกว่าถึง 7 เท่าเมื่อเทียบกับการขนส่งไฮโดรเจนในถังอัดแรงดันสูง [24]

ปัญหาด้านการจัดเก็บและขนส่งไฮโดรเจนเป็นอุปสรรคสำคัญในการใช้เซลล์เชื้อเพลิงที่จะต้องมีไฮโดรเจนเป็นเชื้อเพลิง หากต้องการที่จะมีรัตน์เซลล์เชื้อเพลิงมาใช้งานอย่างแพร่หลายแล้วนั้น จำเป็นอย่างยิ่งที่จะต้องมีสถานีเติมไฮโดรเจน และระบบการเติมไฮโดรเจนที่ปลอดภัย การนำเทคโนโลยี Home Station หรือการผลิตไฮโดรเจนที่บ้านเป็นอีกทางเลือกหนึ่ง ที่สามารถเปลี่ยนพลังงานไฟฟ้าที่ได้จากพลังงานทางเลือก เช่น เซลล์แสงอาทิตย์ หรืออ้าชธรรมชาติ (ประเทศษรัฐอเมริกามีการสั่งก้าชธรรมชาติไปยังบ้านเรือนผ่านระบบห่อ) ให้เป็นเชื้อเพลิงไฮโดรเจนที่สามารถเติมเข้าไปเพื่อรับน้ำที่จอดอยู่ที่บ้าน [25]


5. การทำงานของเซลล์เชื้อเพลิงและการประยุกต์ใช้งาน

การเปลี่ยนพลังงานไฮโดรเจนให้เป็นพลังงานไฟฟ้าจะต้องมีหน่วยผลิตกระแสไฟฟ้าที่เรียกว่า เซลล์เชื้อเพลิง ซึ่งเป็นเครื่องมือทางเคมีไฟฟ้า (Electrochemical) ที่ทำหน้าที่เปลี่ยนพลังงานเคมีของเชื้อเพลิงให้กลายเป็นพลังงานไฟฟ้ากระแสตรงที่มีความต่างศักย์ต่ำได้โดยตรงและมีประสิทธิภาพสูง โดยอาศัยปฏิกิริยาเคมีไฟฟ้าที่เกิดขึ้นภายในเซลล์ จะได้ไฟฟ้าและน้ำเป็นผลิตภัณฑ์ [7] เซลล์เชื้อเพลิงจะสามารถทำงานได้อย่างต่อเนื่อง ตราบเท่าที่ไฮโดรเจนและออกซิเจนถูกป้อนเข้าสู่เซลล์พร้อมทั้งมีการดึงเอาผลิตภัณฑ์ออก และข้ออีก็ต้องยังไม่เกิดการชำรุดอันเนื่องมาจากการหลุดหลีกหรือจากการเสื่อมสภาพทางเคมี

องค์ประกอบที่สำคัญของเซลล์เชื้อเพลิงประกอบด้วยข้ออีก็ต้องมีความพูนดัว 2 ข้อ คือข้ออ่อนดและข้ออีก็ต้อง จุ่มหรือสัมผัสกับสารอีก็ต้อง ซึ่งอาจอยู่ในรูปของเหลวและ/หรือของแข็ง เชื้อเพลิงไฮโดรเจนถูกป้อนเข้าไปยังข้ออ่อนดซึ่งเกิดปฏิกิริยาออกซิเดชัน (สมการที่ (3)) ในขณะที่สารออกซิเดนซ์ (ออกซิเจนหรืออากาศ) จะถูกป้อนเข้าไปยังข้ออีก็ต้องซึ่งเกิดปฏิกิริยาตัดชั้น (สมการที่ (4))

หลังจากเกิดปฏิกิริยาขึ้นค่าความต่างศักย์จะเกิดขึ้นที่ข้ออีก็ต้องหัวของอีก็ต้อง เมื่อต่ออัคบวงจรภายในออกอิล์ติคตอรอนจะไฟลจากข้ออ่อนดผ่านจาระยานออกและถูกนำไปใช้ประยุกต์ก่อนที่จะไฟลกันไปที่ข้ออีก็ต้องในลักษณะครวงจร (ดูรูปที่ 4) ส่วน H^+ จะแพร่ผ่านอีก็ต้องหัวที่ข้ออีก็ต้องหัวของเซลล์เชื้อเพลิง (ฝั่งข้ออีก็ต้อง) ที่ข้อดังกล่าวไฮโดรเจนอ่อนดจะเกิดปฏิกิริยาบักออกซิเจนเกิดเป็นน้ำ และทุกๆหนึ่งโมลของน้ำที่เกิดขึ้นจะเกี่ยวข้องกับอีก็ต้องรอนจำนวน 2 ตัว การประยุกต์ใช้งานของเซลล์เชื้อเพลิงส่วนใหญ่มักต้องการให้ได้แรงดันไฟฟ้าเป็นแบบกระแสลับ ดังนั้นไฟฟ้ากระแสตรงที่ได้จากเซลล์เชื้อเพลิงโดยตรงจึงถูกนำมาเปลี่ยนเป็นไฟฟ้ากระแสลับโดยใช้เครื่องผันหรืออินเวอร์เตอร์ [26]

