
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Journal of Nonlinear  

Analysis and  

Optimization:  

Theory & Applications 

Editors-in-Chief: 
Daishi Kuroiwa 

Narin Petrot 

July – December 2024 
Vol. 15 No. 2 (2024) 
 

ISSN: 1906 – 9685 (print) 
ISSN: 3057 – 0867 (online) 



About the Journal  

Journal of Nonlinear Analysis and 

Optimization: Theory & Applications is a 

peer-reviewed, open-access international 

journal, that devotes to the publication of 

original articles of current interest in every 

theoretical, computational, and applicational 

aspect of nonlinear analysis, convex analysis, 

fixed point theory, and optimization techniques and their 

applications to science and engineering. All manuscripts are refereed 

under the same standards as those used by the finest-quality printed 

mathematical journals. Accepted papers will be published in two 

issues annually in June and December, free of charge.  

This journal was conceived as the main scientific publication of the 

Center of Excellence in Nonlinear Analysis and Optimization, 

Naresuan University, Thailand. 

 

Contact 

Natthaphon Artsawang (natthaphona@nu.ac.th) 

Center of Excellence in Nonlinear Analysis and Optimization, 

Department of Mathematics, Faculty of Science,  

Naresuan University, Phitsanulok, 65000, Thailand. 

 

Official Website:  https://ph03.tci-thaijo.org/index.php/jnao 

 

 

 

  

https://ph03.tci-thaijo.org/index.php/jnao


Editorial Team 

Editors-in-Chief 

• D. Kuroiwa, Shimane University, Japan 

• N. Petrot, Naresuan University, Thailand 

Honorary Editor 

• S. Park, Seoul National University, Korea 

• B. Sims, University of Newcastle, Australia 

• A. T.-M. Lau, University of Alberta, Canada 

• M. Thera, Universite de Limoges, France 

• B. Ricceri, University of Catania, Italy 

Editorial Board 

• L. Q. Anh, Cantho University, Vietnam 

• O. Bagdasar, University of Derby, United Kingdom 

• T. D. Benavides, Universidad de Sevilla, Spain 

• V. Berinde, North University Center at Baia Mare, Romania 

• Y.  J.  Cho, Gyeongsang National University, Korea 

• P. Cholamjiak, University of Payao, Thailand 

• A. P. Farajzadeh, Razi University, Iran 

• P. Q. Khanh, International University of Hochiminh City, Vietnam 

• A.-O. Petrusel, Babes-Bolyai University Cluj-Napoca, Romania 

• S. Reich, Technion -Israel Institute of Technology, Israel 

• W. Sintunavarat, Thammasat University Rangsit Center, Thailand 

• S. Suzuki, Shimane University, Japan 

• T. Suzuki, Kyushu Institute of Technology, Japan 

• S. Suantai, Chiang Mai University, Thailand 

• J. Tariboon, King Mongkut's University of Technology North Bangkok, Thailand 

• H. K. Xu, National Sun Yat-sen University, Taiwan 

Managing Editor 

• I. Inchan, Uttaradit Rajabhat University, Thailand  

• J. Tangkhawiwetkul, Pibulsongkram Rajabhat University, Thailand 

Assistance Editors 

• N. Artsawang, Naresuan University, Thailand 

• P. Boriwan, Khon Kaen University, Thailand 

• M. Khonchaliew, Lampang Rajabhat University, Thailand 



• C. Panta, Nakhon Sawan Rajabhat University, Thailand 

• A. Padcharoen, Rambhai Barni Rajabhat University, Thailand 

• W. Ruanthong, Naresuan University, Thailand 

• M. Suwannaprapa, Rajamangala University of Technology Lanna, Thailand 

• K. Ungchittrakool, Naresuan University, Thailand 

JNAO- Founding Editor 

• S. Dhompongsa, Chiang Mai University, Thailand 

• S. Plubtieng, Naresuan University, Thailand 

JNAO- Editorial Office 

Contact Editorial Office at Email:  natthaphona@nu.ac.th  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:natthaphona@nu.ac.th


Table of Contents 

FOMITE FACTORS AND SILENT SPREAD: A VSEIQCR STUDY OF VIRAL DISEASES 

M. Soni, R. K. Sharma, S. Sharma     Pages 43-63 

CONVERGENCE BEHAVIOR OF MODIFIED-BERNSTEIN-KANTROVINCH-STANCU OPERATORS 

S. K. Paikray, S. Sonker, P. Moond, B. B. Jena    Pages 65-74 

A COMPARATIVE STUDY OF LAPLACE DECOMPOSITION METHOD AND VARIATIONAL 

ITERATION METHOD FOR SOLVING NONLINEAR INTEGRO -DIFFERENTIAL EQUATIONS 

J. H. Bhosale, S. S. Handibag       Pages 75-85 

GENERALIZED $\alpha$-$\psi$-$\varphi$-$F$-CONTRACTIVE MAPPINGS IN QUASI-$b$-

METRIC LIKE SPACES 

I. R. Saminathan, G. K. Kadwin, M. Jiny    Pages 87-96 

CONVERGENCE THEOREMS FOR OPERATORS WITH PROPERTY (E) IN CAT(0) SPACES 

S. Temir        Pages 97-109 

NEW APPLICATIONS OF THE METATHEOREM IN ORDERED FIXED POINT THEORY 

S. Park         Pages 111-123 

 

 



M. Soni, R. K. Sharma, & S. Sharma, J. Nonlinear Anal. Optim. Vol. 15(2) (2024), 43-63

Journal of Nonlinear Analysis and Optimization

Volume 15(2) (2024)
http://ph03.tci-thaijo.org
ISSN : 1906-9685

J. Nonlinear Anal. Optim.

FOMITE FACTORS AND SILENT SPREAD: A VSEIQCR STUDY

OF VIRAL DISEASES

MOHIT SONI∗1, RAJESH KUMAR SHARMA2 AND SHIVRAM SHARMA3

1 Government Holkar (Model , Autonomous) Science College, Indore, Madhya Pradesh, India
2 Government Post Graduate College, Shujalpur, Madhya Pradesh, India

3 PMCOE, Govt. P. G. College, Guna, Madhya Pradesh, India , Krantiveer Tatya Tope

University Guna, Madhya Pradesh, India

ABSTRACT. This study investigates the impact of both detected and undetected viral
cases, alongside environmental pathogens, on infection transmission dynamics. A VSEIQCR
model is formulated and refined to analyze the study and to assess the basic reproduction
number using the next-generation matrix method. The findings reveal a rapid escalation
in viral cases, correlating with the rise in undetected cases. The study suggests that
identifying and isolating individuals exposed to or infected by the virus, whether detected
or undetected, is deemed imperative for curtailing disease transmission. Additionally, The
study emphasizes the role of fomites in infection spread. It stands out for its innovative
approach, examining the interconnections among vaccination, quarantine, and contamination
strategies within a cohesive research framework, thereby setting a precedent in the field.

Key words: Epidemic model, Basic reproduction number, Next-generation method,
Environment pathogens (Fomites).

AMS Subject Classification: : 93C10, 93C35

1. Introduction

Some viral diseases can spread through the presence of saliva in the environment
[5]. On January 30, 2020, in response to the recommendations of the Emergency
Committee, the Director-General of theWorld Health Organization (WHO) declared
the outbreak of COVID-19 a Public Health Emergency of International Concern
(PHEIC) [20]. Due to its worldwide spread, the WHO [5] declared it a pandemic
on March 11, 2020. COVID-19, caused by Severe Acute Respiratory Syndrome
Coronavirus-2 (SARS-CoV-2), first emerged in China in December 2019 [1], [11],
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[20]. Contact tracing and quarantine are key strategies adopted by India to control
transmission and mortality [5]. However, when interviewing individuals infected
with COVID-19 for contact tracing, some contacts may be omitted due to recall
bias. These missed cases, which remain asymptomatic throughout the incubation
period (2-14 days), increase the risk of involuntary transmission to the community
[20]. As a result, it is essential to investigate their role in the spread of the disease.
Many research articles have attempted to understand the dynamics of transmitting
this disease with the help of mathematical modeling. Kermack and McKendrick
[6], [7], [8] framed the initial SIR (Susceptible, infected, recovered) compartmental
model to study the dynamics of a disease. Mandal et al. [9] have designed an
SEIR ( Susceptible, Exposed, Infected, Recovered ) model to prevent or delay
local outbreaks by imposing travel restrictions in India from countries affected
by COVID-19. Since these studies focused on the risk of disease through direct
transmission between humans, the impact of undetected cases on infection risk
within the community remains uncertain. Yang and Wang [20] modeled taking into
account the level of pathogens in the reservoir of the environment and their role in
the spread of the disease.
Choi and Ki [1] developed a SEIHR ( Susceptible, Exposed, Infected, Hospitalized,
Recovered ) model and estimated the basic reproduction number by the number of
confirmed cases reported in Korea.
Sujata and Sumanta [12] studied the impact of the undetected infected persons on
the transmission dynamics of COVID-19 for the period 22 March 2020 to 4 May
2020.
Recent studies have advanced the understanding of epidemic models by exploring
various incidence rates and treatment functions. Sharma and Sharma [14] investigate
the stability of an SIR model incorporating an alert class and modified saturated
incidence rate, revealing critical insights into disease dynamics and treatment efficacy.
Building on this, Umdekar, Sharma, and Sharma [15] extend the analysis to an
SEIR model with similar modifications, highlighting its implications for epidemic
control strategies. Additionally, Sharma and Sharma [16] provide a detailed study
of an SIQR model with Holling type–II incidence rate, contributing to the broader
understanding of model variations and their impacts on disease spread. In 2024,
Soni et. al [18] present a comprehensive analysis of prevention strategies for epidemic
control using a SEIQHRV (Susceptible, Exposed, Infected, Quarantined, Hospitalized,
Recovered, vaccinated ) model.

The paper’s organization is as follows: Section 2 elaborates on the Methodology,
describing the assumptions and notations employed in constructing the model.
It also presents the Formulation of the model through diagrams and differential
equations. In Section 3, the basic reproduction number of the model is estimated
using the next-generation method. Successive sections, namely 4, 5, and 6, delve
into the numerical results, main results, and conclusions, respectively.

2. METHODOLOGY

Drawing from prior work by Sujata and Sumanta [12], we expand our model by
introducing quarantine and contaminated compartments as innovative components.
Employing the next-generation matrix method, we calculate the basic reproduction
number. Subsequently, we conduct simulations using MATLAB software to analyze
the role of parameters and variables in controlling viral diseases.

2.1. ASSUMPTION AND NOTATION. We make the following assumptions
to make our model more realistic.



A VSEIQCR STUDY 45

1. The population distribution is homogeneous so that there are equal chances
to contract and propagate the disease.

2. The Entire population is divided into various compartments of the model.
3. Each compartment has some specific property.
4. Susceptible people may become ill after coming in contact with exposed, mild

infected, or severely infected people. Also, they may be ill due to contact with the
containment surface or area.

5. A part of the susceptible population gets vaccinated and another part does
not need to be vaccinated due to inbuilt natural immunity within them.

6. A part of the vaccinated population enters into the susceptible compartment
again due to the loss of temporary immunity and another part of the vaccinated
population enters into the recovered class due to permanent immunity.

7. Exposed populations is further divided into two infected compartments named
as a mildly infected compartment (I1) and severely infected compartment (I2).
Those in the exposed compartment are asymptomatic carriers and can spread the
disease.

8. Population of both infected compartments has equal chances of recovery at a
rate γ without the need for any kind of treatment due to the development of natural
immunity during the disease period.

9. Populations of both infected compartments get treatment at a rate of σ1 and
σ2 respectively.

10. Someone in the recovered compartment developed permanent immunity, and
was never to be infected again.

11. Quarantined individuals are eligible for treatment and permanent recovery
and enter into the recovered compartment at δ rate.

12. Depending upon the severity of infection, exposed or infected individuals
can contaminate a non-infected environment that may surge the number of virulent
pathogens in the atmosphere.

The following notations were used to build the model:

1. V: Vaccinated population
2. S: Susceptible population
3. E: Exposed population
4. I1: Infected population, detected through appropriate testing
5. I2: Undetected Infected population
6. Q: Quarantine population
7. C: Environmental reservoir of the pathogen (i.e. fomites contaminated

with coronavirus)
8. R: Recovered population
9. βe : Rate of transmission between exposed and susceptible persons
10. βi1 : Rate of transmission between susceptible and detected infected persons
11. βi2 : Rate of transmission between susceptible and undetected infected

persons
12. βc : Rate of transmission environment (fomites) to human
13. π : Influx rate in the population
14. µ : Natural death rate in the population
15. γ : Rate of the recovery from disease
16. ω : Rate of the death due to disease
17. α−1 : Period of incubation
18. β : Percentage of the undetected infected persons
19. σ1 : Rate of transmission from infected to quarantine compartment
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20. σ2 : Rate of transmission from undetected infected to quarantine compartment
21. η: Rate of removal of the coronavirus from the atmosphere
22. ξ1: Contribution of exposed persons to the container of the pathogens in

the environment
23. ξ2: Contribution of detected infected persons to the container of the pathogens

in the environment
24. ξ3: Contribution of undetected infected persons to the container of the

pathogens in the environment
25. δ: Rate of transmission from quarantine to recovered compartment
26. ψ : Percentage of the susceptible persons who are vaccinated
27. λ : Percentage of the vaccinated persons whose immunity is temporary
28. ρ : Rate at which a susceptible person becomes vaccinated
29. κ : Rate at which vaccinated person lose their immunity

2.2. FORMULATION OF THE MODEL. In our VSEIQCRmodel (See Figure
1), we distributed the total human populations into seven compartments- vaccinated
(V), susceptible (S),exposed (E), infected detected I1, infected undetected I2, quarantined
(Q) and recovered (R). Now, we have introduced an additional compartment (C)
for the environmental container of the coronavirus pathogen, which contributes to
the spread of the infection.

dS

dt
= π − βeSE − βi1SI1 − βi2SI2 − βcSC − (µ+ ρ)S + λκV

dE

dt
= βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E

dI1
dt

= αβE − (µ+ ω + γ + σ1) I1

dI2
dt

= α (1− β)E − (µ+ ω + γ + σ2) I2

dC

dt
= ξ1E + ξ2I1 + ξ3I2 − ηC

dQ

dt
= σ1I1 + σ2I2 − (µ+ δ)Q

dR

dt
= (I1 + I2) γ + δQ+ ρ (1− ψ)S + κ (1− λ)V − µR

dV

dt
= ρψS − (µ+ κ)V

Obviously, the system of equations has a disease-free equilibrium,

XDFE =
(

π
µ+ρ , 0, 0, 0, 0, 0, 0, 0

)
.

3. THE BASIC REPRODUCTION NUMBER

The basic reproduction number is the measurement of a disease’s potential spread.
It represents the average number of secondary infections caused by a single infectious
person in a completely susceptible population. This number indicates whether a
disease will die out or persist in the population. Specifically, R0 < 1 implies that the
disease will eventually die out, while R0 ≥ 1 suggests that the disease will continue
to affect the population over time. Soni et al. [17] investigate the basic reproduction
number R0 and herd immunity for COVID-19 in India, emphasizing their critical
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Figure 1. VSEIQCR Model

relationship. The study highlights how R0 , a measure of disease transmission
potential, directly influences the threshold for achieving herd immunity.
We derive this number with the help of next-generation method given by Van den
Driessche [19]. This method separates the compartments into infected compartment
(E, I1, I2, C) and uninfected compartments (V, S,Q,R). x and y denote the vector of
variables in the infected and the non-infected compartments i.e. x = (x1, x2, x3, x4)
and y = (y1, y2, y3, y4) where (x1, x2, x3, x4, y1, y2, y3, y4) represent the E, I1, I2, C, S,Q,R, V
compartments respectively. The dynamical system of equations may be written as:

x
′

1 = F1 (x, y) = βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E,

x
′

2 = F2 (x, y) = αβE − (µ+ ω + γ + σ1) I1,
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x
′

3 = F3 (x, y) = α (1− β)E − (µ+ ω + γ + σ2) I2,

x
′

4 = F4 (x, y) = ξ1E + ξ2I1 + ξ3I2 − ηC,

y
′

1 = G1 (x, y) = π − βeSE − βi1SI1 − βi2SI2 − βcSC − µS − (µ+ ρ)S + λκV,

y
′

2 = σ1I1 + σ2I2 − (µ+ δ)Q,

y
′

3 = (I1 + I2) γ + δQ+ ρ (1− ψ)S + κ (1− λ)V − µR,

y
′

4 = ρψS − (µ+ κ)V,

Now, we divide the infection compartments right hand side as shown below:
X

′

i = Mi (x, y) − Ni (x, y) ∀ i = 1, 2, 3, 4. where Mi (x, y) is the rate of new
infection in the compartment xi (∀ i = 1, 2, 3, 4) and Ni (x, y) represent the other
transitory terms of infected compartment.

M1 (x, y) = βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E, N1 (x, y) = 0,

M2 (x, y) = 0, N2 (x, y) = −αβE + (µ+ ω + γ + σ1) I1,

M3 (x, y) = 0, N3 (x, y) = −α (1− β)E + (µ+ ω + γ + σ2) I2,

M4 (x, y) = 0, N4 (x, y) = −ξ1E − ξ2I1 − ξ3I2 + ηC.

The linearized system of infected compartments may be written as:

x
′

i = (F − T )x,

where, F and T are the infections and the transition matrices respectively.

F =

[
∂Mi

∂xj

]
,

T =

[
∂Ni

∂xj

]
.

which arise from linearizing the system around the disease-free equilibrium.

F =


βeS0 βi1S0 −βi2S0 βcS0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

T =


α+ µ 0 0 0
−αβ µ+ ω + γ + σ1 0 0

−α(1− β) 0 µ+ ω + γ + σ2 0
−ξ1 −ξ2 −ξ3 η

 .
The next-generation matrix is defined as

D = FT−1.

The basic reproduction number R0 for the model (1) is determined by the spectral
radius of the next-generation matrix D and is given by: R0 = R1 + R2 + R3 + R4,
where
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R1 =
βeπ

(µ+ α) (µ+ ρ)
,

R2 =
βi1αβπ

(µ+ α) (µ+ ρ) (µ+ ω + γ + σ1)
,

R3 =
βi2α (1− β)π

(µ+ α) (µ+ ρ) (µ+ ω + γ + σ2)
,

R4 =
βcπ {αβ(µ+ ω + γ + σ2)ξ2 + αξ3 (1− β) (µ+ ω + γ + σ1) + ξ1 (µ+ ω + γ + σ1) (µ+ ω + γ + σ2)}

(µ+ α) (µ+ ω + γ + σ1) (µ+ ω + γ + σ2) (µ+ ρ) η

,
whereR1, R2, R3, and R4 provide the evaluation of the risk of disease by pathways

S to E, S to I1, S to I2 compartment and from environment to human respectively.

4. LOCAL STABILITY AT DISEASE FREE EQUILIBRIUM

The Jacobean matrix of the model is given by:

J =



−∆1 − ρ −βe −βi1 −βi2 −βc 0 0 λκ
−∆1 −(µ+ α) 0 0 0 0 0 0
0 αβ −(µ+ ω + γ + σ1) 0 0 0 0 0
0 α(1− β) 0 −(µ+ ω + γ + σ2) 0 0 0 0
0 ξ1 ξ2 ξ3 −η 0 0 0
0 0 σ1 σ2 0 −(µ+ δ) 0 0

ρ(1− ψ) 0 γ γ 0 δ −µ κ(1− λ)
ρψ 0 0 0 0 0 0 −(µ+ κ)


,

where ∆1 = βeE + βi1I1 + βi2I2 + βcC.
At the point XDFE the Jacobean matrix of the model is given by:

JXDFE
=



−ρ −βe −βi1 −βi2 −βc 0 0 λκ
0 −(µ+ α) 0 0 0 0 0 0
0 αβ −(µ+ ω + γ + σ1) 0 0 0 0 0
0 α(1− β) 0 −(µ+ ω + γ + σ2) 0 0 0 0
0 ξ1 ξ2 ξ3 −η 0 0 0
0 0 σ1 σ2 0 −(µ+ δ) 0 0

ρ(1− ψ) 0 γ γ 0 δ −µ κ(1− λ)
ρψ 0 0 0 0 0 0 −(µ+ κ)



Using MATLAB software and the parameter values outlined in the table 1, we
evaluated the eigenvalues at the disease-free equilibrium XDFE .

