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ABSTRACT. Using the monotone iterative technique coupled with method of lower and
upper solutions, we establish the existence and uniqueness of solutions for higher order
singular nonlinear (I—1, 1) conjugate-type fractional differential equation with one nonlocal
term.

KEYWORDS: Monotone iterative technique, lower-upper solutions, integral boundary
conditions, fractional differential equations, existence and uniqueness solution, Banach
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1. INTRODUCTION

Fractional differential equations are the generalization of ordinary differential
equations to non-integer order. This generalization has interesting applications
in various fields of chemistry, physics, mechanics, economics, electrodynamics etc.
[1, 10]. Boundary value problems [BVP] of fractional differential equations have
widespread attention and some attractive results obtained [I, 7, 9, 19] recently.
Monotone iterative technique plays an important role to obtain existence of solutions
of nonlinear fractional differential equations [5]. This technique is used to obtain
the solutions of nonlinear initial value problems [6], boundary value problems [2,
[4, 19, 21]. Existence and uniqueness of solutions of Riemann-Liouville fractional
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differential equations with integral boundary conditions is obtained by Nanware et.
al. [8]. Sun and Zhao [12] studied the fractional differential equations with integral
boundary conditions using monotone iterative method.

In the recent years, the theory of singular boundary value problems has become
an important area of investigation [3, 13, 17, 18]. The existence of solutions by using
various methods such as lower and upper solution method and fixed point theorem
is proved. In [20] X. Zhang et al. obtained the existence and uniqueness of positive
solutions when ¢ has singularities at 7 = 0 and (or) 1 by using monotone iterative
method. In 2020 [11] S. Song et al. investigated the existence of extremal solutions
by using monotone iterative technique coupled with lower and upper solutions for
the problem

~Dgx(r) = glr2(r), T € 0.1
H0)=0,  =(1) = / 2(s) dn(s),

where 1 < v < 2, Dg, is the Riemann-Liouville fractional derivative and 7(r) is a
positive measure function. Y. Wang et al. [15] studied the positive properties of
the green function for the Dirichlet-type problem

{—D5+z(r) +az(r)=g(r, z(r)), 0<r<l,
z(0) =0, z(1) =0,

where 1 < v < 2, a > 0, Dy, is the Riemann-Liouville fractional derivative. Y.
Wang et al.[16] established the existence of positive solutions for resonant problem.

Inspired by the aforementioned works, in this paper we give some sufficient con-
ditions, under which following problems have extremal solutions

Dy, z(r)+g(r,2(r) =0, 0<r<l1, l-1<v<l,

2B(0)=0, 0<k<i-2 z(1>=/012<s)dn<8)’ "

where, Dy, is the Riemann-Liouville fractional derivative of order [ > 2, [ € N,
g has singularities at » = 0 and (or) 1, 7 is a function of bounded variation and

1
/ z(s)dn(s) denotes the Riemann-Stieltjes integral of z with respect to 7, dn can be
0

signed measure . The layout of this paper is as follows: In section 2, we present some
basic definitions and lemmas that will be used to prove our main results. Section 3
is devoted to uniqueness of solution to BVP (1.1) by using Banach contraction prin-
ciple. In Section 4, we developed the monotone iterative method and applied it to
obtain existence and uniqueness results for Riemann-Liouville fractional differential
equations with integral boundary conditions.

2. PRELIMINARIES

In this section, we present some useful definitions and lemmas that will be used in
the next section to attain existence and uniqueness results for the nonlinear of BVP

(1.1).
Definition 2.1. [10] The Riemann-Liouville fractional integral of order v > 0 of a
function 2 : (0,00) — R is given by
1 T
IYz(r) = —/ (r—s)""1z(s)ds
I'(v) Jo

provided that the right-hand side is pointwise defined on (0, co).
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Definition 2.2. [10] The Riemann-Liouville fractional derivative of order v > 0 of
a function z : (0,00) — R is given by

G [

where [ € N as the unique positive integer satisfying [ — 1 < v < [, provided that
the right-hand side is pointwise defined on (0, 00).

D¥z(r) =

Definition 2.3. A function &y € C([0, 1]) is called a lower solution of BVP (1.1)
if it satisfies

Dy, ao(r) +g(r,2o(r)) >0, 0<r<ll-1<v<l,

w0 =0, 0<k<i-2, (1) < /01 Fo(s) di(s)- >

Definition 2.4. A function g € C([0, 1]) is called a upper solution of BVP (1.1)
if it satisfies

Dg, yo(r) +g(r,go(r)) <0, 0<r<l1, I-1<v<l,

! (2.2)
(B) oy . .
Up (0) =0, 0<k<[-—2, Po(1) > | yo(s)dn(s).
0
Denote
v—2 >
plr) = T(v—1) +z:lf /<:+11/7 2)
It is easy to check that (see [15, 16])
v—2
p(0) = Tw—1) <0,
oo Fh—1
D=3 rgre Ty 7o 0
k=1
and
Therefore, there exist a unique a* > 0 such that p(a*) = 0.
Set
— =1 v
Go(r)=r"""E, ,(ar”), where E, ,( ];) I k T (2.3)
is the Mittag-Leffler function ([4, 10]).

For convenience, we list here the following assumptions.
B1] the parameter a satisfies a € (0,a*],

1
B2] n(r) is bounded variation in (0,1) such that 0 < a < 1, a = / Go(s)dn(s)
0
1
andOSCn(s):/ Hy(r,s)dn(s), 0 < G / Ga(s)dn(s
0
B3] g € C((0,1) X [0, 50), [0, 50)) and

g(r,u) —g(r,v) > —a(u —v) for &g <u <wv < g, r € (0,1).
Set
Ku(r,s) = Ho(r,s) + Go(r)R*(s)
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where,
*(o) Gn(s)
h (S)*Ga(l)_aa
1 1—s)— — 1) fo0<s<r<1
Ho(r,s) = Go(r)Go(1 —8) — Go(r — 5)Ga(1) 1 0<s<r< (2.4)
Ga(1) | Gu(r)Ga(1 — s) fo<r<s<I.
Lemma 2.5. [15] Suppose that [B1] holds and y € L[0,1]. Then the problem
—Dg,2(r) +az(r) =q(r), 0<r<1,
z(0) =0, z(1) =0,

has a unique solutions

2(r) = / H,(r, 8)q(s) ds,

where

H,(r,s) =

1 Go(r)Ga(l —3) — Ga(r —s)Ga(1) if0<s<r<1
Ga(1) | Ga(r)Go(1 —s) fo0<r<s<lI.

Lemma 2.6. Suppose that [B1], [B2] hold andy € C([0,1]). Then linear fractional
boundary value problem

Dy, z(r) —az(r)+q(r)=0, 0<r<l1, I-1<v<l,
1 (2.5)
Z0)=0, 0<k<I-2, z(1) = / z(s) dn(s),
0
has the following unique solution
1
z(r) = / K, (r,s)q(s)ds.
0
Proof:- First apply I” on linear equation (2.5) and using result, see in [4, 10], we
get
2(r) = — / Galr — 8)q(s) ds + CoGla(r) + C1CA(r) + CaGlr(r) ... + Craa G ().
0
(2.6)
Since z(0) = 0 then C;_; = 0. Similarly
Z(0)=2"(0)=...=2"72(0)=0
gives
Ci=Cy=...=Ci_o=0.

Then equation (2.6) becomes

z(r) = — /OT Go(r — $)q(s) ds + CoG(r).

1
Using z(1) = / z(s) dn(s), we obtain
0

a=gsf i)+ [ Galt o ).

() = = [ Gulr = ate)ds + 15 [ / (s)dns) + / ' Gal — a(s) ds} |
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_ Ga(r) [ Ga(r) ["
ff/o Ga(rs)q(s)ds+Ga(1)/O z(s)dn(s)+Ga(1)/O Ga(l — s)q(s) ds

Ga(r) [*
1) : Go(1—9)q(s)ds,

; [Ga (1= 58) = Go(1)Go(r — 8)] q(s)ds

1 Ga(r) 1
+Ga(1 / Go(r)Ga(1 —8)q (s)derGa(l)/o z(s) dn(s),

; H,(r,s) (1)/0 z(s) dn(s).

Let,

/ //HST ) drldn(s /G / (5) dn(s).

Therefore
/G ) dn(s / ><>a[%3mmemm@

A(Mn t/ _ffm@mmmma
—aa | Gal

Therefore  z( /H (r,s) ds+ ()

1%b[@@wJ
//HST T)drdn(s),
/Hrs ds+ / //HST 7) drdn(s),
Gl
:/01
0= [ Kalrsiato)a

Lemma 2.7. Suppose [B1], [B2] holds,then the function K,(r,s) has the following properties

Ho(r,s) + ‘;(T) /O Ha(s, T)dn(T)] q(s) ds,
1

(i) Kq(rys) >0 Vor,se(0,1),
(i) a(s)r'=t < K,(r,s) <y(s)rv=t, Vrse(0,1)

where, () = Ga(1 — ) + Ga(DA*(s), ta(s) = oy h*(s).
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Proof:- We need to prove that (2) holds. By equation (2.7)

v—1

e <Gur)=rtY FL <r'71G.(1), re(0,1). (2.7)

(kA ) — 2
D N ((FSITES R

oz aF[(k + 1) — 2]k
N 32 (k+1)v—1) ~

v—2 > afrkv[(k 4+ 1)v — 2]
+;§1 T((k + v — 1) ]

3 [ v—2 > akrkr ]

—

T D T TG D

k=1
=7r""3plar’) <r"3pla) < 1" 3p(a*) =0, 7€(0,1), (2.9)
which implies that G,(r) is strictly increasing on (0,1) and G, (r) is strictly de-
creasing on (0,1). Therefore by (2.7) we have,
Ku(r,s) = Ho(r,s) + Go(r)h*(s),
< Ga(r)Go(1 — )
T Gl
Ga(l—9)
Ga(1)
Ga(l—) 3
* v 1
G ] e
= [Ga(1 = 5) + Ga(W)R"(s)]r" 71,
=y (s)r” (2.10)
where, ¥1(s) = Go(1 — s) + G4(1)h*(s).
On the other hand, when 0 < r < s < 1. Note that G,(0) = 0 and monotonocity
of G4 (r), it is clear that

+ Ga(r)h*(s),

(6] Gl

IN

Ga(r)Ga(1 —5) > 0. (2.11)

Hence H,(r,s) > 0 and also by [B2], K4(r,s) >0 when 0 <r <s < 1.
When 0 < s < r < 1, we have

0

55 [Ga(r)Ga(l = ) = Galr = 5)Ga(1)] = =Ga(r)Gy(1 = 5) + Ga(1)Gy(r = 5)

> [Ga(1) = Ga(r)]G(1 = s). (2.12)

Integrating with respect to s, we obtain

Gu(r)Ga(l — ) — Galr — $)Ga(l) > / Gu(l) — Ga(mICL(1 — 1) dp,



SOLUTIONS OF SINGULAR NONLINEAR (I — 1,1) CONJUGATE-TYPE FDES 67

Ga(1 1— M)]S

)

~[Gu(D) - Gl | 0
= [Go(1) — Go(M)][Ga(1) — Go(1 — 8)] > 0.
(2.13)
Then, by (2.4), (2.11), (2.13), we get
Hy(r,8) = Go(r)Ga(l — 8) — Go(r — 8)Go(1) >0 7,5 € (0,1).
Now,

Ka(r,5) = Ha(r,5) + Ga(D)h*(s) > Ga(r)h*(s),

Tu—l

>
~I'w)
where, 15(s) = F(ly) h*(s). Hence the proof.

h*(s) = ha(s)r’ 1 >0 rs€(0,1)

Lemma 2.8. F0r0<7"1<7"2<1
(1) [Ga(r2) = (7'1)\ < Eyp-1(a) |ra = 1] = Ga(l)|ra — r1],
(ii) |Galrz — ) = Galr1 — )| < By, y—1(a) lr2 — 71| = Ga(1)|r2 — 1],
(iii) |Ha(r2,s) — Ha(r1,s)| < 2[Ga(1)]P|r2 — 11,
(iv) |Kqa(re,s) — Kq(r1,s)| < 01;1‘?%<1|Ka(r2,s) — Ku(r1,8)] < Go(1)[2G.(1) +

[ ()2 = -

1] |Ga(re) — Ga(r1)| = |7’5_1El, v(ary) — T?_lEu u(a"”lf)|
k,.vk k,.vk
-1 a-rs — Y- 1 a'ra
= |2 Z T((k+1)v Z T((k+ 1)v
o0 k

=2 T((k+1)v) 2

k=o

(k+1)—1 ﬁ(kﬂ)q‘ .

Applying mean value theorem, we get

rg(k+1)_l — r;(kﬂ)_l <[vlk+1)—=1](ry — 7).

Therefore
= a*[v(k 1]
|Ga(rs a(r1 |<Zwlrzﬂ"1l,
oo

) ;m““? —ril,

= Euvy_l(a)"f‘g 77’1| = Ga(1)|1"2 7T1|.

