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ABSTRACT

This paper addresses the production lot size problem for a fuzzy single-stage, multiple
-item, capacitated lot-sizing model in the context of unrelated parallel machines, known as
the F-CLSPP model. This problem is particularly useful for SMEs or new product production
planning, where there is a lack of historical quantitative data, and the available data comes
primarily from expert experience. In this paper, the problem is formulated as a fuzzy mixed-
integer programming model in the form of a dynamic lot size and scheduling problem. To
make the F-CLSPP model mathematically solvable, a chance-constraint programming concept
and a possibility approach are proposed to transform it into an equivalent crisp CLSPP model.
The fuzzy constraints are converted into equivalent crisp constraints using the extension
principle, allowing the model to be solved with basic software. This procedure and model
are tested with an illustrative numerical example, and the results demonstrate that this
approach can provide valuable production planning information and assist in decision-making

based on the confidence level in the data.
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Introduction

This research focuses on lot sizing production planning of order quantity produced
on parallel machines to determine how much to produce of each item and each period in
the planning horizon to satisfy the customer demand when there is no historical data of
demand trend but there is verbal information from experience of expert. This verbal
demand is called fuzzy demand in this paper. Fuzzy theory and stochastic methods are
both used to handle uncertainty, but they approach it in different ways. Fuzzy theory deals
with uncertainty that arises from vagueness or imprecision. It is particularly useful when the
data or information is subjective, qualitative, or lacks clear boundaries. For example, when
experts describe demand as "high" or "low" without specific numerical values, fuzzy theory
can model this kind of imprecision. Stochastic method handle uncertainty that arises from
randomness or inherent variability. Stochastic methods assume that the uncertain variables
follow a known probability distribution, such as normal, binomial, or Poisson distributions.
For example, if demand varies according to a known probability distribution, stochastic
methods are appropriate. In this paper, the fuzzy demand will be focused, which it enables
the management of uncertain or ambiguous demand data, which often arises when there is
insufficient historical data or when the data is highly variable.

The use of unrelated parallel machines complicates the problem as we not only
have to determine the quantity and timing to produce, but we also have to assign
production lots to machines. Each item can be produced on any of the machines and
several different items can be produced on the same machine in the same time period. A
setup time and a setup cost are incurred before starting production and the setup is
sequence independent [1]. Fiorotto et al. [2] studied the capacitated lot sizing problem
with multiples items, setup time and unrelated parallel machines. The Dantzig-Wolfe
decomposition was applied to a strong reformulation of the problem. Kim and Glock [3]
studied the case where a manufacturer produces a single type of product on multiple
parallel machines. They proposed a deterministic mathematical model for supporting
production and distribution planning in this scenario and analyzed the behavior of the
proposed model in an extensive numerical experiment using an implementation of the
proposed model in a commercial solver. There are several papers dealing with surveying,
extending, and applying the capacitated lot-sizing problem in parallel machines [4-8].

The purpose of this study is to propose the procedures of solving the lot sizing
production planning problem in the form of mixed integer linear programming when
demand is the fuzzy. As a result, this mathematical model is an uncertain programming
problem. Generally, solving uncertain programming must to trans-form it into an equivalent
crisp program and then to obtain an optimal solution by some crisp deterministic

algorithms [9-11]. The chance-constrained programming (CCP), was proposed by Charnes
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and Cooper [12], is the approach to find the solution for optimization problems under
uncertainty by transforming the stochastic programming with probabilistic criteria into
equivalents of the original stochastic problems [13]. In this work, the CCP approach will be
applied to convert fuzzy constraints to equivalent crisp. Chotayakul and Punyangarm [11]
studied the capacitated lot sizing problem with multiple items, setup time, unrelated
parallel machines and stochastic demand which was assumed to be a normal distribution.
The problem is formulated as a SMIP. The stochastic constraints are transformed into
equivalent deterministic programlnming ones by using the CCP approach and then obtain an
optimal solution by deterministic mixed-integer linear programming model. The proposed
algorithm is evaluated througsh a numerical example. Computational experiment
demonstrates that the proposed method has goodquality result for the test problem.
Ketsarapong et al. [14] also applied the CCP model to convert the uncapacitated fuzzy
single item lot sizing problem model (F-USILSP) to a mathematically solvable equivalent
crisp USILSP (EC-USILSP).

