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ABSTRACT 
This paper addresses the production lot size problem for a fuzzy single-stage, multiple 

-item, capacitated lot-sizing model in the context of unrelated parallel machines, known as 
the F-CLSPP model. This problem is particularly useful for SMEs or new product production 
planning, where there is a lack of historical quantitative data, and the available data comes 
primarily from expert experience. In this paper, the problem is formulated as a fuzzy mixed-
integer programming model in the form of a dynamic lot size and scheduling problem. To 
make the F-CLSPP model mathematically solvable, a chance-constraint programming concept 
and a possibility approach are proposed to transform it into an equivalent crisp CLSPP model. 
The fuzzy constraints are converted into equivalent crisp constraints using the extension 
principle, allowing the model to be solved with basic software. This procedure and model 
are tested with an illustrative numerical example, and the results demonstrate that this 
approach can provide valuable production planning information and assist in decision-making 
based on the confidence level in the data. 
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Introduction 
This research focuses on lot sizing production planning of order quantity produced 

on parallel machines to determine how much to produce of each item and each period in 
the planning horizon to satisfy the customer demand when there is no historical data of 
demand trend but there is verbal information from experience of expert. This verbal 
demand is called fuzzy demand in this paper. Fuzzy theory and stochastic methods are 
both used to handle uncertainty, but they approach it in different ways. Fuzzy theory deals 
with uncertainty that arises from vagueness or imprecision. It is particularly useful when the 
data or information is subjective, qualitative, or lacks clear boundaries. For example, when 
experts describe demand as "high" or "low" without specific numerical values, fuzzy theory 
can model this kind of imprecision. Stochastic method handle uncertainty that arises from 
randomness or inherent variability. Stochastic methods assume that the uncertain variables 
follow a known probability distribution, such as normal, binomial, or Poisson distributions. 
For example, if demand varies according to a known probability distribution, stochastic 
methods are appropriate. In this paper, the fuzzy demand will be focused, which it enables 
the management of uncertain or ambiguous demand data, which often arises when there is 
insufficient historical data or when the data is highly variable.  

The use of unrelated parallel machines complicates the problem as we not only 
have to determine the quantity and timing to produce, but we also have to assign 
production lots to machines. Each item can be produced on any of the machines and 
several different items can be produced on the same machine in the same time period. A 
setup time and a setup cost are incurred before starting production and the setup is 
sequence independent [1]. Fiorotto et al. [2] studied the capacitated lot sizing problem 
with multiples items, setup time and unrelated parallel machines. The Dantzig-Wolfe 
decomposition was applied to a strong reformulation of the problem. Kim and Glock [3] 
studied the case where a manufacturer produces a single type of product on multiple 
parallel machines. They proposed a deterministic mathematical model for supporting 
production and distribution planning in this scenario and analyzed the behavior of the 
proposed model in an extensive numerical experiment using an implementation of the 
proposed model in a commercial solver. There are several papers dealing with surveying, 
extending, and applying the capacitated lot-sizing problem in parallel machines [4-8]. 

The purpose of this study is to propose the procedures of solving the lot sizing 
production planning problem in the form of mixed integer linear programming when 
demand is the fuzzy. As a result, this mathematical model is an uncertain programming 
problem. Generally, solving uncertain programming must to trans-form it into an equivalent 
crisp program and then to obtain an optimal solution by some crisp deterministic 
algorithms [9-11]. The chance-constrained programming (CCP), was proposed by Charnes 
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and Cooper [12], is the approach to find the solution for optimization problems under 
uncertainty by transforming the stochastic programming with probabilistic criteria into 
equivalents of the original stochastic problems [13]. In this work, the CCP approach will be 
applied to convert fuzzy constraints to equivalent crisp. Chotayakul and Punyangarm [11] 
studied the capacitated lot sizing problem with multiple items, setup time, unrelated 
parallel machines and stochastic demand which was assumed to be a normal distribution. 
The problem is formulated as a SMIP. The stochastic constraints are transformed into 
equivalent deterministic programming ones by using the CCP approach and then obtain an 
optimal solution by deterministic mixed-integer linear programming model. The proposed 
algorithm is evaluated through a numerical example. Computational experiment 
demonstrates that the proposed method has goodquality result for the test problem. 
Ketsarapong et al. [14] also applied the CCP model to convert the uncapacitated fuzzy 
single item lot sizing problem model (F-USILSP) to a mathematically solvable equivalent 
crisp USILSP (EC-USILSP). 