2] |Gu(ra —s) — Galr1 — 8)| = ‘ ro — s)”_lE,, ,,(a(rg — s)”) —(r1 — s)”_lE,,,,j(a(rl -9,
_ 1/ 1 — S v—1 S ak(r B S)Vk
= 7"2—8 Z I€2—|—1 ('1”1—8) kzzom7

=3 gy 0 O e

Applying mean value theorem, we get
(rg — s)VFFD=L () — )P *AD=L (ke 4 1) — 1](rp — 7).
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Therefore

> k
a
|Ga(7’2 — S) — Ga(rl — S)| < kE:O m‘rg - Tl‘
=FE, ,—1(a)lrs — 1| = Galra — r1]

3 [Ha(rz,s) = Ha(r1, 8)| = [[Ga(r2)Ga(l = 8) = Ga(1)Ga(r2 — 5]
= [Ga(r1)Ga(l = s) = Ga(1)Ga(r1 — s)]l,
< Ga(l = 9)|Ga(rz) = Ga(r1)| + Ga(1)|Ga(r1 — s) — Galr2 — 5)|,
< Ga(l=5)Ey,,(a)|r2 — 11| + Ga(1) Ey, v (a)|rz — 1],
:Ev,V(a)[Ga(1_5)+Ga( Nlra =1l
=Ga(1)[Ga(l = s) + Ga(1)]|r2 — 11,
< 2[Go(1)]?|ry — 7.

4 [Kalra,s) = Kalri,s)| < max |Ko(ra.s) = Ko(r,9)]

= max [[Ha(tz,5) — Ha(tr,9)] + [Galta) — Galra)}"(s)].

<2[Ga(VP|rz = 1] + Ga(D)lr2 = r1]|h* (s)],
= Ga()[2Ga(1) + [P*(s)l]Jr2 = .
Hence the proof.
3. MAIN RESULTS
Let ¢ = C([0,1]) be endowed with the norm ||z|| = max, |z(r)], then (€, |.||) is

0<r
a Banach space. Now we define the operator T': € — € by

1
= / Ko (r,s)g(s, z(s)) ds.

0
Theorem 3.1. Prove T : € — € is uniformly continuous.

Proof:- The operator T : € — % is continuous in the view of non-negativeness

and continuity of K,(r,s), Hu(r,s) and g(r,z). Let S C € be bounded ie. 3 a

positive constants M > 0 such that ||z|| < M V z € S, Let L* = Jnax lg(r, z)| then
T

by Lemma 2.7 the operator T : S — € is bounded uniformly. Now to prove T(S)
is equicontinuous.
If z€ S, 0<ri <ry <1 then

(T2)(r2) — (T2)(r)] = ‘/ o(r2,8) — Ko(r1,8)]g(s, 2(s)) ds| ,
< o, / Kalr2,9) — Kalr, o)l (5))| s,

< L*Ga(U)fry — 7] / 26 (1) + [1*(s)) ds,

< L*Ga()frs — m|[2Ga(1 / IB*(s)

Then |(Tz)(r2) — (Tz)(r1)] — 0 uniformly as r;1 — ro. This shows that T'(.S) is
equicontinuous on ¢. Then by Arzela-Ascoli theorem, the operator T': € — € is
completely continuous.
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Theorem 3.2. Assume that [B1], [B2] holds. Then there exist nonnegative constant
N* such that function g satisfies |g(r,x)—g(r,y)| < N*|a—y|, r € (0,1), z,y€F
and let1

A= / ¥(s)ds then the BVP (1.1) has a unique fized point.
0

Proof:- For any z,y € ¥, r,s € (0,1) and using Lemma 2.7

IT2(r) = Ty(r)| = max [Tx(r) - Ty(r)l,

max
0<r<1

1
— max / Ko, 8)|lg(r ) — g(r, )| ds,
0

0<r<1

/0 Ka(r,)[g(r,3) — g(r,y)] ds

IA

1
PN o=yl [ o) ds
0
=" IN*Afju — v
Then by Banach contraction mapping theorem, 7" has a unique fixed point in %,
i.e. the BVP (1.1) has a unique solution. The proof is complete.
4. MONOTONE ITERATIVE METHOD

In this section, we develop monotone iterative technique combined with the
method of lower-upper solutions and we prove the existence and uniqueness theorem
of solution for BVP (1.1). For &y, 30 € € with &9 < g for r € (0, 1), we denote

OF = [a"}(),yo] = {Z €EC 1o < Z(’I“) < Yo,r € (0,1)}.
Lemma 4.1. Assume that [B1], [B2] holds and z € € satisfies
—DVz(r) + az(r) > 0,

20 (0) = 0, zu)zllaﬁm@) (4.1)

then forr € (0,1), z(r) > 0.
1
Proof:- Let ¢(r) = —D"z(r) + az(r) and d = z(1) —/ z(s)dn(s). Then from

0
equation (4.1), we have ¢(r) > 0, d > 0. Then by Lemma 2.6, the problem (2.5)
has unique solution which can be expressed as
1

Z(T) = ; Ka(r,s)q(s) ds,
- ) H,(r,s)q(s)ds + / o / Ha(r, ) dn(s)
where,
Ha(r,s) = 1 Ga(r)Ga(1 = 8) — Ga(r —8)Ga(1) f0<s<r<i1
T Ga(D) | Galr)Gall =) if0<r<s<l.

Then by Lemma 2.7, Hy(r,s) > 0 and Ky(r,s) >0V r,s € (0,1). Hence z(r) > 0,
Vr,se(0,1).
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Theorem 4.2. Suppose [B1], [B2], [B3] holds, then there exist monotone iterative
sequences {&m}, {Um} C Q* such that & — &, Ym — ¥ as m — oo uniformly in
O and z, y are a minimal and mazimal solution of BVP (1.1) in Q* respectively.

Proof:- For &,,—1, Ym—1 € €, m > 1, we define two sequences {&,}, {ym} respec-
tively by the relations,

Dg &m(r) — a(dm(r) + :'Em_ll(r)) +9(r,Zm_1(r))=0, 0<r<1
E0)=0,  dn(1)= /0 & (s) dn(s)
and
D§ G (1) — a(m (r) + ym_%(r)) +9(r Ym-1(r)) =0, 0<r<1,
O =0 () = [ () dnte)
Then by Lemma 2.6, {Z,}, {¢m} are well defined. Firstly we need to show that
Lo(r) < 21(r) < gu(r) < go(r) for any r € (0,1).
Set p(r) = 41(r) — o (r) and by definition of &4 (r) with lower solution & (r) we get,
—Dg,p(r) + ap(r) = =Dgy (#1(r) = 2o(r)) + al@1(r) + @o(r)),
= —Dgya1(r) + a(ié(r) + do(r) + Doy @o(r),
2 —a(i(r) + @o(r)) + g(r, 2o(r)) + a(r(r) + @o(r)) — g(r, 2o(r))
=0.
Also,p®)(0) = £{7(0) — i (0) =0,
p(1) = @1(1) — @o(1)

- [ " b(s) dn(s) — / " ro(s) dn)
:/01[:'51(5)—560(8)] dn(s)=/01p(8) dn(s).

Then by Lemma 4.1, p(r) > 0 = &1(r) > @o(r), r € (0,1).

Now to prove ¢1(r) < go(r) Vr € (0,1). For this, set p(r) = ¢1(r) — yo(r) and by
definition of ¢ (r) with upper solution go(r) we get,

—Dg,p(r) + ap(r) = =Dg, (42(r) = go(r)) + a(gr(r) + go(r)),

= =Dy 91(r) + a(1(r) + 9o(r)) + Dgy9o(r),

< —a(§1(r) +9o(r)) + g(r, 90(r)) + +a(@1(r) + go(r)) — 9(r,go(r))
0.

Alsop™® (0) = 51 (0) — 45 (0) = 0,
p(1) = 91(1) — 9o(1),
n(s) dn(s) — / dols) dn(s),

1

S— ™—

[ (5) — g0(s)] dn(s) = / 5(s) dis).

Then by Lemma 4.1, p(r) <0 = g1(r) < go(r), ¥Vr € (0, 1).
Now to prove @1(r) < g1(r) Vr € (0,1). Set p(r) = 91(r) — @1(r). Then by [B3] and
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definition of @1 (r), 1 (r), we get

— D, p(r) = = Dfy [in(r) — 1 (r)],
= =Diyin(r) = =D, (1)
= g(r,50(r)) — alin (r) — 9o(r)] — lg(r, a0 (r)) — alir (r) — G0 ()],
[9(r,90(r)) — g(r, 0 ()] — algn (r) — 9o (r)] + alizs (r) — oo (r)],
> —a(jo(r) — do(r)) — algn(r) — go(r)] + alix (r) — do(r)],
= —a(in(r) — @1(r)) = —ap(r).
Alsop™ (0) = 51" (0) — 2{”(0) = 0,

p(1) = (1) — 1 (1 / - / 1 (s) dn(s),
-/ " 5(5) dn(s).

Then by Lemma 4.1, p(r) > 0 = &1(r) < g1(r) Vr € (0,1). Now by mathematical
induction method, it is easy to verify that

o(r) < @1(r) <do(r) < ... < @p(r) < gm(r) < .. 9n0(r) < go(r).
Thus the sequences {Z,,}, {¥m} are uniformly bounded and monotonically non-
decreasing and non-increasing in %’. Hence the point-wise limit exist and are given
by lim @y (r) = @(r), lim gm(r) =y(r) on €. Next we claim that &(r) and y(r)
m—o00 m— 00
are the extremal solutions of BVP (1.1). Let z(r) be any solution of BVP (1.1)
different from z(r) and g(r) in Q*. So there exist some i such that @;(r) < z(r) <
gi(r), r € (0,1). Set p1(r) = z(r)—Z;41(r). So that, by assumption [B3], we obtain
—DV]')l (’I“) = —DUZ(’I“) — (—Dyi‘H_l),

=g(r,2(r)) = [g(r, &:(r)) — a(@ipa(r) — :(r))];
lg(r, 2(r)) = g(r, & (r))] + al@ip1 (r) — &i(r)),
—a(z(r) = &i(r)) + a(@ipa (r) — &:(r)),
—alz(r) = @i(r) = &2 (r) + &:(r)],

= —a(z(r) — Ziy1(r)) = —ap1(r),

P00 =0, (1) = / P (5) dn(s).

Then by Lemma 4.1, p1(r) > 0 implying that 4,41 (r) < z(r) for all 4. Similarly set
P2(r) = Yiy1(r) — z(r) and using [B3] we obtain
—D"pa(r) = =D"Yit1(r) — (=D"2(r)),

= lg(r,9i(r)) — a(Gis1(r) = gi(r)] — g(r, (7)),
[9(r;95(r)) — g(r, 2(r))] = al@i+1(r) — (7)),
—a(gi(r) — 2(r)) + a(@isa(r) — 5i(r)),
—algi(r) = 2(r) = Gia (r) + 3:(r)],

—a(giy1(r) — 2(r)) = —apa(r),

1
k) = ) = )5 (S s).
(0) =0, p2<1>f/0 pa(s) di(s)

—~ —

v
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Then by Lemma 4.1, pa(r) > 0 implying that z(r) < ¢;41(r) for all i. Hence
ip1(r) < z(r) < gip1(r), r € (0,1). Since @o(r) < z(r) < go(r) on €. Hence by
induction method, it follows that @;(r) < z(r) < ¢;(r) for all i. Taking limit as
i — 00, it follows that @(r) < z(r) < g(r) on €. Thus the functions &(r), y(r) are
the extremal solutions of the BVP (1.1). The proof is complete.

Next we prove uniqueness of solutions of the BVP (1.1).

Theorem 4.3. Assume that,
(i) [B1], [Ba], [Bs] holds,
(ii) there exists a > 0 such that the function g satisfies the condition
g(r,v) — g(r,v*) <a(v—20") (4.2)
for iog < v <v* <gg,r € (0,1).
Then the BVP (1.1) has a unique solution in Q*.

Proof:- We know z(r) < g(r) on ¥. It is sufficient to prove that &(r) > y(r).
Consider p(r) = g(r) — &(r). Then we have

—DVj(r) = ~D"j(r) — (~D"i(r)),
= 9(r,§(r)) — 9(r, &(r)),
< —a(y(r) — i(r)) = —ap(r)

and
1
pO0) =0, p(1) = / B(s) dn(s).
0

By Lemma 4.1, p(r) < 0 implying that y(r) < #(r). Hence #(r) = ¢(r) is the unique
solution of BVP (1.1).