รูปที่ 4 แผนภาพการทำงานของเซลล์เชื้อเพลิง
(<http://addis.caltech.edu/research/FCs%20for%20sustain%20energy.html>)

เชื้อเพลิงที่ใช้ในเซลล์เชื้อเพลิงนอกจากไฮโดรเจนแล้วยังมีเชื้อเพลิงจากแหล่งอื่น การเลือกใช้เชื้อเพลิงขึ้นกับตัวแปรหลายอย่าง เช่น ราคา ความมหำจายในการจัดหาเชื้อเพลิง ความสามารถในการกักเก็บพลังงาน บริมิตา และความสามารถในการถูกนิ่ง สิ่งจำเป็นของการใช้เซลล์เชื้อเพลิงในการผลิตกระแสไฟฟ้า คือ การที่ต้องหาเชื้อเพลิงที่เหมาะสมและหาได้ง่าย แหล่งเชื้อเพลิงที่มีของตัวจำดัดกลับพบว่ามีงานหลายประเภทที่สามารถนำเซลล์เชื้อเพลิงไปประยุกต์ใช้ได้อย่างเหมาะสม [27] สองทางเลือกหลักๆ ของการเลือกใช้เชื้อเพลิงสำหรับเซลล์เชื้อเพลิง [28] คือ 1) การใช้ไฮโดรเจนบริสุทธิ์กับเซลล์เชื้อเพลิงแบบโปรตอนแลคเปลี่ยนเมมเบรน (Proton Exchange Membrane Fuel Cell, PEMFC) เนื่องจากแพลทตินัมบนข้ออ่อนดจะเป็นพิษเมื่อมี CO เพียง 10 ppm เจือปนในก๊าซ

ไฮโดรเจน 2) การปฏิรูปเชื้อเพลิง เช่น เมทานอล (สามารถใช้เป็นเชื้อเพลิงใน Direct Methanol Fuel Cell, DMFC) ก๊าซธรรมชาติ หรือสารประกอบไฮdrocarbon (hydrocarbon, hc) เพื่อผลิตก๊าซผสมที่มีไฮโดรเจนปริมาณสูงที่ใช้ได้กับเซลล์เชื้อเพลิงอุณหภูมิสูงแม้มี CO และ CO₂ เจือปนอยู่ด้วย ดังเช่น เซลล์เชื้อเพลิงแบบเกลือคาร์บอนเดทอลอม (Molten Carbonate Fuel Cell, MCFC) และเซลล์เชื้อเพลิงแบบออกไซด์ของแข็ง (Solid Oxide Fuel Cell, SOFC)

PEMFC นิยมใช้ผลิตไฟฟ้าสำหรับยานยนต์เซลล์เชื้อเพลิง (Fuel Cell Vehicle, FCV) ในขณะที่ MCFC และ SOFC เหมาะสมกับการประยุกต์ใช้งานกับโรงไฟฟ้า固定式 (Stationary Power) ดังแสดงในตารางที่ 2 อายุการใช้งานของเซลล์เชื้อเพลิงขึ้นอยู่กับสภาวะการใช้งาน (อุณหภูมิขั้นต่ำและการเดินเครื่อง, ความชื้น, ความบริสุทธิ์ของเชื้อเพลิง) ภายใต้สภาวะที่เกิดขึ้นในยานยนต์อายุการใช้งานปกติของ PEMFC อยู่ที่ประมาณ 2,000 ชั่วโมง (100,000 กิโลเมตร) ใน การประยุกต์ใช้สำหรับโรงงานผลิตกระแสไฟฟ้า PEMFC มีอายุการใช้งานสูงถึง 30,000 ชั่วโมง ระบบ SOFC มีอายุการใช้งานเฉลี่ยประมาณ 6,000 – 8,000 ชั่วโมง ด้วยผลการทดลองที่ตีสุดมีอายุการใช้งานถึง 20,000 ชั่วโมง อายุการใช้งานตามเป้าหมายของ PEMFC คือ 3,000 – 4,000 ชั่วโมงสำหรับรถยนต์ และมากกว่า 20,000 ชั่วโมงสำหรับรถบัส และอายุการใช้งานตามเป้าหมายสำหรับโรงงานผลิตกระแสไฟฟ้าของ SOFC และ MOFC คือ 40,000 – 60,000 ชั่วโมง [29]