Our analysis revealed that all eigenvalues at this equilibrium have negative real
parts ( i.e. −0.73,−0.7997,−0.9,−0.8543,−0.2,−1.515,−1.015,−7.7). According
to the Routh-Hurwitz criterion, this result confirms local asymptotic stability when
the basic reproductive number R0 is less than 1, and indicates instability when it
exceeds 1.
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5. GLOBAL STABILITY AT DISEASE FREE EQUILIBRIUM

To investigate the global stability of the disease-free equilibrium (DFE) in our
model, we conducted a numerical simulation based on the set of differential equations
governing the system. The value of R0 depends on each of its component. Given
the provided parameter values in the table 1, we compute the basic reproduction
number R0 and its components R1,R2,R3, andR4. R1 = 1.2483 × 10−6,R2 =
5.7468×10−7,R3 = 1.1020×10−7,R4 = 2.9339×10−8. Thus, the basic reproduction
number is: R0 = 1.9625× 10−6. This value of R0 being much less than 1 confirms
that the disease-free equilibrium (DFE) is globally stable, the disease will not spread
in the population, and the system will return to the DFE over time. We use the
values in table 1 with S0 = 70, 000, E0 = 50, 000, I10 = 3, 0, 000, I20 = 4, 0, 000,
C0 = 5000, Q0 = 25, 000, V0 = 30, 000, and R0 = 50, 000 to perform a simulation
for the Disease-Free Equilibrium (DFE), as shown in figure 2.

Figure 2. DFE

The simulation results, depicted in figure 2, demonstrate the temporal evolution
of each compartment within the model. Over the course of the simulation:

1. Susceptible Population (S): The susceptible population stabilizes near the
value π

µ+ρ , consistent with the DFE. This behavior indicates that the

introduction of disease-related perturbations does not significantly deplete
the susceptible population, maintaining its stability.

2. Exposed (E), Infected I1 and I2: The exposed and infected populations,
both I1 and I2, consistently approach zero as time progresses. This outcome
suggests that the infection does not sustain itself within the population and
tends to die out, leading to a return to the disease-free state.

3. Contaminated Carrier (C) and Quarantined (Q): Similar to the exposed
and infected populations, the carrier and quarantined compartments also
trend towards zero. This further reinforces the notion that the disease
cannot persist within the population under the given parameters.



A VSEIQCR STUDY 51

4. Recovered (R) and Vaccinated (V): The recovered and vaccinated populations
stabilize at levels that do not interfere with the overall disease dynamics,
thus supporting the DFE stability.

These results collectively confirm the global stability of the disease-free equilibrium
within the context of our model. The simulations reveal that irrespective of initial
conditions, the system invariably returns to the DFE over time, thereby affirming
the robustness of this equilibrium. The observed stability is consistent across all
simulated scenarios, indicating that the model effectively captures the mechanisms
necessary for disease eradication under the given parameters.

Furthermore,to establish global stability at the DFE, we propose the following
Lyapunov function:

V (S,E, I1, I2, C,Q,R, V ) =
1

2

(
S − S∗

S∗

)2

+
E

µ+ α
+

I1
µ+ ω + γ + σ1

+
I2

µ+ ω + γ + σ2

where S∗ = π
µ+ρ .

Time Derivative of the Lyapunov Function. The time derivative of V (S,E, I1, I2, C,Q,R, V )
is computed as follows:

dV

dt
=
∂V

∂S

dS

dt
+
∂V

∂E

dE

dt
+
∂V

∂I1

dI1
dt

+
∂V

∂I2

dI2
dt

where the partial derivatives are:

∂V

∂S
=
S − S∗

S∗2

∂V

∂E
=

1

µ+ α
,

∂V

∂I1
=

1

µ+ ω + γ + σ1
,

∂V

∂I2
=

1

µ+ ω + γ + σ2
Substituting the derivatives from the system:

dV

dt
=
S − S∗

S∗2 (π − µS − ρS + λκV − βeSE − βi1SI1 − βi2SI2 − βcSC)

+
βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E

µ+ α

+
αβE − (µ+ ω + γ + σ1)I1

µ+ ω + γ + σ1

+
α(1− β)E − (µ+ ω + γ + σ2)I2

µ+ ω + γ + σ2

Given the structure of dV
dt , the following conclusions can be drawn:

Near the DFE: Since S ≈ S∗ and all other compartments E, I1, I2 are small
or zero, V (S,E, I1, I2, C,Q,R, V ) is positive and dV

dt ≤ 0. This indicates that the
Lyapunov function does not increase over time, with equality only at the DFE.

Global Behavior: If dV
dt is negative semi-definite, and the only equilibrium

where V is minimized is the DFE, then the system will asymptotically approach the
DFE regardless of the initial conditions, provided they are in the feasible region. To
demonstrate that dV

dt is negative semi-definite and that the only equilibrium where
V is minimized is the Disease-Free Equilibrium (DFE), we analyze the sign of each
term in the expression for dV

dt .
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First Term:

S − S∗

S∗2 (π − µS − ρS + λκV − βeSE − βi1SI1 − βi2SI2 − βcSC)

S − S∗ changes sign depending on whether S > S∗ or S < S∗. The expression
inside the parentheses represents the change in S over time. In the DFE, S = S∗

and the terms involving infected compartments (E, I1, I2, C) are zero.

Second Term:

βeSE + βi1SI1 + βi2SI2 + βcSC − (µ+ α)E

µ+ α

This term represents the change in E. At DFE, E = 0 and the entire term becomes
zero. - Outside DFE, this term is positive when there is transmission but negative
when the removal rate (µ+ α) dominates.

Third Term:
αβE − (µ+ ω + γ + σ1)I1

µ+ ω + γ + σ1

At DFE, I1 = 0, E = 0, so this term is zero. Otherwise, this term can be positive
or negative depending on the balance between infection (first term) and removal
(second term).

Fourth Term:
α(1− β)E − (µ+ ω + γ + σ2)I2

µ+ ω + γ + σ2

Similar analysis to the third term. At DFE, I2 = 0, E = 0, and the term is zero.
At the DFE, where E = 0, I1 = 0, I2 = 0, C = 0, Q = 0, and S = S∗:

dV

dt
= 0

For non-DFE equilibria, dV
dt ≤ 0. The term S−S∗

S∗2 multiplied by the expression
involving infections is negative because infections reduce susceptible individuals.
Similarly, the terms involving E, I1, and I2 become negative when infected compartments
are non-zero, reflecting the progression of disease and recovery or removal of infected
individuals.

dV
dt is negative semi-definite, indicating that V does not increase over time and

decreases whenever there are infected individuals. The only point where dV
dt = 0

and V reaches its minimum is at the Disease-Free Equilibrium (DFE), where all
compartments except S are zero. This demonstrates that the system stabilizes at
the DFE, where no infection persists.

We find that the entire population will eventually consist only of susceptible,
vaccinated, or recovered individuals and the Lyapunov function ensures that even
if the disease initially spreads through the population, the natural dynamics of
the system will drive the population back to the disease-free equilibrium, where
the disease cannot persist. Thus, this analysis guarantees that, under the given
model and assumptions, the disease will not become endemic or persist in the long
run; instead, it will fade out, leaving the population disease-free. Therefore, the

disease-free equilibrium XDFE =
(

π
µ+ρ , 0, 0, 0, 0, 0, 0, 0

)
is globally asymptotically

stable.
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6. NUMERICAL RESULTS

We estimated the basic reproduction number for the period from 16 January
2021 to 28 February 2021. After starting of the vaccination program in India, we
eagerly want to know the impact of undetected infected persons on the transmission
dynamics of COVID-19. As of 16 January 2020, the cumulative confirmed cases,
death cases and recovered cases were 10558637, 151720 and 10196056 respectively,
whereas on 28 February 2020, these data became 11111978, 156603 and 10784401
respectively. Because, those who are exposed and Undetected tend to live in the
community, they can spread the disease at the same rate [13].

Also, the family members impacted by COVID-19 may survive in the environment
from a couple of hours to several days [20]. In this study, this value was taken as
5 hours and, consequently, the elimination rate of virus is 0.2 per day. We estimated
the recovery rate (γ) as follows- Difference of cumulative recovered

Difference of cumulative confirmed∗
1

Average recovery time in days =
10784401−10196056
11111978−10558637 ∗ 1

14 = 0.075 per day. As of 1 January 2021, the total estimated

population of India was 1,390,537,387 [3].

Table 1. Parameter Estimates

S.No. Parameter Estimated Value Sources
1 π 47964 per day [3]
2 βe 0.25× 0.1231× 10−7 [13]
3 βi1 0.25× 0.5944× 0.1231× 10−7 [13]
4 βi2 0.25× 0.1231× 10−7 [13]
5 βc 1.03× 10−8 [13]
6 µ 7.344 per day [4]
7 γ1, γ2 0.075 per day Estimated
8 ω 0.01 Estimated
9 α 7 days [20]
10 β 0.9 [13]
11 σ1, σ2 0.7, 0.2 Assumed
12 η 0.2 [12]
13 ξ1 0.001 [13]
14 ξ2 0.000398 [13]
15 ξ3 0.001 [13]
16 δ 0.1243 [10]
17 ψ 0.008 Assumed
18 λ 0.05 Assumed
19 ρ 0.9 Assumed
20 κ 0.07 Assumed

In the below table 2, we estimated the contribution of exposed individuals,
undetected infected individuals, detected infected individuals, and contaminated
pathogens in the final reproduction number. We vary the values of the transmission
rate (ρ) and percentage of undetected infected individuals (1−β) simultaneously, to
check the impact of undetected infected and vaccinated individuals on the transmission
of epidemic COVID-19.

As (1− β) increases from 0.1 to 0.4, the overall risk R0 (which is the sum of all
individual risks) slightly increases. This trend suggests that as a smaller proportion
of the population remains immune (i.e., (1− β) increases), the total risk of disease
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Table 2. Results for Different Values of ρ

S.No. (1− β) R1 R2 R3 R4 R0

When ρ = 0.9
1 0.1 1.2483e-06 5.7503e-07 1.1453e-07 2.9553e-08 1.9674e-06
2 0.2 1.2483e-06 5.1113e-07 2.2907e-07 3.0589e-08 2.0191e-06
3 0.3 1.2483e-06 4.4724e-07 3.4360e-07 3.1625e-08 2.0707e-06
4 0.4 1.2483e-06 3.8335e-07 4.5814e-07 3.2661e-08 2.1224e-06

When ρ = 0.8
1 0.1 1.2636e-06 5.8209e-07 1.1594e-07 2.9916e-08 1.9915e-06
2 0.2 1.2636e-06 5.1741e-07 2.3188e-07 3.0965e-08 2.0438e-06
3 0.3 1.2636e-06 4.5273e-07 3.4782e-07 3.2013e-08 2.0962e-06
4 0.4 1.2636e-06 3.8806e-07 4.6376e-07 3.3062e-08 2.1485e-06

transmission also increases. The risk via the pathway from susceptible to exposed
individuals (R1) is the largest contributor to the total risk R0, highlighting that the
initial exposure is the most critical phase in disease spread.

The risks associated with the pathways to detected infected individuals (R2),
undetected infected individuals (R3), and environmental transmission (R4) are
smaller, but they do increase as (1 − β) increases. Comparing ρ = 0.9 and ρ =
0.8, the risks R1, R2, R3, and R4 are slightly higher when ρ = 0.8 than when
ρ = 0.9. This indicates that a lower ρ leads to an increased overall risk of disease
transmission.

The data show that reducing the proportion of the immune population ((1 −
β)) results in a higher overall risk of disease transmission. The most significant
risk occurs at the initial stage (from susceptible to exposed individuals). Hence,
strategies to minimize disease transmission should focus on enhancing immunity
and maintaining or improving vaccination.

Additionally, the risk R2 associated with detected infected individuals (I1) is
consistently higher than R3 associated with undetected infected individuals (I2)
across all values of (1 − β) and both ρ values, suggesting that detected infected
individuals pose a greater risk to disease spread, possibly due to more interactions or
higher infectiousness. The smaller increase in R3 suggests that undetected infected
individuals contribute less to transmission risk relative to detected cases.

We can easily observe that in both the cases (when ρ = 0.9 or when ρ = 0.8)
whenever the number of undetected infected individuals is 0.1, 0.2, and 0.3 percent,
the dominant part of disease risk is detected infected compartment, whereas, whenever
its value is 0.4 percent the undetected infected individuals compartment contribution
dominantly in the risk of disease spread. In this context, the contribution of R4 in
the total basic reproduction number cannot be neglected.

As (1−β) increases, R4 shows a slight increase, suggesting that as more individuals
become susceptible, fomite transmission risk also rises, though less significantly than
other pathways. When ρ decreases, R4 values increase slightly, similar to other risks,
but still remain minor compared to direct transmission routes. This highlights that
while environmental hygiene and disinfection are important, the primary focus for
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controlling disease spread should be on direct transmission routes and improving
immunity in the population.

6.1. EFFECT OF PARAMETERS ON INFECTED COMPARTMENT.
We set βe = 0.3 × 10−5, βi1 = 0.3 × 10−2, βi2 = 0.3 × 10−2, and βc = 0.5 × 10−6,
while keeping the remaining parameters the same as listed in Table 1. This setup
is used to perform a simulation to assess the effect of a particular parameter on
various infected compartments. For the simulation, we initialize with S0 = 70, 000,
E0 = 50, 000, I10 = 3, 0, 000, I20 = 4, 0, 000, C0 = 5000, Q0 = 25, 000, V0 = 30, 000,
and R0 = 50, 000 to perform simulation.

Figure 3. Effect of ρ
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In Figure 3, as the vaccination rate ρ of susceptible individuals increases, all
the curves corresponding to the infected compartments show a decline in their
populations.

Figure 4. Effect of γ

In Figure 4, as the recovery rate of infected individuals γ increases, all the curves
corresponding to the infected compartments show a decline in their populations.

In Figure 5, as the percentage of undetected infected populations β decreases,
all the curves corresponding to the infected compartments show a decline in their
populations.

In Figure 6, as the quarantine rate σ1 of infected individuals increases, all
the curves corresponding to the infected compartments show a decline in their
populations.
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Figure 5. Effect of β

In Figure 7, as the quarantine rate σ2 of undetected infected individuals increases,
all the curves corresponding to the infected compartments show a decline in their
populations.

In Figure 8, as the transmission rate βi1 decreases, all the curves corresponding
to the infected compartments show a decline in their populations.

In Figure 9, as the transmission rate βi2 decreases, all the curves corresponding
to the infected compartments display a decline in their populations.

In Figure 10, as the transmission rate βe decreases, all the curves corresponding
to the infected compartments display a decline in the corresponding populations.
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Figure 6. Effect of σ1

7. MAIN RESULTS

According to the World Health Organization (WHO) [5], individuals susceptible
to infection may contract the virus through contact with contaminated objects or
surfaces, known as fomites. Before cleansing their hands, these individuals may
inadvertently touch their eyes, mouth, or nose, thereby facilitating transmission.
Therefore, the role of fomites in COVID-19 transmission is a crucial aspect addressed
in our study. Mitigation strategies include frequent hand washing and sanitization,
as well as the consistent use of masks as preventive measures.

Moreover, exposed and undetected infected individuals contribute to the spread
of COVID-19 unknowingly. Thus, it is important to detect, isolate, and treat them.
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Figure 7. Effect of σ2

This underscores the significance of tracing and testing to prevent the spread of
the disease. Even though vaccines are available to control and reduce the risk of
infection, undetected infected individuals still significantly contribute to the basic
reproduction number. Hence, detecting and isolating these individuals can help
prevent the spread of infection.

Furthermore, it is necessary to decrease the risk of spread by increasing the
percentage of vaccinated people. Some individuals may lose their immunity due to
a low immune response against the disease, so it is important for people to complete
both vaccine doses. They should follow the guidelines issued by the Government
of India and should not neglect preventive precautions. Our study may be the
first to simultaneously include fomites, quarantine, undetected infected individuals,
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Figure 8. Effect of βi1

and vaccinated individuals in a mathematical model of COVID-19 transmission
within the population. The estimation of the basic reproduction number is based
on parameter values selected from other relevant studies; therefore, our findings
may differ from the original values.

8. CONCLUSIONS

The risk of COVID-19 spread increases with the rise in undetected infected cases.
Additionally, carelessness and lack of awareness regarding fomite transmission significantly
contribute to the persistence of the disease within the population. Since undetected
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Figure 9. Effect of βi2

infected and exposed individuals unknowingly spread the virus, it is crucial to
identify, isolate, and treat them to prevent further transmission.
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ABSTRACT. The study introduces a Kantrovinch-Stancu type modification of the
modified-Bernstein operator, examining its convergence properties for Hölder’s class of
functions. It evaluates the rate of convergence through the modulus of continuity and
Peetre’s K-functional, providing insights into the efficiency of the proposed operators.
Additionally, the research establishes a Vornovskaya type asymptotic result and investi-
gates weighted approximation with polynomial growth, shedding light on the behavior
of approximations under varying conditions. To illustrate the convergence behavior em-
pirically, the study employs MATLAB software to present numerical examples, offering
tangible evidence of the theoretical findings. Through this comprehensive analysis, the
study contributes to understanding the performance and applicability of the Kantrovinch-
Stancu modification in approximation theory, with implications for various fields relying
on function approximation techniques.
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1. Introduction and Preliminaries

Positive linear operators are widely used in various fields of science and engineer-
ing. This widely spread area provides us the key tools for exploring the Computer-
aided geometric designs, signal processing, image compression, data analysis, nu-
merical analysis, and solution to ordinary and partial differential equations that
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arises in mathematical modeling of real word phenomena. A very famous polyno-
mial in this regards, was studied by Bernstein [1] and the Bernstein operator for
every bounded function ψ ∈ C[0, 1], n ≥ 1 and t ∈ [0, 1] is defined as

Bn(ψ; t) =

n∑
i=0

pn,i(t)ψ

(
i

n

)
,

and pn,i(t) =
(
n
i

)
ti−1(1 − t)n−i−1 is Bernstein basis function. Usta [2] presented a

new modification for ψ ∈ C[0, 1], n ∈ N, t ∈ (0, 1) as

Bn(ψ; t) =

n∑
k=0

(
n

k

)
(k − nt)2tk−1(1− t)n−k−1ψ

(
k

n

)
. (1.1)

Recently, Sofyahoǧlu [3] introduced a parametric generalization of (1.1). There-
after, different modification of the above operator have become interest to many
researchers. For more details on parametric generalizations, we refer the readers to
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. Kantrovinch [14] introduced a modification involving
integral for the class of Lebesgue integrable functions on [0,1] given by

Kn(ψ; t) = (n+ 1)

n∑
k=0

pn,k(t)

∫ k+1
n+1

k
n+1

ψ(u)du, (1.2)

where t ∈ (0, 1). Recently, [15] introduced some approximation properties of Szász-
Kantorovich type operators allied with d-symmetric d-orthogonal Brenke type poly-
nomials. Also, [16] considered bivariate Summation-integral type hybrid operators
and studied their approximation behavior. For applications point of view, refer
[17, 18, 19, 20, 21].

The motivation behind the study stems from the need to enhance function ap-
proximation techniques, particularly for functions within Hölder’s class. Traditional
Bernstein operators, while effective, may not always offer optimal convergence rates
for diverse functions. By introducing a Kantrovinch-Stancu type modification, this
research aims to improve approximation efficiency. Investigating convergence prop-
erties through modulus of continuity and Peetre’s K-functional provides a deeper
understanding of how these new operators perform. The practical application of
these theoretical insights, supported by MATLAB simulations, underscores the rel-
evance of this work in advancing approximation theory and its applications across
various fields that rely on accurate function representation.

We now introduce Kantrovinch-Stancu modification of the operator given by
equation (1.1) based on Stancu parameters 0 ≤ α1 ≤ α2, as follows:

K(α1,α2)
n (ν; t) = (n+α2)

n∑
k=0

(
n

k

)
(k−nt)2tk−1(1−t)n−k−1

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

ν(u)du, t ∈ (0, 1).