5. CONCLUSION

By implementing Banach contraction mapping theorem, it is shown that the
mapping T has a unique fixed point in ¢’. Monotone iterative sequences {i,} and
{Ym} converging uniformly to (r) and y(r) as m — oo respectively are constructed.
Monotone technique developed is applied to prove that &(r), ¢(r) are minimal and
maximal solutions of problem (1.1) in Q*. Uniqueness of solutions of the nonlinear
problem (1.1) with integral boundary conditions is also obtained.
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ABSTRACT. In the present article, by applying our 2013 Metatheorem and the Brgndsted-
Jachymski Principle, we obtain various forms generalizations of Zorn’s Lemma and their
applications. Such examples are our version of the Zermelo fixed point theorem, equiv-
alent formulations of the Caristi fixed point theorem, and Jachymski’s 2003 theorem on
equivalent conditions when fixed point sets are same to periodic point sets.
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1. INTRODUCTION

There are several fields in the fixed point theory. Analytical fixed point theory
is originated from Brouwer in 1912 and concerns mainly with topological vector
spaces. Metric fixed point theory is originated from Banach in 1922 and deals with
generalizations of contractions and nonexpansive maps. Topological fixed point
theory relates mainly originated works of Lefschetz, Nielsen, and Reidemeister.

Now the Ordered fixed point theory began by Zermelo [36](1908) implicitly and
was developed mainly by Knaster [16](1928), Zorn [37](1935), Bourbaki [3](1949-

50), Tarski [30, 31](1949, 1955), Ekeland [10, 11](1972,1974), Caristi [7](1976),
Brézis-Browder [4](1976), Takahashi [29](1991), and many others. Moreover, in
1985-86 [18, 19], we discovered a Metatheorem stating that any maximum elements

in ordered sets can be fixed points, stationary points, collectively fixed points, collec-
tively stationary points, and conversely. Consequently, Ordered fixed point theory
is a rich source of information on fixed points of families of multimaps on ordered
sets.
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Recently in 2022 [20, 21, 22, 24], we obtained an extended form of Metatheorem
and applied it to a large number of known or new results. Moreover in 2022 [24], we
found the Brgndsted-Jachymski Principle on ordered sets showing the equalities of
maximal elements, fixed point sets and periodic point sets of progressive selfmaps.
Later we rearranged the order of statements to the 2023 Metatheorem in [25], which
will be the basis of future study in various fields of mathematics.

In the present article, by applying Metatheorem and its particular Brgndsted-
Jachymski Principle, we obtain various forms of Zorn’s Lemma and their applica-
tions.

In Section 2, we introduce our 2023 Metatheorem and the Brgndsted-Jachymski
Principle. Section 3 devotes various types of generalizations of Zorn’s Lemma. We
show their important applications in Sections 4-6. In Section 4, we introduce our
version of the Zermelo fixed point theorem and its usefulness. Section 5 devotes to
equivalent formulations of the Caristi fixed point theorem. In Section 6, we improve
Jachymski’s 2003 theorem [13] on equivalent conditions when fixed point sets are
same to periodic point sets. Finally, Section 7 devotes to some conclusion.

2. OUR METATHEOREM AND THE BRONDSTED-JACHYMSKI PRINCIPLE

In order to give some equivalents of the Ekeland variational principle, we intro-
duced a metatheorem in 1985-86 [18, 19] on equivalent statements in the Ordered
fixed point theory. Later we found some more additional equivalent statements and,
consequently, we obtain an extended version of the metatheorem in 2022 [20-22,24]
as follows in [25]:

Metatheorem. Let X be a set, A its nonempty subset, and G(x,y) a sentence
formula for x,y € X. Then the following are equivalent:

() There exists an element v € A such that G(v,w) for any w € X\{v}.

(B1) If f: A — X is a map such that for any x € A with x # f(x), there
exists a y € X \ {a} satisfying ~G(x,y), then f has a fized element v € A, that is,
v = f(v).

(82) If § is a family of maps f : A — X such that for any x € A with x # f(z),
there exists a y € X{x} satisfying ~G(x,y), then F has a common fixed element
v € A, that is, v = f(v) for all f €F.

(1) If f:A— X is a map such that -~G(x, f(x)) for any x € A, then f has
a fized element v € A, that is, v = f(v).

(v2) If § is a family of maps f: A — X satisfying -G (z, f(x)) for all x € A
with x # f(x), then § has a common fized element v € A, that is, v = f(v) for all
fEes.

(01) If F: A — X is a multimap such that, for any x € A\ F(x) there exists
y € X\\{z} satisfying ~G(z,y), then F has a fized elementv € A, that is, v € F(v).

(02) Let § be a family of multimaps F : A — X such that, for any x € A\ F(x)
there exists y € X \ {z} satisfying =G (z,y). Then § has a common fized element
v € A, that is, v € F(v) for all F € §.

(el) If F: A —o X is a multimap satisfying ~G(z,y) for any © € A and any
y € F(z) — {x}, then F has a stationary element v € A, that is, {v} = F(v).

(e2) If § is a family of multimaps F : A — X such that =G (x,y) holds for any
x € A and any y € F(z) \ {z}, then § has a common stationary element v € A,
that is, {v} = F(v) for all F € §.
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(C1) If a multimap F : A — X satisfy, for all x € A with F(x) # 0, there exists
y € X\ {x} such that =G(z,y) holds, then there exists v € A such that F(v) = 0.

(€2) Let § be a family of multimaps F : A — X such that, for all x € A with
F(z) # 0, there exists y € X \ {a} such that ~G(z,y) holds. Then there exists
v € A such that F(v) =0 for all F € §.

(n) If Y is a subset of X such that for each x € A\Y there exists a z € X \ {z}
satisfying -G(zx, z), then there exists av € ANY.

Here, = denotes the negation. We give the proof for completeness.

Proof. Note that each of (8), (), (¢) implies (8). and that (82) — (¢2) imply (81) —
(¢1), respectively. We adopt our previous proof for (o) = (y1) as follows:

(o) = (01) : Suppose v ¢ F(v) in (61). Then there exists a y € X \ {v}
satisfying -G (v, y). This contradicts («).

(61) = (1) : Clear.

(1) = (71) : Clear.

We prove (v1) = («) as follows:

(v1) = (€l) : Suppose F has no stationary element, that is, F'(x)\ {z} # 0 for
any x € A. Choose a choice function f on {F(z)\ {z} : z € A}. Then f has no
fixed element by its definition. However, ~G(z, f(z)) for any = € A. Therefore, by
(v1), f has a fixed element, a contradiction.

(e1) = (72) : Define a multimap F : A — X by F(z) := {f(z): f € T} # 0
for all x € A. Since ~G(z, f(x)) for any z € A and any f € §, by (el), F has a
stationary element v € A, which is a common fixed element of §.

(v2) = (@) : Suppose that for any = € A, there exists a y € X \ {z} satisfying
—G(x,y). Choose f(x) to be one of such y. Then f: A — X has no fixed element
by its definition. However, -G(z, f(x)) for all x € A. Let § = {f}. By (72), f has
a fixed element, a contradiction.

Consequently, we showed equivalency of () — (72).
We show that (a) <= (€2) as follows:

() + (1) = (€2) : By (), there exists a v € A such that G(v,w) for all
w € X \ {v}. For each F € §, by (el), we have a vp € A such that {vp} = F(vp).
Suppose v # vg. Then G(v,vr) holds by («) and ~G(v,vr) holds by assumption
n (e2). This is a contradiction. Therefore v = vp for all F' € 5.
(e2) = (el) = () : Already shown.

(o) = (€2) : By («) there exists v € A such that G(v, x) holds for all z € X\{v}.
Suppose to the contrary, there exists F' € § such that F'(v) # 0. By hypothesis, there
exists w € X with w # v and =G (v,w) holds. Therefore it leads a contradiction
and F(v) = for all F € §.

((2) = (@) : Suppose that, for each z € A, there exists y € X \ {z} such that
—G(z,y) holds. For each = € A, define a multimap F : A — X \ {z} by

F(z) ={y € X : ~G(z,y)} # 0 for all z € A.
Then, by (¢2), there exists v € A such that F(v) = ). This is a contradiction.

(o) = (n) : By (), there exists a v € A such that G(v,w) for all w # v. Then
by the hypothesis, we have v € Y. Therefore, v € ANY.
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(n) = («) : For all z € A, let

Alz) ={ye X :x #y, -G(z,y)}.

Choose Y = {z € X : A(z) = 0}. If 2 ¢ Y, then there exists a z € A(x). Hence the
hypothesis of (1) is satisfied. Therefore, by (1), there exists a v € ANY. Hence
A(v) = 0; that is, G(v,w) for all w # v. Hence («) holds.

This completes our proof. O

Remark 2.1. All of the elements v’s in Metatheorem are same as we have seen in
the proof. We adopted the Axiom of Choice in (71) = (el).

Example 2.2. Khamsi [15]: Let A be an abstract set partially ordered by <. We
will say that a € A is a minimal element of A if and only if b < @ implies b = a. The
concept of minimal element is crucial in the proofs given for Caristi’s fixed point
theorem.
(K) Let (A, <) be a partially ordered set. Then the following statements are
equivalent.
(1) A contains a minimal element.
(2) Any multimap T defined on A, such that for any x € A there existsy € T'(x)
with y < x, has a fized point, i.e., there exists a in A such that a € T'(a).

This follows from Metatheorem (a) and (41).

For a partially ordered set (X, <) and a map f: X — X, we define

Max(x) : the set of maximal elements;
Fix(f) : the set of fixed points of f;
Per(f) : the set of periodic points z € X; that is, x = f"(x) for some n € N.

In our previous work [25], we established the following based on Brgndsted [5] in
1976 and Jachymski [13] in 2003:

Brgndsted-Jachymski Principle. Let (X, <) be a partially ordered set and f :
X — X be a progressive map (that is, x < f(x) for allx € X ). Then X admits
a maximal element v € X if and only if v is a fized point of f if and only if v is a
periodic point, that is,

Max(x) = Fix(f) = Per(f).

This is a particular form of Metatheorem and not claiming the non-emptiness of
three sets. We noticed that, in most applications of this principle, the existence of
a maximal element or a fixed point is achieved by the upper bound of a chain in
(X, <) as we can see examples in Section 4.

3. GENERALIZED ZORN’S LEMMA

The following is a useful consequence of Metatheorem as in [25] without listing

(81) = (¢1).

Theorem 3.1. Let (X, <) be a partially ordered set, xy € X, let A = S(xg) =
{y € X : o < y} have an upper bound (resp. A =T(xg) ={z€ X : 2 5 9} have
a lower bound) v € A.

Then the following equivalent statements hold:

() There exists a mazimal (resp. minimal) element v € A such that v £ w
(resp. w £ v) for any w € X\{v}.
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(8) If ¥ is a family of maps f : A — X such that for any © € A with x # f(x),
there exists a y € X \ {a} satisfying x <y (resp. y = x), then § has a common
fized element v € A, that is, v = f(v) for all f € F.

(v) If § is a family of maps f: A — X satisfying x =< f(z) (resp. f(z) X xz)
for all x € A with x # f(x), then § has a common fized element v € A, that is,
v=f(v) forall f €F.

(6) Let § be a family of multimaps F : A — X such that, for any v € A\ F(x)
there exists y € X \ {x} satisfying x <y (resp. y X ). Then § has a common fized
element v € A, that is, v € F(v) for all F € §.

(e) If § is a family of multimaps F : A — X such that x <y (resp. y =< x) holds
forany x € A and any y € F(x) \ {z}, then § has a common stationary element
v € A, that is, {v} = F(v) for oll F € §.

(¢) Let § be a family of multimaps F : A — X such that, for oll x € A with
F(x) #0, there exists y € X \ {z} such that x <y (resp. y < x) holds. Then there
exists v € A such that F(v) =0 for all F € §.

(n) If Yis a subset of X such that for each x € A\Y there exists a z € X \ {z}
satisfying x X z (resp. z < x), then there exists av e ANY.

Proof. («) Since A has an upper bound v € A, for each © € A, we have zp < = < v.

If v < w for some w € X, then w € S(zp) = A and w < v. Since (X, ) is partially

ordered, we have w = v. Hence v is maximal. Therefore, the maximal case of ()
holds. Similarly, the minimal case of («) also holds.

Let G(x,y) bez A y (resp, y A «). Then (a)—(n) are equivalent by Metatheorem.

O

Remark 3.2. (1) All the elements v’s in Theorem 3.1 are same as we have seen in
the proof of Metatheorem.

(2) Note that (o) <= (y1) is a new proof of the Brgndsted-Jachymski Principle.

(3) Theorem 3.1 improves the Abian-Brown fixed point theorem, the Tarski-
Kantorovitch theorem, and Zorn’s lemma. See [25].

(4) In Sections 4 and 5, we can see some other theorems which are closely related
to Theorem 3.1

A partially ordered set (X, <) is said to be inductive (complete, resp.) if every
non-empty chain in X has an upper bound (a least upper bound, resp.).
From Theorem 3.1, we have the following:

Corollary 3.3. Let (X, %) be a partially ordered set satisfying one of the following:

(a) all nonempty chain in X has an upper bound (< X is inductive),
(b) all nonempty chain in X has a least upper bound (< X is complete),
(c) all nonempty well-ordered subset of X has an upper bound,

(d) all nonempty well-ordered subset of X has a least upper bound,

Then the equivalent statements in Theorem 3.1 for the mazimum case hold.

From the Brgndsted-Jachymski Principle and Corollary 3.3, we have the following
generalization of Zorn’s lemma:
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Corollary 3.4. Let (X, <) be a partially ordered set satisfying one of (a)—(d) in
Corollary 3.3. If f : X — X is progressive, then we have

Max(x) = Fix(f) = Per(f) # 0.