In this paper, the fuzzy set theory is applied to solve this information uncertainty for 
production inventory model. We focus the membership function of fuzzy demands as the 
triangular and trapezoidal fuzzy numbers, which are basically linear membership function 
of fuzzy parameters [15, 16]. There are many researchers studying and using the fuzzy set 
theory to apply in the inventory model where there are fuzzy parameters appear in the 
models [17-20]. The aim of this research presents amethodology to solve the production lot 
size problem of a fuzzy single-stage multiple items capacitated lot-sizing in the setting of 
unrelated parallel machines (known as F-CLSPP) model. 

The rest of the paper is organized as follows: Section 2 presents the steps of 
research methodology including (1) data collection process and (2) developing production 
lot size model based on fuzzy demand. Section 3 presents an illustrative numerical 
example to test the proposed methodology. Finally, the last Section is the conclusions. 
 

Research Methodology 
The problem studied in this paper involves developing production lot size model to 

deal with multi-products in a single stage production on unrelated parallel machines with 
limited capacity which the demand of each item is considered as fuzzy. This production 
planning model is designed in case of there is lack of historical quantitative data that it 
often occurs in SMEs business or new product production planning. The research 
methodology is organized as follows; (1) the data collection process (2) a developing 
production lot size model based on fuzzy demand. 
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1. Data collection process 
The data collection process is the process to obtain inputs data for the production 

lot size model based on fuzzy demand. The fuzzy demand is a qualitative information that 
it must be collected from experienced decision makers. This problem model is to 
determine how many units of each product should be produced in each period over a 
given planning horizon. The objective of the production lot size model is to minimize total 
production costs, such as holding cost, setup cost and cost to produce, to meet customer 
demand of the products on time. In this paper, we first formulate this problem as a fuzzy 
mixed-integer programming formulation in form of dynamic lot size and scheduling 
problem. 

To present the problem formulation, we define the input parameters used in 
formulation the model in the following: 

Parameters 
I =   {1,…, n} set of items; 
J =  {1,…, r} set of machines; 
T =  {1,…, m} set of periods; 
𝑑ሚ௜௧ : fuzzy demand of item i in period t; 
sij : setup cost of item i on machine j; 

  pij : unit production cost of item i on machine j; 
hi : unit inventory cost of item i; 
fij : setup time of item i on machine j; 
bij : time to produce one unit of item i on machine j; 
Cjt : capacity (in unit of time) of machine j in period t; 
𝑑ሚ௜௞்  : sufficiently large number, where 𝑑ሚ௜௞் = ∑ 𝑑ሚ௜௧

்
௧ୀଵ , ∀𝑡. 

2. Developing production lot size model based on fuzzy demand 
This subsection discusses the steps of developing production lot size model based 

on fuzzy demand. First, a developing a fuzzy single-stage capacitated lot-sizing in the 
setting of unrelated parallel machines (F-CLSPP) model of the problem is discussed. Then, 
transforming F-CLSPP model to equivalent crisp CLSPP (EC-CLSPP) model is presented by 
using a Possibility Approach. Last subsection shows how to develop EC-CLSPP in a form of 
mixed integer linear programming. 

2.1 Developing F-CLSPP model 
The problem formulation is developed in form of mixed-integer program for the 

single-stage capacitated multi-items lot-sizing problem with fuzzy demand on unrelated 
parallel machines. The fuzzy production lot size model, where demand is a fuzzy variable, 
in form of F-CLSPP model can be modeled as follows: 
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Decision Variables 
  xijt:        amount of unit produced of item i on machine j in period t; 

yijt:  binary variable, indicating the production or not of item i on machine j in 
period t; 

Iit:       quantity of inventory of item i at the end of period t; 
F-CLSPP model 