In this paper, the fuzzy set theory is applied to solve this information uncertainty for
production inventory model. We focus the membership function of fuzzy demands as the
triangular and trapezoidal fuzzy numbers, which are basically linear membership function
of fuzzy parameters [15, 16]. There are many researchers studying and using the fuzzy set
theory to apply in the inventory model where there are fuzzy parameters appear in the
models [17-20]. The aim of this research presents amethodology to solve the production lot
size problem of a fuzzy single-stage multiple items capacitated lot-sizing in the setting of
unrelated parallel machines (known as F-CLSPP) model.

The rest of the paper is organized as follows: Section 2 presents the steps of
research methodology including (1) data collection process and (2) developing production
lot size model based on fuzzy demand. Section 3 presents an illustrative numerical

example to test the proposed methodology. Finally, the last Section is the conclusions.

Research Methodology

The problem studied in this paper involves developing production lot size model to
deal with multi-products in a single stage production on unrelated parallel machines with
limited capacity which the demand of each item is considered as fuzzy. This production
planning model is designed in case of there is lack of historical quantitative data that it
often occurs in SMEs business or new product production planning. The research
methodology is organized as follows; (1) the data collection process (2) a developing

production lot size model based on fuzzy demand.
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1.Data collection process

The data collection process is the process to obtain inputs data for the production
lot size model based on fuzzy demand. The fuzzy demand is a qualitative information that
it must be collected from experienced decision makers. This problem model is to
determine how many units of each product should be produced in each period over a
given planning horizon. The objective of the production lot size model is to minimize total
production costs, such as holding cost, setup cost and cost to produce, to meet customer
demand of the products on time. In this paper, we first formulate this problem as a fuzzy
mixed-integer programming formulation in form of dynamic lot size and scheduling
problem.

To present the problem formulation, we define the input parameters used in
formulation the model in the following:

Parameters
/= {1,..., n} set of items;
J= {1,..., r} set of machines;
T = {1,..., m} set of periods;
d; : fuzzy demand of item i in period t;
Sj : setup cost of item i on machine j;
Py : unit production cost of item i/ on machine j;
h; : unit inventory cost of item i
Ji : setup time of item / on machine j;
b; : time to produce one unit of item i on machine j;
G : capacity (in unit of time) of machine j in period t;
dywr  : sufficiently large number, where dyr = Y-, di¢, Vt.

2.Developing production lot size model based on fuzzy demand

This subsection discusses the steps of developing production lot size model based
on fuzzy demand. First, a developing a fuzzy single-stage capacitated lot-sizing in the
setting of unrelated parallel machines (F-CLSPP) model of the problem is discussed. Then,
transforming F-CLSPP model to equivalent crisp CLSPP (EC-CLSPP) model is presented by
using a Possibility Approach. Last subsection shows how to develop EC-CLSPP in a form of
mixed integer linear programming.