Example 3.5. For complete partially ordered sets, particular results of Corollary
3.4 are known as follows; see Kang ([14], p.20):

Tarski [30] and Davis [8] proved that the completeness of a lattice is equivalent
to the existence of fixed points of increasing selfmap. And Tascovié [32] proved that
a partially ordered set is complete iff every progressive selfmap has a fixed point.

Smarzenski [20] obtained a result related to (y1). Smithson [27, 28] obtained
some fixed point theorems for a partially ordered space satisfying (d) and multimaps
satisfying (d1).

Example 3.6. Recall that Taskovi¢ [32] showed that Zorn’s lemma is equivalent
to the following Theorem 3.1(7):

(T) Let F be a family of self-maps defined on a partially ordered set A such
that © < f(x) [resp. f(x) < x] for allx € A and all f € F. If each chain
in A has an upper bound (resp. lower bound), then the family F has a
common fized point.

4. EXTENDING ZERMELO’S THEOREM

The following is known the Zermelo fixed point theorem by Dunford-Schwartz
([9], p-5, Theorem 1.2.5.) :

Theorem 4.1. (Zermelo) Let (P, <) be a partially ordered set in which every chain
has a supremum. Assume that f : P — P is such that f is progressive, that is,

p = f(p) for allp € P.
Then f has a fixed point.

Amann [1] derived several fixed point theorems from Theorem 4.1. For exam-
ple, Tarski’s fixed point theorem, fixed point theorems for condensing maps and
nonexpansive maps.

Jachymski [13] noted: “The above theorem attributed to Zermelo although it
does not appear explicitly in any of his papers. However, a proof of it can be de-
rived from Zermelo’s proof [36] of the well-ordering principle. This observation is
due to Bourbaki [3], who was the first to formulate the theorem in the above form.
(Actually, Bourbaki used well-ordered subsets of P instead of chains so his assump-
tion is formally weaker than that of Theorem 4.1. However it is more convenient
for us to work with chains as will be seen in the sequel. The proof of Zermelo’s
theorem does not depend on the Axiom of Choice (AC). If, however, we allow the
use of Zorn’s Lemma, then the proof is straightforward; moreover, the assump-
tion on (P, <) can be weakened then to ‘every chain has an upper bound’ This is
Kneser’s [17] fixed point theorem which turns out to be equivalent to the AC as
shown by Abian [1]. In the literature, Zermelo’s Theorem is sometimes called the
Bourbaki-Kneser theorem (cf. Zeidler [35]. p.504 )”

Recently Toyoda [33] also noted: “The Zermelo fixed point theorem is also known
as the Bourbaki fixed point theorem or the Bourbaki-Kneser fixed point theorem.
It implies the Caristi fixed point theorem, the Bernstein-Cantor-Schréder theorem,
the Ekeland variational principle, the Takahashi minimization theorem, and others.
Moreover, under the Axiom of Choice, it implies Zorn’s Lemma.”
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We have generalizations of the Zermelo theorem from Section 3, see Theorems
3.1(y1), 3.3(71), Corollaries 3.4(y1), 3.5 for single-valued case and their multi-valued
versions in Section 3. Therefore, many generalizations of Zorn’s Lemma also extends
the Zermelo theorem.

As an example, from Theorem 3.1(«) and (v1), we have the following:

Theorem 4.2. Let (X, <) be a partially ordered set, xg € X, let A= S(zo) ={y €
X 2o <y} has an upper bound. If f: A — X is a map such that x < f(z) for
any x € A, then

Max(x) = Fix(f) = Per(f) # 0.

Recall that Theorem 3.1(v1) follows from («) under the Axiom of Choice.
From Theorem 3.1(«) and (y1), we have the following:

Theorem 4.3. Let (X,=<) be a partially ordered set, xg € X, ¢ : X — X a
map, and let B = {¢"(xg) € X : n € N} have upper bounds and A = B U
{its upper bounds} such that x < @(x) for all x € A. Then we have

Max(=x) = Fix(p) = Per(p) # 0.

5. EQUIVALENT FORMULATIONS OF CARISTI THEOREM
In this section, we consider a particular case of Theorem 3.1 as follows:

Theorem 5.1. Let (X,<) be a partially ordered metric space, and a function
¢ : X — R be lower semicontinuous such that

<y dff da,y) <o) —ely) for zyeX.
Let xg € X and A= S(zxo) ={y € X : 20 < y} have an upper bound.
Then the following equivalent statements () — (n) of Theorem 3.1 hold.

(o) There exists a mazimal element v € A, that is, d(v,w) > @(v) — p(w) for
any w € X \ {v}.
(B) If § is a family of maps f : A — X such that for any x € A with x # f(x),

there exists a y € X \ {x} satisfying d(z,y) < p(x) — ¢(y), then § has a common
fized element v € A, that is, v = f(v) for all f € F.

() If § is a family of maps f: A — X satisfying d(z, f(z)) < o(z) — o(f(z))
for all x € A with x # f(x), then § has a common fized element v € A, that is,
v=f() foral f €F.

(0) If § is a family of multimaps F : A — X such that, for any v € A\ F(x),
there exists y € X \{z} satisfying d(x,y) < o(x) —(y), then § has a common fized
element v € A, that is, v € F(v) for all F € §.

(e) If § is a family of multimaps F : A — X such that d(z,y) < p(z) — ¢(y)
holds for any x € A and any y € F(x) \ {z}, then § has a common stationary
element v € A, that is, {v} = F;(v) for all F € §.

(¢) Let § be a family of multimaps T : A — X such that, for all x € A with
T(x) # 0, there exists y € X \ {x} such that d(z,y) < p(z) — ¢(y) holds. Then
there exists v € A such that T(v) =0 for all T € §.

(n) If Y is a subset of X such that for each x € A\Y there exists a z € X \ {x}
such that d(z, z) < p(x) — ¢(z), then there exists an elementv € ANY.

From Theorem 5.1 we have equivalent formulations of the Caristi theorem as
follows:
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Theorem 5.2. Let (X, d) be a complete metric space, and a function p : X — RT
be lower semicontinuous such that

ey dff da,y) < e(x) —ely) for zyeX.
Then the equivalent statements (o)) — (n) of Theorem 5.1 hold where we include

(v1) (Caristi) If f: X — X is a map such that d(x, f(x)) < p(z) — o(f(x))
for any x € X, then f has a fized and periodic element v € X, that is, v = f(v).

Proof. Since (1) holds by the Caristi fixed point theorem and («) holds by Brunner
[?] in 1987, so do the others. This completes our proof. O

There are possibly dual equivalent formulations of the Caristi theorem.

6. JACHYMSKI’S 2003 THEOREM

In this article, we introduced many examples of maps f : X — X satisfying
Per(f) = Fix(f) # (). Such sets X can have more rich properties by applying the
following main theorem of Jachymski ([13], Theorem 2):

Theorem 6.1. Let X be a nonempty abstract set and T : X — X. The following
statements are equivalent:
(a) Per(T) = Fix(T) # 0.
(b) (Zermelo) There exists a partial ordering < such that every chain in (X, %)
has a supremum and T is progressive with respect to <.
(c) (Caristi) There exists a complete metric d and a lower semicontinuous
function ¢ : X — RY such that T satisfies the Caristi condition.
(d) There exists a complete metric d and a d-Lipschitzian function ¢ : X —
R* such that T satisfies the Caristi condition and T is nonexpansive with
respect to d; i.e.

d(Tz,Ty) < d(z,y) forall z,ye X.

(e) (Hicks-Rhoades) For each a € (0,1), there exists a complete metric d such
that T is nonexpansive with respect to d and

d(Tz,T?z) < ad(z,Tz) for all z € X.

(f) There exists a complete metric d such that T is continuous with respect to
d and for each x € X, the sequence (T"x)32, is convergent (the limit may
depend on x).

(g) There exists a partition of X, X = UweF Xy, such that all the sets X, are
nonempty, T-invariant and pairwise disjoint, and for all v € T', T|x_ has
a unique periodic point.

(h) For each « € (0,1), there exists a partition of X, X = U'yEF X, and
complete metrics d, on X, such that all the sets X, are nonempty; 1T-
invariant and pairwise disjoint; and

dy(Tz,Ty) < ady(z,y) for all z,y € X.

Remark 6.2. ([13]) Implication (a) = (b) is a converse to Zermelo’s theorem.
Implication (a) = (c) is a reciprocal to Caristi’s theorem; in fact, a stronger result,
(a) = (d) can be obtained here. Implication (a) = (e) is a converse to a fixed
point theorem of Hicks-Rhoades. Finally (a) = (f) answers a question posed by
Matkowski.
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Comments 6.3. Each of (a)—(h) seems to be order theoretic fixed point theorems.
For them, we state our own comments.

(a) This could be Fix(T) = Per(T') = Max(<) # 0 by defining < on X.

(b) Zermelo’s theorem is improved in Section 4 and has many equivalents there.
Note that its conclusion should be as above in (a).

(c) Caristi’s theorem is improved by Theorem 5.2 and its conclusion should be
as in (a).

(d) This is a variant of Caristi’s theorem and its conclusion should be as in
(a).

(e) Here nonexpansiveness is redundant in view of Theorem H(iv) in [25].

7. CONCLUSION

Zermelo’s fixed point theorem suggested in 1904 and 1908 more than one hun-

dred years ago, Kuratowski-Zorn’s Lemma or Zorn’s Lemma in 1935, Bourbaki’s
fixed point theorem in 1949-50, and some other classical results are all improved
in the present article. Moreover, their equivalent formulations based on our 2023
Metatheorem and the Brgndsted-Jachymski Principle should be reflected in the
most of classical works on Ordered fixed point theory.

In many fields of mathematical sciences, there are plentiful number of theo-

rems concerning maximal points or various fixed points that can be applicable our
Metatheorem. Some of such theorems can be seen in our previous works [20-25] and
the present article. Therefore, Metatheorem is a machine to expand our knowledge
easily. In this article we presented relatively old and well-known examples.
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ABSTRACT. In this paper, the supply chain network equilibrium model which com-
posites of the disaster relief part is constructed. In such model, we consider five tiers of
decision makers: manufacturers who produce the products for sale and donation, retailers,
demand market who can purchase products, freight service providers who transport the
relief items (or the products) to demand points and, finally, the demand points. The be-
havior of all decision makers is considered by using the variational inequality formulation.
Furthermore, the qualitative properties of such model are studied. Finally, we give some
numerical supply chain examples of such model.

KEYWORDS: supply chain network, equilibrium model, variational inequality, qualita-
tive property.
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1. INTRODUCTION

Mathematical modeling of supply chain is a model in economic which contains
many important and interesting researches. Supply chain studies are both indus-
trial and academia. The supply chain is the coordination of organizations, people,
activities, information and resource related to production and transportation prod-
ucts from suppliers to customers. It can be seen that, in supply chain, there will be
a competitive. Since it has multi decision makers, who are able to make indepen-
dent decisions. As a result, competitive supply chain networks and supply chain
equilibrium models and others are examined and studied. Another interesting thing
is supply chain management that researchers present in the mathematical models
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of supply chain networks and analyze in the process such as production, trans-
portation, purchase products, etc. In addition, the optimization of their models is
considered such as supplier selection, distribution network design, production coor-
dination, and inventory management, etc. Firstly, the content of the supply chain
network consist of multiple manufacturers and retailers, with the manufacturer pro-
ducing the same product while the retailer purchases the product and sells it to the
customers in the market. The study and development of research continues to be
ongoing. In 2002, A. Nagurney et. al. [12] proposed the concept of supply chain
network equilibrium by mentioning manufacturing enterprises, retailers in supply
chain competition, the purchasing behavior of consumers and considered by using
the variational inequality and establishing the supply chain network equilibrium
model. Later, many authors developed this concept in various fields until now, see
[3, 6, 19]. But not only that, in 2016, A. Nagurney [10] studied the freight service
provision for disaster relief on the concept of network model by establishing the
competitive freight service provision network model for disaster relief. The results
which obtained from the research was the equilibrium shipment and price patterns
in the freight service provision sector. Freight service provision network model de-
scribes the network model related to the humanitarian organizations, who must use
the freight service providers for transporting supplier to demand point or victims.
It is seen that efficient transportation is essential to humanitarian operations and
disaster relief. At the same time, it is well known that the cost of the shipping is a
secondary concern. However, the principles of study focus on the center of decision-
makers and the competition which involves the freight service provision. But the
survival of relief organizations is essential and, at the same time, aims to reduce and
save victims’ relief. But it all depend on smart financial and budget management,
thus resulting in the efficient use of the service is necessary. Larger humanitarian
organizations may have their own freight forwarding services. But they do not have
the financial resources to maintain the freight fleets. So, they have to purchase
the service. The freight service providers want to maximize the profit while the
humanitarian organizations have no profit. They also have to compete with others
in order to gain business. Hence, their behavior is different from humanitarian or-
ganizations that not only requires the responsible use of the source of funds, but
under pressure to deliver relief items to respond to disasters in a timely manner.
According to study [10], the disaster relief supply chain continues to be developed,
see [11, 14].