     Minimize ∑ ∑ ∑ (𝑠௜௝𝑦௜௝௧ + 𝑝௜௝𝑥௜௝௧)௡
௜ୀଵ

௥
௝ୀଵ

௠
௧ୀଵ + ∑ ∑ ℎ௜𝐼௜௧

௡
௜ୀଵ

௠
௧ୀଵ                     (1) 

subject to 
                               ∑ 𝑥௜௝௧

௥
௝ୀଵ + 𝐼௜,௧ିଵ − 𝐼௜௧ ≥ 𝑑ሚ௜௧ ;   i = 1, …, n; t = 1, …, m,                     (2)            

                               ∑ (𝑏௜௝𝑥௜௝௧
௡
௜ୀଵ + 𝑓௜௝𝑦௜௝௧) ≤ 𝐶௝௧ ; j = 1, …, r; t = 1, …, m,                       (3) 

                                            𝑥௜௝௧ ≤  𝑑ሚ௜௞்𝑦௜௝௧ ;i = 1, …, n;     j = 1, …, r; t = 1, …, m,                        (4) 
                               𝑦௜௝௧ ∈ {0,1}, 𝑥௜௝௧ ≥ 0, 𝐼௜௧ ≥ 0; i = 1, …, n;  j = 1, …, r; t = 1, …, m.       (5) 
 The objective function (1) is to minimize the total costs of setup cost, production 
cost and inventory cost. The constraints in equation (2) guarantee the inventory balance in 
each period where demand is a fuzzy variable. Note that, in general, the inventory balance 
constraint is initially declared as an equality constraint for deterministic problem, but the 
inequality constraint is used here due to a fuzzy condition. Therefore, in this study, these 
constraints are changed to “>” by relaxing the upper bound of the constraints in order to 
maintain feasibility and to ensure that supply meets the demand. The capacity constraints 
in equation (3) limit the total production and setup times to the available capacity in each 
machine and for each period. Constraints (4) are the machine setup constraints. Finally, 
constraints (5) define the binary setup variables and non-negative variables for produced 
quantities and inventory level. These constraints assure that no backlogging occurs. 
 Since this F-CLSPP model in equations (1) - (5) is in form of fuzzy mixed integer 
linear programming (FMIP), which it cannot be solved by classical mathematical methods. 
In this paper, the fuzzy linear program will be transformed to an equivalent deterministic 
program by using Chance-Constrained Programming (CCP) [12]. 

2.2 Transforming F-CLSPP model to EC-CLSPP model 
The traditional method of CCP is used to convert the stochastic program into the 

equivalent deterministic program. In this paper, this approach will be applied for converting 
F-CLSPP model to EC-CLSPP model. 

The CCP is one of the well-known approaches to find the best solution for 
optimization problems under uncertainty, where the objective function or some of the 
constraints ensure that the probability of one or more events occurring is less than a 
prescribed threshold. In this paper, the possibility constraints (In Equation (2) and Equation 
(4), fuzzy demands) are rewritten as equivalent crisp deterministic constraint by using the 
CCP approach. At the end of each and every time period, the possibility that the demand 
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will support customers’ need is set to be at least αit. As a fuzzy constraint, Equation (2) 
and Equation (4) can be guaranteed greater than or equal to a pre-specified minimum 
possibility and can be written in the following form, 
EC-CLSPP model 
              Minimize               ∑ ∑ ∑ (𝑠௜௝𝑦௜௝௧ + 𝑝௜௝𝑥௜௝௧)௡

௜ୀଵ
௥
௝ୀଵ

௠
௧ୀଵ + ∑ ∑ ℎ௜𝐼௜௧

௡
௜ୀଵ

௠
௧ୀଵ                    (6) 

subject to 
                                        𝜋൫∑ 𝑥௜௝௧

௥
௝ୀଵ + 𝐼௜,௧ିଵ − 𝐼௜௧ ≥ 𝑑ሚ௜௧൯ ≥ 𝛼௜௧ ;i = 1, …, n; t = 1, …, m,  (7)          

                                        ∑ (𝑏௜௝𝑥௜௝௧
௡
௜ୀଵ + 𝑓௜௝𝑦௜௝௧) ≤ 𝐶௝௧ ;            j = 1, …, r; t = 1, …, m,   (8) 

                                                         𝜋൫𝑥௜௝௧ ≤  𝑑ሚ௜௞்𝑦௜௝௧൯ ≥ 𝛼௜௧ ;    i = 1, …, n; j = 1, …, r; t = 1, …, m,  (9) 

