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ABSTRACT. This is to give a short history of our multimap classes K, KC, KO in the
KKM theory. We show that many authors adopted or imitated the inadequate definition
of the KKM class due to Chang and Yen in 1996. We list such works in chronological
order and also introduce other works which extended the class properly. Our study on
such history will improve the KKM theory in the new millennium.

KEYWORDS:Abstract convex space, KKM theorem, KKM class of multimaps, Aκ
c , B,

K, KC, KO

AMS Subject Classification: :47H10, 49J53, 54C60, 54H25, 90A14, 90C76, 91A13,
91A10.

1. Introduction

The KKM theory, first called by the author in 1992, is the study on applications
of equivalent formulations or generalizations of the KKM theorem due to Knaster,
Kuratowski, and Mazurkiewicz in 1929. The KKM theorem is one of the most well-
known and important existence principles and provides the foundations for many
of the modern essential results in diverse areas of mathematical sciences. Since the
theorem and its many equivalent formulations or extensions are powerful tools in
showing the existence of solutions of a lot of problems in pure and applied mathe-
matics, many scholars have been studying its further extensions and applications.

The KKM theory was first devoted to convex subsets of topological vector spaces
mainly by Ky Fan and Granas, and later to the so-called convex spaces by Lassonde,
to c-spaces by Horvath and others, to G-convex spaces mainly by the present author.
Since then a large number of authors introduced imitations, modifications, and
generalizations of G-convex spaces and published hundreds of papers. Motivated
by this, in 2006-09, we proposed new concepts of abstract convex spaces and partial
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KKM spaces which are proper generalizations of G-convex spaces and adequate to
establish the KKM theory properly.

Now the KKM theory becomes the study of abstract convex spaces due to our-
selves in 2006 and we obtained a large number of new results in such frame. For
the history of the KKM theory, see our previous article [Park 2017]. Moreover,
applications of the KKM theory to equilibrium theory, variational inequalities, best
approximations, economic theory, and many others can be seen in the references
therein.

More early, motivated our works, Chang and Yen [1996] introduced the so-called
KKM class of multimaps. According to Google Scholar in 2022, more than 171
papers have quoted the paper, and we noticed that most of these papers adopted or
imitated the inadequate definition of the KKM class. This is mainly because such
authors were ignorant of the fact that the KKM theorem also holds for open-valued
KKM maps. This was discovered by W. K. Kim [1987] and Shih and Tan [1987].
Motivated by this, in order to improve the KKM theory, we replaced the KKM class
by the modern classes K, KC, KO of multimaps.

This survey article is to give a history of the multimap classes KKM and K, KC, KO
in the KKM theory, and to let the readers know that the usage of KKM class is
not adequate. We show that many authors adopted or imitated the inadequate
definition of the KKM class due to Chang and Yen [1996]. We list such works
in chronological order and also introduce other works which extended the class
properly. Our study on such history will improve the KKM theory in the new
millennium.

Section 2 deals with preliminaries on abstract convex spaces. In Section 3, we
introduce a short history of our multimap classes K, KC, KO. Section 4 deals with
the literature on the KKM class due to Chang and Yen [1996] and many of its
modifications or imitations appeared mainly in the new millennium. In Section
5, we introduce some articles concerned with our multimap classes K, KC, KO.
Finally, Section 6 deals with some conclusion.

2. Preliminary on abstract convex spaces

The following is given by Park [2006], where ⟨D⟩ denotes the collection of non-
empty finite subsets of a set D:

Definition 2.1. An abstract convex space (E,D; Γ) consists of a nonempty set E,
a nonempty set D, and a multimap Γ : ⟨D⟩ ⊸ E with nonempty values. We may
denote ΓA := Γ(A) for A ∈ ⟨D⟩.

When D ⊂ E, the space is denoted by (E ⊃ D; Γ). In such case, a subset X of
E is said to be Γ-convex if, for any A ∈ ⟨X ∩D⟩, we have ΓA ⊂ X. In case E = D,
let (E; Γ) := (E,E; Γ).

Later we always assumed that E is a topological space in an abstract convex
space (E,D; Γ).

Definition 2.2. Let (E,D; Γ) be an abstract convex space and Z a set. For a
multimap F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satisfies

F (ΓA) ⊂ G(A) :=
∪
y∈A

G(y) for all A ∈ ⟨D⟩,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a
KKM map with respect to the identity map 1E .
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A multimap F : E ⊸ Z is called a K-map if, for any KKM map G : D ⊸ Z with
respect to F , the family {G(y)}y∈D has the finite intersection property. We denote

K(E,Z) := {F : E ⊸ Z | F is a K−map}.

Similarly, when Z is a topological space, a KC-map is defined for closed-valued
maps G, and a KO-map for open-valued maps G. In this case, we have

K(E,Z) ⊂ KC(E,Z) ∩ KO(E,Z).

Note that if Z is discrete then three classes K, KC, and KO are identical. Some
authors use the notation KKM(E,Z) instead of KC(E,Z).

From now on, in this section, we give examples of abstract convex spaces (E,D;G)
in the chronological order. For the most of the examples, we have 1E ∈ KC(E,E)
[or 1E ∈ KO(E,E)].