On the other hand, the variational inequality is well known that it is the powerful
tool for using in industry, finance, economics, social and pure and applied science.
In the supply chain, the variational inequality plays an important role because of
having a form that is easy to apply and consider. There have also been many studies
on the variational inequality problem for a long time, then we have many researches
on such problem and can use the knowledge of the variational inequality for fur-
ther application and development. Most of the times, the variational inequality in
supply chain will be used for finding the optimization and equilibrium of problem
by introducing the variational inequality associated with a supply chain network
and considering the variational inequality formulations of equilibrium conditions to
obtain the quantitative properties of that equilibrium pattern, see [10, 12, 15] and
the references therein.

With all of the above in this article, authors are interested the network model
which developed from [10] of A. Nagurney and [12] of A. Nagurney et.al. In our
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network model, we consider the manufacturers who want to produce products for
sale in the demand market and still want to produce to help victims as well. In
this concept, we were inspired by the epidemic situation (COVID-19) which is the
deadliest pandemic of the world today and the affect people, economics and social
activities around the world. But the most interesting thing, there is a shortage of
medical devices such as PPEs, respirators and devices that protect themselves from
COVID-19 such as masks and alcohol gels, etc. For this reason, in order for the
public to protect themselves initially, government agencies therefore encourage and
seek cooperation for people to wear masks and use alcohol gels all the time. But
there might be some people who are poor or in a remote area making it impossible
to access these devices. The producers therefore allocate relief for such people. As
a result of this situation, people have a great demand for such products (or relief
items), resulting in a shortage. This is due to the higher demand, but the amount
of production remains the same. In addition, in a part of the manufacturer, if
the manufacturers have donated the products to the demand points, then we are
interested that they can take the cost of the donation to tax-deductible, which is
the income that comes back from the donation. For this reason, we are interested
in exploring a supply chain that has both sales and donations in a network to
determine the equilibrium network model of such supply chain network.

The rest of this paper organized as follows. In section 2, the fundamental con-
cept of our work is proposed. In section 3, we construct the supply chain network
comprising disaster relief and propose the variational inequality of each behavior
in such network model and consider the variational inequality problem. The qual-
itative property of the variational inequality problem is considered. The existence
and uniqueness of the solution of the variational inequality problem are established.
Finally, the algorithm of the network model which is constructed and used for nu-
merical example to understand in the content and network model is shown in section
4 and 5 and the conclusion of results of this paper is proposed in section 6.

2. PRELIMINARIES

Firstly, we will recall the variational inequality problem which was introduced
by Kinderlehrer and Stampacchia in 1964 in [1] as follows: Determine X* € K such
that

(F(X*),X — X*) >0, VX € K. (2.1)

where X and F(X) are an n-dimensional vector with F' is a continuous function
from K to R™, K is closed and convex, and (-,-) denotes the inner product in n-
dimensional Euclidean space.

Next, we will present some properties which are used for considering the existence
and uniqueness of the solution of the variational inequality problem as follows:
throughout of this paper, we let K be a closed and convex set.

Definition 2.1. A mapping F' : K — R" is said to be a monotone if
(F(X)—F(X"), X' —X"y>0 (2.2)
for all X', X" € K.

Definition 2.2. A mapping F : K — R" is said to be a strictly monotone if for
any two X', X" € K and X’ # X" such that

(F(X') — F(X"), X — X") > 0. (2.3)
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By the condition of the strictly monotone, we can obtain the existence and
uniqueness of the solution of the variational inequality as the following theorem.

Theorem 2.3. Suppose that F is a strictly monotone mapping on K. Then, the
solution of (2.1) is unique.

Definition 2.4. A mapping F' : K — R" is said to be a Lipschitz continuous if
there exists a real number L > 0 such that

[1F(X") = F(X")|| < LI|X" = X" (2.4)
for all X', X" € K.

For the concept of the Lipschitz continuous will be used to guarantee that an
algorithm which is constructed by projected method converges which will be pre-
sented again in section 4.

3. MAIN RESULTS

In the above concepts of the variational inequality (2.1), now we will present some
example which used the variational inequality problem to consider the equilibrium
model and guarantee the existence unique solution of the variational inequality
problem.

By the inequality (2.1), since F': K — R" is a mapping and X € K, which K is
a closed and convex set in R™. So, if we have X € K, and

F(X) - (FI(X)an(X)aFS(X)7F4(X)3F5(X))7

where F? is functions depend on X with i = 1,2,3,4,5, which can formulate in
standard form (2.1). Then, we can be solve (find X*) the unique solution of the
problem by using the previous concepts of the variational inequality problem.

The following article, we will propose a supply chain network model which can be
formulate in a variational inequality problem and used the concepts of variational
inequality for considering the equilibrium model.

In this model, we consider M manufacturers who are involved in the production
of product for sale and donation which is denoted by a typical m, the N retailers
who can be purchased product from manufacturers and transported to KX demand
markets. The retailers will be denoted by a typical n, and the demand markets
will be denoted by a typical k. In another way, M manufacturers will be delivered
some products for donation by L competing freight service providers which denote
a typical freight service providers by [, and the manufacturers are interested to
deliver the relief items to the O demand points, a typical demand points by o. The
structure of the supply chain network model comprising disaster relief is depicted
in Figure 1.

The following article we will consider the behavior of all desition makers by
starting with the profit maximization for manufacture 1.

3.1. Behavior of the manufacturers. Since each manufacturer will produce the
products for sale and donation. A manufacturer ships the product to the retailers
with the amount of product shipped between manufacturer m and retailer n which
denoted by ¢, In another way, a manufacturer still wants to ship the product
to the demand points in areas that are scarce and we let ¢;) denotes the amount
of the relief items, which has in stock and has prepositioned, that m contracts
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Manufacturers

Demand Markets Demand Points

FIGURE 1. Network structure

with freight service provider I to deliver to demand point o. So, we let ¢}, denotes
the nonnegative production output of the product for sale and ¢2, denotes the
nonnegative production output of the product for donation by manufacturers m. We
group the product shipments between the manufacturers and the retailers into the
column vector Q' € Rf\f N We group the relief item shipments of each manufacturers
m into the vector Q? € RJ‘JF/[ LO_ We assume that each manufacturers m is faced with
a production cost function f,,, which can depend on the entire vector of production
outputs, that is,

fm :fm(leQ2) (31)

for all m. A transaction cost denotes by ¢, which is given by

for all m,n, that the transaction cost includes the cost of shipping the product.
Moreover, each manufacturers are faced with a total cost é,,; associated with trans-
acting with freight service provider [. This cost includes the cost associated with
handling the product until pickup by provider [ and interacting with provider .
Observe that the cost associated with a manufacturer in transacting with a freight
service provider can depend not only on its own shipments associated with the
freight service provider but on those of other manufacturers and the same or other
freight service providers. The freight service providers guarantee delivery of the
disaster relief items in a timely fashion, given what is known about the disaster
landscape, and charge accordingly. So, the quantity produced by manufacturer m
must satisfy the following conservation of flow equation:

N O L
qm = Z Gmn + Z Z ng (33)
n=1 o=11=1
This states that the quantity produced by manufacturer m; q,, is equal to the sum of
the quantities shipped from the manufacturer to all retailers and all demand points.
Next, the price charged of the product by manufacturer m to retailer n (supply
price) is denoted by p3,,, and the per unit price that freight service provider I
charges m for transport to o is denoted by p;*. Moreover, in the donation of items,
the donor can bring the cost of the donation to a tax deduction. Then, it can be
seen that when the product manufacturer donates their stuff, they receive a refund
from that donation. The amount of refunded will depend on the manufacturer’s tax
rate levied on the manufacturer’s net income. We denote the tax rate levied on the
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net yield of manufacturer m as ¢,, with ¢, € [0,1) and denote the price of product
which produce by manufacturer m to donate into all of demand points as p},, where
this price does not exceed the lowest price the manufacturer m sells to the retailers,
that is, p), < pimn,Vn = 1,2,--- | N. So, these prices which are revealed once the
supply chain network equilibrium model for disaster relief is solved.

The total costs, incurred by a manufacturer m, are equal to the sum of their
production cost plus the total transaction costs for sale and for donation plus the
price charges by freight service provider. The revenue of a manufacturer m is equal
to the price that the manufacturer charges for the product (which the retailers are
willing to pay) times the total quantity purchased of product from the manufacturer
by all the retail outlets and the income received from tax breaks. By the conserva-
tion of flow equations (3.3), we can express the criterion of profit maximization for
manufacturer m as

M=

L O
Maximize PlmnGmn + 1 ZZ Prmllo — fm( Q Q Zcmn Gmn)
n=1 =1 o=1
L O L
Z szrol qlo Z qlo (34)
=1 o=1 =1
subject to:
qmn > 0 for n=1,2,--- N, (3.5)
g, > 0 for [=1,2,---,L;0=1,2,---,0, (3.6)
M L O m
Go = Zm:l 161 Zo:l dio (37)

where ¢, is the number of products that received at the demand point o.

Assume that the manufacturers compete in a noncooperative fashion. The produc-
tion cost functions, the transaction cost functions and the total cost associated with
freight service provider for each manufacturer are continuously differentiable and con-
vex. Given that the governing equilibrium concept underlying noncooperative behavior is
that of Cournot [1] and Nash [7, 8] which states that each manufacturer will determine
their optimal production quantity and shipments. The optimality conditions for all man-
ufacturers can be expressed as the following variational inequality (see Nagurney [9]) :
Determine (Q'", Q%) € RYNHTMLO satistying

o—1 8Q'm n 0 dmn

m=1n=1

M N M 1* 2% *
Z Z |:Z 8fs(Q 7Q ) + acmn(qm”) — p;mn:| X [an - q:nn]

M L M * * *
Of:(Q",Q%) | dewulaly e . s
#3555 [SE OO0 B ] i o

1 8QID aqlo
(3.8)
for all Q' € R¥N Q2 ¢ RfLO.

The optimality conditions as expressed (3.8) have an economic interpretation that, in
the part for sale, a manufacturer will ship a positive amount of the product to a retailer,
if the price that the retailer is willing to pay for the product is precisely equal to the
manufacturer’s marginal production and transaction costs associated with that retailer.
But if the manufacturer’s marginal production and transaction costs exceed the price what
the retailer is willing to pay for the product, then the flow on the link will be zero. In
the part for donation, if a manufacturer will ship a positive amount of the product to a
demand point. Then, the amount of refund from the tax deduction exceed the total cost of
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a manufacturer for donation the product to demand point: but if not so, a manufacturer
will be also ship a positive amount of the product to a retailer, where the price charged by
manufacturer to retailer, pi,,,, is greater than the manufacturer’s marginal production and
transaction costs and, moreover, the profit for sale product of a manufacturer is greater
than the total cost of a manufacturer for donation the product to demand point, that is,
the sum of the first term of inequality (3.8) is greater than the sum of the second term of
such inequality.

3.2. Behavior of the retailers. The retailers are involved in transactions both the man-
ufacturers and the consumers which the retailers wish to obtain the product for their retail
outlets as well as with the consumers, who are ultimate purchasers of the product.

A retailer n is faced with a handling cost, which may include the display and storage
cost associated with the product, and this cost is denoted by c¢,. In the simplest case,
we would have that ¢, is a function of Zﬁf:l Qmn, that is, the handling cost of a retailer
is a function of how much of the product which they have obtained from the various
manufacturers. Now, we let the function to depend on the amounts of the product which
held by other retailers and we can write

cn = cn(Q) (3.9)

for all n. Next, we will denote p3,, for a price with the product at their retail outlet for
retailer n, which this price in the model will also be endogenously determined and denotes
Gni for the amount of the product, which is purchased by the consumer k& from the retailer
n. Normally, the retailers want the maximization of profit. Then, the optimization problem
of a retailer n is given by

K

M
Maximize p3, Z Gnk — Cn(Ql) - Z Pimndmn (3.10)
k=1 m=1

subject to:

K M
Z‘iﬂk < Z gmn (3.11)
k=1 m=1

and the nonnegative constraints: ¢mn, > 0 and G, > 0 for all m and k. Objective function
(3.10) express that the difference between the revenues minus the handling cost and the
payout to the manufacturers should be maximized and constraint (3.11) expresses that
consumers cannot purchase more from a retailer than what held in stock.