𝑦௜௝௧ ∈ {0,1}, 𝑥௜௝௧ ≥ 0, 𝐼௜௧ ≥ 0;i = 1, …, n; j = 1, …, r; t = 1, …, m,(10) 

where 𝜋 means possibility and 𝛼௜௧ means possibility level, which 𝛼௜௧ = [0,1]. The proposed 
EC-CLSPP model (6) – (10) is a fuzzy mixed integer linear programming (FMILP) problem. 
This mathematical form cannot be solved by general approach which in this paper the 
fuzzy logic method is proposed to solve this problem by developing EC-CLSPP in the form 
of MILP model and then to obtain an optimal solution by some crisp deterministic 
algorithms. 

2.3 Developing EC-CLSPP in a form of MILP model 
In this research, the fuzzy constraints in Equation (7) and (9) can be converted to be 

equivalent crisp constraints by using “the extension principle”, that is one of the basic 
methods of fuzzy set theory, and Lemma 1, that was shown in Lertworasirikul, et al. [21]. 
The details of Lemma 1 based on possibility measure are shown as follows: 
Lemma 1. Let 𝑎i෥ for i = 1, …, n be fuzzy variables with normal and convex membership 
functions and b be a crisp variable. The lower and upper bounds of the 𝛼 – level set of 
𝑎෤௜are denoted by (𝑎෤௜)ఈ

௅  and (𝑎෤௜)ఈ
௎ , respectively. Then, for any given possibility levels 𝛼ଵ, 𝛼ଶ 

and 𝛼ଷ with 0 ≤ 𝛼ଵ, 𝛼ଶ, 𝛼ଷ ≤ 1, 

(i) 𝜋(𝑎෤ଵ + ⋯ + 𝑎෤௡ ≤ 𝑏) ≥ 𝛼ଵiff (𝑎෤ଵ)ఈభ

௅ + ⋯ + (𝑎෤௡)ఈభ

௅ ≤ 𝑏,                                                (11) 
(ii) 𝜋(𝑎෤ଵ + ⋯ + 𝑎෤௡ ≥ 𝑏) ≥ 𝛼ଶiff (𝑎෤ଵ)ఈమ

௎ + ⋯ + (𝑎෤௡)ఈమ

௎ ≥ 𝑏,                                                (12) 
(iii) 𝜋(𝑎෤ଵ + ⋯ + 𝑎෤௡ = 𝑏) ≥ 𝛼ଷiff (𝑎෤ଵ)ఈయ

௅ + ⋯ + (𝑎෤௡)ఈయ

௅ ≤ 𝑏,and (𝑎෤ଵ)ఈయ

௎ + ⋯ + (𝑎෤௡)ఈయ

௎ ≥ 𝑏.           (13) 
 From Lemma 1, the fuzzy constraints in Equations (7) and (9) can be converted to 
be an equivalent crisp constraint by Equations (11) and (12), respectively. Therefore, the 
EC-CLSPP can be formulated as the following MILP model. 
EC-CLSPP in a form of MILP model  

Minimize            ∑ ∑ ∑ (𝑠௜௝𝑦௜௝௧ + 𝑝௜௝𝑥௜௝௧)௡
௜ୀଵ

௥
௝ୀଵ

௠
௧ୀଵ + ∑ ∑ ℎ௜𝐼௜௧

௡
௜ୀଵ

௠
௧ୀଵ                         (14) 

subject to 
                                 ∑ 𝑥௜௝௧

௥
௝ୀଵ + 𝐼௜,௧ିଵ − 𝐼௜௧ ≥ ൫𝑑ሚ௜௧൯

ఈ

௅ ; i = 1, …, n; t = 1, …, m,              (15) 

                                             ∑ (𝑏௜௝𝑥௜௝௧
௡
௜ୀଵ + 𝑓௜௝𝑦௜௝௧) ≤ 𝐶௝௧ ;       j = 1, …, r; t = 1, …, m,                (16) 
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𝑥௜௝௧ ≤  ൫𝑑ሚ௜௞்൯
ఈ

௎
𝑦௜௝௧ ; i = 1, … n;  j = 1, …, r; t = 1, …, m,  (17) 