2.1 Developing F-CLSPP model

The problem formulation is developed in form of mixed-integer program for the
single-stage capacitated multi-items lot-sizing problem with fuzzy demand on unrelated
parallel machines. The fuzzy production lot size model, where demand is a fuzzy variable,
in form of F-CLSPP model can be modeled as follows:
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Decision Variables

X amount of unit produced of item i on machine j in period t;
Vi binary variable, indicating the production or not of item i on machine j in
period t;
I quantity of inventory of item i at the end of period t;
F-CLSPP model
Minimize YiL; Y=g Xie1(SijYije + DijXije)+ Xie1 Dim1 hilie (1)
subject to
YiciXije e =g 2dis i=1,.,nt=1,.,m, )
Yici(bijxije + fijyije)) <G j=1,..,t=1,..,m, (3)
Xije < dpryijei = 1,0 j=1,.,nt=1..,m, (4)
Vije €01}, x5, 20,1, 20, i=1,..,n; j=1,..,nt=1,.,m. (5)

The objective function (1) is to minimize the total costs of setup cost, production
cost and inventory cost. The constraints in equation (2) guarantee the inventory balance in
each period where demand is a fuzzy variable. Note that, in general, the inventory balance
constraint is initially declared as an equality constraint for deterministic problem, but the
inequality constraint is used here due to a fuzzy condition. Therefore, in this study, these
constraints are changed to “>” by relaxing the upper bound of the constraints in order to
maintain feasibility and to ensure that supply meets the demand. The capacity constraints
in equation (3) limit the total production and setup times to the available capacity in each
machine and for each period. Constraints (4) are the machine setup constraints. Finally,
constraints (5) define the binary setup variables and non-negative variables for produced
quantities and inventory level. These constraints assure that no backlogging occurs.

Since this F-CLSPP model in equations (1) - (5) is in form of fuzzy mixed integer
linear programming (FMIP), which it cannot be solved by classical mathematical methods.
In this paper, the fuzzy linear program will be transformed to an equivalent deterministic
program by using Chance-Constrained Programming (CCP) [12].

2.2 Transforming F-CLSPP model to EC-CLSPP model

The traditional method of CCP is used to convert the stochastic program into the
equivalent deterministic program. In this paper, this approach will be applied for converting
F-CLSPP model to EC-CLSPP model.

The CCP is one of the well-known approaches to find the best solution for
optimization problems under uncertainty, where the objective function or some of the
constraints ensure that the probability of one or more events occurring is less than a
prescribed threshold. In this paper, the possibility constraints (In Equation (2) and Equation
(4), fuzzy demands) are rewritten as equivalent crisp deterministic constraint by using the

CCP approach. At the end of each and every time period, the possibility that the demand
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will support customers’ need is set to be at least Q. As a fuzzy constraint, Equation (2)
and Equation (4) can be guaranteed greater than or equal to a pre-specified minimum
possibility and can be written in the following form,
EC-CLSPP model
Minimize o1 Xj=1 2i=1(SijYije + DijXije)+ D1 Li=a Rilie (6)
subject to
(XfoaXije + lipor = le 2 dy) Z @i =1, ,m;t=1,..,m, (7)
Yici(bijxije + fijyije) < Cies j=1,.,rt=1.,m, (8
m(xie < duryije) = s i=1,.,mj=1.,nt=1.,m, (9
Vije €01}, x5, 20,1, 20i=1,.,n;j=1,..,t=1,.,m[(0)
where T means possibility and a;; means possibility level, which a;j; = [0,1]. The proposed
EC-CLSPP model (6) - (10) is a fuzzy mixed integer linear programming (FMILP) problem.
This mathematical form cannot be solved by general approach which in this paper the
fuzzy logic method is proposed to solve this problem by developing EC-CLSPP in the form
of MILP model and then to obtain an optimal solution by some crisp deterministic
algorithms.
2.3 Developing EC-CLSPP in a form of MILP model
In this research, the fuzzy constraints in Equation (7) and (9) can be converted to be
equivalent crisp constraints by using “the extension principle”, that is one of the basic
methods of fuzzy set theory, and Lemma 1, that was shown in Lertworasirikul, et al. [21].
The details of Lemma 1 based on possibility measure are shown as follows:
Lemma 1. Let @ for i = 1, ..., n be fuzzy variables with normal and convex membership
functions and b be a crisp variable. The lower and upper bounds of the a - level set of
d;are denoted by (@)% and (@)Y, respectively. Then, for any given possibility levels a;, a,

and az with 0 < aq, a3, a5 < 1,

() w(@ + -+ ad, < b) = ayiff (@), + -+ (@)%, < b, (11)
(i) w(@ + -+ @y = b) = ayiff (@)Y, + -+ (@,)4, = b, (12)
(i) (@ + -+ @, = b) = a3iff (@1)4, + -+ + (@,)5, < band (@)Y, + -+ (@,)4, = b. (13)