Now, we consider the optimality conditions of the retailers assuming that each retailer is
faced with the optimization problem (3.10) subject to (3.11), and assume that the variables
is nonnegativity. Here, we also assume that the retailers compete in a noncooperative
manner given the actions of the other retailers so that each retailer maximizes his profits.
Note that, at this point, we consider that retailers seek to determine not only the optimal
amounts purchased by the consumers from their specific retail outlet but, also, the amount
that they wish to obtain from the manufacturers. Hence, there is a monitor that receives
data from manufacturers, retailers and consumers to consider and determine the optimal
amount and price that manufacturers sell to retailers, amount and price that retailers sell
to consumers, and the price that consumers are willing to purchase so that all parties
are satisfied in trading. The monitor must be the one who holds the information as well
and is the most confidential so that other party does not know each other’s information.
Therefore, in equilibrium, all the shipments between the tiers of network agents will have
to coincide. Assume that the handling cost for each retailer is continuous and convex.
The optimality conditions for all the retailers coincide with the solution of the variational
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inequality: Determine (Q1*7Q3*7'y*) € RfAH'NK"'N satisfying
M N * N K
den (Q" . . . . s -
Z Z |:6() + Pimn — Tn| X [q"”l - an} + Z [_p2n + fYn] X [an - an]
m=1n=1 gmn n=1k=1
N [ M K
[ zq::k} <120 612)
n=1 Lm=1 k=1

for all (Q',Q%, ) € RfN*'NK'*'N, where 7, is the term of the Lagrange multiplier asso-
ciated with constraint (3.11) for retailer n,~ is the N-dimensional column vector of all
the multipliers, and Q® is the group of the product flows between the retailer’s and the
demand markets in the N K-dimensional vector.

We now have the economic interpretation of the retailers, optimality conditions. From
the second term in inequality (3.12), we see that, if consumers at demand market k pur-
chase the product from a particular retailer n,(that is, g, is positive) then the price
charged by retailer n, p3,,, is precisely equal to ,;,, which in the third term in the inequal-
ity, serves as the price to clear the market from retailer n. Note that, from the second
term (3.12), if no product is sold by a particular retailer, then the price associated with
holding the product can exceed the price charged to the consumers. Furthermore, from
the first term in inequality (3.12), we can infer that, if a manufacturer transacts with a
retailer resulting in a positive flow of the product between the two, then the price ~;; is
precisely equal to the retailer n’s payment to the manufacturer, pI,,,, plus its marginal
cost of handling the product from the retailer.

3.3. Behavior of the consumers at the demand markets. In this section, we will
describe the consumers located at the demand markets. We are interested in deciding on
the consumer’s product consumption, where consumers have not only the price charged
for the product by the retailers, but also the transaction cost to obtain the product.

We recall G, denotes the amount of the product which is purchased from retailer n by
consumers at demand market k and let ¢, denotes the transaction cost associated with
obtaining the product by consumers at demand market k£ from retailer n and assume that
the transaction cost is continuous and positive. We can write the general form as follows

Cnk = Enk(Q°) (3.13)

for all n, k. Further, we let ps; denotes the price of the product at demand market k£ and
di denotes the demand for the product at demand market k and assume the continuous
demand functions as follows

dy = di(ps3) (3.14)

for all k, where p3 is the K-dimensional column vector of demand market prices. By
(3.14), the demand for consumers for the product at a demand market depends not only
on the price of the product at that demand market but also on the prices of the product
at the other demand markets. Thus, consumers at a demand market also compete with
consumers at other demand markets.

Next, we will discuss the equilibrium conditions between consumers at demand market
k and retailer n that is the price of product at demand market k is relative to the consumers
who take the price charged by the retailers for the product for retailer n plus the transaction
cost associated with obtaining the product, in making their consumption decisions, and
there is still a relationship between the demand for the product at demand market k£ and
the amount of the product which is purchased by the consumers from the retailers. Then,
we can write the equilibrium conditions for consumers at demand market k as follows: for
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all retailers n,n =1,2,--- , N,

e e = i @ >0,
Pon + G (@) P01k (3.15)
> P3k if Gnr, =0

and

<SSV i i =0 (19
In equilibrium price, Condition (3.15) state that if the consumers at demand market k
purchase the product from retailer n, then the price charged by retailer for the product
plus the transaction cost does not exceed the price that the consumers are willing to pay
for the product and Conditions (3.16) state that if the consumers who are willing to pay
for the product at the demand market is positive, then the quantities purchased of the
product from the retailers will be precisely equal to the demand for that product at the
demand market. This condition correspond to the well-known spatial price equilibrium
conditions ([9] and the references therein).

N ~% . *
“ | = . G i > 0,
dk (Pg) { Zn_l Ank P3k

In equilibrium on the conditions (3.15) and (3.16) will have to hold for all demand
markets k, and these can also be expressed as a variational inequality problem given by:
Determine (Q**, p3) € RY*** such that

N

N K
D03 b+ e (@) = o] X [k — Gl + Y

K
k=1

G — di (Pg)] X [pak — pax) >0
n=1k=1 n=1

(3.17)
for all (Q®, ps) € RYFTX.

3.4. Behavior of the freight service providers. Since the freight service providers
want to be profit-maximizers, thus they have to cover their costs. The cost associated
with freight service providers delivering the relief items from manufacturers to demand
points. We let ¢}, for the cost associated with freight service provider [ delivering the
relief items from manufacturer m to demand point o, given by

Chio = Chno(Q7) (3.18)

for all [ = 1,2,---, L. Assume that the cost functions of the freight service providers are
continuously differentiable and convex. Note that the cost functions in (3.18) depend on
the freight service provider’s shipment quantities and those of the other freight service
providers because there may be congestion, competition for labor, etc. In the other hand,
the revenue of a freight service provider is equal to the per unit price that a freight ser-
vice provider charges a manufacturer for transport to demand points times the amount
of the relief item that a manufacturer contracts with a freight service provider to de-
liver to demand points. Therefore, the optimization problem of freight service provider
l;1 =1,2,---, L, where each freight service providers requires the maximized profits, is
illustrated in the following:

M_ O M
Maximize Z prg qle — Z Z o (Q?) (3.19)

m=1 o=1 m=1 o=1

subject to :
o >0, (3.20)
foro=1,2,---,0and m=1,2,..., M.

We assume that the freight service providers ;1 = 1,2,---, L, are a noncooperative
competition for the disaster relief items and seek to maximize its profits. The optimality
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conditions of all freight service providers holding simultaneously must satisfy the varia-
tional inequality problem: Determine Q2 € ]RMLO such that:

Z <Z > (Zzacaqo ) —m’f)) x [ais —ais"] = 0 (3.21)

=1 \m=1o=1 \z=1y=1

for all gt € RMLO,

The economic interpretation of the freight service providers in optimality conditions is
that if a freight service provider transacts with a manufacturers to a demand point resulting
in a positive flow of the product between three tiers, then the price p{;‘* is precisely equal to
its marginal cost of handling the product by a freight service provider from a manufacturer
to a demand point.

All of previous behavior, we have the network equilibrium conditions for the supply
chain network comprising disaster relief model as follows.

Definition 3.1. [Supply Chain Network Comprising Disaster Relief Equilibrium] A supply
chain network comprising disaster relief equilibrium is one which the product flows between
the distinct tiers of the decision-makers coincide and the product flows and prices satisfy
the sum of the optimality conditions (3.8), (3.12), (3.17) and (3.21).

We now present the variational inequality formulation of the supply chain network com-
prising disaster relief equilibrium conditions and then discuss how to find the equilibrium
prices.

Theorem 3.2. The equilibrium conditions governing the supply chain network comprising
disaster relief model with competition are equivalent to the solution of the wariational
inequality problem given by determine (Q*, Q% , Q%" ,v*,p3) € K satisfying

M N [ M 1% H2* *
ZZ[Z 0f:(Q.Q%) | Femn(ghn) | 9en(Q" )_ﬁ] o — ]

m=1n=1 Ls=1 8qm" 8q’mn 8Q'mn
M L @] M 8fs(Q1*’Q2*) acml ql aczy(Q2 )
o o pl m
JPSpRpS [Z oy oap *ZZ pay o] <l
N K M K
£33 [ @) + 7 = ] e — Gl + 30 | D i — Zq;;k} e =]
n=1k= m=1 =
- k ;j k=1
Z ank dr(p3 } X [pak — p3r] >0
k=1

fOT all (QlaQ27Q3777p3) € K, where
K= {(Q17Q27Q37’Y7 p3)‘(Q17Q27Q3777p3) € R¥N+N1LO+NK+N+K}'

Proof. The summation of (3.8), (3.12), (3.17) and (3.21). This imply that (3.22).

In conversely, we will consider that the solution to variational inequality (3.22) satisfies
the sum of inequalities (3.8), (3.12), (3.17) and (3.21), that is the equilibrium according
to Definition 3.1. In the first term of the inequality (3.22) add —pi,un + Pimn and in the
second term add fpf;* + pfg* and, in the third term add —p3,, + p3,. This implies that

= 0fs(Q",Q%) | 9cwmn(dhun) | Oca(QY
ZZ[Z 5(Q.Q%) | Femn(@in) | den(@")

O¢mn OGmn OGmn

M L O M * * * L O *
o s 1 2 8Am m o ft 2 . - o
" 3 [Z f:(Q Q") | 9tm(dis )+ZZ Cay(Q )—tmpm—pfo o

g aqpy

z=1y=1 lo

N K N
+ 3D [Ear(@) vk = i — e+ pon] X Gk — Gkl + Y
n=1

M K
* ~%
qmn — qnk
m=1 k=1

qlo }

(3.22)

—Yn = Plmn + pimn} X [gmn — Gn]

*

X (g1 — dio ]

X [Yn = ¥nl
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Gt — di (Pg)} X [par — p3x] > 0.

M N M 1* 2% *
Z Z [Z Afs(QY, Q%) n Ocmn (gmn) _ men] X [gmn — @mn]

m=1n=1 Ls=1 Oqmn Oqmn
+m§_1 :1 {% = Yo+ Pimn | X [@mn — Gl
+§;§;§; [i 8&(%;;3@22*) * %mal;gg*) + iy — tmp;} x ais — iy |
+ i ii [ii%?z*) —pﬁ*] x lais — iy |
m=11=1 o=1 [o=1y=1 0

n
M=
Ew

Ear(Q¥) + Pin = P3k] X [dor — di]

N K K

+> Z[ — P3n] X [dnk — G + Z Z [ Zq:zk:| X [yn — 73]
n=1k k=1
K [N

+ Z Gnk — dk(ﬂ§):| X [p3k — pax) > 0. (3.23)
k=1 Ln=1

We see that (3.23) is equivalent to the price and shipment pattern satisfying the sum of
inequalities (3.8), (3.12), (3.17) and (3.21). This completes the proof. O

From the above theorem, if we can define X = (Q', Q% Q*,v, p3) € K and
F(X) = (FNX),F*(X),F}(X), F*(X), F*(X)) where F'(X) consists of components
Frun, with

_ 0fs(Q, Q%) 4 9emn(gmn) den(Q1)
an(X) - Z 8an 8an + aq"Ln

- Tny
s=1

form=1,2,--- ,M;n=1,2,---,N, F?(X) consists of components F{" with

Frog = 3 Q) mlai ZZGCW ~
s=1

form = 1,2,--- ,M;l = 1,2,--- Lo = 1,2,--- ,0, F3(X) consists of components F
with

forn=1,2,--- ,N,k=1,2,--- , K, F*(X) consists of components F,, with
M K
m=1 k=1
forn=1,2,--- ,N, F5(X) consists of components F}, with

N
Z Gnk — di(p3)
n=1

for Kk = 1,2,--- , K. Then, the above functions can be formulated in the standard form
(2.1), that is, the variational inequality (3.22) takes on (2.1).
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The following article, we will consider the examination of qualitative properties of the
equilibrium pattern, that is, the solution to the variational inequality (3.22), equivalently,
(2.1).

Since the feasible set underlying the variational inequality problem (3.22) is not com-
pact. So, we can define a rather weak condition to guarantee the existence of a solution
pattern. Let

Ky ={(Q, Q% Q% 7,p3)|0 < Q" <b1,0 < Q* < 3,0 < Q° <b3,0 <y < by, 0< py <bs},
(3.24)

which b is a positive scalar and Q' < by, Q% < by, Q% < b3,y < ba, p3 < bs, this mean

that gmn < b1,qn < ba,qni < b3,y < bs and psr < bs for all m,n, k,l,o0. Then, K, is

a bounded, closed convex subset of RMN+TMLO+NE+N+K gince Ky is compact and F is
continuous. Therefore, we have the following variational inequality:

(F(Xp),X —Xp) >0, forall X €K, (3.25)
admits at least one solution X; = (le* , ng* , Q‘%* , fyb* , pg*) € Kp. So, by D. Kinderleher
and G. Stampacchia [1], we obtain the following theorem.

Theorem 3.3. Variational inequality (2.1) admits a solution if and only if there exists
b > 0 such that variational inequality (3.25) admits a solution in Ky with

QY < b1,Q% < by, Q% < b3, A" < bu,ph < bs. (3.26)

The following proposition is presented for guarantee the existence of solution of the
variational inequality problem in Theorem 3.3 which is proved in the same way of Nagurney
and Zhao [15].

Proposition 3.4. Suppose that there exist positive constants S,T and W > 0 such that:
M

S 20(@7,Q7) | demnlgin) | DenlQ)
On i i

>S; forall QU,Q%, with gry > T,
s=1
or o > T for all m,n,k(3.27)

di(p3) <T;  forall ps with p3, > W,  forall k, (3.28)
M K
Z Trn — ch,’;k >0 with qp, >T or Go>T forall m,n,k. (3.29)
m=1 k=1

Then variational inequality (2.1) admits at least one solution.