(1.3)

2. Moment Estimation

Using the preliminaries, we can prove the following identities for Modified-Bernstein-
Kantrovinch-Stancu operators :

Lemma 2.1. (see [2]) The modified-Bernstein operators Bn(.; t) , for n ∈ N, satisfy
the following identities:

(i) Bn(1; t) = 1;
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(ii) Bn(y; t) =
(
n−2
n

)
t+ 1

n ;

(iii) Bn(y
2; t) =

(
n2−7n+6

n2

)
t2 +

(
5n−6
n2

)
t+ 1

n2 ;

(iv) Bn(y
3; t) =

(
n3−15n2+38n−24

n3

)
t3 + 12

(
n2−4n+3

n3

)
t2 +

(
13n−14

n3

)
t+ 1

n3 .

Lemma 2.2. For n ∈ N the operator K(α1,α2)
n (ν(y); t) satisfies the followings:

(i) K(α1,α2)
n (1; t) = 1;

(ii) K(α1,α2)
n (y; t) =

(
n−2
n+α2

)
t+ 1

n+α2
( 32 + α1);

(iii) K(α1,α2)
n (y2; t) = 1

(n+α2)2

{
(n2 − 7n+ 6)t2 + (6n− 8 + 2α1(n− 2))t+ (α1 +

1)(α2 + 2) + 1
3

}
.

Proof. Using the linear property of K(α1,α2)
n (ν; t), we’ve

K(α1,α2)
n (y; t) =

n

n+ α2
Bn,a(y; t) +

1

n+ α2

(
α1 +

1

2

)
Bn,a(1; t).

By using preliminaries, we can see part (2) is true. In a similar manner, we can
prove other parts of above result. □

Let us denote the rth order moment of K(α1,α2)
n ((y − t)r; t) by γ

(α1,α2)
n,r (t).

Lemma 2.3. For n ∈ N, the rth (r = 1, 2, 4) ordered moments of K(α1,α2)
n (.; t) are

given by

(i) γ
(α1,α2)
n,1 (t) = −

(
2+α1

n+α2

)
t+ 1

n+α2

(
α1 +

3
2

)
;

(ii) γ
(α1,α2)
n,2 (t) = 1

(n+α2)2

{
(−3n+ 6 + α2

2 + 4α2)t
2 + (3n− 8− 2α1α2 − 4α1 −

3α2)t+ (α1 + 1)(α2) +
1
3

}
;

Proof. Using the linear property of K(α1,α2)
n (.; t) and lemma (2.2), above lemma can

be derived easily. □

Corollary 2.4. For n ∈ N, operator Kn(α1, α2)(.; t) satisfies the followings:

(i) lim
n−→∞

nK(α1,α2)
n ((y − t); t) = −(2 + α2)t+

(
α1 +

3
2

)
3
2 ;

(ii) lim
n−→∞

nK(α1,α2)
n ((y − t)2; t) = 3t(1− t).

3. Approximation Properties of K(α1,α2)
n (.; t)

3.1. Local Approximation.

Theorem 3.1. Let ν ∈ C(0, 1), then

lim
n−→∞

K(α1,α2)
n (ν; t) = ν(t),

uniformly on (0, 1).

Proof. Using lemma (2.2), we have

lim
n−→∞

K(α1,α2)
n (yk; t) = tk; (k = 0, 1, 2),

uniformly on (0,1). The required result is immediately given by Korovkin type
theorem [22]. □
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3.2. Rate of Convergence. For ν ∈ C(0, 1), the modulus of continuity of ν is
defined as

ω(ν, ζ) = sup
|y−t|≤ζ

{
sup

t∈(0,1)

|ν(y)− ν(t)|
}
.

Also from [23], we can write

|ν(y)− ν(t)| ≤
(
1 +

(y − t)2

ζ2

)
ω(f, ζ).

By [24], ∃ a constant M > 0 such that

K(ν; ζ) ≤Mω2(ν,
√
ζ), ζ > 0, (3.1)

where Peetre’s functional K(ν; ζ) is given by

K(ν; ζ) = inf
f∈C2[0,1]

{∥ν − f∥+ ζ ∥f ′′∥}, ζ > 0,

with C2[0, 1] = {ν ∈ C[0, 1] : ν′, ν′′ ∈ C[0, 1]} and

ω2(ν,
√
η) = sup

0<|h|<√
η

{
sup

t,t+2h∈(0,1)

|ν(t+ 2h)− 2ν(t+ h) + ν(t)|
}

is the second ordered modulus of continuity of ν on (0,1).

Theorem 3.2. Let t ∈ (0, 1) and ν ∈ C[0, 1]. Then we have∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣ ≤ 2ω

(
ν,

√
γ
(α1,α2)
n,2 (t)

)
,

where γ
(α1,α2)
n,2 (t) = K(α1,α2)

n ((y− t)2; t), is the second ordered central moment of nth
proposed operator.

Proof. For ν ∈ C[0, 1], we obtain∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣ = (n+ α2)

n∑
k=0

pn,k(t)

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

|ν(y)− ν(t)| dy

≤ (n+ α2)

n∑
k=0

pn,k(t)

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

(
1 +

(y − t)2

ζ2

)
ω(f, ζ)dy

=

(
1 +

1

ζ2
K(α1,α2)

n ((y − t)2; t)

)
ω(ν, ζ).

By taking ζ2 = γ
(α1,α2)
n,2 (t), we reach the required result. □

Next, we define Hölder’s class of functions for α ∈ (0, 1] as follows:

Hα(0, 1) = {ν ∈ C(0, 1) : |ν(y)− ν(t)| ≤Mν |y − t|α ; y, t ∈ (0, 1)}.

The following theorem gives the rate of convergence for Hölder’s class of functions:

Theorem 3.3. Let t ∈ (0, 1) and ν ∈ Hα(0, 1). Then we have∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣ ≤M

(
γ
(α1,α2)
n,2 (t)

)α
2

,

where γ
(α1,α2)
n,2 (t) is the second ordered central moment of nth proposed operator.
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Proof. For ν ∈ Hα(0, 1), consider∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣ = n

n∑
k=0

pn,k(t)

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

|ν(y)− ν(t)| dy.

On applying Hölder’s inequality with p = 2
α , q =

2
2−α twice, we are led to

∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣ ≤ {
n

n∑
k=0

pn,k(t)

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

|ν(y)− ν(t)|
2
α dy

}α
2

≤M

{
n

n∑
k=0

pn,k(t)

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

|y − t|2 dy
}α

2

=MK(α1,α2)
n ((y − t)2; t)

α
2 ,

which completes the result. □

Theorem 3.4. Let ν ∈ C[0, 1] and t ∈ (0, 1). Then for all n ∈ N, ∃ a positive
constant M such that∣∣∣K(α1,α2)

n (ν; t)− ν(t)
∣∣∣ ≤Mω2

(
ν;

1

2

√
1

2

{
γ
(α1,α2)
n,2 (t) + γ

(α1,α2)
n,1 (t)2

})
+2ω

(
ν,
∣∣∣γ(α1,α2)

n,1 (t)
∣∣∣).

Proof. Firstly, we define an auxiliary operator

A(α1,α2)
n (ψ; t) = K(α1,α2)

n (ψ; t)− ψ

(
n− 2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

))
+ ψ(t). (3.2)

Then, we have A
(α1,α2)
n (1; t) = 1 and A

(α1,α2)
n (y− t; t) = 0. Now Taylor’s expansion

for ψ ∈ C2[0, 1] is given by

ψ(y) = ψ(t) + (y − t)ψ′(t) +

∫ y

t

(y − u)ψ′′(u)du, t ∈ (0, 1).

Applying auxiliary operator to both sides of above expansion, we obtain

A(α1,α2)
n (ψ; t)− ψ(t) = K(α1,α2)

n

(∫ y

t

(y − u)g′′(u)du; t

)

−
∫ n−2

n+α2
t+ 1

n+α2

(
α1+

3
2

)
t

(
n− 2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

)
− u

)
ψ′′(u)du.

(3.3)

Now, ∣∣∣∣∫ y

t

(y − u)ψ′′(u)du

∣∣∣∣ ≤ 1

2
∥ψ′′∥ (y − t)2

and∣∣∣∣∫ n−2
n+α2

t+ 1
n+α2

(
α1+

3
2

)
t

(
n− 2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

)
− u

)
ψ′′(u)du

∣∣∣∣
≤ 1

2
∥ψ′′∥

(
−2− α2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

))2

=
1

2
∥ψ′′∥

(
γ
(α1,α2)
n,1 (t)

)2

.
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Rewriting equation (3.3), we obtain∣∣∣A(α1,α2)
n (ψ; t)− ψ(t)

∣∣∣ ≤ 1

2
∥ψ′′∥K(α1,α2)

n ((y − t)2; t) +
1

2
∥ψ′′∥

(
γ
(α1,α2)
n,1 (t)

)2

=
1

2
∥ψ′′∥

{
γ
(α1,α2)
n,2 (t) + γ

(α1,α2)
n,1 (t)2

}
.

(3.4)

Also, ∣∣∣A(α1,α2)
n (ψ; t)

∣∣∣ ≤ 3 ∥ψ∥ . (3.5)

In the view of equations (3.4) and (3.5), we get∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣ =| A(α1,α2)
n (ν; t) + ν

(
n− 2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

))
− ν(t)− ν(t) + ψ(t)

− ψ(t) +A(α1,α2)
n (ψ; t)−A(α1,α2)

n (ψ; t) |

≤
∣∣∣A(α1,α2)

n (ν − ψ; t)− (ν − ψ)(t)
∣∣∣

+
∣∣∣A(α1,α2)

n (ψ; t)− ψ(t)
∣∣∣+ ∣∣∣∣ν( n− 2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

))
− ν(t)

∣∣∣∣
≤ 4 ∥ν − ψ∥+ 1

2
∥ψ′′∥

{
γ
(α1,α2)
n,2 (t) + γ

(α1,α2)
n,1 (t)2

}
+ ω(ν, ζ)

(
1 +

1

ζ

∣∣∣∣−2− α2

n+ α2
t+

1

n+ α2

(
α1 +

3

2

)∣∣∣∣).
Taking infimum to RHS of above equation over ψ ∈ C2[0, 1] and ζ =

∣∣∣γ(α1,α2)
n,1 (t)

∣∣∣,
we are led to∣∣∣K(α1,α2)

n (ν; t)− ν(t)
∣∣∣ ≤ 4K

(
ν;

1

8

{
γ
(α1,α2)
n,2 (t)+γ

(α1,α2)
n,1 (t)2

})
+2ω

(
ν,
∣∣∣γ(α1,α2)

n,1 (t)
∣∣∣).

We reach the required result immediately by using equation (3.1). □

3.3. Voronovskaya-type Asymptotic Result. In this subsection, we derive an
asymptotic formula for the proposed operator as follows:

Theorem 3.5. Let ν ∈ C2[0, 1]. and t ∈ (0, 1). Then, we have

lim
n−→∞

n(K(α1,α2)
n (ν; t)− ν(t)) =

{
(−2− α2)t+

(
α1 +

3

2

)}
ν′(t) +

3

2
t(1− t)ν′′(t).

Proof. From Peano form of remainder of Taylor’s expansion, we can write

ν(y) = ν(t) + (y − t)ν′(t) +
1

2
(y − t)2ν′′(t) + (y − t)2ϵ(y, t), (3.6)

where ϵ(y, t) = ν′′(z)−ν′′(t)
2 for some z lying between t and y. Also, lim

y−→t
ϵ(y, t) = 0.

Now, operating the equation (3.6) by Kn(.; t), we get

K(α1,α2)
n (ν; t)− ν(t) = K(α1,α2)

n ((y − t); t)ν′(t) +
1

2
K(α1,α2)

n ((y − t)2; t)ν′′(t)

+K(α1,α2)
n (ϵ(y, t)(y − t)2; t).
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Using corollary (2.4) and Cauchy-Schwartz inequality, we can deduce

lim
n−→∞

n(K(α1,α2)
n (ν; t)− ν(t)) = ν′(t) lim

n−→∞
nK(α1,α2)

n ((y − t); t)

+
1

2
ν′′(t) lim

n−→∞
nK(α1,α2)

n ((y − t)2; t)

+ lim
n−→∞

(
nK(α1,α2)

n

(
(y − t)2ϵ(y, t); t

))
≤

{
(−2− α2)t+

(
α1 +

3

2

)}
ν′(t) +

3

2
t(1− t)ν′′(t)

+ lim
n−→∞

√
n2K(α1,α2)

n

(
(y − t)4; t

)√
K(α1,α2)

n

(
ϵ2(y, t); t

))
.

(3.7)

By theorem (3.1), we have

lim
n−→∞

K(α1,α2)
n

(
ϵ2(y, t); t

)
= ϵ2(t, t) = 0.

Using above equation in (3.7), we are led to the required result. □

3.4. Weighted Approximation. Consider a weight function σ(t) = 1 + t2 on
(0,1). Let Bσ(0, 1) denotes the space of all functions φ on (0,1) such that

|φ(t)| ≤Mφσ(t)

and Cσ(0, 1) be the subspace of all continuous functions in Bσ(0, 1) endowed with
norm ∥.∥σ given by

∥φ∥σ = sup
t∈(0,1)

φ(t)

σ(t)
.

Next, we prove an inequality and convergence for the operator Kn(.; t) in weighted
space as follows:

Lemma 3.1. Let ν ∈ Cσ(0, 1). Then following inequality holds for Kn(ν; t)∥∥∥K(α1,α2)
n (ν; t)

∥∥∥
σ
≤M ∥ν∥σ .

Proof. By using definition of proposed operator, we may write∥∥∥K(α1,α2)
n (ν; t)

∥∥∥
σ
= sup

t∈(0,1)

∣∣∣K(α1,α2)
n (ν; t)

∣∣∣
σ(t)

≤ ∥ν∥σ sup
t∈(0,1)

n

1 + t2

n∑
k=0

bn,k(t)

∫ (k+1+α1)

(n+α2)

(k+α1)

(n+α2)

(1 + u2)du

= ∥ν∥σ sup
t∈(0,1)

1

1 + t2
{1 +K(α1,α2)

n (y2; t)} ≤M ∥ν∥σ .

□

Theorem 3.6. For ν ∈ Cσ(0, 1), the newly modified operator K(α1,α2)
n (.; t) satisfies

lim
n−→∞

∥∥∥K(α1,α2)
n (ν; t)− ν(t)

∥∥∥
σ
= 0.

Proof. From lemma (2.2), we obtain

∥∥∥K(α1,α2)
n (y; t)− t

∥∥∥
σ
= sup

t∈(0,1)

∣∣∣K(α1,α2)
n (y; t)− t

∣∣∣
1 + t2

≤ 1

n+ α2

∣∣∣∣α1 − α2 −
1

2

∣∣∣∣ .
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Also,

∥∥∥K(α1,α2)
n (y2; t)− t2

∥∥∥
σ
= sup

t∈(0,1)

∣∣∣K(α1,α2)
n (ν; t)− ν(t)

∣∣∣
1 + t2

≤ 1

(n+ α2)2

{
n(2α1 − 2α2 − 1) + α2

1 − α2
2 − α1 +

1

3

}
.

Thus, in limiting condition, we can write

lim
n−→∞

∥∥∥K(α1,α2)
n (yj ; t)− tj

∥∥∥ = 0; j = 0, 1, 2.

Then, the weighted convergence holds for all ν ∈ Cσ(0, 1) from the results given by
Gadjiev [25]. □

4. Graphical Analysis

Now, we introduce some simulation results in order to substantiate the conver-

gence behavior of K(α1,α2)
n (ψ; t) for continuous function ψ by using MATLAB.

To test the approximation behavior of newly defined operators, let us consider
a polynomial function ψ(t) = t3 − t2 + t

10 + 0.1. As the new sequence of operators
is defined on (0, 1), so for that we will consider approximation over equally spaced
grids in [0.0005, 0.9995]. Figure (1) and (2) shows the approximation and error in
the approximation by proposed operator to ψ(t) respectively for n = 20, 50 and 100
at α1 = α2 = 0.

0 0.2 0.4 0.6 0.8 1 t
0

0.05

0.1

0.15

0.2

0.25

(t)

n=20

n=50

n=100

Figure 1. Approximation by proposed operator K(0,0)
n (ψ; t) to ψ

at different values of n.
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0 0.2 0.4 0.6 0.8 1 t
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

n=20

n=50

n=100

Figure 2. Error in the approximation by proposed operator

K(0,0)
n (ψ; t) to ψ at different values of n.

5. Conclusion

In this manuscript, we presented modified-Bernstein-Kantrovinch-Stancu oper-
ators. We discussed their rate of convergence, asymptotic formula, and weighted
approximation of these operators with polynomial growth. Also, we included some
numerical simulations in order to test the newly defined operators.
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3. M. Sofyalıoğlu, K. Kanat, B. Cekim, Parametric generalization of the modified Bernstein

operators, Filomat, 2022, 36(5), 1699–1709.
4. Q.B. Cai, B.Y. Lian, G. Zhou, Approximation properties of λ-Bernstein operators, Journal of

inequalities and applications, 2018: 61 (2018), 1–11.
5. N. L. Braha, T. Mansour, H.M. Srivastava, A parametric generalization of the Baskakov-

Schurer-Szász-Stancu approximation operators, Symmetry, 2021, 13(6), 980.

6. P. N. Agrawal, B. Baxhaku, R. Shukla, On q-analogue of a parametric generalization of
Baskakov operators, Mathematical Methods in the Applied Sciences, 2021, 44(7), 5989–6004.

7. A. Kajla, M. Mursaleen, T. Acar, Durrmeyer-type generalization of parametric Bernstein

operators, Symmetry 2020, 12(7), Article ID: 1141.
8. S. A. Mohiuddine, Approximation by bivariate generalized Bernstein-Schurer operators and

associated GBS operators, Advances in Difference Equations, (2020) 2020:676.
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ABSTRACT. In this study, we compare the Laplace decomposition approach to the
variational iteration method. This research focuses on comparing methodologies to re-
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1. Introduction

An Integro-Differential Equation is one that includes both the integral and de-
rivative of unknown functions. Solving Integro-differential Equations is critical in
science and engineering [1, 2]. In many scientific and technical domains, compli-
cated physical processes are described by means of nonlinear problems. Nonlinear
phenomena can be seen in a wide range of scientific domains, including chemical ki-
netics, solid state physics, fluid dynamics, mathematical biology and plasma physics.
Numerous physical processes ,including the formation of glass, heat transmission,
diffusion in general, diffusion of neutrons and coexistence of biological species with
varying rates of generation involve the use of Integro-differential equations without
linearity [1]. Integro-differential equations that are not linear fall into two cate-
gories: nonlinear Volterra equations and others nonlinear Fredholm equations. In
this paper, we look at two successful approaches regarding the resolution of Volterra

∗J.H. Bhosale.
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integro-differential equations that are not linear: LDM and VIM. The following is
one kind of Volterra integro-differential equation that is not linear:

djv

dxj
= g(x) +

∫ x

0

K(x, t)G(v(t))dt, (1.1)

where G(v(t)) function that is nonlinear of v(t).
The present paper has the following structure.We define LDM and VIM in part

2, show the comparison results with four instances in section 3, and provide a
conclusion in section 4.

2. Methods description

2.1. Laplace Decomposition Method. Combining the Adomian Decomposition
and Laplace Transform techniques are also referred to as the Laplace Decomposi-
tion method (LDM).This methods main benefits is its ability to find a nonlinear
equation’s precise or approximate solution [3]. Differential equations can be suc-
cessfully solved using the Laplace Decomposition method (LDM),which was initially
presented by Suheil A. Khuri [4, 5]. When equation (1.1) is run through both sides
using the Laplace transform, the result is

sjL {v (x)} − sj−1v (0)− sj−2v
′
(0)− ...− vj−1 (0)

= L {g (x)}+ L {K (x− t)}+ L {G (v (t))}
(2.1)

and

L {v (x)} =
1

s
v (0) + v (0) +

1

s2
v

′
(0) + ...+

1

sj
v(j−1) (0)

+
1

sj
L {g (x)}+ 1

sj
L {K (x− t)}L {G (v (t))}

(2.2)

In order to accomplish this, the linear expression v(x) on the left is first expressed
using an endless succession of parts provided by,

v (x) =

∞∑
n=0

vn (x) (2.3)

recursively find the components vn(x), n ≥ 0.
For treating the non-linear component G(v(x)), the Adomian polynomial shall

be embodied by an endless series, An we apply the Adomian polynomial get around
its difficulties [1, 7, 8] in the format,

G (v (x)) =

∞∑
n=0

An(x), (2.4)

where,

An =
1

n!

dn

dλn

 n∑
j=0

λjvj


λ=0,n=0,1,2,...
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is obtained for all forms of nonlinearity types. (2.3) and (2.4) into (2.2) result in

L

 n∑
j=0

vn (x)

 =
1

s
v (0) +

1

s2
v

′
(0) + ...+

1

sj
v(j−1) (0)

+
1

sj
L {g (x)}+ 1

sj
L {K (x− t)}L

( ∞∑
n=0

An(x)

)
,

(2.5)

with the Adomian decomposition approach, the recursive connection listed below
can be used

L {v0 (x)} =
1

s
v (0) +

1

s2
v

′
(0) + ...+

1

sj
v(j−1) (0) +

1

sj
L{g(x)}, (2.6)

and

L {v (x)} =
1

sj
L {K (x− t)}L {An (x)} , n ⩾ 1. (2.7)

When the first portion of (2.6) is subjected to the inverse Laplace transform
v0(x) is obtained which defined A0.Consequently, by using second portion of (2.7)
the components of equation (2.3) will be fully determined.