1. If E = ∆n is an n-simplex, D is the set of its vertices, Γ = co is the convex
hull operation, then the celebrated KKM principle [1929] says that 1E ∈
KC(E,E). In this case, note that 1E ̸∈ K(E,E). A simple example for n =
1 is as follows: Let ∆1 := [0, 1], D := {0, 1}, and G(0) := [0, 12 ], G(1) :=

( 12 , 1]. Then G is a KKM map, but G(0) ∩G(1) = ∅.
2. If D is a nonempty subset of a topological vector space E (not necessarily

Hausdorff), Fan’s KKM lemma [1961] says that 1E ∈ KC(E,E).
3. Let E be a topological vector space with a neighborhood system V of its

origin. A subset X of E is said to be almost convex [Jeng et al. 2006] if
for any V ∈ V and for any finite subset A := {x1, x2, · · · , xn} of X, there
exists a subset B := {y1, y2, · · · , yn} of X such that yi − xi ∈ V for each
i = 1, 2, · · · , n and coB ⊂ X. By choosing ΓA := B for each A ∈ ⟨X⟩,
(X; Γ) becomes a G-convex space and hence an abstract convex space.

4. If X is a subset of a vector space, D ⊂ X such that coD ⊂ X, and each ΓA
is the convex hull of A ∈ ⟨D⟩ equipped with the Euclidean topology, then
(X,D; Γ) becomes a convex space generalizing the one due to Lassonde
[1983]. Note that any convex subset of a t.v.s. is a convex space, but
not conversely. For a convex space (X, co), Lassonde showed that 1X ∈
KC(X,X).

5. In the same year, Kim [1989] and Shih and Tan [1989] showed that 1E ∈
KO(E,E) when E is an n-simplex. Therefore, in general, we have

K(E,E) ⊊ KC(E,E) ∩ KO(E,E).

6. A well-known subclass of G-convex spaces due to Horvath [1987-1993] can
be generalized as follows: A G-convex space (X,D; Γ) is called a c-space (or
an H-space) if each ΓA is ω-connected (that is, n-connected for all n ≥ 0)
and ΓA ⊂ ΓB for A ⊂ B in ⟨D⟩. For a c-space (X,Γ), Horvath showed that
1X ∈ KC(X,X). In particular, Khamsi [1996] obtained 1X ∈ KC(X,X) for
a hyperconvex metric space X.

7. In early 1990’s, the author [1993] introduced the admissible class Aκc (X,Y )
of multimapsX ⊸ Y between topological spaces and showed that this class
is contained in the class KC(X,Y ) when X is a convex space and Y is a
Hausdorff space [1994]. Motivated by this, Chang and Yen [1996] defined
the KKM class of maps on convex subsets of topological vector spaces, and
further, Chang et al. [1999] extended the KKM-class to S-KKM class. On
the other hand, the author extended the Aκc -class to the ‘better’ admissi-
ble B-class on convex spaces, supplied a large number of examples, and
showed that, in the class of compact closed multimaps from convex spaces
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to Hausdorff spaces, two subclasses B and KC coincide [1997]. Moreover,
H. Kim [2005] showed that two classes KKM and s-KKM of multimaps
from a convex space into a topological space are identical whenever s is
surjective [this is the only case S-KKM is slightly meaningful].

8. A generalized convex space or a G-convex space (X,D; Γ) consists of a
topological space X, a nonempty set D, and a multimap Γ : ⟨D⟩ ⊸ X
such that for each A ∈ ⟨D⟩ with the cardinality |A| = n+1, there exists a
continuous function ϕA : ∆n −→ Γ(A) such that J ∈ ⟨A⟩ implies ϕA(∆J) ⊂
Γ(J).

Here, ∆n is the standard n-simplex with vertices {ei}ni=0, and ∆J the
face of ∆n corresponding to J ∈ ⟨A⟩; that is, if A = {a0, a1, · · · , an} and
J = {ai0 , ai1 , · · · , aik} ⊂ A, then ∆J = co{ei0 , ei1 , · · · , eik}. It is possible
to assume Γ(A) = ϕA(∆n). We may write ΓA = Γ(A) for each A ∈ ⟨D⟩.
In case X ⊃ D, the G-convex space is denoted by (X ⊃ D; Γ).

For details on G-convex spaces, see Park [2000-2003] and Park et al.
[1993-2005], where basic theory was extensively developed and lots of ex-
amples of G-convex spaces were given.

9. For a G-convex space (X,D; Γ) and a topological space Z, we defined
the classes K,KC,KO of multimaps F : X ⊸ Z, and showed that 1X ∈
KC(X,X) ∩ KO(X,X). Moreover, we noted that if F : X −→ Z is a
continuous single-valued map or if F : X ⊸ Z has a continuous selection,
then F ∈ KC(X,Z) ∩ KO(X,Z). Furthermore, for a Hausdorff space Z, it
is shown that Aκc (X,Z) ⊂ KC(X,Z)∩KO(X,Z) by H. Kim and the author
[2005].

10. Usually, a convexity space (E, C) in the classical sense consists of a nonempty
set E and a family C of subsets of E such that E itself is an element of C
and C is closed under arbitrary intersection. For details, see Sortan [1984],
where the bibliography lists 283 papers. For any subset X ⊂ E, its CC-
convex hull is defined and denoted by CoCX :=

∩
{Y ∈ C | X ⊂ Y }.

We say that X is C-convex if X=CoCX. Now we can consider the map
Γ : ⟨E⟩ ⊸ E given by ΓA:=CoCA. Then (E, C) becomes our abstract
convex space (E; Γ).

Notice that our abstract convex space (E ⊃ D; Γ) becomes a convexity
space (E, C) for the family C of all Γ-convex subsets of E.

11. For any metric space (M,d), Amini et al. [2005] introduced a convexity
structure similar to the one for hyperconvex metric space; see Khamsi
[1996]. They defined an NR-metric space (M,d) and showed that, for any
subadmissible subset X of M , 1X ∈ KC(X,X) holds. Here, subadmissible
subsets are simply Γ-convex subsets.