Proof Choose by = by =b3 =by =b > T and bs > T1 where T} = maxnk,Qa<b’,y<b{p2n +
cnk(Q%)}. If we can prove that:

QY < b,Q% <b,Q% < b~ <b,ph < bs,

then, by Theorem 3.3, we obtain the existence of the solution (2.1).

(i.) We will show that g;,,, < b and ¢, < b for all m,n, k.
Assume that there exist x,y,z such that ¢z, = b > T or G,, = b > T. From
assumption (3.27), we have

M * *
8fs (Ql ) Q2 ) acmn(Q:nn)

S < + +

; Oin Oin Oqin

acn(Ql*) <

= I/n-

Since if G;, > 0 then (3.15), we have p3, + ¢k (Q%) < pix and ;. = p3,. Then,
3, > 0. By (3.16) , imply that

N
> Gnie — di(p3) 0.
n=1
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Hence di(p3) > T This is a contradiction with the assumption (3.28). Therefore,
Gmn < b and @5, < b for all m,n, k.

(ii.) We will show that ¢*" < b. Since (3.7), we know that ZTA:{:I Zle Z?Zl qny =
Oq,. Then, q;,, is bounded. So, there exists ba > 0 such that ql’Z* < by =b.

(iii.) We will show that v* < b.
Assume that there exists d such that

vi=b>T
This imply that
M K
Z Gma < Z qax
m=1 k=1
By (3.11), we have
M K
> Grma =Y Gans
m=1 k=1
which is a contradiction with the assumption (3.29). Therefore, v* < b.
(iv.) We will show that p3; < bs.
Since G5, < b which b is a positive scalar. We have p5, + nk(Q%") > piy.. This
imply
pap < T1 < bs.

The proof is complete.

Under the conditions in Proposition 3.4, it is possible to construct b1, b2, b3, bs and bs
large enough so that the restricted variational inequality (3.25) will satisfy the boundedness
condition (3.26) and, thus, existence of a solution to the original variational inequality
problem according to Theorem 3.3 will hold.

From the assumptions (3.27), (3.28) and (3.29), it is reasonable from an economic point
of view. If a large number of products are shipped between a manufacturer and a retailer,
then we expect that the marginal production cost plus the marginal transaction cost plus
the marginal handling cost exceed a positive lower bound. If the demand market price at
a demand market is high, we can expect that the demand for the product is low at that
demand market and below upper bound. Finally, if a large number of products are shipped
between a manufacturer and a retailer and between a retailer and a demand market, then
we expect that the shipment between a manufacturer and a retailer exceed the shipment
between a retailer and a demand market.

Next, we will consider the monotonicity properties of the function F' in variational
inequality (3.22). Then, we recall the definition of an additive production cost functions
introduced in Zhang and Nagurney [18] for considering in the qualitative properties.

Definition 3.5. Suppose that, for each manufacture m, the production cost fy, is additive,
that is,

Fn (@) = Fn(@m) + fr (@) (3.30)

which frln(qm) is the internal production cost that depend on the manufacturer’s own
output level g, which may include the production operation and the facility maintenance,
etc., and £2(Gm), is the interdependent part of the production cost that is a function of all
the other manufacturers’ output levels Gm = (q1,- .-, ¢m—1,Gm+1,---,qm) and reflects the
impact of the other manufacturers’ production patterns on manufacturer m’s cost. This
interdependent part of the production cost may describe the competition for the resources,
consumption of the homogeneous raw materials, etc.

Here, we will consider the qualitative properties of the function F' that enters the
variational inequality problem and the uniqueness of the equilibrium pattern. So, firstly,
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the monotonicity and Lipschitz continuity of F' is presented. Moreover, the subsequent
section, this concept is used for proving the convergence of the algorithmic scheme.

Lemma 3.6. Suppose that the production cost functions fm,m = 1,2,..., M, are addi-
tive, as defined in Definition 3.5, and fL,m = 1,2,..., M, are convex functions. If the
Cmns Cny Cmi and cino functions are convex, the Cnr functions are monotone increasing,
and the di, functions are monotone decreasing functions of the generalized prices, for all
m,n,k,l,0. Then the vector function F that enters the variational inequality (3.22) is
monotone mapping.

Proof. Let X' = (Q",Q%,Q% v/, p) and X" = (Q'",Q*", Q%"+, p¥) with X', X" € K.
Then,
(F(X') ~ F(X"), X" = X")

Y L 0L(QY,Q%) | Ocmn(dhn) | Den(Q" 8fs(Q1” QQH)
B ZZ(Z OQhn + OGhn + qun B Z

Ocmn (@) 9ca (@)
8q// aq//

- 3 - ack, (Q¥
+3 3 (Zaf(gql Q" >+8Cal,fifo +ZZ C;ﬁ ) o

z=1y=1

+ 7)) X [Gmn — Gmn]

0@, Q%) _ demlaly” 9k, (Q*") Q?”) "
- 77 77 +tmpm)><[qo —dqlo ]
pOREEE hap” ZE I & —d

N K
FY 0D k(@) +vn — Pk — Ear(Q%) = v + P5] X (G — k]

n=1k=1
N M K M K
DM POPES ST SRS o2 LT
n=1 [m=1 k=1 m=1 k=1
K N N
#3 | - l) - D )] < -
k=1 Ln=1
M N M ’ ’ " ”
I S S R
aq;nn aqxln mn mn
m=1n=1 Ls=1 s=1
M N
Icmn (‘Z;nn) dcmn (qu) :| ’ 7
+ / - 7 X |mn — 9mn
;; l: ann 6QW/1n [ ]
M N ! "
den(@Y)  en(Q) , "
N e
M L O [ M ’ ’ M " "
afs Ql 7Q2 afs Ql 7Q2 m’ m'’
+Y S (YOO S ORE@ T ) g
m=1[=1 o=1 Ls=1 qlo s=1 lo
M L O [ ’ ”
Otmi(ais ) _ 9emi(aiy ) m' m!
DD D | T T g | X e ]
m=11=1 o=1 | aqlo aqlo
M L O [ L @) 1 2/ L (@) 1 2/
8Cz (Q ) 6Cz (Q ) m! m!!
ISP Ip I op BT o LAl IR
m=1[=1 o=1 Lz=1y=1 qlo rz=1y=1 qlo
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= (D4 ID)+ )+ (IV)+ (V) + (VI) + (VII) + (VIII). (3.31)

Since f, for all m are additive and f., are convex functions, one has

M N M 1/ 2/ 1// 2//
-3 {§:<0fAQ Q) 0L.@".Q )>]><m;n—q;n]>o

m=1n=1 Ls=1 9Gmn Oqrn,
and
M L O M 1/ 2! 1 ol
a£.(Q", 01.(Q" I
)= 33 |30 (29 ORQ QTN g — g > 0.
m=1 l=1 o=1 |Ls=1 el dqpy

The convexity of ¢mn, €n, émi and ch,, for all m,n,l, 0, we have

M N
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ack,(Q ok, (Q "
V=333 |3 Xe@) s Pl @ i) > 0
m=1 =1 o=1 [z=1y=1 8qlo z=1y=1 8qlo

Since ény, for all n, k are assumed to be monotone increasing, and dy, for all k are assumed
to be monotone decreasing, we have

(VII) Z [Ene(Q7) — Enk(QSH)] X (G = Gnr] >0
n=1 k=1
and
K
(VIIT) = [=di(ps) + di(p5)] X [p3 — p3x] > 0.
k=1
We see that the right hand side of (3.31) is nonnegative. The proof is completed. O

Lemma 3.7. Assume that the conditions of Lemma 3.6 hold. In addition, suppose that one
of the five families of convex functions fL, cmn,Cn,émi and chyy for allm =1,..., M, n =

LN L=1,...,L,0o=1,...L is a family of strictly convexr functions. Suppose that
Cnk,m =1,.... Nk =1,...,K and di,k = 1,..., K are strictly monotone. Then, the
vector function F that enters the variational inequality (3.22) is strictly monotone, with
respect to (Q17 Q27 an p3)

Proof. For any two distinct (Ql/, Q7 Q?’/,pé), (Ql”, Q¥ Q?’”,pé{), we must have at least
one of the following four cases:

M) QV#Q",

(i) Q* #Q%,

(i) Q" # Q"

() ph £ ol
Under the condition of the theorem, if (i) holds true, then, at the right-hand side of
(3.31), at least one of (I),(II),(III) and (IV) is positive. If (ii) is true, then at least
one of (I),(IV),(V) and (V) is positive. If (i3i) is true, then (VII) is positive. In case
of (i), (VIII) is positive. Hence, we can conclude that the right hand side of (3.31) is
greater than zero. The proof is completed. O



100 J. NONLINEAR ANAL. OPTIM. VOL. 13(2) (2022)

Lemma 3.7 has an important implication for the uniqueness of product shipments, Q*,
the relief item shipments, @2, the retailer shipments, Q> and the prices at the demand
markets, p3, at the equilibrium. We note also that no guarantee of a unique v,,n =
1,..., N, can be generally expected at the equilibrium.

Theorem 3.8. Under the conditions of Lemma 3.7, there is a unique product shipment
pattern Ql*7 a unique relief item shipment pattern Q2*, a unique retail shipment (con-
sumption) pattern Q3*, and a unique demand price vector p3 satisfying the equilibrium
conditions of the supply chain. In other words, if the variational inequality (3.22) admits
a solution, that should be the only solution in Q', Q% Q* and ps.

Proof. Since the result of Lemma 3.7, we have the strict monotonicity of the vector function
F that enters the variational inequality (3.22) and uniqueness follows. By the standard
variational inequality theory [4], this theorem holds. O

The following lemma, if the function F' that enters the variational inequality problem
(3.22) has some conditions then we can show that F' is Lipschitz continuous.

Lemma 3.9. The function F that enters the variational inequality problem (3.22) is
Lipschitz continuous under the following conditions:

(1.) Each fm,m =1,..., M, is additive and has a bounded second-order derivative;
(2.) Cmn;Cn,émi and cﬁno have bounded second-order derivatives for all m,n,l, o;
(3.) €nk and di have bounded first-order derivatives for all n, k.

Proof. The result is direct by applying a mean-value theorem from calculus to the vector
function F' that enters the variational inequality problem (3.22). Since

F'(z) = (FY(X), F¥ (X),F* (X), F* (X), F" (X)),

where
M
' ?f(QY, Q%) | Fcmn(dmn) | 9%cn(@)
1 — S 9 mn\UYmn n
s=1
M
! a2fs Ql*vQQ* o Cm qO 82696 QQ*)
P = 3 PHELEN Pl 5y ST
s=1 1o r=1y=1 qlo
' eni(Q%) 4! 5 9dx (p3)
FYx) = 228 /. pPY(X)=0;, FP(X)= 87
(X) Odor (X) (X) Dpon
By the assumption (1.) — (3.), we have there exists L such that ||F’(z)|| < L. The proof is
completed. O

4. THE ALGORITHM

In this section, an algorithm is presented which can be applied to solve a variational
inequality problem that was proposed in the above article. The algorithm is the modified
projection method of Korpelevich [5] and is guaranteed to converge which provided that
the function F' that enters the variational inequality is monotone and Lipschitz continuous
(and that a solution exists). Then, the algorithm for our supply chain network model
comprising disaster relief as follows, where & denotes an iteration counter:

Modified projection method for the solution of variational inequality (3.22).

Step 0. Initialization Set Xo = (Q}, Q3, @3, v0,p3%) € K. Let & = 1 and set « such
that 0 < a < %, where L is the Lipschitz constant for the problem.

Step 1. Computation Compute X° = (Q%,Q%,Q%,7s, p3,) € K by solving the
variational inequality subproblem:

<X‘5 +(@F (XS - X971, X - X*—1> >0, (4.1)
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for all X € K.

Step 2. Convergence verification If [QY — Q5_1| < ¢,|Q% — Q3_1] < ¢,|Q% —
Q% 1] < ¢ lvs —ys-1]| < e,|p§k —p?k_1| <eforallm=1,2,--- , M,n=1,2,--- ,N, k =
1,2,--- K,l=1,2,--- ,L,o=1,2,--- ;O with € > 0, a pre-specified tolerance, then stop;
otherwise, set & := &+ 1, and go to Step 1.

Note that the variational inequality subproblem (4.1) can be solved explicitly and in
closed form since the feasible set is that of the nonnegative orthant. Indeed, they yield
subproblems in the Q*, Q%, Q3, v, and psy variables for all n, k.

Next, we state the convergence result for the modified projection method in this model.

Theorem 4.1. Assume that the function that enters the variational inequality (3.22) (or
(2.1)) satisfies the conditions in Lemma 3.6 and Lipschitz continuous of F. Then the
modified projection method described above converges to the solution of the variational
inequality (3.22).