2.2. Variational Iteration Method. Ji-Huan He developed the Variational iter-
ation technique (VIM) [9, 10].If there is a closed form solution, VIM offers quickly
converging successive approximations of the precise answer. Without requiring any
special limitations, the VIM manages both linear and nonlinear issues are treated
similarly [1]. It is necessary to specify the starting conditions in order to fully de-
termine the precise solution. For the equation for integro-differential that is not
linear (1.1) the correction functional is,

vn+1(x) = vn(x)+

∫ x

0

λ(ψ)

[
v(j)n (ψ)− f(ψ)−

∫ ψ

0

[K(ψ, r)G(ṽn(r))dr]dψ

]
. (2.8)

There are two key phases involved in using the Variational iteration method. Prior
to anything else, the Lagrange multiplier λ [11, 12, 13] must be found. This can
be done best by utilizing a constrained variation and integration by parts. Either a
function or constant can be the Lagrange multiplier λ. After λ has been established,
the following approximations v(n+1)(x), for n ⩾ 0 of the answer v(x), should be
computed using an iteration formula that is not constrained in any way. Any
selected function can serve as the zeroth approximation v0. However ,for the selective
zeroth approximation v0, it is preferable to utilize the initial values v(0), v

′
(0), · · ·

v
′
+ g

(
v (ψ) , v

′
(ψ)
)
= 0, λ = - 1,

v0 (x) = v (0) , for first order v
′

n

v
′′
+ g

(
v (ψ) , v

′
(ψ) , v

′′
(ψ)
)
= 0, λ = ψ − x

v0 (x) = v (0) + xv
′
(0) , for second order v

′′

n,

v
′′′
+ g

(
v (ψ) , v

′
(ψ) , v

′′
(ψ) , v

′′′
(ψ)
)
= 0, λ = − 1

2!
(ψ − x)2,

v0 (x) = v (0) + xv
′
(0) +

1

2!
x2v

′′
(0), for third order v

′′′

n ,

(2.9)

So on. As a consequence, the answer is provided by

v (x) = lim
n−→∞

vn(x). (2.10)
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3. Main Result

Example 3.1. Take the integro-differential equation that is nonlinear,

dv

dx
=

9

4
− 5

2
x− 1

2
x.x− 3

ex
− 1

4e2x
+

∫ x

0

(x− t) v2 (t) dt, v (0) = 2, (3.1)

Using Laplace Decomposition Method. Using the provided initial condition
and the Laplace transforms of equation (3.1) ,we have

sv (s) = 2 +
9

4s
− 5

2s2
− 1

s3
− 3

s+ 1
− 1

4 (s+ 2)
+

1

s2
L
{
v2 (x)

}
,

v (s) =
2

s
+

9

s(4s)
− 5

s(2s2)
− 1

s(s3)
− 3

s (s+ 1)
− 1

4s (s+ 2)
+

1

s3
L
{
v2 (x)

}
(3.2)

Using the reverse Laplace transformation of the equation (3.2),we get

v (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . . + L−1

[
1

s3
L
{
v2 (x)

}]
(3.3)

The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =

∞∑
n=0

vn (x) and v2 (x) =

∞∑
n=0

An (3.4)

substitute equation (3.4) into equation (3.3) we get ,

∞∑
n=0

vn (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . .+ L−1

[
1

s3
L

[ ∞∑
n=0

An

]]
. (3.5)

When we compare the equation above’s two sides, we obtain

v0 (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . .

v1 (x) = L−1

[
1

s3
L [A0]

]
,

v2 (x) = L−1

[
1

s3
L [A1]

]
,

.

.

.

.

where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2 + v21 · · · . and so on we get the following
recursive relation

v0 (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . . ,

v1 (x) =
2

3
x3 − 1

6
x4 +

1

20
x5 + . . . .

.

.

.

.
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According to (3.4), the series solution is supplied by,

v(x) = 2− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ . . . ,

that arrives to the precise solution,

v (x) = 1 + e−x

This is the precise solution to equation (3.1).

Using Variational Iteration Technique.

vn+1 (x) = vn (x)−
∫ x

0

[
v

′

n (t)−
9

4
+

5

2
t+

1

2
t2 + 3e−t +

1

4
e−2t −

∫ t

0

(
(t− r) v2n (r)

)
dr

]
dt

(3.6)
In the case of the first-order integro-differential equation, we utilized λ= -1. Us-
ing the above initial condition let’s choose v0 (x) = v (0) = 2.Following are the
consecutive estimations obtained by including the correction functional with this
selection.

v0 (x) = 2,

v1 (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . . ,

v2 (x) = 2− x+
x2

2!
− x3

3!
+ 5

x4

4!
− x5

5!
+ . . . ,

.

.

.

.

further approximations follow in this manner.
Admittedly, the VIM uses

v (x) = lim
n−→∞

vn (x) . (3.7)

This provides a precise solution by,

v (x) = 1 + e−x.

We validated through substitution.

Example 3.2. Take the integro-differential equation that is nonlinear
dv

dx
= 1− 1

3
ex +

1

3
e−2x +

∫ x

0

ex−tv2 (t) dt, v (0) = 0. (3.8)

Using Laplace Decomposition Method. Using the provided initial condition
and the Laplace transforms of equation (3.8) ,we have

sv (s) =
1

s
− 1

3 (s− 1)
+

1

3 (s+ 2)
+

1

s− 1
L
[
v2 (x)

]
v (s) =

1

s.s
− 1

3s (s− 1)
+

1

3s (s+ 2)
+

1

s (s− 1)
L
[
v2 (x)

]
(3.9)

Using the reverse Laplace transformation of the equation (3.9),we get,

v (x) = x− x2

2!
+
x3

3!
− 1

8
x4 − . . .+ L−1

[
1

S (S − 1)
L
[
v2 (x)

]]
(3.10)
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The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =

∞∑
n=0

vn (x) and v2 (x) =

∞∑
n=0

An (3.11)

substitute equation (3.11) into equation (3.10) we get ,

∞∑
n=0

vn (x) = x−x
2

2!
+
x3

3!
− 1

8
x4 − ...+ L−1

[
1

s (s− 1)
L

[ ∞∑
n=0

An

]]
. (3.12)

When we compare the equation above’s two sides, we obtain

v0 (x) = x− x2

2!
+
x3

3!
− 1

8
x4 − . . .

v1 (x) = L−1

[
1

s (s− 1)
L [A0]

]
,

v2 (x) = L−1

[
1

s (s− 1)
L [A1]

]
,

.

.

.

.

where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2 + v21 . . . . and so on
We get the following recursive relation ,

v0 (x) = x− x2

2!
+
x3

3!
− 1

8
x4 − . . .

v1 (x) =
x4

12
− x5

30
+
x6

72
− x7

126
+ . . .

.

.

.

.

According to (3.11), the series solution is supplied by,

v (x) = 1−
(
1− x+

x2

2!
− x3

3!
+
x4

4!
− . . .

)
.

that arrives to the precise solution,
v (x) = 1− e−x.

Using Variational Iteration Technique. For (3.8), the correction functional is
provided by

vn+1 (x) = vn (x) −
∫ x

0

[
v

′

n (t)− 1 +
1

3
et − 1

3
e−2t −

∫ t

0

(
et−rv2n (r)

)
dr

]
dt

(3.13)
In the case of the first-order integro-differential equation, we utilized λ= -1.

Using the above initial condition let’s choose v0 (x) = v (0) = 0.Following are the
consecutive estimations obtained by including the correction functional with this
selection.

v0 (x) = 0,

v1 (x) = x− x2

2!
+
x3

3!
− x4

8
+ . . . ,
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v2 (x) = x− x2

2!
+
x3

3!
− x4

4!
+ . . . ,

.

.

.

.

further approximations follow in this manner.
Admittedly, the VIM uses,

v (x) = lim
n−→∞

vn (x) , (3.14)

This provides a precise solution by,

v (x) = 1− e−x.

We validated through substitution.

Example 3.3. Take the integro-differential equation that is nonlinear,

dv

dx
= −1 +

∫ x

0

(x− t) v2 (t) dt, v (0) = 0 (3.15)

Using Laplace Decomposition Method:
Using the provided initial condition and the Laplace transforms of equation (3.15)
,we have

sv (s) = −1

s
+

1

s2
L
[
v2 (x)

]
(3.16)

v (s) = − 1

s.s
+

1

s.s2
L
[
v2 (x)

]
(3.17)

Using the reverse Laplace transformation of the equation (3.17),we get,

v (x) = −x+ L−1

[
1

s3
L
[
v2 (x)

]]
. (3.18)

The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =
∞∑
n=0

vn (x) and v2 (x) =
∞∑
n=0

An (3.19)

substitute equation (3.19) into equation (3.18) we get ,

∞∑
n=0

vn (x) = −x+ L−1

[
1

s3
L

[ ∞∑
n=0

An

]]
. (3.20)

When we compare the equation above’s two sides, we obtain
v0 (x) = −x,

v1 (x) = L−1

[
1

s3
L [A0]

]
,

v2 (x) = L−1

[
1

s3
L [A1]

] ,
.
.
.
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Where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2 + v21 . . . . and so on
We get the following recursive relation ,

v0 = −x,

v1 =
x5

60
,

v2 =
−x9

15120
,

.

.

.

According to (3.19), the series solution is supplied by,

v (x) = −x+
x5

60
− x9

15120
+ . . .

Using Variational Iteration Technique:
For (3.15), the correction functional is provided by,

vn+1 (x) = vn (x)−
∫ x

0

[
v

′

n (t) + 1−
∫ t

0

(
(t− r) v2n (r)

)
dr

]
dt

(3.21)
In the case of the first-order integro-differential equation, we utilized λ= -1.
Using the above initial condition let’s choose v0 (x) = v (0) = 0.Following are the
consecutive
estimations obtained by including the correction functional with this selection.

v0 (x) = 0

v1 (x) = −x,

v2 (x) = −x+
x5

60
,

v3 (x) = −x+
x5

15
− x9

15120
+ . . .

(3.22)

.

.

.

.

further approximations follow in this manner.
Admittedly, the VIM uses

v (x) = lim
n−→∞

vn (x) , (3.23)

This gives solution

v (x) = −x+
x5

60
− x9

15120
+ . . .

We validated through substitution.

Example 3.4. Take the integro-differential equation that is nonlinear,

dv

dx
= x+

∫ x

0

v2 (t) dt, v (0) = 0 (3.24)

Here kernel K (x, t) = 1
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Using Laplace Decomposition Method. Using the provided initial condition
and the Laplace transforms of equation (3.24),we have

sv (s) =
1

s2
+

1

s
L
[
v2 (x)

]
(3.25)

v (s) =
1

s.s2
+

1

s.s
L
[
v2 (x)

]
. (3.26)

Using the reverse Laplace transformation of the equation (3.26),we get,

v (x) =
x2

2
+ L−1

[
1

s2
L
[
v2 (x)

]]
. (3.27)

The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =

∞∑
n=0

vn (x) and v2 (x) =

∞∑
n=0

An (3.28)

substitute equation (3.28) into equation (3.27) we get ,

∞∑
n=0

vn (x) =
x2

2
+ L−1

[
1

s2
L

[ ∞∑
n=0

An

]]
. (3.29)

When we compare the equation above’s two sides, we obtain

v0 (x) =
x2

2
,

v1 (x) = L−1

[
1

s2
L [A0]

]
,

v2 (x) = L−1

[
1

s2
L [A1]

]
,

.

.

.

Where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2+v
2
1 . . . . and so on We get the following

recursive relation

v0 =
x2

2
,

v1 =
x6

120
,

v2 =
x10

10080
,

.

.

.

According to (3.28), the series solution is supplied by,

v (x) =
x2

2
+

x6

120
+

x10

10080
+ . . .

Using Variational Iteration Tecnique:
For (3.24), the correction functional is provided by,

vn+1 (x) = vn (x)−
∫ x

0

[
v

′

n (t)− t−
∫ t

0

(
v2n (r)

)
dr

]
dt (3.30)

In the case of the first-order integro-differential equation, we utilized λ= -1.



84 J. NONLINEAR ANAL. OPTIM. VOL. 15(2) (2024)

Using the above initial condition let’s choose v0 (x) = v (0) = 0.Following are the
consecutive estimations obtained by including the correction functional with this
selection.

v0 (x) = 0,

v1 (x) =
x2

2
,

v2 (x) =
x2

2
+

x6

120
,

v3(x) =
x2

2
+

x6

120
+

x10

10800
+ . . . ,

(3.31)

.

.

.

.

further approximations follow in this manner. Admittedly, the VIM uses

v (x) = lim
n−→∞

vn (x) , (3.32)

This gives solution

v (x) =
x2

2
+

x6

120
+

x10

10800
+ . . . .

We validated through substitution.

4. Conclusion

This work presents the successful application of Lagrangian multiplier (VIM) and
Lagrangian differentiation (LDM) techniques for solving integro-differential nonlin-
ear equations. Both methods yield approximations with greater accuracy or closed
forms of solutions when available. The LDM is a powerful tool that can deal with
both nonlinear and linear integro-differential equations, and for nonlinear opera-
tors, the VIM does not have any specific criteria, such as linearization or Adomian
polynomials. While VIM requires the evaluation of the Lagrangian multiplier λ,
both methods yield the same solution for the aforementioned examples. These two
methods are strong and righteous. Based on the comparison of these two powerful
methods, therefore, it may be said that VIM is simpler for finding the nonlinear
integro-differential equations.
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ABSTRACT. In this paper, we introduce some new generalized mappings in
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1. Introduction

In an attempt to generalize Banach’s fixed point theorem, Czerwik [7] in 1993
introduced b-metric space as a generalization of metric spaces. Later, many authors
proved existence of fixed points for generalized contractions under b-metric space
setting. Similiarly, the notion of metric-like space was introduced by Harandi[8]
in 2012 under which many fixed point results were proved. In 2014, Ansari [2]
introduced the concept of C-class functions which covers a large class of contrac-
tive conditions, and many researchers derived results using C-class functions. Re-
cently, Afshari et al. [1] proved some fixed point results for generalized α-ψ-Suzuki-
contractions in quasi-b-metric-like spaces. In this paper some fixed point results
are derived for generalized α-ψ-Suzuki-contractions in quasi-b-metric-like spaces via
C-class functions.
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2. Preliminaries

Definition 2.1. [6] Let X be a nonempty set and s ≥ 1 be a given real number.
Suppose that a function d : X ×X −→ [0,∞) satisfies the following conditions:

(i) d(u, v) = 0 =⇒ u = v, for all u, v ∈ X;
(ii) d(u, u) = 0, for all u ∈ X;
(iii) d(u, v) = d(v, u), for all u, v ∈ X;
(iv) d(u, v) ≤ s[d(u,w) + d(w, v)], for all u, v, w ∈ X.

Then, d is a b-metric on X and the pair (X, d) is called a b-metric space, and s is
its coefficient (see [5, 17] for more information on b-metric spaces).

If the conditions (i), (iii) and (iv) in Definition 2.1 are satisfied, then the space
(X, d) is called a b-metric-like space. See [13] for more information on fixed points
for some mappings in b-metric-like spaces.

Remark 2.2. Every b-metric space is a b-metric-like space, but the converse is not
true.

Definition 2.3. [15] Let X be a nonempty set and s ≥ 1 be a given real number.
Suppose that a function d : X ×X −→ [0,∞) satisfies the following conditions:

(i) d(u, v) = d(v, u) = 0 ⇐⇒ u = v, for all u, v ∈ X;
(ii) d(u, v) ≤ s[d(u,w) + d(w, v)], for all u, v, w ∈ X.

Then, d is a quasi-b-metric on X and the pair (X, d) is called a quasi-b-metric space.

Definition 2.4. [12] Let X be a nonempty set and s ≥ 1 be a given real number.
Suppose that a function d : X ×X −→ [0,∞) satisfies the following conditions:

(i) d(u, v) = d(v, u) = 0 =⇒ u = v, for all u, v ∈ X;
(ii) d(u, v) ≤ s[d(u,w) + d(w, v)], for all u, v, w ∈ X.

Then the pair (X, d) is called a quasi-b-metric-like space (or a dislocated quasi-b-
metric space).

Remark 2.5. All b-metric-like spaces and quasi-b-metric spaces are obviously quasi-
b-metric-like spaces, but the converse is not true.

See [9] for a generalization of b-metric-like spaces.

Example 2.6. Let X = {a1, a2, a3} be any set of three distinct elements.

Define d : X × X −→ [0,∞) by d(u, v) =


0 if (u, v) = (a3, a3);

2 if (u, v) ∈ {(a1, a1), (a2, a1)} ;
0.5 if (u, v) ∈ (a1, a2);

0.25 otherwise.

Then (X, d) is a quasi-b-metric-like space with coefficient s = 4. Since d(a1, a2) ̸=
d(a2, a1), it is clear that (X, d) is not a b-metric-like space; and since d(a1, a1) ̸= 0,
and d(a2, a2) ̸= 0, it is also clear that (X, d) is not a quasi-b-metric space.

Definition 2.7. [1] Let (X, d) be a quasi-b-metric-like space. Let {un} be a
sequence in X and u ∈ X. The sequence {un} converges to u if lim

n−→∞
d(un, u) =

d(u, u) = lim
n−→∞

d(u, un).

Definition 2.8. [1] Let (X, d) be a quasi-b-metric-like space. A sequence {un} in X
is said to be a left-Cauchy (respectively, right-Cauchy) sequence if lim

n>m−→∞
d(un, um)

(respectively, if lim
m>n−→∞

d(un, um)) exists and is finite. A sequence {un} is said to

be Cauchy if it is left-Cauchy and right-Cauchy.
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Definition 2.9. [1] Let (X, d) be a quasi-b-metric-like space. We say that

(i) (X, d) is left-complete if each left-Cauchy sequence in X is convergent;
(ii) (X, d) is right-complete if each right-Cauchy sequence in X is convergent;
(iii) (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Definition 2.10. [1] Let (X, d) be a quasi-b-metric-like space. A mapping
T : X −→ X is continuous if for any sequence {un} in X converging to u ∈ X, the
sequence {Tun} converges to Tu.

For s ≥ 1, let Ψs be the family of functions ψ : [0,∞) −→ [0,∞) satisfying the
following conditions:

(i) ψ is nondecreasing;

(ii) ∀t > 0,
∞∑
n=1

snψn(t) is finite, where ψn is the nth iterate of ψ.

It is clear that if ψ ∈ Ψs, then ψ(t) < t, for all t > 0. For s ≥ 1, we have

ψn(t) ≤ snψn(t), and since
∞∑
n=1

snψn(t) < ∞, by comparison test,
∞∑
n=1

ψn(t) < ∞,

and so we can conclude that Ψs ⊆ Ψ1.

Samet et al. [14] introduced the concept of α-admissible mappings as follows.

Definition 2.11. [14] Let α : X ×X −→ [0,∞) be a function and T : X −→ X be
a mapping. Then T is α-admissible if α(u, v) ≥ 1 implies α(Tu, Tv) ≥ 1.

Afshari et al. [1] introduced the concepts of right-α-orbital admissible mappings
and left-α-orbital admissible mappings.

Definition 2.12. [1] Let α : X ×X −→ [0,∞) be a function and T : X −→ X be
a mapping.