ตารางที่ 2 ประสิทธิภาพเซลล์เชื้อเพลิงและการประยุกต์ใช้งาน [29]

ประเภท	PEMFC	SOFC	MCFC	DMFC
อุณหภูมิการทำงาน (°C)	80-150	800-1,000	>650	80-100
เชื้อเพลิง	H ₂	H ₂ , hc	H ₂ , hc	methanol
ประสิทธิภาพเซลล์เชื้อเพลิง (%)	35-40	<45	44-50	15-30
การประยุกต์ใช้งาน	ผลิตกระแสไฟฟ้าสำหรับยานยนต์	โรงงานผลิตกระแสไฟฟ้า	โรงงานผลิตกระแสไฟฟ้า	หน่วยผลิตกระแสไฟฟ้าเคลื่อนที่
อายุการใช้งาน (ชั่วโมง)	2,000 – 30,000	6,000 – 20,000	8,000 – 20,000	na
อายุการใช้งานตามเป้าหมาย (ชั่วโมง)	4,000 – 20,000	40,000 – 60,000	40,000 – 60,000	na

6. อุปสรรคสำหรับเซลล์เชื้อเพลิง

หากพิจารณาจากบทความข้างต้นจะเห็นว่าพลังงานไฮโดรเจน และเซลล์เชื้อเพลิงสามารถตอบปัญหาด้านพลังงานได้มากมาย แต่ก็ยังไม่สามารถใช้งานได้อย่างแพร่หลายในปัจจุบัน นั่นเป็นเพราะมีอุปสรรคดังต่อไปนี้ [30]

- ราคาน้ำมันสูง ทำให้การผลิตและจัดหาเชื้อเพลิงมีต้นทุนสูง
- ขาดแคลนแหล่งพลังงาน เช่น น้ำมันดิบ แก๊สธรรมชาติ ฯลฯ
- การจัดการเชื้อเพลิงที่มีความซับซ้อน เช่น การเก็บรวบรวม แยก และบริการเชื้อเพลิง
- ความไม่แน่นอนของเชื้อเพลิง เช่น ความไม่คงที่ของคุณภาพ เชื้อเพลิงที่มีส่วนผสมของสารอันตราย
- ความไม่ปลอดภัยของเชื้อเพลิง เช่น การระเบิด ไฟไหม้ ฯลฯ

- โครงสร้างพื้นฐานและการขนส่ง: รถยนต์เซลล์เชื้อเพลิงในปัจจุบันยังมีราคาแพงมาก และไม่สามารถเดินไฮโดรเจนได้ในสถานีเติมน้ำมันทั่วไป จึงต้องมีโครงสร้างพื้นฐานที่สามารถให้บริการเติมเชื้อเพลิงได้สะดวกและง่าย

- การกักเก็บไฮโดรเจน: ยานยนต์ส่วนใหญ่จะสามารถวิ่งได้ประมาณ 300 ไมล์ก่อนที่จะต้องการเติมเชื้อเพลิงใหม่ เพื่อให้ได้มาตรฐานเดียวกัน หากต้องการใช้รถยนต์เซลล์เชื้อเพลิงอย่างแพร่หลายในอนาคต จำเป็นอย่างยิ่งที่จะต้องแก้ปัญหาด้านการกักเก็บไฮโดรเจน ซึ่งเกี่ยวข้องกับเรื่องของราคา น้ำหนัก ปริมาตร และความปลอดภัย

- ความทนทาน: เซลล์เชื้อเพลิงกำลังอยู่ระหว่างการพัฒนาเทคโนโลยีเพื่อให้มีความทนทานต่อการใช้งาน เพื่อจะสามารถแข่งขันกับรถยนต์ที่ใช้กันอยู่ในปัจจุบันได้