𝑦௜௝௧ ∈ {0,1}, 𝑥௜௝௧ ≥ 0, 𝐼௜௧ ≥ 0;      i = 1, …, n;  j = 1, …, r; t = 1, …, m.(18) 
2.4 Developing EC-CLSPP in a form of MILP model 
For membership function of trapezoidal fuzzy number, the lower and upper crisp 

values of the trapezoidal fuzzy number (𝐵෨ ) at 𝛼 = 0 and 1 at each corner points of a 
trapezoidal membership function, which are denoted by ൫𝐵෨൯

଴

௅
, ൫𝐵෨൯

ଵ

௅
, ൫𝐵෨൯

ଵ

௎ and ൫𝐵෨൯
଴

௎ (see 

Figure 1b), are defined as follows: 
hLower/𝐵෨  =൫𝐵෨൯

ଵ

௅
𝛼 + ൫𝐵෨൯

଴

௅
(1 − 𝛼)     and    hUpper/𝐵෨  =൫𝐵෨൯

ଵ

௎
𝛼 + ൫𝐵෨൯

଴

௎
(1 − 𝛼)(20) 

where 𝜇஻෨ (ℎ)𝜖 [0,1] and h 𝜖 H. 
 

 
 

Figure 1 Membership function of (a) triangular fuzzy number, and (b) trapezoidal fuzzy number. 
 

An Illustrative Numerical Example 
1. Data Set 
This section the numerical example of the production lot size model, where 

demand is a fuzzy variable, in form of F-CLSPP model is illustrated to be EC-CLSPP in a 
form of MILP model and to show how to solve this problem. The details of data set are as 
follows: 

Assume that the beginning and ending stock of the planning horizon are both zero. 
The numbers of items, machines and periods are assumed to be 3 items (n = 3), 3 
machines (r = 3), and 5 periods (m = 5), respectively, in which all parameters are randomly 
generated shown in Table 1. The capacity (in unit of time) of each machine and period are 
assumed to be 480 minutes (cjt = 480). Let the demands for each item and period based 
on the experience of the decision maker be classified as three verbal levels, that are 
shown in Table 2. The membership functions of fuzzy demand are defined as triangular 
fuzzy number for item 1 and item 2, and as trapezoidal fuzzy number for item 3, which are 
shown in Figure 2-4, respectively. 

൫𝐴ሚ൯
1

𝐿,𝑈
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0 

1 
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0 
ℎ b ൫𝐵෨൯

0

𝐿
 ൫𝐵෨൯

0

𝑈
 ൫𝐵෨൯

1

𝐿
 ൫𝐵෨ ൯
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𝑈

𝜇𝐴෨(ℎ) 
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Table 1 All parameters for numerical example. 

i 
sij pij fij bij hi j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 j=1 j=2 j=3 

1 200 400 600 5 5 5 8 9 8 2.7 2.7 2.7 0.8 
2 500 500 500 3 3 3 5 5 5 2.82 2.82 2.82 0.9 
3 500 800 400 2 3 3 1 1 1 1.4 1.5 1.4 0.2 

Table 2 The demand for numerical example in the form of verbal demand. 

t 

𝑑ሚ௜௧ 
i = 1 i = 2 i = 3 

Verbal 
prediction 

Triangular 
fuzzy 
number 

Verbal 
prediction 

Triangular 
fuzzy 
number 

Verbal 
prediction 

Trapezoidal 
fuzzy 
number 

1 High (200,250,300) Low (130,150,170) Medium (30,40,50,60) 
2 Medium (150,200,250) High (170,190,210) Medium (30,40,50,60) 
3 Medium (150,200,250) Low (130,150,170) Medium (30,40,50,60) 
4 Low (100,150,200) Low (130,150,170) High (50,60,70,80) 
5 Low (100,150,200) Medium (150,170,190) High (50,60,70,80) 

  

Low Medium High

100 150 200 250 300

1

 
 

Figure 2 Membership function of fuzzy demand for item 1. 
 

 

 

 

 

 

𝜇𝐷𝑒𝑚𝑎𝑛𝑑(𝑖=1)(ℎ) 

𝐷𝑒𝑚𝑎𝑛𝑑(𝑖 = 1)
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Low Medium High

130 150 170 190 210

1

 
 

Figure 3 Membership function of fuzzy demand for item 2. 