From Lemma 1, the fuzzy constraints in Equations (7) and (9) can be converted to
be an equivalent crisp constraint by Equations (11) and (12), respectively. Therefore, the
EC-CLSPP can be formulated as the following MILP model.

EC-CLSPP in a form of MILP model

Minimize te1 D=1 2i=1(SijVije + DijXije)+ Xieq Di=q Pilic (14)
subject to
-~ L .
Yiixije Hleog =l 2 (di) =1, ot =1,.,m, (15)
Z’{‘:l(bijxijt + ﬁ.]YL]t) < C]t; j: 1, ., L t= 1, .y m, (16)
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xye < (dur) Yijes i=1,m j=1,nt=1.m (7
Vije €{01} x50 20, 20;  i=1,.,n;j=1,.,nt=1,.,m(8)
2.4 Developing EC-CLSPP in a form of MILP model
For membership function of trapezoidal fuzzy number, the lower and upper crisp
values of the trapezoidal fuzzy number (B) at @ = 0 and 1 at each comer points of a
trapezoidal membership function, which are denoted by (E’)z, (E’)i (E)i] and (E)g (see
Figure 1b), are defined as follows:
NiowerB -(B).a+ (B),(1—a) and  hyye,B (B), a +(B), (1 - )(20)
where uz(h)e [0,1]1 and h € H.

uz(h)4 uz(h)4
(A"

1

O WL 8 @) » CGLB. , @eL

Figure 1 Membership function of (a) triangular fuzzy number, and (b) trapezoidal fuzzy number.

An Illustrative Numerical Example

1.Data Set

This section the numerical example of the production lot size model, where
demand is a fuzzy variable, in form of F-CLSPP model is illustrated to be EC-CLSPP in a
form of MILP model and to show how to solve this problem. The details of data set are as
follows:

Assume that the beginning and ending stock of the planning horizon are both zero.
The numbers of items, machines and periods are assumed to be 3 items (n = 3), 3
machines (r = 3), and 5 periods (m = 5), respectively, in which all parameters are randomly
generated shown in Table 1. The capacity (in unit of time) of each machine and period are
assumed to be 480 minutes (c; = 480). Let the demands for each item and period based
on the experience of the decision maker be classified as three verbal levels, that are
shown in Table 2. The membership functions of fuzzy demand are defined as triangular
fuzzy number for item 1 and item 2, and as trapezoidal fuzzy number for item 3, which are
shown in Figure 2-4, respectively.
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Table 1 All parameters for numerical example.

/' Sy Pj Ji by N

=L =2 j=3|j=l =2 j=3 =1 g2 g3l el j=2 =3 |

11200 400 600 | 5 5 5 8 9 8 | 27 27 27 108

500 500 500 | 3 3 3 5 5 5 1282 282 282109

500 800 400 | 2 3 3 1 1 1 14 15 14 102

Table 2 The demand for numerical example in the form of verbal demand.
s
i=1 i=2 i=3
t Triangular Triangular Trapezoidal
Verbal Verbal Verbal
o fuzzy o fuzzy o fuzzy
prediction prediction prediction

number number number
1 High (200,250,300) | Low (130,150,170) | Medium (30,40,50,60)
2 Medium (150,200,250) | High (170,190,210) | Medium (30,40,50,60)
3 Medium (150,200,250) | Low (130,150,170) | Medium (30,40,50,60)
4 Low (100,150,200) | Low (130,150,170) | High (50,60,70,80)
5 Low (100,150,200) | Medium (150,170,190) | High (50,60,70,80)

:uDemand(i=1)(h)
t Low Medium High

1

»

100

200

300

»

Demand(i = 1)

Figure 2 Membership function of fuzzy demand for item 1.
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Upemand (i=2) (h)

A
Low Medium High

1 —_—

»
»

Demand (i = 2)

130 150 170 190 210

Figure 3 Membership function of fuzzy demand for item 2.