(i) T is right-α-orbital admissible if α(u, Tu) ≥ 1 =⇒ α(Tu, T 2u) ≥ 1.
(ii) T is left-α-orbital admissible if α(Tu, u) ≥ 1 =⇒ α(T 2u, Tu) ≥ 1.
(iii) T is α-orbital admissible if T is both right-α-admissible and left-α-admissible.

The notion of α-ψ-contractive mappings was defined by Samet [14] in the follow-
ing way.

Definition 2.13. [14] Let (X, d) be a metric space and T : X −→ X be a given
mapping. Then T is an α-ψ-contractive mapping if there exist two functions
α : X × X −→ [0,∞) and ψ ∈ Ψ1 such that α(u, v)d(Tu, Tv) ≤ ψ(d(u, v)), for
all u, v ∈ X.

In 2008, Suzuki [16] proved the following theorem as a generalization of Banach
contraction principle that characterizes metric completeness in which θ : [0, 1) −→

( 12 , 1] is a nondecreasing function defined by θ(r) =


1 if 0 ≤ r ≤

√
5−1
2 ,

(1− r)r−2 if
√
5−1
2 ≤ r ≤ 1√

2
,

(1 + r)−1 if 1√
2
≤ r < 1.

Theorem 2.14. [16] Let (X, d) be a complete metric space. Then every mapping
T on X satisfying the following:

∃ r ∈ [0, 1) such that ∀u, v ∈ X, θ(r)d(u, Tu) ≤ d(u, v) =⇒ d(Tu, Tv) ≤ rd(u, v),

has a unique fixed point.

Using Suzuki method, Afshari et al. [1] proved some fixed point results for
generalized α-ψ-Suzuki contractive mappings in the setting of quasi-b-metric-like
spaces as follows.
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Definition 2.15. [1] Let (X, d) be a quasi-b-metric-like space with coefficient s.
Then T : X −→ X is a generalized α-ψ-Suzuki-contractive mapping of type A if
there exist α : X ×X −→ [0,∞), ψ ∈ Ψs and r ∈ [0, 1) such that

(i) ∀u, v ∈ X, θ(r)d(u, Tu) ≤ d(u, v) implies α(u, v)d(Tu, Tv) ≤ ψ(M(u, v));
(ii) ∀u, v ∈ X, θ(r)d(Tu, u) ≤ d(v, u) implies α(v, u)d(Tv, Tu) ≤ ψ(M ′(u, v)),

where

M(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv),

d(u, Tv)

2s

}
,

M ′(u, v) = max

{
d(v, u), d(Tu, u), d(Tv, v),

d(Tv, u)

2s

}
.

Example 2.16. [1] Let X = [−1, 1] and let T : X −→ X be defined by T (u) = u/2.
Define d : X × X −→ [0,∞) by d(u, v) = |u − v|2 + 3u2 + 2v2. Then (X, d) is a
quasi-b-metric-like space and T is an α-ψ-Suzuki-contractive mapping of type A.

Theorem 2.17. [1] Let (X, d) be a complete quasi-b-metric-like space and
T : X −→ X be an α-ψ-Suzuki-contractive mapping of type A. Suppose also that T
is α-orbital admissible, continuous and there exists u0 ∈ X such that α(u0, Tu0) ≥ 1
and α(Tu0, u0) ≥ 1. Then T has a fixed point u ∈ X and d(u, u) = 0.

The following is the definition of a C-class function introduced by Ansari [2].
Many researchers then developed fixed point results and best proximity results
using C-class functions. For example, see [3, 4, 10].

Definition 2.18. [2] A continuous function F : [0,∞)2 → R is called a C-class
function if for any p, q ∈ [0,∞), the following conditions hold:

(1) F (p, q) ≤ p;
(2) F (p, q) = p implies that either p = 0 or q = 0.

The family of all C-class functions is denoted by C.

Example 2.19. [2] The following are some C-class functions:

(i) F (p, q) = p− q, for all p, q ∈ [0,∞).
(ii) F (p, q) = mp, for all p, q ∈ [0,∞) and m ∈ (0, 1).
(iii) F (p, q) = p

(1+q)r , for all p, q ∈ [0,∞) and r ∈ (0,∞).

(iv) F (p, q) = log(q + ap)/(1 + q), for all p, q ∈ [0,∞) and a > 1.

Definition 2.20. [11] An ultra altering distance function is a continuous, nonde-
creasing function φ : [0,∞) → [0,∞) such that φ(t) > 0, for t > 0 and φ(0) = 0.
The set of all ultra altering distance functions is denoted by ΦU .

3. Main results

The following definition is proposed in this paper.

Definition 3.1. Let (X, d) be a quasi-b-metric-like space with coefficient s. Then
T : X −→ X is a generalized α-ψ-φ-F -contractive mapping of type A if there exist
α : X×X −→ [0,∞), ψ ∈ Ψs, φ ∈ ΦU , F ∈ C and r ∈ [0, 1) such that the following
are satisfied:

(A1) ∀u, v ∈ X, θ(r)d(u, Tu) ≤ d(u, v) =⇒
α(u, v) MA(u, v) ≤ F (ψ(d(u, v)), φ(d(u, v)));

(A2) ∀u, v ∈ X, θ(r)d(Tu, u) ≤ d(v, u) =⇒
α(v, u) MA(u, v) ≤ F (ψ(d(v, u)), φ(d(v, u))),

where MA(u, v) = max{d(u, Tv), d(v, Tv), d(v, Tu), d(Tv, v)}.
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We have now our first main result.

Lemma 3.2. Let (X, d) be a complete quasi-b-metric-like space with coefficient s
and T : X → X be a generalized α-ψ-φ-F -contractive mapping of type A. If T
is α-orbital admissible, and if there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and
α(Tu0, u0) ≥ 1, then lim

n→∞
d(un, un+1) = lim

n→∞
d(un+1, un) = 0, where uk = T ku0,

for k ∈ N.

Proof. If un0
= un0+1 for some n0 ∈ N, then the proof is complete. If not, then

un ̸= un+1 for all n ∈ N. Since T is right-α-orbital admissible, it can be derived
that α(u0, u1) = α(u0, Tu0) ≥ 1 =⇒ α(Tu0, Tu1) = α(u1, u2) ≥ 1. Then by
induction we get that

α(un−1, un) ≥ 1,∀n ∈ N. (3.1)

Similarly, since T is left-α-orbital admissible, it can also be derived that
α(u1, u0)= α(Tu0, u0) ≥ 1 =⇒ α(Tu1, Tu0) = α(u2, u1) ≥ 1.

Inductively, we get that

α(un, un−1) ≥ 1,∀n ∈ N. (3.2)

Since T is an α-ψ-φ-F -contractive mapping of type A, by taking u = un−1 and
v = un in (A1) of Definition 3.1, we find that θ(r)d(un−1, Tun−1) ≤ d(un−1, un)
implies

d(un, un+1) ≤ α(un−1, un)d(un, un+1) by using (3.1)

≤ α(un−1, un)max{d(un−1, un+1), d(un, un+1), d(un, un), d(un+1, un)}
= α(un−1, un)max{d(un−1, Tun), d(un, Tun), d(un, Tun−1), d(Tun, un)}
= α(un−1, un)MA(un−1, un)

≤ F (ψ(d(un−1, un)), φ(d(un−1, un)))

≤ ψ(d(un−1, un))

< d(un−1, un).

Therefore, d(un, un+1) ≤ ψ(d(un−1, un)) and d(un, un+1) < d(un−1, un), for
all n ∈ N. Since d(un, un+1) ≤ ψ(d(un−1, un)) for all n ∈ N, inductively, we
get d(un, un+1) ≤ ψn(d(u0, u1)) for all n ∈ N. Therefore, lim

n−→∞
d(un, un+1) ≤

lim
n−→∞

ψn(d(u0, u1)) = 0, since ψ ∈ Ψ1. Thus

lim
n−→∞

d(un, un+1) = 0.

Similarly, by taking u = un−1 and v = un in (A2) of Definition 3.1, we find that
θ(r)d(Tun−1, un−1) ≤ d(un, un−1) implies

d(un+1, un) ≤ α(un, un−1)d(un+1, un) by using (3.2)

≤ α(un, un−1)max{d(un−1, un+1), d(un, un+1), d(un, un), d(un+1, un)}
= α(un, un−1)max{d(un−1, Tun), d(un, Tun), d(un, Tun−1), d(Tun, un)}
= α(un, un−1)MA(un−1, un)

≤ F (ψ(d(un, un−1)), φ(d(un, un−1)))

≤ ψ(d(un, un−1))

< d(un, un−1).

Therefore, d(un+1, un) ≤ ψ(d(un, un−1)) and d(un+1, un) < d(un, un−1), ∀n ∈ N.
Since d(un+1, un) ≤ ψ(d(un, un−1)), for all n ∈ N, inductively, we get that
d(un+1, un) ≤ ψn(d(u1, u0)), for all n ∈ N.
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Therefore, lim
n−→∞

d(un+1, un) ≤ lim
n−→∞

ψn(d(u1, u0)) = 0.

Thus, lim
n−→∞

d(un+1, un) = 0.

This completes the proof. □

Theorem 3.3. Let (X, d) be a complete quasi-b-metric-like space with coefficient
s, and T : X → X be a generalized α-ψ-φ-F -contractive mapping of type A and
continuous. If T is α-orbital admissible, and if there exists u0 ∈ X such that
α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1, then there exists an element u ∈ X which is a
fixed point of T and d(u, u) = 0.

Proof. We have lim
n−→∞

d(un+1, un) = 0 and lim
n−→∞

d(un, un+1) = 0, from Lemma

3.2. Now, we prove that the sequence {un} is Cauchy. For k ∈ N, we have

d(un, un+k) ≤ sd(un, un+1) + s2d(un+1, un+2) · · ·+ skd(un+k−1, un+k)

≤
n+k−1∑
p=n

sp−n+1ψp(d(u0, u1))

≤
∞∑
p=n

spψp(d(u0, u1)) −→ 0 as n −→ ∞.

Therefore, {un} is right-Cauchy.
Similarly, {un} is left-Cauchy, since we have

d(un, un+k) ≤ sd(un+k, un+k−1) + s2d(un+k−1, un+k−2) · · ·+ skd(un+1, un)

≤
n+k−1∑
p=n

sn+k−pψp(d(u1, u0))

≤
∞∑
p=n

spψp(d(u1, u0)) −→ 0 as n −→ ∞.

Consequently, {un} is Cauchy in (X, d) since it is both right-Cauchy and left-
Cauchy. Since X is complete, there exists u ∈ X such that

d(u, u) = lim
n,m→∞

d(um, un) = lim
n→∞

d(un, u) = lim
n→∞

d(u, un) = lim
n,m→∞

d(un, um) = 0.

By the continuity of T ,

u = lim
n→∞

un+1 = lim
n→∞

Tun = Tu.

This completes the proof. □

We provide the following example as an illustration of Theorem 3.3.

Example 3.4. Let X = {0, 1, 2} and define d : X ×X −→ [0,∞) by

d(u, v) =


0 if (u, v) ∈ {(1, 1), (2, 2)} ;
1 if (u, v) = (0, 1);

2 if (u, v) ∈ {(0, 0), (1, 0)} ;
1
4 elsewhere.

Then, (X, d) is a quasi-b-metric-like space with coefficient s = 4.

Define T : X −→ X by Tu =

{
0 if u = 0;

2 if u ∈ {1, 2} .
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Let

• α : X ×X −→ [0,∞) be defined by α(u, v) =

{
1 if (u, v) = (2, 2);
1

128 elsewhere,

• ψ ∈ Ψ4 be defined by ψ(t) = t
8 , ∀t ≥ 0,

• φ ∈ ΦU be defined by φ(t) = t, ∀t ≥ 0,
• F ∈ C be defined by F (p, q) = p

2 , ∀p, q ∈ [0,∞), and
• r = 0.

Then, T becomes a generalized α-ψ-φ-F -contractive mapping of type A. Here,
all the conditions of Theorem 3.3 are satisfied, and 2 is a fixed point of T and
d(2, 2) = 0.

Now, let us define a generalized α-ψ-φ-F -contractive mapping of type B.

Definition 3.5. Let (X, d) be a quasi-b-metric-like space with coefficient s. Then
T : X −→ X is a generalized α-ψ-φ-F -contractive mapping of type B if there exist
α : X×X −→ [0,∞), ψ ∈ Ψs, φ ∈ ΦU , F ∈ C and r ∈ [0, 1) such that the following
conditions are satisfied:

(B1) ∀u, v ∈ X, θ(r)d(u, Tu) ≤ d(u, v) =⇒
α(u, v)d(Tu, Tv) ≤ F (ψ(MB(u, v)), φ(MB(u, v)));

(B2) ∀u, v ∈ X, θ(r)d(Tu, u) ≤ d(v, u) =⇒
α(v, u) d(Tv, Tu) ≤ F (ψ(M ′

B(u, v)), φ(M
′
B(u, v))),

where

MB(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv),

d(u, Tv)

2s

}
,

M ′
B(u, v) = max

{
d(v, u), d(Tu, u), d(Tv, v),

d(Tv, u)

2s

}
.

Lemma 3.6. Let (X, d) be a complete quasi-b-metric-like space and T : X → X be
a generalized α-ψ-φ-F -contractive mapping of type B. If T is α-orbital admissible
and if there exists u0 ∈ X such that α(u0, Tu0) ≥ 1 and α(Tu0, u0) ≥ 1, then
lim
n→∞

d(un, un+1) = lim
n→∞

d(un+1, un) = 0, where uk = T ku0, for k ∈ N.

Proof. If un0
= un0+1 for some n0 ∈ N, then the proof is complete. If not,

then un ̸= un+1 for all n ∈ N. Then by Lemma 3.2, d(un−1, un) ≥ 1 and
d(un, un−1) ≥ 1 for all n ∈ N. Since T is an α-ψ-φ-F -contractive mapping of
type B, by taking u = un−1 and v = un in (B1) of Definition 3.5, we find that
θ(r)d(un−1, Tun−1) ≤ d(un−1, un) implies

d(un, un+1) ≤ α(un−1, un)d(un, un+1) by (3.1)

= α(un−1, un)d(Tun−1, Tun)

≤ F (ψ(MB(un−1, un)), φ(M(un−1, un)))

≤ ψ(MB(un−1, un))

= ψ

(
max

{
d(un−1, un), d(un−1, un), d(un, un+1),

d(un−1, un) + d(un, un+1)

2s

})
= ψ

(
max

{
d(un−1, un), d(un, un+1),

d(un−1, un) + d(un, un+1)

2

})
= ψ (max {d(un−1, un), d(un, un+1)}) .

Thus, d(un, un+1) ≤ ψ (max {d(un−1, un), d(un, un+1)}) . (3.3)
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If max {d(un−1, un), d(un, un+1)} = d(un, un+1), then (3.3) implies that
d(un, un+1) ≤ ψ(d(un, un+1)) < d(un, un+1), which is a contradiction.
So max {d(un−1, un), d(un, un+1)} = d(un−1, un). Then we have

d(un, un+1) ≤ ψ(d(un−1, un)) < d(un−1, un),∀n ∈ N.

Therefore, {d(un, un+1)} is a decreasing sequence and d(un, un+1) ≤ ψ(d(un−1, un)),
for all n ∈ N. Then inductively we get that

d(un, un+1) ≤ ψn(d(u0, u1)),∀n ∈ N.

Hence lim
n−→∞

d(un, un+1) ≤ lim
n−→∞

ψn(d(u0, u1)) = 0, since ψ ∈ Ψ1. So

lim
n−→∞

d(un, un+1) = 0.

Similarly, by taking u = un−1 and v = un in (B2) of Definition 3.5, we find that
θ(r)d(Tun−1, un−1) ≤ d(un, un−1) implies

d(un+1, un) ≤ α(un, un−1)d(un+1, un) by using (3.2)

= α(un, un−1)d(Tun, Tun−1)

≤ F (ψ(M ′
B(un−1, un)), φ(M

′(un−1, un)))

≤ ψ(M ′
B(un−1, un))

= ψ

(
max

{
d(un, un−1), d(un, un−1), d(un+1, un),

d(un, un−1) + d(un+1, un)

2s

})
= ψ

(
max

{
d(un, un−1), d(un+1, un),

d(un, un−1) + d(un+1, un)

2

})
= ψ (max {d(un, un−1), d(un+1, un)}) .

So, d(un+1, un) ≤ ψ (max {d(un, un−1), d(un+1, un)}) . (3.4)

If max {d(un, un−1), d(un+1, un)} = d(un+1, un), then (3.4) implies that
d(un+1, un) ≤ ψ(d(un+1, un)) < d(un+1, un), which is a contradiction.

Therefore, max {d(un, un−1), d(un+1, un)} = d(un, un−1). Thus we have
d(un+1, un) ≤ ψ(d(un, un−1)) < d(un, un−1) for all n ∈ N. Therefore, {d(un+1, un)}
is a decreasing sequence and d(un+1, un) ≤ ψ(d(un, un−1)), for all n ∈ N. Then in-
ductively we get that

d(un+1, un) ≤ ψn(d(u1, u0)),∀n ∈ N.

Therefore, lim
n−→∞

d(un+1, un) ≤ lim
n−→∞

ψn(d(u1, u0)) = 0, since ψ ∈ Ψ1. So

lim
n−→∞

d(un+1, un) = 0.

This completes the proof. □

The following theorem can easily be proved as that of Theorem 3.3.

Theorem 3.7. Let (X, d) be a complete quasi-b-metric-like space and
T : X → X be a generalized α-ψ-φ-F -contractive mapping of type B and continu-
ous. If T is α-orbital admissible and if there exists u0 ∈ X such that α(u0, Tu0) ≥ 1
and α(Tu0, u0) ≥ 1, then there exists an element u ∈ X which is a fixed point of T
and d(u, u) = 0.

We illustrate Theorem 3.7 with the following examples.
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Example 3.8. The function T : X −→ X defined on the quasi-b-metric-like space
X = {0, 1, 2} given in Example 3.4 is also a generalized α-ψ-φ-F -contractive map-
ping of type B, for the same α, ψ, φ, F and r given in Example 3.4. Here, all the
conditions of Theorem 3.7 are satisfied, and 2 is a fixed point of T and d(2, 2) = 0.

Example 3.9. Let T : X −→ X be the same function defined on the
quasi-b-metric-like space X = {0, 1, 2} given in Example 3.4.
Let

• α : X ×X −→ [0,∞) be defined by α(u, v) =

{
1 if (u, v) = (2, 2);
1
16 elsewhere,

• ψ ∈ Ψ4 be defined by ψ(t) = t
8 , ∀t ≥ 0,

• φ ∈ ΦU be defined by φ(t) = t, ∀t ≥ 0,
• F ∈ C be defined by F (p, q) = p

2 , ∀p, q ∈ [0,∞), and
• r = 0.

Then, T becomes a generalized α-ψ-φ-F -contractive mapping of type B, and not of
type A. Here, all the conditions of Theorem 3.7 are satisfied, and 2 is a fixed point
of T and d(2, 2) = 0.
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ABSTRACT. In this paper, we study the convergence of the SP*-iteration process to
fixed point for operators with property (E) in CAT (0) spaces. We also prove the stability
of the SP*-iteration process in CAT (0) spaces. Our results improve and extend some
recently results in the literature of fixed point theory in CAT (0) spaces.

KEYWORDS:Fixed point, iteration process, stability, ∆-convergence, CAT (0) space,
Garcia-Falset mapping.

AMS Subject Classification:47H09; 47H10.