 

Low Medium High

10 20 30 40 50 60 70 80

1

 
 

Figure 4 Membership function of fuzzy demand for item 3. 

After using the possibility approach to transform F-CLSPP to the EC-CLSPP and using 
extension principle to develop EC-CLSPP in a form of MILP model, the fuzzy demand 
parameters with membership function can be modeled as the upper and lower crisp value 
at each 𝛼 -cut and shown in Table 3-4. 

Table 3 The lower crisp value of demand item 1-3 at each 𝛼-cut.  

t 
൫𝑑ሚ௜௧൯

ఈ

௅
 

i = 1 i = 2 i = 3 

1 250𝛼 + 200(1 – 𝛼) 150𝛼 + 130(1 – 𝛼) 40𝛼 + 30(1 – 𝛼) 
2 200𝛼 + 150(1 – 𝛼) 190𝛼 + 170(1 – 𝛼) 40𝛼 + 30(1 – 𝛼) 
3 200𝛼 + 150(1 – 𝛼) 150𝛼 + 130(1 – 𝛼) 40𝛼 + 30(1 – 𝛼) 
4 150𝛼 + 100(1 – 𝛼) 150𝛼 + 130(1 – 𝛼) 60𝛼 + 50(1 – 𝛼) 
5 150𝛼 + 100(1 – 𝛼) 170𝛼 + 150(1 – 𝛼) 60𝛼 + 50(1 – 𝛼) 

𝐷𝑒𝑚𝑎𝑛𝑑(𝑖 = 3) 

𝜇𝐷𝑒𝑚𝑎𝑛𝑑(𝑖=3)(ℎ) 

𝜇𝐷𝑒𝑚𝑎𝑛𝑑(𝑖=2)(ℎ) 

𝐷𝑒𝑚𝑎𝑛𝑑(𝑖 = 2) 
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Table 4 The upper crisp value of demand item 1-3 at each 𝛼-cut. 

t 
൫𝑑ሚ௜௧൯

ఈ

௎ 

i = 1 i = 2 i = 3 
1 250𝛼 + 300(1 – 𝛼) 150𝛼 + 170(1 – 𝛼) 50𝛼 + 60(1 – 𝛼) 
2 200𝛼 + 250(1 – 𝛼) 190𝛼 + 210(1 – 𝛼) 50𝛼 + 60(1 – 𝛼) 
3 200𝛼 + 250(1 – 𝛼) 150𝛼 + 170(1 – 𝛼) 50𝛼 + 60(1 – 𝛼) 
4 150𝛼 + 200(1 – 𝛼) 150𝛼 + 170(1 – 𝛼) 70𝛼 + 80(1 – 𝛼) 
5 150𝛼 + 200(1 – 𝛼) 170𝛼 + 190(1 – 𝛼) 70𝛼 + 80(1 – 𝛼) 

 

Table 5 Results of numerical examples. 
 𝛼 = 0 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.3 

ITEM1 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 100 0 0 105 0 0 125 0 0 115 0 0 
t = 2 150 0 0 170 0 0 175 0 0 165 0 0 
t = 3 175 0 0 175 0 0 175 0 0 165 0 0 
t = 4 175 0 0 175 0 0 175 0 0 115 0 0 
t = 5 0 0 0 0 0 0 0 0 0 115 0 0 
ITEM2 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 0 122 0 0 126 0 0 130 0 0 134 0 
t = 2 0 168 0 0 0 168 0 0 168 0 168 0 
t = 3 0 130 0 0 132 0 0 134 0 0 136 0 
t = 4 0 130 0 0 0 132 0 134 0 0 136 0 
t = 5 150 0 0 0 152 0 154 0 0 0 156 0 
ITEM3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 0 0 160 0 0 165 0 0 170 0 0 170 
t = 2 0 0 0 0 0 0 0 0 0 0 0 0 
t = 3 0 0 0 0 0 0 0 0 0 0 0 0 
t = 4 0 0 0 0 0 0 0 0 0 0 0 0 
t = 5 0 0 0 0 0 0 0 0 0 0 0 0 