Recall that, for a G-convex space (X,D; Γ) and a Hausdorff space Y ,
Park and Kim [1997] showed that an acyclic map F : X ⊸ Y or, more
generally, a map F ∈ Aκc (X,Y ) belongs to the class KC. Amini et al. [2005]
repeatedly claimed that they obtained this result in 2005. More early in
Park [1994], the result was obtained for convex spaces and this is the origin
of the study of the so-called KKM-class of multimaps.

12. Imitating the original definition of S-KKM maps of Chang et al. [1999],
Amini et al. [2007] defined the S-KKM class for a classical convexity space
(X, C) with a nonempty set Z and a topological space Y as follows: If
S : Z ⊸ X, F : X ⊸ Y , and G : Z ⊸ Y are three multimaps satisfying

F (CoC(S(A)) ⊂ G(A) for each A ∈ ⟨Z⟩,
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then G is called a C-S-KKM map with respect to F . If the map F : X ⊸ Y
satisfies the requirement that for any C-S-KKM map G with respect to F ,
the family {G(z) | z ∈ Z} has the finite intersection property, then F is
said to have the S-KKM property with respect to C. Amini et al. defined

S-KKMC(Z,X, Y ) := {F : X ⊸ Y | F has the S-KKM property with respect to C}.
It should be noted that, by putting ΓA := CoC(S(A)) for each A ∈

⟨Z⟩, S-KKMC(Z,X, Y ) becomes simply KC(X,Y ). Therefore, it should be
eliminate the S-KKM class.

13. There were many imitations, modifications, or fake extensions of G-convex
spaces like the so-called L-spaces, spaces having property (H), M-spaces,
MC-spaces, FC-space, GFC-space, simplicial spaces, FWC-spaces, etc. They
were all destroyed now.

3. Multimap classes in the KKM theory

We already introduced certain broad classes KO and KC of maps in several papers;
see Park [2018]. Note that KC includes the KKM class introduced by Chang and
Yen [1996] as a special case. With these concepts, some coincidence theorems and
fixed point theorems were proved in abstract convex spaces by ourselves; see Park
[2018].

Subclasses of multimaps in the KKM theory were appeared as follows:
1929 identity function —- KKM
1961 identity function —- Fan
1989 continuous function —- Park
1991 acyclic map —- Shioji, Park
1993 admissible map Ac —- Park
1994 admissible map Aκc —- Park
1996 the class KKM —- Chang and Yen
1997 better admissible map B —- Park
1997 KKM family K —- Park
1998 Bκ —- Park
2003 KC, KO —- Park
2004 Bp —- Park

Recall that W. K. Kim [1987] and Shih and Tan [1987] discovered that the
well-known KKM theorem in 1929 also holds for open-valued multimaps. This
open-valued KKM theorem has been generalized to various types of abstract con-
vex spaces by the present author. Consequently, we introduced multimap classes
KC, KO in 2003.

Mutual relations of the classes Aκc , B, and K, KC, KO depend on the nature of
the related abstract convex spaces; see the previous works of Park in 2006–2021.

Even after we defined these classes, many authors imitated or adopted the class
KKM for two decades. Most of their results are mere copies of the classical ones;
see Park [2021].

4. On the KKM class of multimaps

In this section, we introduce several ones among 171 papers stated in Google
Scholar in 2021. Key statements in each paper are quoted in their original expres-
sions, and, in most cases, certain comments by the present author are added.

Chang and Yen [1996] — JMAA203
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Assume thatX is a convex subset of a linear space and Y is a topological space. If
S, T : X −→ 2Y are two set-valued mappings such that T (coA) ⊂ SA for each finite
subset A of X, then we call S a generalized KKM mapping w.r.t. T , where coA
denotes the convex hull of A. Let T : X −→ 2Y be a set-valued mapping such that if
S : X −→ 2Y is a generalized KKM mapping w.r.t. T then the family Sx : x ∈ X}
has the finite intersection property (where Sx denotes the closure of Sx), then we
say that T has the KKM property. Denote KKM(X,Y ) = {T : X −→ 2Y | T has
the KKM property}

Remark 4.1. Generalized KKM mappings were first introduced by Park [1989],
and followed by some others.

Comments: Note that the KKM class contains the admissible class Aκc due to
Park. Later, we denoted KKM class by K in [Park 1997] and, extended it to the
classes KC and KO for abstract convex spaces; see Section 3 of the present paper.

Chang-Yen’s paper has 171 citations (see Google Scholar in 2022) and many
peoples still use their obsolete generalized KKM classes. In Section 2 we gave some
examples in the new millennium.

Chang-Yen’s definition of generalized KKM mapping seems to be not elegant,
and works only for closed-valued maps. Recall that more early there have appeared
open-valued KKM maps in 1987. This is why we defined the classes K, KC, KO
later.

Lin, Ko, and Park [1998] — Discuss. Math. Diff. Incl. 18
In this paper, a set-valued map with G-KKM property is defined and a min-

imax theorem for set-valued maps with G-KKM property on G-convex space is
established. As a consequence of these results we verify coincidence theorem for
set-valued maps with G-KKM property on G-convex spaces. Finally, we apply our
results to the best approximation problem and fixed point problem.