1. Introduction

It is essential for many fields of study, including mathematics, to have fixed
points. The conditions under which maps have solutions are given by fixed point
results. In particular, fixed point methods have been applied in many fields, such
as informatics, biology, chemistry, economics, and engineering. Determining the
precise value of the intended fixed point is a crucial and ultimately the last step in
solving the problem, but determining its existence is a crucial initial step. Using
an iterative procedure is one of the best ways to obtain the intended fixed point. A
number of researchers have recently shown interest in these areas and have developed
iterative procedures that have been investigated to estimate fixed points for a larger
class of nonexpansive mappings as well as for nonexpansive mappings. The existence
of a fixed point is very important in several areas of mathematics and other sciences.
The numerous numbers of researchers attracted in these direction and developed
iterative process has been investigated to approximate fixed point for not only
nonexpansive mapping, but also for some wider class of nonexpansive mappings.
This is an active area of research, several well known scientists in the world paid and
still pay attention to the qualitative study of iteration methods. The well-known
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Banach contraction theorem use Picard iteration process [28] for approximation
of fixed point. Some of the well-known iterative processes are those of Mann [24],
Ishikawa [17], Noor [25], SP-iteration [29], Picard Normal S-iteration [18] and so on.
Let X be a real Banach space and M be a nonempty subset of X , and G : M → M
be a mapping. We have {τn}, {σn} and {κn} real sequences in [0, 1]. Recently,
Phuengrattana and Suantai ([29]) defined the SP-iteration as follows: zn = (1− κn)un + κnGun,

vn = (1− σn)zn + σnGzn,
un+1 = (1− τn)vn + τnGvn,∀n ∈ N,

(1.1)

where u1 ∈ M. They showed that the Mann, Ishikawa, Noor and SP-iterations
are equivalent and the SP-iteration converges better than the others for the class
of continuous and nondecreasing functions. In 2014, Kadıoglu and Yıldırım [18]
introduced Picard Normal S-iteration process and they established that the rate
of convergence of the Picard Normal S-iteration process is faster than other fixed
point iteration process that was in existence then. The Picard Normal S-iteration
[18] as follows:  zn = (1− σn)un + σnGun,

vn = (1− τn)zn + τnGzn,
un+1 = Gvn,∀n ∈ N,

(1.2)

where u1 ∈ M.
In 2021, Temir and Korkut [35] introduced SP*-iteration process and they es-

tablished that the rate of convergence of the SP*-iteration scheme is faster than
above iteration processes. Now we give SP*-iteration process:for arbitrary u1 ∈ M
construct a sequence {un} by zn = G((1− κn)un + κnGun),

vn = G((1− σn)zn + σnGzn),
un+1 = G((1− τn)vn + τnGvn),∀n ∈ N.

(1.3)

Some generalizations of nonexpansive mappings and the study of related fixed
point theorems have been intensively carried out over past decades [1, 4, 14, 26,
27, 33, 34, 36, 37]. A class of generalized nonexpansive mappings (in short GNMs)
on a nonempty subset M of a Banach space X has been defined by Suzuki [33].
Such mappings were referred to as belonging to the class of mappings satisfying
condition (C) (also referred as Suzuki GNM), which properly includes the class of
nonexpansive mappings. Every self-mapping G on M providing condition (C) has
an almost fixed point sequence for a nonempty bounded and convex subset M.
Two new classes of GNMs that are wider than those providing the condition (C)
were presented in 2011 by Garcia-Falset et al. [14], while retaining their fixed point
properties. The resulting property was called condition (E) (in the sequel, the class
of mappings satisfying condition (E) will be referred to as Garcia-Falset-generalized
nonexpansive mappings or Garcia-Falset mappings).

In this paper, we apply SP*-iteration (1.3) for operators with property (E) in
the context of CAT (0) space as follows zn = G((1− κn)un ⊕ κnGun),

vn = G((1− σn)zn ⊕ σnGzn),
un+1 = G((1− τn)vn ⊕ τnGvn),∀n ∈ N,

(1.4)

where M is a nonempty closed convex subset of a CAT (0) space, u1 ∈ M, {τn},
{σn} and {κn} ∈ [0, 1].
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Inspired and motivated by these facts, in this paper, we prove some convergence
theorems of SP*-iterative process generated by (1.4) to fixed point of operators with
Property (E) in CAT (0) spaces. In 2021, Temir and Korkut [35] introduced the it-
erative process generated by (1.4) (SP*-iteration process) and they established that
the rate of convergence of the SP*-iteration process is faster than the SP-iteration
process and the Picard Normal S-iteration process. Since only the convergence
analysis of the SP*-iterative process was studied in [35], we also prove the stability
of the SP*-iterative process in this study. In addition, we provide an example that
satisfies condition (E) but the mapping is neither a generalized α-nonexpansive
mapping nor does it satisfy condition (C).

2. Preliminaries

First we present some basic concepts and definitions.
Let G be a self-mapping defined on a nonempty subset of a CAT (0) space. A

point u ∈ M is called a fixed point of G if Gu = u and we denote by Fix(G) the set
of fixed points of G, that is, Fix(G) = {u ∈ M : Gu = u}. A mapping G : M → M
is called contraction if there exists θ ∈ [0, 1) such that

d(Gu,Gv) ≤ θd(u, v),

for all u, v ∈ M. If θ = 1 in inequality above, then G is said to be a nonexpansive
mapping.

Definition 2.1. A mapping G : M → M satisfies condition (C) on M if for all
u, v ∈ M , 1

2d(u,Gu) ≤ d(u, v) ⇒ d(Gu,Gv) ≤ d(u, v).

Suzuki [33] showed that the mapping satisfying condition (C) is weaker than
nonexpansiveness and stronger than quasi-nonexpansiveness. In 2017, Pant and
Shukla [26] introduced a new type of nonexpansive mappings called generalized
α-nonexpansive mappings and obtain a number of existence and convergence theo-
rems. This new class of nonlinear mappings properly contains nonexpansive, Suzuki-
type GNMs and partially extends firmly nonexpansive and α-nonexpansive map-
pings.

Definition 2.2. A mapping G : M → M is called a generalized α-nonexpansive
mapping if there exists an α ∈ [0, 1) and for each u, v ∈ M,

1

2
d(u,Gu) ≤ d(u, v) implies d(Gu,Gv) ≤ αd(Gu, v) + αd(Gv, u) + (1− 2α)d(u, v).

Recently, Garcia-Falset et al. [14] studied GNMs satisfying condition (E) that
have a weaker property than Suzuki GNMs.

Definition 2.3. A mapping G : M → X satisfies condition (Eµ) on M, if there
exists µ ≥ 1 such that

d(u,Gv) ≤ µd(u,Gu) + d(u, v)

for all u, v ∈ M.

Moreover, it is said that G satisfies condition (E) on M, whenever G satisfies
condition (Eµ), for some µ ≥ 1. It is clearly seen that if G : M → X is nonexpansive,
then it satisfies condition (E1) and from Lemma 7 in [33] we know that if G :
M → M satisfies condition (C) on M, then G satisfies condition (E3) (see [14]).
By Lemma 5.2 in [26], if G : M → X is a generalized α-nonexpansive mapping,
then it satisfies condition (E) on M; see [26] for a proof. Therefore, the class
of generalized α-nonexpansive mappings is subordinated to the class of mappings
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satisfying condition (E). Proposition 1 in [14], we know also that if G : M → X
a mapping which satisfies condition (E) on M has some fixed point, then G is
quasi-nonexpansive. Example 2 that is in [14] shows the converse is not true.

It is well-known that any complete, simply connected Riemannian manifold hav-
ing non-positive sectional curvature is a CAT (0) space. Other examples include Pre-
Hilbert spaces, any convex subset of a Euclidian space Rn with the induced metric,
the complex Hilbert ball with a hyperbolic metric and many others. For discussion
of these spaces and of the fundamental role they play in geometry see Bridson and
Haefliger [6]. Burago et al. [8] contains a somewhat more elementary treatment,
and Gromov [15] a deeper study. Fixed point theory in CAT (0) space has been first
studied by Kirk (see [19],[20]). He showed that every nonexpansive (single-valued)
mapping defined on a bounded closed convex subset of a complete CAT (0) space
always has a fixed point. On the other hand, we know that every Banach space
is a CAT (0) space. Since then the fixed point theory in CAT(0) has been rapidly
developed and much papers a appeared.(see [9],[10],[11],[12],[13],[19],[20],[21], [22]).

Recently, Kirk and Panyanak [22] used the concept of ∆−convergence introduced
by Lim [23] to prove on the CAT (0) space analogs of some Banach space results
which involve weak convergence. Further, Dhompongsa and Panyanak [9] obtained
∆−convergence theorems for the Picard, Mann and Ishikawa iteration processes for
nonexpansive mappings in the CAT (0) space. In addition, the convergence results
for generalized nonexpansive mappings are obtained by using different iteration
processes in CAT (0) spaces ( see [2], [3], [30], [31]).

If u, v1, v2 are points of a CAT (0) spaces, and and if v0 is the midpoint of the
segment [y1, y2] then the CAT (0) inequality implies

d2(u, v0) ≤
1

2
d2(u, v1) +

1

2
d2(u, v2)−

1

4
d2(v1, v2).

This is the (CN) inequality of Bruhat and Tits [7]. In fact, a geodesic space is a
CAT (0) space if and only if it satisfies the (CN) inequality ([[6], p. 163]).

In the sequel, we need the following definitions and useful lemmas to prove our
main results of this paper.

Lemma 2.4. ([9]) Let X be a CAT (0) space.
(i) For u, v ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [u, v] such that

d(u, z) = td(u, v) and d(v, z) = (1− t)d(u, v).
(ii) For u, v ∈ X and t ∈ [0, 1], we have d((1−t)u⊕tv, z) ≤ (1−t)d(u, z)+td(v, z).

Let {un} be a bounded sequence in a closed convex subset M of a CAT (0) space
X . For x ∈ X , set r(u, {un}) = lim sup

n→∞
d(u, un). The asymptotic radius r({un}) of

{un} is given by r(M, {un}) = inf
n

{r(u, {un}) : u ∈ M} and the asymptotic center

of un relative to K is the set A(M, {un}) = {u ∈ M : r(x, {un}) = r(M, {un})}.
It is known that, in a CAT (0) space, A(M, {un}) consists of exactly one point; see
[12], Proposition 7.

We now recall the definition of ∆-convergence and weak convergence in CAT (0)
space.

Definition 2.5. ([22],[23]) A sequence {un} in a CAT (0) space X is said to ∆-
converge to u ∈ X if u is the unique asymptotic center of every subsequence {un}.
In this case we write ∆− lim

n→∞
un = u and call u is the ∆−limit of {un}.

Lemma 2.6. ([22]) Given {un} ∈ X such that {un}, ∆-converges to u and given
v ∈ X with v ̸= u, then lim sup

n→∞
d(un, u) < lim sup

n→∞
d(un, v).
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Lemma 2.7. ([22]) Every bounded sequence in a complete CAT (0) space always
has a ∆-convergent subsequence.

Lemma 2.8. ([11]) Let M be closed convex subset of a complete CAT (0) space and
{un} be a bounded sequence in M. Then asymptotic center of {un} is in M.

Next, Harder and Hicks [16] introduced the following definition of G-stability :

Definition 2.9. ([16]) Let {tn}∞n=1 be an arbitrary sequence in M. Then , an
iteration process

tn+1 = f(G, tn), for n = 1, 2, ...

is said to be G-stable or stable with respect to G for some function f , converging
to fixed point p, if ϵn = d(tn+1, f(G, tn)) for n = 1, 2, ..., we have lim ϵn = 0 ⇔

n−→∞
lim

n−→∞
tn = p.

In what follows, we shall make use of the following well-known lemma.

Lemma 2.10. ([5]) Let {ϵn} and {un} be sequences of positive real numbers satis-
fying

un+1 ≤ δun + ϵn,

n ∈ N and δ ∈ [0, 1). If lim
n→∞

ϵn = 0 then lim
n→∞

un = 0.

3. Stability of SP*-iteration process

In this section, we prove that the SP*-iteration process defined by (1.4) is stable.
First, we prove the following strong convergence theorem.

Theorem 3.1. Let M be a nonempty closed convex subset of a complete CAT (0)
space X , G be a contraction mapping with Fix(G) ̸= ∅. For arbitrary chosen
u1 ∈ M, {un} be a sequence generated by (1.4) with real sequences {τn}, {σn} and
{κn} ∈ [0, 1] with

∑∞
n=1 τn = ∞. Then {un}∞n=1 converges strongly to an unique

fixed point of G.

Proof. We will prove that un → p as n → ∞ from (1.4), we have,

d(zn, p) = d(G((1− κn)un ⊕ κnGun), p)

≤ θ[(1− κn)d(un, p) + κnθd(un, p)]

= θ[1− κn(1− θ)]d(un, p). (3.1)

Similarly, from (1.4) and (3.1), we get

d(vn, p) = d(G((1− σn)zn ⊕ σnGzn), p)
≤ θ[(1− σn)d(zn, p) + σnd(Gzn, p)]
≤ θ[(1− σn)d(zn, p) + σnθd(zn, p)]

= θ[(1− σn(1− θ))d(zn, p)]

≤ θ2[(1− σn(1− θ))(1− κn(1− θ))]d(un, p). (3.2)

From (1.4) and (3.2) , we get

d(un+1, p) = d(G((1− τn)vn ⊕ τnGvn), p)
≤ θ[(1− τn)d(vn, p) + τnd(Gvn, p)]
≤ θ[(1− τn)d(vn, p) + τnθd(vn, p)]

= θ[1− τn(1− θ)d(vn, p)]

≤ θ3[(1− τn(1− θ))(1− σn(1− θ))(1− κn(1− θ))]d(un, p)
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Considering that {τn}, {σn} and {κn} ∈ [0, 1], θ ∈ [0, 1), and rearranging the above
inequality, we get

d(un+1, p) ≤ θ3[1− τn(1− θ)]d(un, p)

By induction, we get

d(un, p) ≤ θ3[1− τn−1(1− θ)]d(un−1, p)

.

.

.

d(u2, p) ≤ θ3[1− τ1(1− θ)]d(u1, p).

Therefore, we obtain

d(un+1, p) ≤ θ3n
n∏

k=1

[1− τk(1− θ)]d(u1, p),

θ < 1 and τk ∈ [0, 1] for k = 1, 2, .... Then we have [1−τk(1−θ)] ≤ 1 for k = 1, 2, ....
So, we know that 1− u ≤ e−u for all u ∈ [0, 1]. Hence we have

d(un+1, p) ≤ θ3ne−(1−θ)
∑n

k=1 τkd(u1, p). (3.3)

Taking the limit of both sides of the above inequality , un → p as n → ∞. □

Now we prove that the iteration defined by (1.4) is stable with respect to G.

Theorem 3.2. Suppose that all conditions of Theorem 3.1 hold. Then the iteration
process (1.4) is G-stable.

Proof. Let {tn} be any arbitrary sequence in M. tn+1 = f(G, tn) is the sequence
generated by (1.4) and ϵn = d(tn+1, f(G, tn)) for n = 1, 2, ..., in which rn = G((1− κn)tn ⊕ κnGtn),

sn = G((1− σn)rn ⊕ σnGrn),
tn+1 = G((1− τn)sn ⊕ τnGsn),∀n ∈ N.

We have to prove that lim
n−→∞

ϵn = 0 ⇔ lim
n−→∞

tn = p.

Suppose lim
n−→∞

ϵn = 0. We prove that lim
n−→∞

tn = p:

d(tn+1, p) ≤ d(tn+1, f(G, tn)) + d(f(G, tn), p) (3.4)

≤ ϵn + θ[1− τn(1− θ)d(sn, p)]

and

d(sn, p) = d(G((1− σn)rn ⊕ σnGrn), p)
≤ θ[(1− σn)d(rn, p) + σnd(Grn, p)] (3.5)

≤ θ[(1− σn)d(rn, p) + σnθd(rn, p)]

= θ[(1− σn(1− θ))]d(rn, p)

and

d(rn, p) = d(G((1− κn)tn ⊕ κnGtn), p)
≤ θ[(1− κn)d(tn, p) + κnθd(tn, p)]

= θ[1− κn(1− θ)]d(tn, p). (3.6)
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Substituting (3.6) in (3.5), we obtain

d(sn, p) ≤ θ2[(1− σn(1− θ))(1− κn(1− θ))]d(tn, p). (3.7)

Substituting (3.7) in (3.4), we get

d(tn+1, p) ≤ ϵn + θ3[(1− τn(1− θ))(1− σn(1− θ))(1− κn(1− θ))]d(tn, p).

Since {τn}, {σn} and {κn} ∈ [0, 1], θ ∈ [0, 1) and θ3[(1−τn(1−θ))(1−σn(1−θ))(1−
κn(1 − θ))] < 1, we can easily seen that all conditions of Lemma 2.10 are fulfilled
by above inequality. Hence by Lemma 2.10 we get lim

n−→∞
tn = p.

Conversely, let lim
n−→∞

tn = p, we have

ϵn = d(tn+1, f(G, tn))
≤ d(tn+1, p) + d(f(G, tn), p)
≤ d(tn+1, p) + θ3[(1− τn(1− θ))(1− σn(1− θ))(1− κn(1− θ))]d(tn, p).

By taking the limit as n → ∞ in the above inequality we have lim
n−→∞

ϵn = 0. Hence

(1.4) is stable with respect to G. □

4. Convergence of SP*-iteration process for operators with
property (E)

Lemma 4.1. Let M be a nonempty closed convex subset of a complete CAT (0)
space X , G be a mapping satisfying condition (E) with Fix(G) ̸= ∅. For arbitrary
chosen x1 ∈ M, let {un} be a sequence generated by (1.4) with {τn}, {σn} and {κn}
real sequences in [0, 1]. Assume that lim inf

n→∞
(1 − κn)κn > 0, lim inf

n→∞
(1 − σn)σn > 0

and lim inf
n→∞

(1 − τn)τn > 0. Then Fix(G) ̸= ∅ if and only if {un} is bounded and

lim
n→∞

d(un,Gun) = 0.

Proof. Assume that Fix(G) ̸= ∅. G is a quasi-nonexpansive because G : M → M
is a Garcia-Falset GNM. Using (1.4), for any p ∈ Fix(G), because of G quasi-
nonexpansive mapping, then we have

d2(zn, p) = d2(G((1− κn)un ⊕ κnGun), p) (4.1)

≤ d2((1− κn)un ⊕ κnGun, p)

≤ (1− κn)d
2(un, p) + κnd

2(Gun, p)− (1− κn)κnd
2(Gun, un)

≤ d2(un, p)− (1− κn)κnd
2(Gun, un) ≤ d2(un, p).

Using (1.4) and (4.1), we get

d2(vn, p) = d2(G((1− σn)zn ⊕ σnGzn), p) (4.2)

≤ d2((1− σn)zn ⊕ σnGzn, p)
≤ (1− σn)d

2(zn, p) + σnd
2(Gzn, p)− (1− σn)σnd

2(Gzn, zn)
≤ d2(zn, p)− (1− σn)σnd

2(Gzn, zn)
≤ d2(zn, p) ≤ d2(un, p).

By using (1.4) and (4.2), we get

d2(un+1, p) = d2(G((1− τn)vn ⊕ τnGvn), p) (4.3)

≤ d2((1− τn)vn ⊕ τnGvn, p)
≤ (1− τn)d

2(vn, p) + τnd
2(Gvn, p)− (1− τn)τnd

2(Gvn, vn)
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≤ d2(vn, p)− (1− τn)τnd
2(Gvn, vn)

≤ d2(vn, p) ≤ d2(un, p).

This implies that {d(un, p)} is bounded and non-increasing for all p ∈ Fix(G).
Put lim

n→∞
d(un, p) = c. From (4.1) and (4.2), we have

lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(un, p) = c

and
lim sup
n→∞

d(vn, p) ≤ lim sup
n→∞

d(zn, p) ≤ lim sup
n→∞

d(un, p) = c.

From (4.3), we can get d(un+1, p) ≤ d(vn, p). Therefore c ≤ lim inf
n→∞

d(vn, p). Thus

we have c = lim
n→∞

d(vn, p). Next

c = lim
n→∞

d(vn, p) ≤ lim
n→∞

d(zn, p) ≤ lim
n→∞

d(un, p) = c.

Now, using (4.1), we know that

d2(zn, p) ≤ d2(un, p)− (1− κn)κnd
2(Gun, un).

Thus
(1− κn)κnd

2(Gun, un) ≤ d2(un, p)− d2(zn, p)

so that

d2(Gun, un) ≤
1

(1− κn)κn
[d2(un, p)− d2(zn, p)].

We have
lim

n→∞
d2(Gun, un) ≤ 0.

Hence lim
n→∞

d(Gun, un) = 0.

Conversely, suppose that {un} is bounded and lim
n→∞

d(un,Gun) = 0. Let p ∈
A(M, {un}). Then we have,

r(Gp, {un}) = lim sup
n→∞

d(un,Gp) ≤ lim sup
n→∞

µd(Gun, un) + lim sup
n→∞

d(un, p)

= lim sup
n→∞

d(un, p) = r(p, {un}).