Proof. According to Korprlevich [5], the modified projected method converges to the solu-
tion of the variational inequality problem of the form (2.1). We provided that the function
F' that enters the variational inequality is monotone and Lipschitz continuous and that a
solution exists. O

5. NUMERICAL EXAMPLES

In this section, we apply the modified projection method to several numerical examples.
The modified projection method was implemented in SCILAB and the computer system
used was a ASUS located at the Pibulsongkham Rajabhat University at Phitsanulok,
Thailand. The convergence criterion used was that the absolute value of the product
flows and prices between two successive iterations differed by no more than 10~*. For
the examples, a was set to 0.005 in the algorithm. The numerical examples had the
network structure depicted in Figure 2 and consisted of two manufacturers, two retailers,
two freight service providers, two demand markets and two demand points. The concept
of this research was inspired by the paper of [12] and [10].

Example 5.1. In this example, we consider the supply chain network in Figure 2. There

Manufacturers

Retailers Freight service

providers

Demand markets Demand points

FIGURE 2. Example 6.1

is two manufacturers which each manufacturers transacted some products for sale to two
retailers and donation to two freight service providers and then each retailer sent the
product to two demand markets and each freight service provider sent the product to two
demand point. Here, each manufacturer wish to ship the relief items to demand points
100 items, this implies g1 = g2 = 100. The data for the first example were constructed for
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easy interpretation purposes. The production cost functions for the manufacturers were
given by:

f1(QY, Q%) = 0.05(q1 +¢7)> +0.2¢1, f2(Q", Q%) = 0.05(q3 + ¢3)° + 0.2¢5.

The transaction cost functions faced by the manufacturers and associated with transacting
with the retailers were given by:

c1n(qu1) = 0.5(q11)* + 3.5q11, c12(q12) = 0.5(q12)* + 3.5q12,
c21(g21) = 0.5(g21)* + 3.5¢21, ca2(gaz) = 0.5(g2a)® + 3.5¢2a.
The handling costs of the retailers, in turn, were given by:

C1(Ql) = 0.5 (Z qm1> s CQ(QI) = 0.5 (Z qmg)

m=1

2

The transaction costs of the freight service providers associated with transacting with the
manufacturers were given by:

é1n=25(g1 +aia), 12 = 2.25(ga1 + g32),
én =2.5(qh + qia),  Ca2 = 2.25(g5 + g3a).

The total cost associated with freight service provider 1, ¢11, is higher than that for freight
service provider 2, ¢12, since it does not have as much experience with the former provider
and the transfer cost is higher per unit.

The freight service provider total costs are as follows: For freight service provider 1:
i =001 (gh1)” +9.67q11, clo = 0.1 (qha)” + 14.88¢1,
ch = 0.1 (¢3) +9.67¢3, = 0.1 (g%)" +14.88¢%,
and for freight service provider 2:
A1 =01 (gh)" +9.67gh, = 0.1 (gh)” + 14.83¢5s,
1= 0.1(¢2)° +9.67¢21, 3 =001 (¢2)° + 14.88¢3.

The transaction costs between the retailers and the consumers at the demand markets
were given by:

c11(Q%) =G +5, é12(Q%) = Gia +5, @1(Q°) = Go1 +5, 2(Q°) = Gao + 5.
The demand functions at the demand markets were:
d1 (pg) = —2p31 — 1.5p32 + 1000, dz(pg) = —2p32 — 1.5p31 + 1000.

Next, assume that the income tax rate as follows.

Net income Income tax rate

0 <z <5000 Tax exemption
5000 < =z < 10000 5%
10000 < =z < 15000 10%
x > 15000 20%

where x denotes for the amount of net income. Assume that the product cost price for
donation of the manufacturer m, (p;,), is equal to the minimum of the price which the
manufacture m sells the product to the retailers.

Therefore, we computed equilibrium solution via the projection method as follows: The
projection method converged in 708 iterations, the product shipments between the two
manufacturers and two retailers were:

1* * * * *
Q" : g1 =50;q12 =53; g¢21 = 55;¢22 = 58.
The product shipments between the two manufacturers and two demand points via two
freight service providers were:
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Q" @ =T4 q2=6, @1 =9, @ =T,
g1 =8, ¢i> =T, ¢35 =10, g3 =80.
By the above results, we see that the most of products are shipped to the demand point
1 by the manufacturer 1 via the freight service provider 1 and, also the most of products
are shipped to the demand point 2 by the manufacturer 2 via the freight service provider
2 because the shipping cost is cheaper. The product shipments between the two retailers
and two demand markets were:

Q¥ G = 625> = 6031 = 593> = 5T.
The vector v*, which was equal to the prices charged by the retailers p3, were:
v : 41 = 185.32;5 = 191.69.
The demand prices at demand markets were:
ps 1 pa1 = 254.96; p3o = 249.96.

In this example, we can interpret, in equilibrium, that if the manufacturer 1 and 2 sell
the products to the retailers and demand points in above results then the profit of the
manufacturer 1 is 1,645.16 and the profit of the manufacturer 2 is 1638.455. If the retailers
sell the products to the demand markets in above results then the profit of the retailer 1 is
9000.04 and the profit of the retailer 2 is 7184.34. For the freight service provider, if they
sent the product from the manufacturers to the demand points in above results then the
profit of the freight service provider 1 is 69.66 and the profit of the freight service provider
2 is 77.

Next, the following example, we want to consider that if the manufacturers need to
deliver the product to the demand points more than 100 items then we obtain the results
as follows.

Example 5.2. In this example, we assume as all Example 5.1, except that each manu-
facturer wish to ship the product (relief items) 200 items. So, we obtain the results as:

The projection method converged in 1092 iterations, the product shipments between
the two manufacturers and two retailers were:

Q" i qiy = 54;q7> = 54; 31 = 55; ¢35 = 54.
The product shipments between the two manufacturers and two demand points via two
freight service providers were:
Q% : gl = 154,41 = 15,431 = 17,35 = 17,011 = 14,475 = 14,43, = 16,3, = 154

Observe that, in the same way Example 5.1, the most of products are shipped to the
demand point 1 by the manufacturer 1 via the freight service provider 1 and, also the
most of products are shipped to the demand point 2 by the manufacturer 2 via the freight
service provider 2. The product shipments between the two retailers and two demand
markets were:

Q¥ @i =di, =533 = @2 = 54.
The vector v*, which was equal to the prices charged by the retailers p3, were:
N 4T = 197.25;95 = 195.75.
The demand prices at demand markets were:
ps i p3 = 254.56; p3y = 255.75.

In this example, we have the following results: if the manufacturer 1 and 2 sell the
products to the retailers and demand points in above results then the profit of the manu-
facturer 1 is 1,780.38 and the profit of the manufacturer 2 is 1,211.11. If the retailers sell
the products to the demand markets in above results then the profit of the retailer 1 is
10,612.8 and the profit of the retailer 2 is 5,751. For the freight service provider, if they
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sent the product from the manufacturers to the demand points in above results then the
profit of the freight service provider 1 is 298.86 and the profit of the freight service provider
2 is 320.56. Moreover, comparing the results with Example 5.1, we can see that the trading
of products between manufacturers, retailers and consumers is almost no different from
Example 5.1, but the difference is clearly in the delivery of donations. In this case, it can
be seen that all freight service providers earn more profits than in Example 5.1 due to
sending more products to donate and getting more tax relief.

For the following example, we are interested that if all conditions are the same as
Example 5.2 except for the part of the retailers which there is a retailer.

Example 5.3. In this example, we are interested that all assumption is the same Example
5.2, except it has not the retailer 2 see Figure 3. So, we obtain the results as:

Manufacturers

Retailers Freight service

providers

Demand markets

Demand points

FiGurE 3. Example 5.3

The projection method converged in 832 iterations, the product shipments between the
two manufacturers and a retailer were:

1* * *
Q 1 g1 =q2 =57
The product shipments between the two manufacturers and two demand points via two
freight service providers were the same as Example 1,

Q¥+ gl =154, = 15,431 = 17,3 = 17,471 = 14,q7> = 14,31 = 16,43, = 154.
The product shipments between a retailer and two demand markets were:
Q% : G =63;d7> = 64.
The vector v*, which was equal to the prices charged by the retailers p3, were:
v 41 =204.23.
The demand prices at demand markets were:
04 psi = 268.51; py = 266.71.

We have the following results: if the manufacturer 1 and 2 sell the products to the
retailers and demand points in above results then the profit of the manufacturer 1 is
—17.13 and the profit of the manufacturer 2 is —653.61. If the retailers sell the products to
the demand markets in above results then the profit of the retailer 1 is 9,595.31. For the
freight service provider, if they sent the product from the manufacturers to the demand
points in above results then the profit of the freight service provider 1 is 298.86 and the
profit of the freight service provider 2 is 320.56. Therefore, comparing the results with
Example 5.2, we can see that the manufacturers sent the products to the demand point in
the same of Example 5.2 and must sell more products to retailers than Example 5.2 and
also the retailers sell more products to consumers than Example 5.2. If we consider the
profit of all parties, it can be seen that the manufactures loses while other part have the
same profit.
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The following example, we will show that if Example 5.2 remains a demand market
then the results as follows.

Example 5.4. If all of condition as the same Example 5.2, except this example has a
demand market (Figure 4) and let

d1(p3) = —2ps31 + 1000.

Then we have the following results. The projection method converged in 241 iterations,

Manufacturers

Retailers Freight service

providers

Demand markets Demand points

F1GURE 4. Example 5.4

the product shipments between the two manufacturers and two retailers were:
1* *
Q : i1 = qi2 = 65;¢31 = 32 = 66.
The product shipments between the two manufacturers and two demand points via two
freight service providers were:

Q" : a1 = 153,q1> = 15,421 = 17,435 = 16,41 = 15,415 = 14,31 = 16,43, = 154.
The product shipments between the retailers and a demand market were:
Q%+ dh=qn=13L
The vector v*, which was equal to the prices charged by the retailers p3, were:
N 4 =233.13;95 = 233.03.
The demand prices at demand markets were:
ps: p3 = 369.06.

We have the following results: if the manufacturer 1 and 2 sell the products to the
retailers and demand points in above results then the profit of the manufacturer 1 is
3,920.25 and the profit of the manufacturer 2 is 3,452.10. If the retailers sell the products
to the demand markets in above results then the profit of the retailer 1 is 8,572.24 and
the profit of the retailer 2 is 8,557.83. For the freight service provider, if they sent the
product from the manufacturers to the demand points in above results then the profit of the
freight service provider 1 is 298.69 and the profit of the freight service provider 2 is 314.66.
Therefore, comparing the results with Example 5.2, we can see that the manufacturers
and retailers have to sell products in the lager quantities and also the price charged by the

retailers and demand prices increase. But at the same time, the profits of all parties have
also increased. For the donation part, it is not much different from Example 5.2.

The following example, we will show that if Example 5.1 remains a freight service
provider then the results as follows.

Example 5.5. If all of condition as the same Example 5.1, except this example has a
freight service provider (Figure 5). Then we have the following results. The projection
method converged in 755 iterations, the product shipments between the two manufacturers
and two retailers were:

Q' ¢ =iy = 48;¢5, = 60;¢5, = 62.
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Manufacturers

Retailers Freight service

providers

Demand markets Demand points

FIGURE 5. Example 5.5

The product shipments between the two manufacturers and two demand points via two
freight service providers were:

Q" : qi1 =99,qi> = 16,471 = 2,47, = 85.
The product shipments between the retailers and a demand market were:
Q¥ t Gl = dia = 61351 = G5 = 59.
The vector v*, which was equal to the prices charged by the retailers p3, were:
Y = 189.91;5 = 192.23.
The demand prices at demand markets were:
p3: P31 = p3p = 251.39.

We have the following results: if the manufacturer 1 and 2 sell the products to the
retailers and demand points in above results then the profit of the manufacturer 1 is
4,596.87 and the profit of the manufacturer 2 is 1,490.05. If the retailers sell the products
to the demand markets in above results then the profit of the retailer 1 is 7,266.62 and
the profit of the retailer 2 is 6,269.94. For the freight service provider, if they sent the
product from the manufacturers to the demand points in above results then the profit of
the freight service provider 1 is 846.51. Therefore, comparing the results with Example
5.1, we can see that the manufacturers 1 produce more products for donations and less for
sale and the manufacturers 2 produce more products for sale and less for donations. In
the margins, only the manufacturer 1 and the freight service provider 1 gain more profit.

Remark 5.6. By all of the previous examples, we see that if the network has a demand
market (Example 5.4) then all of the parties have more profitable, but also have to produce
more and consumers are willing to pay more.

6. CONCLUSION

In this paper, we present the generalized supply chain network, that is, the supply
chain network comprising disaster relief which is a combination between a supply chain
network and a competitive freight service provider network. Firstly, we proposed a model
which was satisfy our supply chain network and considered the behavior of the manufac-
turers, where the manufacturers want to sell the product and donate as well, the retailers,
the demand markets and the freight service provider. So, we obtain the supply chain
network comprising disaster relief equilibrium model and the variational inequality which
was equivalent to such supply chain network. The existence and uniqueness of the solution
of the variational inequality was proposed. Finally, the algorithm which was a tool for
using the computing our example was presented and some examples were presented for
illustrative in the above articles.
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