Chang, Huang, Jeng, and Kuo [1999] — JMAA229

Definition 4.2. Let X be a nonempty set, Y a nonempty convex set of a linear
space, and Z a topological space. If S : X −→ 2Y , T : Y −→ 2Z , and F : X −→ 2Z

are three multifunctions satisfying

T (coS(A)) ⊆ F (A)

for any A ∈ ⟨X⟩, then F is called a generalized S-KKM mapping with respect
to T . If the multifunction T : Y −→ 2Z satisfies the requirement that for any
generalized S-KKM mapping F with respect to T the family {Fx : x ∈ X} has
the finite intersection property, then T is said to have the S-KKM property. The
class S-KKM(X,Y, Z) is defined to be the set {T : Y −→ 2Z : T has the S-KKM
property}

Comments: Note that F can be assumed closed-valued, and no consideration on
open-valued mappings is given.

Agarwal and O’Regan [2002] — DSA21
We also discuss KKM maps in this paper. Here again X is a convex subset of a

Hausdorff topological vector space and Y a topological space. If S, T : X −→ 2Y

are two set valued maps such that T (co(A)) ⊆ S(A) for each finite subset A of X,
then we say S is a generalized KKM map w.r.t. T . T is said to have the KKM
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property if for any generalized KKM w.r.t. T map S : X −→ 2Y , the family
{S(x) : x ∈ X}

has the finite intersection property. We let
KKM(X,Y ) = {T : X −→ 2Y : T has the KKM property}.

Comments: The Hausdorffness is redundant and S can be assumed closed-valued,
and no consideration on open-valued mappings is given. From now on we will not
repeat such comments.

Lin, Ansari, and Wu [2003] — JOTA117
Let X be a convex space, and let Y be a Hausdorff topological space. If S, T :

X −→ 2Y are multivalued maps such that
T (coN) ⊆ S(N), for each N ∈ ⟨X⟩,

then S is said to be generalized KKM mapping w.r.t. T (Chang-Yen [1996]). The
multivalued map T : X −→ 2Y is said to have the KKM property (Chang-Yen
[1996]) if S : X −→ 2Y is a generalized KKM mapping w.r.t. T such that the
family {S(x) : x ∈ X} has the finite intersection property.

Chen, Chang, and Yen [2004] — JKMS41
We generalized the KKM property to the following form for a nearly-convex set

X. Assume that X is a nearly-convex subset of a linear space and Y is a topological
space. If T, S : X −→ 2Y are two set-valued mapping such that T (coA ∩X)S(A)
for each finite subset A of X, then we call S a generalized KKM mapping with
respect to T , where co(A) denotes the convex hull of A. Let T : X −→ 2Y be a
set-valued KKM mapping with respect to T then the family Sx : x ∈ X} has the
finite intersection property (where Sx denotes the closure of Sx), then we say that
T has the KKM property. Denote

KKM(X.Y ) = {T : X −→ 2Y | Thas the KKM property}

Remark 4.3. Generalized KKM mappings were first introduced by Park [1989],
and followed by some others.

Comments: Note that the above is the same one to Chang-Yen [1996] just re-
placing a convex subset by a nearly-convex subset.

Shahzad [2004] — NA56

Definition 4.4. Let X be a convex subset of a Hausdorff topological vector space
and Y a topological space. If S, T : X −→ 2Y are two set-valued maps such that
T (co(A)) ⊆ S(A) for each finite subset A of X, then we say that S is a generalized
KKM map w.r.t. T . The map T : X −→ 2Y is said to have the KKM property if
for any generalized KKM w.r.t. T map S, the family {S(x) : x ∈ X} has the finite
intersection property. We let

KKM(X,Y ) = {T : X −→ 2Y : T has the KKM property}.

Comments: Similarly, the author defined generalized S-KKM map w.r.t. some T .

Zafarani [2004] — Liège73
Chang and Yen [1996] made a systematic study of the class of the KKM map-

pings: Let X be a nonempty convex subset of a topological vector space and Y a
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topological space. If G : X −→ 2Y , F : X −→ 2Y are two multivalued maps such
that for any A ∈ ⟨X⟩, F (co(A)) ⊆ G(A), then G is said to be a generalized KKM
mapping respect to F . Let F : X −→ 2Y be a multivalued mapping such that if
G : X −→ 2Y is a generalized KKM mapping with respect to F , then the family
{clG(x) : x ∈ X} has the finite intersection property. In this case, we say that
F has the KKM property. We define KKM(X,Y ) = {F : X −→ 2Y : T has the
KKM property}

Comments: Many results on the KKM theory on various types of spaces are
introduced. Zafarani’s Γ-convex spaces are motivated by our G-convex spaces and
the same to our original abstract convex spaces in 2006. But he did not establish
any theory on his spaces. He adopted a KKM theorem, a very particular form of
our KKM theorems. Many terms in this paper are obsolete; for example, the KKM
class, the S-KKM class, and the generalized S-KKM class belong to our KC class
in our abstract convex space theory. Zafarani introduced NR-metric spaces, which
generalize hyperconvex metric spaces and are G-convex spaces.

Amini, Fakhar, and Zafarani [2005] — NA60
Let (M,d) be a metric space andX a subadmissible subset ofM . A multifunction

G : X ⊸M is called a KKM mapping, if for each A ∈ ⟨X⟩X, co(A) ⊂ G(A). More
generally, if Y is a topological space and G : X ⊸ Y, F : X ⊸ Y are two
multifunctions such that for any A ∈ ⟨X⟩, F (co(A)) ⊆ G(A), then G is called a
generalized KKM mapping with respect to F . If the multifunction F : X ⊸ Y
satisfies the requirement that for any generalized KKM mapping G : X ⊸ Y with
respect to F the family {cl G(x) : x ∈ X} has the finite intersection property, then
F is said to have the KKM property. We define

KKM(X,Y ) := {F : X ⊸ Y : F has the KKM property}

.
Comments: On the surface, this is a very nice paper. However, the authors

adopted inadequate terminology of Chang-Yen. For example, the class of KKM
type mappings is KC in our works.