HDpemand (i=3) (h)

Low Medium High

»
>

10 20 30 40 50 60 70 80
Demand (i = 3)

Figure 4 Membership function of fuzzy demand for item 3.
After using the possibility approach to transform F-CLSPP to the EC-CLSPP and using
extension principle to develop EC-CLSPP in a form of MILP model, the fuzzy demand

parameters with membership function can be modeled as the upper and lower crisp value
at each a -cut and shown in Table 3-4.

Table 3 The lower crisp value of demand item 1-3 at each &-cut.

~ \L

t (dit)a
i=1 i=2 i=3

1 250 + 200(1 - &) 150 + 130(1 - &) 40a + 30(1 - a)
2 200 + 150(1 - &) 190 + 170(1 - ) a0a + 30(1 - )
3 200 + 150(1 - &) 150 + 130(1 - &) a0a + 30(1 - a)
4 150 + 100(1 - &) 150 + 130(1 - &) 60 + 50(1 - &)
5 150 + 100(1 - &) 170 + 150(1 - ) 60 + 50(1 - &)
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Table 4 The upper crisp value of demand item 1-3 at each @-cut.

; (die),
i=1 =2 =3

1 250 + 300(1 - &) 150 + 170(1 - ) 50 + 60(1 - )

2 200 + 250(1 - &) 190 + 210(1 - ) 50 + 60(1 - &)

3 200 + 250(1 - &) 150 + 170(1 - ) 50 + 60(1 - &)

4 150 + 200(1 - &) 150 + 170(1 - ) 70 +80(1 - &)

5 150 + 200(1 - &) 170a + 190(1 - &) 70 +80(1 - &)

Table 5 Results of numerical examples.
a=0 a=0.1 a=0.2 a=03
MTEM1  MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3
t=1 100 0 0 105 0 0 125 0 0 115 0 0
t=2 150 0 0 170 0 0 175 0 0 165 0 0
t=3 175 0 0 175 0 0o 175 0 0 165 0 0
t=4 175 0 0 175 0 0 175 0 0 115 0 0
t=5 0 0 0 0 0 0 0 0 0 115 0 0
TEM2 MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3 MCl MC2  MC3
t=1 122 0 0 126 0 130 0 0 134 0
t=2 168 0 0 0 168 0 168 0 168 0
t=3 130 0 0 132 0 134 0 136 0
t=4 130 0 0 0 132 134 0 136 0
t=5 150 0 0 0 152 0 154 0 0 156 0
TEM3 MC1 MC2 MC3 MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3
t=1 0 0 160 0 0 165 0 0 170 0 0 170
t=2 0 0 0 0 0 0 0 0 0 0 0 0
t=3 0 0 0 0 0 0 0 0 0 0 0 0
t=4 0 0 0 0 0 0 0 0 0 0 0 0
t=5 0 0 0 0 0 0 0 0 0 0 0 0
a=04 a=0.5 a=0.6 a=0.7
MTEM1  MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3 MCl MC2  MC3
t=1 120 0 0 125 0 0 140 0 0 155 0 0
t=2 170 0 0 175 0 0 175 0 0 175 0 0
t=3 170 0 0 175 0 0o 175 0 0 175 0 0
=4 120 0 0 125 0 0 130 0 0 135 0 0
t=5 120 0 0 125 0 0 130 0 0 135 0 0
TEM2 MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3 MCl MC2 MC3
t=1 138 0 142 0 0 146 0 150 0
=2 0 0 168 168 0 0 0 168 0 0 168