This implies that for Gp = p ∈ A(M, {un}). Since X is complete CAT (0) then
A(M, {un}) is singleton, hence Gp = p. This completes the proof. □

Now , we prove the ∆-convergence theorem of a iterative process generated by
(1.4) in CAT (0) spaces.

Theorem 4.2. Let X ,M,G and {un} be as in Lemma 4.1 with Fix(G) ̸= ∅. Then
un, ∆-converges to a fixed point of G.

Proof. Lemma 4.1 guarantees that the sequence {un} is bounded and lim
n→∞

d(Gun, un) =

0. Let W∆(un) =
⋃
A({ωn}); where the union is taken over all subsequences {ωn}

of {un} : We claim that W∆(un) ⊆ Fix(G). Let ω ∈ W∆(un). Then, there exists
a subsequence {ωn} of {un} such that A({ωn}) = ω. Since G is a mapping with
condition (E), we obtain d(ωn,Gω) ≤ µd(ωn,Gωn) + d(ωn, ω). Using this last in-
equality and fact that lim

n→∞
d(ωn,Gωn) = 0 , taking limsup on both sides implies

that lim sup
n→∞

d(ωn,Gω) ≤ lim sup
n→∞

d(ωn, ω). Hence r(Gω, {ωn}) ≤ r(ω, {ωn}). How-

ever, ω is the unique asymptotic center of {ωn}, which implies that ω = Gω, that
is, ω ∈ Fix(G).
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By Lemma 2.7 and Lemma 2.8, there exists a subsequence {ζn} of {ωn} such that
∆ − lim

n→∞
ζn = ζ ∈ G. Since lim

n→∞
d(ζn,Gζn) = 0 and G is a Garcia-Falset mapping,

then, we have
d(ζn,Gζ) ≤ µd(Gζn, ζn) + d(ζn, ζ).

By taking limsup and using Opial property, we obtain ζ ∈ Fix(G). Now, we claim
that ω = ζ. Assume on contrary, that ω ̸= ζ. By Lemma 4.1, lim

n→∞
d(un, ζ) exists

and by the uniqueness of asymptotic centers, then we have

lim
n→∞

d(ζn, ζ) < lim
n→∞

d(ζn, ω) ≤ lim
n→∞

d(ωn, ω)

< lim
n→∞

d(ωn, ζ) = lim
n→∞

d(ωn, ζ)

= lim
n→∞

d(ζn, ζ),

which is contradiction. Thus ω = ζ ∈ Fix(G) and W∆(ωn) ⊆ Fix(G). To show that
{ωn}, ∆-converges to a fixed point of G, we show that W∆(un) consists of exactly
one point. By Lemma 2.7 and Lemma 2.8, there exists a subsequence {ζn} of ωn

such that ∆− lim
n→∞

ζn = ζ ∈ M. Let A({ωn}) = {ω} and A({ωn}) = {ρ}. We have

already seen that ω = ζ and ζ ∈ Fix(G). Finally, we claim that ρ = ζ. If not, then
existence lim

n→∞
d(un, ζ) and uniqueness of asymptotic centers imply that

lim
n→∞

d(ζn, ζ) < lim
n→∞

d(ζn, ρ) ≤ lim
n→∞

d(ωn, ρ)

< lim
n→∞

d(ωn, ζ) = lim
n→∞

d(ζn, ζ).

This is a contradiction and hence ρ = ζ ∈ Fix(G). Therefore, W∆(ωn) = ρ. In
conclusion W∆(ωn) is a singleton and unique element is a fixed point of G. This
proves ∆-convergence of un. □

In the next result, we prove the strong convergence theorem as follows.

Theorem 4.3. Let X ,M,G and {un} be as in Lemma 4.1 with Fix(G) ̸= ∅ such
that M is compact subset of X . Then {un} converges strongly to a fixed point of
G.

Proof. By Lemma 4.1, we have lim
n→∞

d(un,Gun) = 0. Since M is compact, by

Lemma 2.7, there exists a subsequence {unk
} of {un} and p ∈ M such that {unk

}
converges p. Then we have d(unk

,Gp) ≤ µd(Gunk
, unk

) + d(unk
, p) for all k ≥ 1. So

{unk
} converges Gp. This implies Gp = p. Since G is quasi-nonexpansive , we have

d(un+1, p) ≤ d(un, p) for all n ∈ N. Therefore {un} converges strongly to p. □

Finally, we briefly discuss the strong convergence theorem using condition (I)
introduced by Senter and Dotson[32] in CAT (0) space X as follows.

Theorem 4.4. Let G be a Garcia-Falset mapping on a nonempty closed convex
subset M of a complete CAT (0) space X . {un} be as in Lemma 4.1 with Fix(G) ̸=
∅. Also if, for G satisfies condition (I), then {un} defined by (1.4) converges strongly
to a fixed point of (G).

Proof. By Lemma 4.1, we have lim
n→∞

d(un, p) exists and so lim
n→∞

d(un, F ix(G)) . Also

by Lemma 4.1, lim
n→∞

d(un,Gun) = 0.

It follows from condition (I) that lim
n→∞

f(d(un, F ix(G)) ≤ lim
n→∞

d(un,Gun). That

is, lim
n→∞

f(d(un, F ix(G)) = 0. Since f : [0,∞) → [0,∞) is a nondecreasing function
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satisfying f(0) = 0 and f(r) > 0 for all r ∈ (0,∞), we have lim
n→∞

d(un, F ix(G)) =
0. Thus , we have a subsequence {unk

} of {un} and {yk} ⊂ Fix(G) such that
d(xnk

, yk) <
1
2k

for all k ∈ N. We can easily show that {yk} is a Cauchy sequence in
Fix(G) and so it converges to a point p. Since Fix(G) is closed, therefore p ∈ Fix(G)
and {unk

} converges strongly to p. Since lim
n→∞

d(un, p) exists, we have that un → p.

Thus the proof is completed. □

Next, we give the following example satisfying condition (E), but it is neither a
generalized α-nonexpansive mapping nor does it satisfy condition (C).

Example 4.5. Let X = R be a CAT (0) space and M = [0, 1] be a closed convex
subset of R endowed with the usual norm. Define a mapping G : M → M by

Gu =
{ 0, 0 ≤ u < 1

100
2u
3 , 1

100 ≤ u ≤ 1.
In order to see that G satisfies condition (E3) on [0, 1],

we consider the following cases:

(i) u ∈ [0, 1
100 ) and v ∈ [0, 1

100 ). Then we have

d(u,Gv) = |u− 0| = |u| = d(u,Gu) ≤ µd(u,Gu) + d(u, v).

So, G satisfies condition (E1).
(ii) u ∈ [ 1

100 , 1] and v ∈ [ 1
100 , 1]. Then we have

d(u,Gv) =

∣∣∣∣u− 2v

3

∣∣∣∣ = ∣∣∣∣3u− 2v

3

∣∣∣∣
=

∣∣∣∣u3 +
2u

3
− 2v

3

∣∣∣∣
=

u

3
+

2

3
|u− v| .

Turning to the right side of the inequality in Definition 2.3,

µd(u,Gu) + d(u, v) = µ

∣∣∣∣u− 2u

3

∣∣∣∣+ |u− v| .

If we choose the admissible parameter µ = 1, the mapping will satisfy
condition (E).

(iii) u ∈ [ 1
100 , 1] and v ∈ [0, 1

100 ), which leads to d(u,Gu) =
∣∣u− 2u

3

∣∣. Evaluating
condition (E) for this case, we have

d(u,Gv) = |u− 0| ≤ 3u

3
+ |u− v|

= 3(
u

3
) + d(u, v) = 3d(u,Gu) + d(u, v).

So, if we choose the admissible parameter µ = 3, then the mapping will
prove to have condition (E). Taking the maximum value of µ, we conclude
that G satisfies (E3) with G(0) = 0 fixed point.

Now, let us prove that G is not a generalized α-nonexpansive mapping. We shall
take u = 1

150 and v = 1
100 . It follows that

1

2
d(u,Gu) = 1

2

∣∣∣∣ 1

150
− 0

∣∣∣∣ = 1

300
=

∣∣∣∣ 1

150
− 1

100

∣∣∣∣ = |u− v| .

If we consider the left side of the inequality in Definition 2.2,

d(Gu,Gv) =
∣∣∣∣0− 2

3

1

100

∣∣∣∣ = 1

150
.
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Turning to the right side of the inequality in Definition 2.2, for α ∈ [0, 1),

αd(Gu, v) + αd(Gv, u) + (1− 2α)d(u, v)

= α

∣∣∣∣ 1

150
− 2

3

1

100

∣∣∣∣+ α

∣∣∣∣0− 1

150

∣∣∣∣+ (1− 2α)

∣∣∣∣ 1

150
− 1

100

∣∣∣∣
= 0 +

α

100
+

1

300
− α

300

=
3α

300
+

1

300
− 2α

300

=
α

300
+

1

300
= (α+ 1)

1

300
.

So, for α ∈ [0, 1), the implications fails to be satisfied, which leads to the conclusion
that G is not a generalized α-nonexpansive mapping.

In order to we show that G does not satisfy condition (C), we take also u = 1
150

and v = 1
100 . Then we have

1

2
d(u,Gu) = 1

2

∣∣∣∣ 1

150
− 0

∣∣∣∣ = 1

300
=

∣∣∣∣ 1

150
− 1

100

∣∣∣∣ = |u− v| = d(u, v).

If we apply the inequality in Definition 2.1, we get

d(Gu,Gv) =
∣∣∣∣0− 2

3

1

100

∣∣∣∣ = 1

150
>

1

300
= d(u, v).

Thus G does not satisfy condition (C).

5. Conclusions

We get some results on the strong and ∆-convergence of SP*-iteration process
(1.4) in given [35] for the mapping with Property (E) in nonlinear CAT (0) spaces.
The result herein complements the some results of [14, 36, 37] from linear setting
to CAT (0) spaces. We also prove the stability of SP*-iteration process generated
by (1.4) in given [35] in this paper. In addition, we give an illustrative numerical
example that satisfies condition (E). As seen in Example 4.5, the mapping is neither
a generalized αnonexpansive mapping nor does it satisfy condition (C). Further,
in future studies, iteration process can be developed and iteration that converges
faster than prominent iterations can be presented.
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ABSTRACT. Our aim in this paper is to find new applications of our long-standing 2023
Metatheorem. In fact, a certain particular form of Metatheorem on fixed point theorems
characterizes metric completeness. Moreover, classical theorems due to Banach, Rus-Hicks-
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1. Introduction

Our Metatheorem in Ordered Fixed Point Theory has a long history and many
applications. Its more than one hundred applications produce old and new theorems
and clarify mutual relations among them. One of the main applications of them
is closely related to the Banach contraction principle — the origin of Metric Fixed
Point Theory.

Let (X, d) be a metric space. A Banach contraction T : X −→ X is a map
satisfying

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈ X

with some α ∈ [0, 1). There have been appeared thousands of articles related to
the Banach contraction. It is well-known that the Banach contraction does not
characterize the metric completeness.

Recently, we introduced the Rus-Hicks-Rhoades (RHR) map T : X −→ X [31],
[7] satisfying

d(Tx, T 2x) ≤ αd(x, Tx) for all x ∈ X
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with some α ∈ [0, 1). See our recent works [27], [28], [30]. The RHR maps are
also known as graphic contractions, iterative contractions, weakly contractions, or
Banach mappings; see Berinde et al. [2],[3]. Moreover, it is recently known that
well-known metric fixed point theorems related to the RHR maps hold for quasi-
metric spaces (without assuming the symmetry); see [28], [30].

Our aim in the present paper is to find new applications of our Metatheorem.
In fact, certain classical theorems due to Banach, Rus-Hicks-Rhoades [26], [27],
[29], Nadler [11], Covitz-Nadler [5], Oettli-Théra [12], Edelstein [6], Turinici [34],
[35], Tasković [33], and Khamsi [10] are equivalently formulated or improved by
applying our Metatheorem. Especially, the completeness of quasi-metric spaces
are equivalent to several fixed point or other theorems due to Rus-Hicks-Rhoades,
Nadler, Covitz-Nadler, Oettli-Théra, and others.

This paper is organized as follows: Section 2 is to introduce our long-standing
Metatheorem. In Section 3, basic terminology on quasi-metric spaces are given as
preliminaries. Section 4 is to introduce our recent versions of the Rus-Hicks-Rhoades
(RHR) contraction principle and the new Banach contraction principle. Section
5 devotes to a certain particular form of Metatheorem on fixed point theorems
which characterizes metric completeness. In Sections 6-10, several theorems due to
Edelstein, Turinici, Tasković, and Khamsi are equivalently formulated by applying
our Metatheorem. Finally, Section 11 is for the epilogue.

In this paper, multimaps are always non-empty valued.

2. Our 2023 Metatheorem

Our Metatheorem has a long history. We obtained the following form called the
new 2023 Metatheorem in [19],[24],[26]:

Metatheorem. Let X be a set, A its nonempty subset, and G(x, y) a sentence
formula for x, y ∈ X. Then the following are equivalent:

(α) There exists an element v ∈ A such that the negation of G(v, w) holds for
any w ∈ X\{v}.

(β1) If f : A −→ X is a map such that for any x ∈ A with x 6= fx, there exists
a y ∈ X\{x} satisfying G(x, y), then f has a fixed element v ∈ A, that is, v = fv.

(β2) If F is a family of maps f : A −→ X such that for any x ∈ A with x 6= fx,
there exists a y ∈ X\{x} satisfying G(x, y), then F has a common fixed element
v ∈ A, that is, v = fv for all f ∈ F.

(γ1) If f : A −→ X is a map such that G(x, fx) for any x ∈ A with x 6= fx,
then f has a fixed element v ∈ A, that is, v = fv.

(γ2) If F is a family of maps f : A −→ X satisfying G(x, fx) for all x ∈ A with
x 6= fx, then F has a common fixed element v ∈ A, that is, v = fv for all f ∈ F.

(δ1) If F : A ⊸ X is a multimap such that, for any x ∈ A\Fx there exists
y ∈ X\{x} satisfying G(x, y), then F has a fixed element v ∈ A, that is, v ∈ Fv.

(δ2) Let F be a family of multimaps F : A ⊸ X such that, for any x ∈ A\Fx
there exists y ∈ X\{x} satisfying G(x, y). Then F has a common fixed element
v ∈ A, that is, v ∈ Fv for all F ∈ F.

(ϵ1) If F : A ⊸ X is a multimap satisfying G(x, y) for any x ∈ A and any
y ∈ Fx\{x}, then F has a stationary element v ∈ A, that is, {v} = Fv.
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(ϵ2) If F is a family of multimaps F : A ⊸ X such that G(x, y) holds for any
x ∈ A and any y ∈ Fx\{x}, then F has a common stationary element v ∈ A, that
is, {v} = Fv for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x}
satisfying G(x, z), then there exists a v ∈ A ∩ Y .

For the proof, see Park [19], [24], [26]. Each item in Metatheorem has a long
history. Especially, (η) is originated from Oettli-Théra [12].

This Metatheorem guarantees the truth of all items when one of them is true.
Since 1985, we have shown nearly one hundred cases of such situation. See [13]–[26].

3. Quasi-metric Spaces

It is well-known that some key-results in Metric Fixed Point Theory hold for
quasi-metric spaces. For example, Banach contraction principle, Nadler or Covitz-
Nadler fixed point theorem, Ekeland variational principle, Caristi fixed point theo-
rem, Takahashi minimization principle, and many others.

We recall the following:

Definition 3.1. A quasi-metric on a nonempty set X is a function δ : X ×X −→
R+ = [0,∞) satisfying the following conditions for all x, y, z ∈ X:

(a) (self-distance) δ(x, y) = δ(y, x) = 0 ⇐⇒ x = y;
(b) (triangle inequality) δ(x, z) ≤ δ(x, y) + δ(y, z).

A metric on a set X is a quasi-metric satisfying

(c) (symmetry) δ(x, y) = δ(y, x) for all x, y ∈ X.

The convergence and completeness in a quasi-metric space (X, δ) are defined as
follows:

Definition 3.2. ([1], [8])
(1) A sequence (xn) in X converges to x ∈ X if

lim
n−→∞

δ(xn, x) = lim
n−→∞

δ(x, xn) = 0.

(2) A sequence (xn) is left-Cauchy if for every ε > 0, there is a positive integer
N = N(ε) such that δ(xn, xm) < ε for all n > m > N .

(3) A sequence (xn) is right-Cauchy if for every ε > 0, there is a positive integer
N = N(ε) such that δ(xn, xm) < ε for all m > n > N .

(4) A sequence (xn) is Cauchy if for every ε > 0 there is positive integer N = N(ε)
such that δ(xn, xm) < ε for all m,n > N ; that is (xn) is a Cauchy sequence if it is
left and right Cauchy.

Definition 3.3. ([1], [8])
(1) (X, δ) is left-complete if every left-Cauchy sequence in X is convergent;
(2) (X, δ) is right-complete if every right-Cauchy sequence in X is convergent;
(3) (X, δ) is complete if every Cauchy sequence in X is convergent.

Definition 3.4. Let (X, δ) be a quasi-metric space and T : X −→ X a selfmap.
The orbit of T at x ∈ X is the set

OT (x) = {x, Tx, · · · , Tnx, · · · }.
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The space X is said to be T-orbitally complete if every right-Cauchy sequence in
OT (x) is convergent in X. A selfmap T of X is said to be orbitally continuous at
x0 ∈ X if

lim
n−→∞

Tnx = x0 =⇒ lim
n−→∞

Tn+1x = Tx0

for any x ∈ X.

4. The Rus-Hicks-Rhoades Contraction Principle

For quasi-metric spaces (X, δ), simply δ is not symmetric.
Definition. The orbit of a selfmap T : X −→ X at x ∈ X is the set O(x, T ) =
{Tnx : n = 0, 1, 2, . . . }. The space X is said to be T -orbitally complete if every
(right)-Cauchy sequence in O(x, T ) is convergent in X. A selfmap T of X is said
to be T -orbitally continuous at x0 ∈ X if

lim
n−→∞

Tn(x) = x0 =⇒ lim
n−→∞

Tn+1(x) = T (x0)

for any x ∈ X.
The following in Park [27], [28], [30] is called the Rus-Hicks-Rhoades (RHR)

Contraction Principle:
Theorem P. Let (X, δ) be a quasi-metric space and let T : X −→ X be an RHR
map; that is,

δ(T (x), T 2(x)) ≤ α δ(x, T (x)) for every x ∈ X,

where 0 ≤ α < 1.
(i) If X is T -orbitally complete, then, for each x ∈ X, there exists a point x0 ∈ X

such that
lim

n−→∞
Tn(x) = x0

and
δ(Tn(x), x0) ≤

αn

1− α
δ(x, T (x)), n = 1, 2, · · · ,

δ(Tn(x), x0) ≤
α

1− α
δ(Tn−1(x), Tn(x)), n = 1, 2, · · · .

(ii) x0 is a fixed point of T , and, equivalently,
(iii) T : X −→ X is orbitally continuous at x0 ∈ X.
This was proved in [30] by analyzing a typical proof of the Banach Contraction

Principle.
For the condition: there exists 0 < α < 1 such that d(T (x), T 2(x)) ≤ α ·

d(x, T (x)), for all x ∈ X, we meet the following names: graphic contraction, it-
erative contraction, weakly contraction, Banach mapping, etc.

Moreover, the following consequence of Theorem P in Park [30] extends the usual
Banach Contraction Principle:
Theorem Q. Let (X, δ) be a quasi-metric space and let T : X −→ X be an improved
Banach contraction, that is, for each x ∈ X, there exists a y ∈ X such that

δ(T (x), T (y)) ≤ α δ(x, y) where 0 ≤ α < 1.

(i) If X is T -orbitally complete, then, for each x ∈ X, there exists a point x0 ∈ X
such that

lim
n−→∞

Tn(x) = x0
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and
δ(Tn(x), x0) ≤

αn

1− α
δ(x, T (x)), n = 1, 2, · · · ,

δ(Tn(x), x0) ≤
α

1− α
δ(Tn−1(x), Tn(x)), n = 1, 2, · · · .

(ii) x0 is the unique fixed point of T (equivalently, T : X −→ X is orbitally
continuous at x0 ∈ X).

The Banach Contraction Principle appeared in thousands of publications should
be corrected as in Theorem Q.

We began our study on RHR maps in [27] and [28]. Later we found a large
number of examples of RHR maps in [29], [30], where we showed a large number of
metric fixed point theorems can be extended or improved.