Fakhar and Zafarani [2005] — JOTA126
Let X be a convex subset of a t.v.s. E and let Y be a topological space. If

Γ : X −→ 2Y , T : X −→ 2Y are two multivalued mappings such that, for any
A ∈ ⟨X⟩, T (coA) ⊆ Γ(A), then Γ is said to be a generalized KKM mapping
with respect to T . Let T : X −→ 2Y be a multivalued mapping such that, if
Γ : X −→ 2Y is a generalized KKM mapping with respect to T , then the family
{clΓ(x) : x ∈ X} has the finite intersection property; in this case, we say that T
has the KKM property. Denote

KKM(X,Y ) := {T : X −→ 2Y : T has the KKM property}.

Fakhar and Zafarani [2005a] — Belgium 12
Let (X,D; Γ) be a G-convex space and Y be a topological space. A multivalued

map F : D −→ 2X is called a KKM map if for each A ∈ ⟨D⟩, Γ(A) ⊂
∪
x∈A F (x).

More generally if G : D −→ 2Y , F : X −→ 2Y are two multivalued maps such
that for any A ∈ ⟨D⟩, F (Γ(A)) ⊆ G(A), then G is said to be a generalized KKM
mapping with respect to F . Let F : X −→ 2Y be a multivalued mapping such that
if G : D −→ 2Y is a generalized KKM mapping with respect to F , then the family
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{clG(x) : x ∈ D} has the finite intersection property. In this case we say that F
has the KKM property. We define

K(X,Y ) := {F : X −→ 2Y : F has the generalized KKM property}.

When X is a convex subset of a topological vector space, the class K(X,Y ) was
introduced and studied by Chang and Yen [1996]. This concept is further extended
to G-convex spaces by Lin, Ko, and Park [1998].

Comments: The notation K was originally introduced by Park in 1997.

H. Kim [2005] — NA63
Let X be a convex subset of a vector space and Y a topological space. In 1996,

Chang and Yen defined the following: A multimap T : X ⊸ Y is said to have the
KKM property if, for any map F : X ⊸ Y with closed values satisfying
T (coN) ⊂ F (N) for all N ∈ ⟨X⟩X,

the family {F (x)}x∈X has the finite intersection property. We denote KKM(X,Y ) :=
{T : X ⊸ Y | T has the KKM property}.

Comments: This is the first paper assuming closed-valued multimaps F in KKM.

Chen [2006] —JMAA323
Comments: Motivated by Amimi-Fakhar-Zafarni [2005], Chen established some

fixed point theorems with domain as a nearly-subadmissible subset of a complete
metric space (M,d) for a k-set contraction map, which does not need to be a compact
map. He also deduces a generalization of the approximate fixed point theorem for
the lower semicontinuous mappings on a metric space.

He defines a generalized KKM mapping with respect to T , a slightly modified
definition of Chang-Yen [1996].

The main result is the following fixed point theorem for the k-set contraction.

Theorem 4.1. Let (M,d) be a complete metric space and X be a nonempty bounded
nearly subadmissible subset of M. If T ∈ KKM (X,X) is a k-set contraction,
0 < k < 1 and closed with T (X) ⊂ X, then T has a fixed point in X.

Since the KKM families K, KC, KO were introduced in 2003, KKM (X,X) can
be replaced by more correct KC.

Recall that any article adopting or imitating the KKM class of Chang-Yen [1996]
is obsolete.

Jeng, Hsu, and Huang [2006]— JMAA319
Similar to Chang-Yen [1996] we now extend the concept of generalized KKM

mapping in the following manner.

Definition 4.5. Suppose X and Y are two nonempty subsets of a linear space E,
and T, F : X ⊸ Y . We say that F is a generalized KKM mapping with respect to
T if for any A = {x1, . . . , xn} ∈ ⟨X⟩ there is B = {y1, . . . , yn} ∈ ⟨X⟩ satisfying

(a) co(B) ⊆ X, and
(b) T (co{yi : i ∈ I}) ⊆

∪
i∈I F (xi) for any nonempty subset I of {1, · · · , n}.

Definition 4.6. Let X and Y be two nonempty subsets of a topological vector
space E. If a multifunction T : X ⊸ Y satisfies that for any generalized KKM
mapping F : X ⊸ Y with respect to T , the family {F (x) : x ∈ X} has the
finite intersection property, then T is said to have the KKM property. The class
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KKM(X,Y ) is defined to be the set
{T : X ⊸ Y : T has the KKM property}.

Kuo, Huang, Jeng, and Shih [2006]—FPTA2006
The concept of S-KKM property of Chang et al. [1999] can be extended to

G-convex spaces.

Definition 4.7. Let X be a nonempty set, (Y,D; Γ) a G-convex space and Z a
topological space. If S : X ⊸ D, T : Y ⊸ Z and F : X ⊸ Z are three multimaps
satisfying

T (ΓS(A)) ⊆ F (A)

for any A ∈ ⟨X⟩, then F is called a S-KKM mapping with respect to T . If the
multimap T : Y ⊸ Z satisfies that for any S-KKM mapping F with respect to
T , the family {F (x) : x ∈ X} has the finite intersection property, then T is said
to have the S-KKM property. The class S-KKM(X,Y, Z) is defined to be the set
{T : X ⊸ Y : T has the S-KKM property}.