7. สรุป

เช่นเดียวกันกับไฟฟ้า ไฮโดรเจนก็สามารถผลิตจากหลายแหล่งทั้งเชื้อเพลิงฟอสซิล แหล่งพลังงานหมุนเวียน พลังงานนิวเคลียร์ ไฮโดรเจนและไฟฟ้าสามารถเปลี่ยนจากกรุบหนึ่งเป็นอีกรูปหนึ่งได้โดยใช้อิเล็กโทรไลเซอร์ (ไฟฟ้าเป็นไฮโดรเจน) และเซลล์เชื้อเพลิง (ไฮโดรเจนเป็นไฟฟ้า) ไฮโดรเจนจึงเปรียบเสมือนตัวกลางกักเก็บพลังงานที่พร้อมจะนำไปผลิตไฟฟ้าเมื่อไหร่ก็ได้ ดังนั้นไฮโดรเจนจึงเป็นพลังงานทางเลือกที่สำคัญในอนาคต และหากโลกของเราราใช้พลังงานไฮโดรเจน ก็จะทำให้โลกของเราสะอาด ปราศจากมลพิษทางอากาศ ตามแนวทางของไฮโดรเจนอีกหนึ่งมีทั้งยังเพิ่มความมั่นคงด้านพลังงานอีกด้วย หากแต่การผลักดันให้มีการใช้ไฮโดรเจนควบคู่กับเซลล์เชื้อเพลิงก็ยังมีอุปสรรคอยู่มาก ถ้าสามารถแก้ไขปัญหาด้านราคาเซลล์เชื้อเพลิง ราคาและน้ำหนักของถังบรรจุไฮโดรเจน ความปลอดภัย และความสะดวกในการใช้งานได้ ในอนาคตเราคงจะได้เห็นการใช้พลังงานไฮโดรเจนกันอย่างจริงจัง

เอกสารอ้างอิง

- M. Ni, D.Y.C. Leung, M.K.H. Leung, A review on reforming bio-ethanol for hydrogen production, International Journal of Hydrogen Energy, Vol. 32, 2007, pp. 3238 – 3247.
- V.A. Goltsov, T.N. Veziroglu, L.F. Goltsova, Hydrogen civilization of the future – a new conception of the IAHE, International Journal of Hydrogen Energy, Vol. 31, 2006, pp. 153 – 159.
- P.P. Edwards, V.L. Kuznetsov, W.I.F. David and N.P. Brandon. Hydrogen and Fuel Cell: Towards a sustainable energy future. Energy Policy, Vol. 36, 2008, pp. 4356 – 4362.
- สำนักงานคณะกรรมการนโยบายพลังงานแห่งชาติ, พลังงานและทางเลือกการใช้เชื้อเพลิงของประเทศไทย, 2542. สืบคันเมื่อ 31 พฤษภาคม 2554 จาก <http://www.eppo.go.th/doc/doc-AlterFuel.html>.
- วราภรณ์ สามโภเศษ. ไฮโดรเจนอีกอนาคต. มติชนรายวัน ประจำวันที่ 25 เมษายน 2545 หน้า 6. สืบคันเมื่อ 31 พฤษภาคม 2554 จาก <http://www.dpu.ac.th/laic/page.php?id=6032>.

[6] J.A.Ritter, A.D. Ebner, J. Wang and R. Zidan, Implementing a hydrogen economy, *materialstoday*, September 2003, pp. 18 – 23.

[7] M. Ball and M. Wietschel. The future of hydrogen-opportunities and challenges. *International Journal of Hydrogen Energy*. Vol. 34, 2009, pp. 615 – 627.

[8] V.C. Niculescu, M. Anghel and I. Stefanescu, Hydrogen as a future energy source. An impact study, *International Journal of Energy and Environment*, Vol. 4, 2010, pp. 153-160.

[9] N. Srisirivat, S. Therdthainwong, and A. Therdthainwong, “Oxidative steam reforming of ethanol over Ni/Al₂O₃ catalysts promoted by CeO₂, ZrO₂ and CeO₂-ZrO₂”, *International Journal of Hydrogen Energy*, Vol. 34, 2009, pp. 2224-2234.

[10] D.L. Trimm and Z. Ilseñ Önsan. Onboard fuel conversion for hydrogen-fuel-cell-driven vehicles. *Catalysis Reviews*. Vol. 43, 2001, pp. 31-84.

[11] D.K. Liguras et al. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts. *Journal of Power Source*. Vol. 130, 2004, pp. 30-37.

[12] D.K. Liguras et al. Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts. *International Journal of Hydrogen Energy*. Vol. 29, 2004, pp. 419-427.

[13] L.O.O. Costa, S.M.R. Vasconcelos, A.L. Pinto, A.M. Silva, L.V. Mattos, F.B. Noronha and L.E.P. Borges. Rh/CeO₂ catalyst preparation and characterization for hydrogen production from ethanol partial oxidation. *Journal of Materials Science*. Vol. 43, 2008, pp. 440-449.