t=3 0 138 0 0 140 0 142 0 0 0 144
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=4 0 138 0 0 140 0 0 0 142 0 0 144
t=5 150 0 158 0 160 0 154 | 162 0 0 0 164
ITEM3 | MC1 | MC2 | MC3 | MC1 | MC2 | MC3 | MC1 | MC2 | MC3 | MC1 | MC2 | MC3

t= 0 0 | 180 | O 0 | 185 | 0 0 | 190 ]| o 0 | 195

t=2 0 0 0 0 0 0 0 0 0 0 0 0

=3 0 0 0 0 0 0 0 0 0 0 0 0

t=4 | 0 0 0 0 0 0 0 0 0 0 0 0

t=5 0 0 0 0 0 0 0 0 0 0 0 0
a=0.8 a=20.9 a=1.0

TEM1 MC1 MC2 MC3 MC1 MC2 MC3 MC1T MC2  MC3

t=1 170 0 0 165 0 0 65 135 0
t=2 175 0 0 175 0 0 175 0 0
t=3 175 0 0 165 175 0 175 0

=4 140 0 0 0 0 0 150 0
t=5 140 0 0 145 0 0 150 0

MTEM2 MC1 MC2 MC3 MC1 MC2 MC3 MC1T MC2  MC3

t= 0 154 0 0 158 0 0 0 162
t=2 0 0 168 0 168 0 0 168 0
=3 0 146 0 0 0 148 150 0
t=4 0 0 146 0 148 0 0 0 152
t=5 0 0 166 0 168 0 154 0 168
ITEM3  MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3
t=1 0 0 200 0 0 205 0 0 210
t=2 0 0 0 0 0 0 0 0 0
=3 0 0 0 0 0 0 0 0 0
t=4 0 0 0 0 0 0 0 0 0
=5 0 0 0 0 0 0 0 0 0

2.Computing Results

After using the possibility approach to transform F-CLSPP to the EC-CLSPP and using
extension principle to develop EC-CLSPP in a form of MILP model, this model were formed
in term of corner points for all membership functions and can be solved with basic
software. The optimization software Gurobi Optimization for AMPL (Free Academic License)
was used to find optimal solutions. The computing results of this numerical examples are
shown in Table 5 and Figure 5. The results in table 5 provide the production quantity of
each item on each machine in each period at each acceptable possible levels (a). From
Fig. 5, the trend of total cost of solving this model witha = 0, 0,1, 0.2, ..., 1 is an increasing
trend. It means that when changing possible levels will affect the plan of production

quantity and increase total costs when higher possible levels are required.
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3.Decision making process

Production planning can make decisions from verbal information demand from
experienced decision makers under the acceptable possible levels. For example, the zero
of the acceptable possible level (a@ = 0) will be chosen if the decision makers are sure in

their verbal data.

Conclusion

In this paper, the F-CLSPP model was proposed for production planning when
demand come from the experience of the decision maker, that it is called fuzzy demand.
This case often occurs in SMEs business or new product production planning. The problem
studied involves the production of multiple items in a single-stage lot size problem with
capacity of time to produce of each machine in the setting of unrelated parallel machines.
This problem was formulated in the F-CLSPP model and then it was transformed to the EC-
CLSPP model by using the CCP concept and possibility approach. Then the extension
principle was used to convert the fuzzy constraints to equivalent crisp constraints. As a
result, this model is in a form of MILP model and can be solved by using basic software.
Gurobi Optimization for AMPL was used to find the optimal solution effectively and provide
useful information including total cost, production quantity, and the inventory level.
Moreover, the results of numerical example showed that when changing possible levels
will affect the plan of production quantity and increase total costs when higher possible
levels are required. Therefore, the production planners can make decisions under the

possible level depend on confidence in information data.
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