When D = Y is a nonempty convex subset of a linear space with ΓB = co(B)
for B ∈ ⟨Y ⟩, the S-KKM(X,Y, Z) is just that as in Chang et al. [1999].

Comments: Now the S-KKM class is obsolete.

Shahzad [2006]—Simon Stevin

Definition 4.8. Let X be a nonempty set, Y a nonempty convex subset of a
Hausdorff topological vector space and Z a topological space. If S : X −→ 2Y , T :
Y −→ 2Z , F : X −→ 2Z are three set-valued maps such that T (co(S(A))) ⊆ F (A)
for each nonempty finite subset A of X , then F is called a generalized S-KKM
map w.r.t. T . If the map T : X −→ 2Z is such that for any generalized S-KKM
w.r.t. T map F , the family

{F (x) : x ∈ X}
has the finite intersection property, then F is said to have the S-KKM property.
The class

S −KKM(X,Y, Z) = {T : Y −→ 2Z : Thas the S-KKM property}.

Comments: Now the S-KKM class is obsolete.

Amini, Fakhar, and Zafarani [2007] — NA66
Like the work of Chang et al. [1999], we introduce the family of multifunctions

with the S-KKM property as follows. Let Z be a nonempty set, (X, C) an abstract
convex space, and Y a topological space. If S : Z ⊸ X, F : X ⊸ Y and G : X ⊸ Y
are three multifunctions satisfying

F (coC(S(A))) ⊆
∪
x∈A

G(x)

for each A ∈ ⟨Z⟩, then G is called a C-S-KKM mapping with respect to F . If the
multifunction F : X ⊸ Y satisfies the requirement that for any C-S-KKM mapping
G with respect to F , the family {clG(x) : x ∈ X} has the finite intersection property,
then F is said to have the S-KKM property with respect to C. We define
S−KKMC(Z,X, Y ) := {F : X ⊸ Y : F has S-KKM property with respect to C}.
Comments: In this paper, we notice the following: (1) Here abstract convex spaces
mean spaces having the routine convexity structure, (2) Chang-Yen’s KKM class
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[1996] should be replaced by the KC class. (3) The S-KKM class of Chang et al.
[1999] is simply a KC class.

Chen [2007] — Sci. Math. Jpn. 2007
A G-convex space (X,D; Γ), where D is a nonempty subset of X, is called an

L-convex space in this paper.

Definition 4.9. Let X be an L-convex space, Y a topological space such that for
each N ∈ ⟨X⟩ with |N | = n+1, there exists a continuous mapping ψN : ∆N −→ X.
If T, F : X −→ 2Y are two set-valued function satisfying that T (ψN (∆N )) ⊂ F (N)
for each N ∈ ⟨X⟩ with |N | = n+ 1, then F is said to be a generalized RψN

-KKM
mapping with respect to T and ψN . Moreover, if the set-valued function T : X −→
2Y satisfies the requirement that for any generalized RψN

-KKM mapping with
respect to T and ψN the family {Fx | x ∈ X} has the finite intersection property,
then T is said to have the RψN

-KKM property. The class RψN
-KKM(X,Y ) is

defined to be the set {T : X −→ 2Y | T has the RψN
-KKM property}. (* This ψN

may be different from the ϕN of the definition for the L-convex space.)

Comments: In the above definition of a class RψN
-KKM(X,Y ), the role of G-

convex spaces (its author’s L-convex spaces) is not clear. This remark also works
all of Theorems 4–20 in this paper. Moreover, Theorems 21-23 in this paper are
concerned with G-convex spaces and follow easily from the known results in the
G-convex space theory.

Chen and Chang [2007] — JMAA329
Abstract: We first establish a fixed point theorem for a k-set contraction map on

the family KKM(X,X), which not needs to be a compact map. Next, we establish
the matching theorems, coincidence theorems and minimax theorems on the family
KKM(X,Y ) and the Φ-mapping.

Al-Thagafi and Shahzad [2008] — FPTA2008
Let T : A −→ 2B . We say that (e) T is an Aκc -multimap if for every compact set

K in A, there exists an Ac-multimap f : K2B such that f(x) ⊆ T (x) for each x ∈ K,
(f) T is a K-multimap (or Kakutani multimap) if T is upper semicontinuous with
compact and convex values, (g) S : A −→ 2B is a generalized KKM-multimap with
respect to T if T (coD) ⊆ S(D) for each finite subset D of A, (h) T has the KKM
property if, whenever S : A −→ 2B is a generalized KKM multimap w.r.t. T , the
family {S(x) : x ∈ A} has the finite intersection property; (i) T is a PK-multimap
if there exists a multimap g : A −→ 2B satisfying A =

∪
{int g−1(y) : y ∈ B} and

co(g(x)) ⊆ T (x) for every x ∈ A.

Balaj [2008]—NA68

Definition 4.10. (See Chang-Yen [1996]) Let X be a convex subset of a topological
vector space and Y be a topological space. If S, T : X ⊸ Y are two maps such
that

T (coA) ⊆ S(A) for each nonempty finite subset A of X,
then S is said to be generalized KKM w.r.t. T. The map T : X ⊸ Y is said to have
the KKM property if for each S : X ⊸ Y which is a generalized KKM map w.r.t.
T , the family {S(x) : x ∈ X} has the finite intersection property.

We denote by KKM(X,Y ) the family of maps having the KKM property.
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Comments: The author still follows the work of Chang-Yen [1996].