[14] W. Cai, F. Wang, A.C. Van Veen, H. Provendier, C. Mirodatos and W. Shen, Autothermal reforming of ethanol for hydrogen production over an Rh/CeO₂ catalyst. *Catalysis Today*. Vol. 138, 2008, pp. 152-156.

[15] Therdthianwong, S., Srisirivat, N., Therdthianwong, A., and Croiset, E., Reforming of bioethanol over Ni/Al₂O₃ and Ni/CeZrO₂/Al₂O₃ catalysts in supercritical water for hydrogen production, *International Journal of Hydrogen Energy*, Vol. 36, 2011, pp. 2877-2886.

[16] Therdthianwong, S., Srisirivat, N., Therdthianwong, A., and Croiset, E., 2011, Hydrogen production from bioethanol reforming in supercritical water, *The Journal of Supercritical Fluids*, Vol. 57, 2011, pp. 58-65.

[17] การใช้พลังงานจากข้าวมวล, สืบคันเมื่อ 31 พฤษภาคม 2554 จาก http://www.eng.mut.ac.th/upload_file/article/148.doc.

[18] High-temperature Water Splitting, สืบคันเมื่อ 31 พฤษภาคม 2554 จาก http://www1.eere.energy.gov/hydrogenandfuelcells/production/water_splitting.html.

[19] Electrolysis of Water, สืบคันเมื่อ 6 ตุลาคม 2554 จาก <http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/electrol.html>.

[20] Photolytic Processes, สืบคันเมื่อ 31 พฤษภาคม 2554 จาก <http://www1.eere.energy.gov/hydrogenandfuelcells/production/photoelectrochemical.html>.

[21] D. Mori and K. Hirose, Recent Challenges of hydrogen storage technologies for fuel cell vehicles, *International Journal of Hydrogen Energy*, Vol. 34, 2009, pp. 4569-4574.

[22] M. Conte, P.P. Prosini, S. Passerini, Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials, Vol. 108, 2004, pp. 2-8.

[23] L. Browning, and A.D. Little. (2001). Projected automotive fuel cell use in California แหล่งที่มา: www.energy.ca.gov.

[24] W.A. Amos, Cost of storing and transporting hydrogen, National Renewable Laboratory, 1998, สืบคันเมื่อ 15 กันยายน 2554 จาก <http://www.nrel.gov/docs/fy99osti/25106.pdf>.

[25] Scoop: Hydrogen Economy เศรษฐกิจไฮโดรเจน, Energy Plus, ฉบับที่ 23 ประจำเดือน กรกฎาคม – กันยายน 2552, หน้า 30 – 32, สืบคันเมื่อ 15 กันยายน 2554 จาก http://old.energy.go.th/moen/upload/File/Energy%20Plus/v23/v_scoop.pdf.

[26] อภิชัย เทอดเทียนวงศ์. เทคโนโลยีเซลล์เชื้อเพลิงแบบเกลือcarbонเนต หลอม (Molten Carbonate Fuel Cells Technology). วิศวกรรมสาร. ปีที่ 50 เล่มที่ 8, 2540, หน้า 52 – 59.

[27] Leo J. M. J. Blomen, Michael N. Mugerwa. editors in *Fuel Cell Systems*. Plenum Press, New York, 1993.

[28] P.J. Berlowitz and C.P. Darnell. *Fuel Choices For Fuel Cell Powered Vehicles*, SAE Technical Paper Series 2000-01-0003, SAE 2000 World Congress, Detroit, Michigan, 2000. สืบคันเมื่อ 5 ตุลาคม 2554 จาก <http://papers.sae.org/2000-01-0003/>.

[29] IEA Energy Technology Essentials, Fuel Cells, 2007. สืบคันเมื่อ 5 ตุลาคม 2554 จาก www.iea.org/techno/essentials6.pdf.

[30] Obstacles For The Fuel Cell. สืบคันเมื่อ 21 พฤษภาคม 2554 จาก www.future-alternative-energy.net/fuel-cell-cars.html.

ประวัติผู้เขียนบทความ

ดร. Naratip Sirivannavibhag
วศ.บ. (เกียรตินิยมอันดับ2)
วศ.ม. และ วศ.ด. (วิศวกรรมเคมี)
มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี
สถานที่ทำงาน: สาขาวิชาวิศวกรรมเคมี

คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีปทุมธานี

งานวิจัยที่สนใจ: การผลิตไฮโดรเจน เทคโนโลยีเซลล์เชื้อเพลิง พลังงานหมุนเวียน การวิเคราะห์ทางเคมีในมิกกรัมของกระบวนการทางเคมี