 𝛼 = 0.4 𝛼 = 0.5 𝛼 = 0.6 𝛼 = 0.7 
ITEM1 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 120 0 0 125 0 0 140 0 0 155 0 0 
t = 2 170 0 0 175 0 0 175 0 0 175 0 0 
t = 3 170 0 0 175 0 0 175 0 0 175 0 0 
t = 4 120 0 0 125 0 0 130 0 0 135 0 0 
t = 5 120 0 0 125 0 0 130 0 0 135 0 0 
ITEM2 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 0 138 0 0 142 0 0 146 0 0 150 0 
t = 2 0 0 168 0 168 0 0 0 168 0 0 168 
t = 3 0 138 0 0 0 140 0 142 0 0 0 144 
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t = 4 0 138 0 0 140 0 0 0 142 0 0 144 
t = 5 150 0 158 0 160 0 154 162 0 0 0 164 
ITEM3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 0 0 180 0 0 185 0 0 190 0 0 195 
t = 2 0 0 0 0 0 0 0 0 0 0 0 0 
t = 3 0 0 0 0 0 0 0 0 0 0 0 0 
t = 4 0 0 0 0 0 0 0 0 0 0 0 0 
t = 5 0 0 0 0 0 0 0 0 0 0 0 0 

 𝛼 = 0.8 𝛼 = 0.9 𝛼 = 1.0 
ITEM1 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 170 0 0 165 0 0 65 135 0 
t = 2 175 0 0 175 0 0 175 0 0 
t = 3 175 0 0 165 175 0 175 0 0 
t = 4 140 0 0 0 0 0 150 0 0 
t = 5 140 0 0 145 0 0 150 0 0 
ITEM2 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 0 154 0 0 158 0 0 0 162 
t = 2 0 0 168 0 168 0 0 168 0 
t = 3 0 146 0 0 0 148 0 150 0 
t = 4 0 0 146 0 148 0 0 0 152 
t = 5 0 0 166 0 168 0 154 0 168 
ITEM3 MC1 MC2 MC3 MC1 MC2 MC3 MC1 MC2 MC3 
t = 1 0 0 200 0 0 205 0 0 210 
t = 2 0 0 0 0 0 0 0 0 0 
t = 3 0 0 0 0 0 0 0 0 0 
t = 4 0 0 0 0 0 0 0 0 0 
t = 5 0 0 0 0 0 0 0 0 0 

 
2. Computing Results 
After using the possibility approach to transform F-CLSPP to the EC-CLSPP and using 

extension principle to develop EC-CLSPP in a form of MILP model, this model were formed 
in term of corner points for all membership functions and can be solved with basic 
software. The optimization software Gurobi Optimization for AMPL (Free Academic License) 
was used to find optimal solutions. The computing results of this numerical examples are 
shown in Table 5 and Figure 5. The results in table 5 provide the production quantity of 
each item on each machine in each period at each acceptable possible levels (𝛼). From 
Fig. 5, the trend of total cost of solving this model with𝛼 = 0, 0,1, 0.2, …, 1 is an increasing 
trend. It means that when changing possible levels will affect the plan of production 
quantity and increase total costs when higher possible levels are required. 
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3. Decision making process 
Production planning can make decisions from verbal information demand from 

experienced decision makers under the acceptable possible levels. For example, the zero 
of the acceptable possible level (𝛼 = 0) will be chosen if the decision makers are sure in 
their verbal data. 
 

Conclusion 
In this paper, the F-CLSPP model was proposed for production planning when 

demand come from the experience of the decision maker, that it is called fuzzy demand. 
This case often occurs in SMEs business or new product production planning. The problem 
studied involves the production of multiple items in a single-stage lot size problem with 
capacity of time to produce of each machine in the setting of unrelated parallel machines. 
This problem was formulated in the F-CLSPP model and then it was transformed to the EC-
CLSPP model by using the CCP concept and possibility approach. Then the extension 
principle was used to convert the fuzzy constraints to equivalent crisp constraints. As a 
result, this model is in a form of MILP model and can be solved by using basic software. 
Gurobi Optimization for AMPL was used to find the optimal solution effectively and provide 
useful information including total cost, production quantity, and the inventory level. 
Moreover, the results of numerical example showed that when changing possible levels 
will affect the plan of production quantity and increase total costs when higher possible 
levels are required. Therefore, the production planners can make decisions under the 
possible level depend on confidence in information data. 
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