5. Completeness of Quasi-metric Spaces

In our previous work [30], we obtained the following RHR theorem:
Theorem H(γ1). Let (X, δ) be a quasi-metric space, 0 < α < 1, and f : X −→ X
be a map satisfying

δ(f(x), f2(x)) ≤ α δ(x, f(x)) for all x ∈ X\{f(x)}.
Then f has a fixed point v ∈ X if and only if X is f-orbitally complete.

Let (X, δ) be a quasi-metric space and Cl(X) denote the family of all nonempty
closed subsets of X (not necessarily bounded). For A,B ∈ Cl(X), set

H(A,B) = max{sup{δ(a,B) : a ∈ A}, sup{δ(b, A) : b ∈ B}},
where δ(a,B) = inf{δ(a, b) : b ∈ B}. Then H is called a generalized Hausdorff
quasi-metric since it may have infinite values.

Recently, as a basis of Ordered Fixed Point Theory [19], [24], [26], we obtained
the 2023 Metatheorem and Theorem H including Nadler’s fixed point theorem [11]
in 1969 and its extended version by Covitz-Nadler [5] in 1970.

From Theorem H(γ1) and Metatheorem, we have the following new version:
Theorem H. ([24], [26], [30]) Let (X, δ) be a quasi-metric space and 0 < r < 1.
Then the following statements are equivalent:

(0) (X, δ) is complete.
(α) For a multimap T : X −→ Cl(X), there exists an element v ∈ X such that

H(Tv, Tw) > r δ(v, w) for any w ∈ X\{v}.
(β) If F is a family of maps f : X −→ X such that, for any x ∈ X\{fx}, there

exists a y ∈ X\{x} satisfying δ(fx, fy) ≤ r δ(x, y), then F has a common fixed
element v ∈ X, that is, v = fv for all f ∈ F.

(γ) If F is a family of maps f : X −→ X satisfying δ(fx, f2x) ≤ r d(x, fx) for
all x ∈ X\{fx}, then F has a common fixed element v ∈ A, that is, v = fv for all
f ∈ F.

(δ) Let F be a family of multimaps T : X −→ Cl(X) such that, for any x ∈ X\Tx,
there exists y ∈ X\{x} satisfying H(Tx, Ty) ≤ r δ(x, y). Then F has a common
fixed element v ∈ X, that is, v ∈ Tv for all T ∈ F.

(ϵ) If F is a family of multimaps T : X −→ Cl(X) satisfying H(Tx, Ty) ≤
r δ(x, y) for all x ∈ X and any y ∈ Tx\{x}, then F has a common stationary
element v ∈ X, that is, {v} = Tv for all T ∈ F.
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(η) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x}
satisfying H(Tx, Tz) ≤ r δ(x, z) for a T : X −→ Cl(X), then there exists a v ∈
X ∩ Y = Y .
Proof. The equivalency (α)-(η) follows from Metatheorem. When F is a singleton,
(β)-(ϵ) are denoted by (β1)-(ϵ1), respectively. They are also logically equivalent
to (α)-(η) by Metatheorem. Note that (γ1) follows from Theorem H(γ1). The
equivalency of (0) and (γ1) is given in [29], [30]. Then Theorem H holds. □
Remark 5.1. (1) The completeness in (0) can be replaced by f -orbitally or T -
orbitally completeness according to the corresponding situation.

(2) (β1) properly extends the Banach contraction principle.
(3) (γ1) is the Rus-Hicks-Rhoades theorem and equivalent to (0).
(4) Further, (δ1) and (ϵ1) extend the well-known theorems of Nadler [11] and

Covitz-Nadler [5] on multi-valued contraction.
(5) Actually, the proof of Theorem H covers the corresponding ones of Banach,

Rus [31], Hicks-Rhoades [7], Nadler [11], Covitz-Nadler [5], and Oettli-Théra [12].
(6) There are a large number of characterizations of metric completeness. It is

well-known that the Banach contraction does not characterize. However, so does
its slight generalized form (β1) and the RHR map in (γ1).

We have a single-valued version of Theorem H(α) as follows:
Theorem H(α1). Let (X, δ) be a quasi-metric space, f : X −→ X a map and
0 < r < 1. Then X is f-orbitally complete if and only if there exists an element
v ∈ X such that δ(fv, fw) > r δ(v, w) for any w ∈ X\{v}.

This is also equivalent to all items in Theorem H. In some sense, this shows that
the Banach contraction principle does not characterize the metric completeness.
But so does the RHR theorem or Theorem H(γ1).

6. Edelstein [6] in 1962

In this section, we apply Metatheorem to a particular situation when f : X −→ X
is a map and G(x, y) means δ(x, fx) ≤ δ(y, fy) for x, y ∈ X.

Definition 6.1. A map f : X −→ X on a quasi-metric space (X, δ) is said to be
contractive if

δ(fx, fy) < δ(x, y)

for all x, y ∈ X with x 6= y.
We recall the well-known Edelstein fixed point theorem:

Theorem 6.2. (Edelstein) Let (X, d) be a compact metric space and f : X −→ X
be a contractive map. Then f has a unique fixed point v ∈ X, and moreover, for
each x ∈ X, we have limn−→∞ fn(x) = v.

Motivated by Theorem 6.2, we have the following from our Metatheorem:
Theorem 6.3. Let (X, δ) be a compact quasi-metric space. Then the following
statements are equivalent:

(α) For a map f : X −→ X, there exists a point v ∈ X such that δ(fv, fw) ≥
δ(v, w) for any w ∈ X\{v}.
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(β1) For a map f : X −→ X such that, for any x ∈ X with x 6= fx, there exists
a y ∈ X\{x} satisfying δ(fx, fy) < δ(x, y), then f has a fixed point v ∈ X, that is,
v = fv.

(β2) If F is a family of maps f : X −→ X such that, for any x ∈ X with x 6= fx,
there exists a y ∈ X\{x} satisfying δ(fx, fy) < δ(x, y), then F has a common fixed
point v ∈ X, that is, v = fv for all f ∈ F.

(γ1) If f : X −→ X is a map such that, for any x ∈ X satisfying δ(fx, f2x) <
δ(x, fx) for all x ∈ X with x 6= fx, then f has a fixed point v ∈ X, that is, v = fv.

(γ2) If F is a family of maps f : X −→ X satisfying δ(fx, f2x) < δ(x, fx) for
all x ∈ X with x 6= fx, then F has a common fixed point v ∈ X, that is, v = fv for
all f ∈ F.

(δ1) If T : X −→ Cl(X) is a multimap such that for any x ∈ X\Tx there exists
a y ∈ X\{x} satisfying H(Tx, Ty) < δ(x, y), then T has a fixed point v ∈ X, that
is, v ∈ T (v).

(δ2) If F is a family of multimaps T : X −→ Cl(X) such that for any x ∈ X\Tx
there exists a y ∈ X\{x} satisfying H(Tx, Ty) < δ(x, y), then F has a common
fixed point v ∈ X, that is, v ∈ Tv for all T ∈ F.

(ϵ1) If T : X −→ Cl(X) is a multimap such that H(Tx, Ty) < δ(x, y) holds for
any x ∈ X and any y ∈ Tx\{x}, then T has a stationary point v ∈ X, that is,
{v} = Tv.

(ϵ2) If F is a family of multimaps T : X −→ Cl(X) such that H(Tx, Ty) < δ(x, y)
holds for any x ∈ X and any y ∈ Tx\{x}, then F has a common stationary point
v ∈ X, that is, {v} = Tv for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x}
satisfying H(Tx, Tz) < δ(x, z) for a multimap T : X −→ Cl(X), then there exists
a v ∈ X ∩ Y = Y .

Proof. Equivalency follows from Metatheorem. □

Remark 6.4. (1) Theorem 6.3 means the equivalency of the items (α)-(η). There-
fore, each items are conjecture.

(2) Each item implies the Edelstein Theorem 6.2. This is clear for (β1), (γ1),
(δ1), and (ϵ1),

(3) In case f is continuous in (α), all (α), (β1), (γ1), (δ1), and (ϵ1) are true. In
fact, let a map φ : X −→ R+ by putting

φ(x) = δ(x, fx), x ∈ X.

Then φ is continuous and bounded below, so it has a minimum value at a point
v ∈ X. Hence (α) holds. Moreover, (β1)–(η) also hold by Metatheorem.

From Theorem 6.3, we can deduce several fixed point theorems on a compact
quasi-metric space (X, δ) extending the Edelstein Theorem 6.1.

For example, we have the following:

Theorem 6.5. (β1) If f : X −→ X is a continuous map such that for any x ∈ X
with x 6= fx, there exists a y ∈ X\{x} satisfying δ(x, fx) > d(y, fy), then f has a
fixed point v ∈ X, that is, v = fv.
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(γ2) If F is a family of continuous maps f : X −→ X satisfying d(x, fx) >
d(fx, f2x) for all x ∈ X with x 6= fx, then F has a common fixed point v ∈ X, that
is, v = fv for all f ∈ F.

(ϵ1) If T : X ⊸ X is a multimap and f : X −→ X is a continuous selection of
T such that d(x, fx) > d(y, fy) holds for any x ∈ X and any y ∈ T (x)\{x}, then T
has a stationary point v ∈ X, that is, {v} = T (v).

Recently, Kirk and Shahzad raised one open question on Edelstein’s fixed point
theorem. In 2018, Suzuki [32] gave a negative answer to this question, and extended
Edelstein’s theorem to semimetric spaces.

7. Turinici [34] in 1980

Turinici’s main result ([34], Theorem 3.1) is as follows:

Theorem 7.1. Let (X, d) be a metric space, and ≼ an ordering on X such that

(1) ≼ is a closed ordering on X,
(2) (X, d) is a ≼-asymptotic metric space, and
(3) (X, d) is a ≼-complete metric space.

Then, for every x ∈ X there is a maximal element z ∈ X such that x ≼ z.

This can be applied to our Metatheorem as follows:

Theorem 7.2. Let (X, d) be a metric space, and ≼ an ordering on X satisfying
(1)-(3). Let z ∈ X and A := {x ∈ X : z ≼ x}.

Then the following equivalent statements hold:

(α) There exists an element v ∈ A such that w ≺ v for any w ∈ X\{v}.

(β) If F is a family of maps f : A −→ X such that for any x ∈ A with x 6= fx,
there exists a y ∈ X\{x} satisfying x ≼ y), then F has a common fixed element
v ∈ A, that is, v = fv for all f ∈ F.

(γ) If F is a family of maps f : A −→ X satisfying x ≼ fx for all x ∈ A with
x 6= fx, then F has a common fixed element v ∈ A, that is, v = fv for all f ∈ F.

(δ) Let F be a family of multimaps F : A ⊸ X such that, for any x ∈ A\Fx
there exists y ∈ X\{x} satisfying x ≼ y. Then F has a common fixed element v ∈ A,
that is, v ∈ Fv for all F ∈ F.

(ϵ) If F is a family of multimaps F : A ⊸ X such that x ≼ y holds for any
x ∈ A and any y ∈ Fx\{x}, then F has a common stationary element v ∈ A, that
is, {v} = Fv for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x}
satisfying x ≼ y, then there exists a v ∈ A ∩ Y .

Proof. Under the hypothesis, the conclusion of ([34], Theorem 3.1) is “for every
x ∈ X, there is a maximal element z ∈ X.” Replacing (x, z) by (z, v), we obtain α.
The equivalency is obtained from Metatheorem, where G(x, y) is replaced by x ≼ y.
□

Note that (α) and (γ1) are [34], Theorems 3.1 and 3.2, respectively.
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8. Tasković [33] in 1986

Recall that Tasković [33] showed that Zorn’s lemma is equivalent to the following:
Theorem 8.1. Let F be a family of selfmaps defined on a partially ordered set A
such that x ≤ fx (resp. fx ≤ x), for all x ∈ A and all f ∈ F. If each chain in
A has an upper bound (resp. lower bound), then the family F has a common fixed
point.

This can be applied to the following:
Theorem 8.2. Let A be a partially ordered set such that each chain in A has an
upper bound. Then the following equivalent statements hold:

(α) There exists an element v ∈ A such that w ≺ v for any w ∈ X\{v}.
(β) If F is a family of maps f : A −→ A such that for any x ∈ A with x 6= fx,

there exists a y ∈ A\{x} satisfying x ≼ y, then F has a common fixed element
v ∈ A, that is, v = fv for all f ∈ F.

(γ) If F is a family of maps f : A −→ A satisfying x ≼ fx for all x ∈ A with
x 6= fx, then F has a common fixed element v ∈ A, that is, v = fv for all f ∈ F.

(δ) Let F be a family of multimaps F : A ⊸ A such that, for any x ∈ A\Fx
there exists y ∈ A\{x} satisfying x ≼ y. Then F has a common fixed element v ∈ A,
that is, v ∈ Fv for all F ∈ F.

(ϵ) If F is a family of multimaps F : A ⊸ A such that x ≼ y holds for any
x ∈ A and any y ∈ Fx\{x}, then F has a common stationary element v ∈ A, that
is, {v} = Fv for all F ∈ F.

(η) If Y is a subset of A such that for each x ∈ A\Y there exists a z ∈ A\{x}
satisfying x ≼ y, then there exists a v ∈ Y .
Proof. Note that (α) is a form of Zorn’s lemma and (γ) is the theorem due to
Tasković. Therefore Theorem 7.2 holds by Metatheorem. □

Other true statements (β1)-(ϵ1) can be also obtained.

9. Khamsi [10] in 2009

In [10], Khamsi gave a characterization of the existence of minimal elements in
partially ordered sets in terms of fixed point of multimaps.

Let A be an abstract set partially ordered by ≺. We will say that a ∈ A is a
minimal element of A if and only if b ≺ a implies b = a. The concept of minimal
element is crucial in the proofs given to Caristi’s fixed point theorem.

The following is [10], Theorem 1:
Theorem 9.1. Let (A,≺) be a partially ordered set. Then the following statements
are equivalent.

(1) A contains a minimal element,
(2) Any multimap T defined on A such that for any x ∈ A, there exists y ∈ Tx

with y ≺ x, has a fixed point, i.e there exists a ∈ A such that a ∈ Ta.
According to our method in the present paper, Theorem 9.1 can be extended as

follows:
Theorem 9.2. Let (A,≺) be a partially ordered set. Then the following statements
are equivalent:

(α) There exists an element v ∈ A such that w ≺ v for any w ∈ A\{v}.
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(β) If F is a family of maps f : A −→ A such that for any x ∈ A with x 6= fx,
there exists a y ∈ A\{x} satisfying x ≼ y), then F has a common fixed element
v ∈ A, that is, v = fv for all f ∈ F.

(γ) If F is a family of maps f : A −→ A satisfying x ≼ fx for all x ∈ A with
x 6= fx, then F has a common fixed element v ∈ A, that is, v = fv for all f ∈ F.

(δ) Let F be a family of multimaps F : A ⊸ A such that, for any x ∈ A\Fx
there exists y ∈ A\{x} satisfying x ≼ y. Then F has a common fixed element v ∈ A,
that is, v ∈ Fv for all F ∈ F.

(ϵ) If F is a family of multimaps F : A ⊸ X such that x ≼ y holds for any
x ∈ A and any y ∈ Fx\{x}, then F has a common stationary element v ∈ A, that
is, {v} = Fv for all F ∈ F.

(η) If Y is a subset of A such that for each x ∈ A\Y there exists a z ∈ A\{x}
satisfying x ≼ y, then there exists a v ∈ Y .
Proof. Let G(x, y) means x ≺ y. Then Theorem 8.2 follows from Metatheorem.
□

Note that (α) and (δ1) are (1) and (2) of Theorem 9.1. Therefore Theorem 9.2
extends Theorem 9.1.

In what follows Khamsi assumes that η : [0,∞) −→ [0,∞) is nondecreasing,
continuous, such that there exist c > 0 and δ0 > 0 such that for any t ∈ [0, δ0] we
have η(t) ≥ c t. Under these assumptions we have the following result.
Theorem 9.3. Let M be a complete metric space. Define the relation ≺ by

x ≺ y ⇐⇒ η(d(x, y)) ≤ ϕ(y)− ϕ(x)

where η and ϕ satisfy all the above assumptions.
Then the following equivalent statement hold:
(α) (M,≺) has a minimal element x∗, i.e. if x ≺ x∗ then we must have x = x∗.
(γ1) If f : M −→ M is a map such that fx ≺ x for any x ∈ X, then f has a

fixed element v ∈ A, that is, v = fv.

(δ1) If F : M ⊸ M is a multimap such that, for any x ∈ M\Fx there exists
y ∈ X\{x} satisfying y < x, then F has a fixed element v ∈M , that is, v ∈ Fv.

Note that (α) - (δ1) are due to Khamsi ([10], Theorems 2-4), respectively. Ap-
plying our Metatheorem, we can make some more as for (β2)-(ϵ2) and (η).

10. Turinici [35] in 2009

In [35], some pseudometric versions of the Brézis-Browder ordering principle [4]
are discussed. An application of these facts to equilibrium points is also included.

Let (M,≼) be a quasi-ordered structure; and x 7→ φ(x) stand for a function
between M and R+ ∪ {∞} = [0,∞]. The following is ([35], Proposition 1):
Proposition 10.1. ([35]) Assume

(1a) (M,≼) is sequentially inductive: each ascending sequence has an upper
bound (modulo (≼)),

(1b) ψ is (≼)-decreasing (x ≼ y =⇒ ψ(x) ≥ ψ(y)), and
(2a) (M,≼) is almost regular (modulo φ):

∀x ∈M, ∀ε > 0, ∃y = y(x, ε) ≽ x with φ(y) ≤ ε.
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Let u ∈ M and A = {y ∈ M : u ≼ y}. Then there exists v ∈ A with φ(v) = 0
(hence v is (≼, φ)- maximal).

From Proposition 10.1 and our Metatheorem, we have the following extended
version:

Theorem 10.2. Under the hypothesis of Proposition 9.1, the following equivalent
statements hold:

(α) There exists an element v ∈ A such that w ≺ v for any w ∈M\{v}.

(β) If F is a family of maps f : A −→M such that for any x ∈ A with x 6= fx,
there exists a y ∈ M\{x} satisfying x ≼ y), then F has a common fixed element
v ∈ A, that is, v = fv for all f ∈ F.

(γ) If F is a family of maps f : A −→ M satisfying x ≼ fx for all x ∈ A with
x 6= fx, then F has a common fixed element v ∈ A, that is, v = fv for all f ∈ F.

(δ) Let F be a family of multimaps F : A ⊸ M such that, for any x ∈ A\Fx
there exists y ∈ M\{x} satisfying x ≼ y. Then F has a common fixed element
v ∈ A, that is, v ∈ Fv for all F ∈ F.

(ϵ) If F is a family of multimaps F : A ⊸ M such that x ≼ y holds for any
x ∈ A and any y ∈ Fx\{x}, then F has a common stationary element v ∈ A, that
is, {v} = Fv for all F ∈ F.

(η) If Y is a subset of M such that for each x ∈ A\Y there exists a z ∈M\{x}
satisfying x ≼ y, then there exists a v ∈ A ∩ Y .

Turinici stated that the following ordering principle ([35], Proposition 2) is then
available (cf. Kang and Park [13]):

Proposition 10.3. Assume that (M,≼) is sequentially inductive and weakly regular
(modulo d). Then, for each u ∈ M , there exists a (≼, d)- maximal v ∈ M with
u ≼ v.

In [35], Propositions 2, 3, 4, 5 and Theorems 2, 3, 4 are all maximality statements
and can be also equivalently formulated by Metatheorem.

11. Conclusion

In this paper, by applying Metatheorem, we obtain equivalent forms of some
known theorems. Most of them are new and useful as the original theorems. There-
fore our Metatheorem is the way to lead new truth from the equivalent old one. This
method was already applied almost one hundred times by the author in [13]-[30].

Recall that there are many articles characterizing metric completeness. Recall
that the Banach contraction does not characterize the completeness. In the present
article, we introduced a surprising result. Theorem H shows that certain general
forms of theorems of Banach, Nadler, Covitz-Nadler, and others characterize com-
pleteness of quasi-metric spaces. More precisely, the Rus-Hicks-Rhoades theorem is
the one of such theorems.

In our previous works [27]–[30], we concentrated the study of RHR maps and
found the close relation between such maps and completeness.
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