Chang, Chen, and Huang [2008]—TJM12
Recently, Amini, Fakhar and Zafarani [2005] introduced the class KKM(X,Y )

in metric space, and get some results about fixed point theorems and matching
theorem. In this work, we use the conception of J. C. Jeng, H. C. Hsu and Y. Y.
Huang [2006] to define the KKM family on metric space. We establish a generalized
KKM theorem in a hyperconvex metric space, and then we use this theorem to get
a fixed point theorem, the matching theorem, the coincidence theorem, minimax
inequality theorems and the variational inequality theorems.

Suppose X is a bounded subset of a metric space (M,d). Then the admissible
hull of X is defined by

ad(X) =
∩

{B ⊂M : B is a closed ball in M such that X ⊂ B}

Definition 4.11. Let X be a metric space, Y be a nonempty set, and Z be a
hyperconvex metric space. If T : X −→ 2Z , F : Y −→ 2Z are two set-valued map-
pings satisfying that for each {y1, y2, . . . , yn} ∈ ⟨Y ⟩, there exists {x1, x2, . . . , xn} ∈
⟨X⟩ such that T (ad({xi1 , xi2 , . . . , xik})) ⊂

∪k
j=1 F (yij ), for all {i1, i2, . . . , ik} ⊂

{1, 2, . . . , n}, then F is called a generalized KKM mapping with respect to T . If the
set-valued mapping T : X −→ 2Z satisfies the requirement that for any generalized
KKM mapping F : Y −→ 2Z with respect to T , the family {F (y) : y ∈ Y } has the
finite intersection property, then T is said to have the KKM property. We denote

KKM(X,Z) = {T : X −→ 2Z |T has the KKM property}.
Chang, Chen, and Peng [2008] — NA69

Definition 4.12. Let (M,d) be a metric space. A subset X of M is called admis-
sible if it is an intersection of closed balls in M . The collection of all admissible
subsets inM is denoted byA(M). The smallest admissible set containing a bounded
subset X of M is called the admissible hull of X and denoted by ad(X). So

ad(X) =
∩
x∈M

B(x, rx(X)),

where B(x, rx(X)) is the closed ball centered at x with radius rx(X) ≥ 0 and
rx(X) = sup{d(x, y) : y ∈ X}.

Definition 4.13. Let M be a metric space and X ⊂ M. A set-valued mapping
F : X −→ 2M is called a KKM map if

ad({x1, x2, . . . , xn}) ⊂
n∪
i=1

F (xi),

for any x1, x2, . . . , xn ∈ X.

Definition 4.14. Let X be a metric space and Y a topological space. If F, T :
X −→ 2M are two set-valued mappings such that for each A ∈ ⟨X⟩, T (ad(A)) ⊂
F (A), then F is called a generalized KKM mapping with respect to T . If the set-
valued mapping T : X −→ 2Y satisfies the requirement that for any generalized
KKM mapping F : X −→ 2Y with respect to T , the family {F (x) : x ∈ X} has
finite intersection property, then T is said to have the KKM property. The class
KKM(X,Y ) is defined as the set {T : X −→ 2Y | T has the KKM property}.

Chen and Chang [2008] — NA69
We first define the generalized gKKM mapping and the family gKKM(X,Y ).
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Definition 4.15. Let X be a metric space, and Y a nonempty set. If F : Y −→
2X is a set-valued mapping satisfying that for each {y1, y2, . . . , yn} ∈ ⟨Y ⟩, there
exists {x1, x2, . . . , xn} ∈ ⟨X⟩ such that ad{xi1 , xi2 , . . . , xik} ⊂

∪k
j=1 F (yij ), for all

{i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}, then F is called a generalized gKKM mapping.

Definition 4.16. Let X be a metric space, Z a nonempty set, and Y a topological
space. If T : X −→ 2Y , F : Z −→ 2Y are two set-valued mappings satisfying
that for each {z1, z2, . . . , zn} ∈ ⟨Z⟩, there exists {x1, x2, . . . , xn} ∈ ⟨X⟩ such that
T (ad({xi1 , xi2 , . . . , xik})) ⊂

∪k
j=1 F (zij ), for all {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}, then

F is called a generalized gKKM mapping with respect to T . If the set-valued
mapping T : X −→ 2Y satisfies the requirement that for any generalized gKKM
mapping F : Y −→ 2Y with respect to T , the family {overlineF (z) : z ∈ Z} has the
finite-intersection property, then T is said to have the gKKM property. We denote

gKKM(X,Y ) = {T : X −→ 2Y | T has the gKKM property}.

Agarwal, Balaj, and O’Regan [2009] — Appl.Anal.88
We introduce the concept of a family of set-valued mappings generalized KKM

w.r.t. other family of set-valued mappings. We then prove that if X is a nonempty
compact convex subset of a locally convex Hausdorff topological vector space and
T and S are two families of self set-valued mappings of X such that S is generalized
KKM w.r.t. T , under some natural conditions, the set-valued mappings S ∈ S have
a fixed point. Other common fixed point theorems and minimax inequalities of Ky
Fan type are obtained as applications.

The following close concept is due to Lin and Chang [1998]: if X is a nonempty
set, Y is a convex subset of a vector space and S, T : X ⊸ Y are two set-valued
mappings, S is called a T -KKM mapping if co(

∪n
n=1 T (xi)) ⊆

∪n
n=1 S(xi), for any

nonempty finite subset {x1, . . . , xn} of X. Inspired by these concepts we introduce
a new one, concerning two families of set-valued mappings.

Definition 4.17. Let X be a nonempty set, Y be a convex subset of a vector space
and T and S are two families of set-valued mappings with nonempty values from
X into Y . We say that S is generalized KKM w.r.t. T if for any nonempty finite
subfamily {S1, . . . , Sn} of S there exist T1, . . . , Tn ∈ T such that co(

∪
i∈I Ti(x)) ⊆∪

i∈I Si(x)), for each nonempty subset I of {1, . . . , n} and for all x ∈ X.

Remark 4.18. If Y is a convex subset of a topological vector space and S is
generalized KKM w.r.t. T , then for each x ∈ X, {S(x) : S ∈ S} has the finite
intersection property.

Comments: No consideration on open-valued maps is given.

Amini-Harandi, Farajzadeh, O’Regan, and Agarwal [2009] — NFAA14

Definition 4.19. Let (E,D; Γ) be an abstract convex space and Z a set. For a
multimap F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satisfies

F (Γ(A)) ⊆ G(A), for all A ∈ ⟨X⟩,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ Z is a
KKM map with respect to the identity map 1E . A multimap F : E ⊸ Z is said
to have the KKM property if, for a KKM map G : D ⊸ Z with respect to F , the
family {G(x)}x∈X has the finite intersection property. We denote

KKM(E,Z) := {F : E ⊸ Z : F has the KKM property}.
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Comments: The authors adopt abstract convex (uniform) spaces due to Park,
but still imitate the KKM class of Chang-Yen [1996].

Chen [2009] — NA71
The generalized KKM property on a convex subset of a Hausdorff topological

vector space that was introduced by Chang and Yen [1996], we now extended this
class KKM(X,Y ) to be the class KKM∗(X,Y ) for the almost convex set X.

Definition 4.20. Let X be a nonempty almost convex subset of a topological
vector space E, and Y a topological space. If T, F : X −→ 2Y are two set-valued
mappings such that for each finite subset A of X and every neighborhood V of the
origin 0 of E, there exists a convex-inducing mapping hA,V : A −→ X such that
T (co(hA,V (A))) ⊂ F (A), then we call F a generalized KKM∗ mapping with respect
to T .

If the set-valued mapping T : X −→ 2Y satisfies the requirement that for any
generalized KKM∗ mapping F : X −→ 2Y with respect to T , the family {Fx : x ∈
X} has the finite intersection property, then T is said to have the KKM∗ property.
Denote

KKM∗(X,Y ) = {T : X −→ 2Y | T has the KKM∗ property }.

Comments: Chang-Yen’s class KKM(X,Y ) is extended to the class KKM∗(X,Y )
for the almost convex set X. No consideration on open-valued maps is given.

Chen and Chang [2009] — FPTA2009
In 1996, Chang and Yen introduced the family KKM(X,Y ) on the topological

vector spaces and got results about fixed point theorems, coincidence theorems, and
its applications on this family. Later, Amini et al. [2005] introduced the following
concept of the KKM(X,Y ) property on a subadmissible subset of a metric space
(M,d).

Let X be an nonempty subadmissible subset of a metric space (M,d), and let
Y a topological space. If T, F : X −→ 2Y are two set-valued mappings such
that for any A ∈ ⟨X⟩X, T ((A)) ⊂ F (A), then F is called a generalized KKM
mapping with respect to T . If the set-valued mapping T : X −→ 2Y satisfies the
requirement that for any generalized KKM mapping F with respect to T , the family
{overlineF (x) : x ∈ X} has finite intersection property, then T is said to have the
KKM property. The class KKM(X,Y ) is denoted to be the set {T : X −→ 2Y : T
has the KKM property}.

Chen, Chang, and Chung [2009] — TJM13
Chang and Yen [1996] introduced the family KKM(X,Y ), and got some re-

sults about fixed point theorems, coincidence theorems and some applications on
this family. In this paper, we establish some coincidence theorems, generalized
variational inequality theorems and minimax inequality theorems for the family
KKM∗(X,Y ) and the generalized Φ-mapping on a nonconvex set.

Definition 4.21. Let X be a nonempty almost-convex subset of a topological
vector space E, and Y a topological space. If T, F : X −→ 2Y are two set-valued
mappings such that for each finite subset A of X and every neighborhood V of the
origin 0 of E, there exists a convex-inducing mapping hA,V : A −→ X such that
T ((hA,V (A))) ⊂ F (A), then we call F a generalized KKM∗ mapping with respect
to T .
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If the set-valued mapping T : X −→ 2Y satisfies the requirement that for any
generalized KKM∗ mapping F : X −→ 2Y with respect to T , the family {Fx : x ∈
X} has the finite intersection property, then T is said to have the KKM∗ property.
Denote

KKM∗(X,Y ) = {T : X −→ 2Y | T has the KKM∗ property}.

Chang, Chen, and Chen [2010] — NA72
Abstract: We first define the family 2-gKKM(X,Y ) in a hyperconvex metric

space, and then we get a 2-gKKM theorem and a fixed point theorem without
compactness assumption. Next, by using the 2-gKKM theorem, we get the match-
ing theorems, coincidence theorems, variational inequality theorems and minimax
inequality theorems.

Definition 4.22. Let X be a metric space, Z a nonempty set, and Y a topological
space. If T : X −→ 2Y , F : Z −→ 2Y are two set-valued mappings satisfying
that for each {z1, z2, . . . , zn} ∈ ⟨Z⟩, there exists {x1, x2, . . . , xn} ∈ ⟨X⟩ such that
T (ad({xi1 , xi2 , . . . , xik})) ⊂

∪k
j=1 F (zij ), for all {i1, i2, . . . , ik} ⊂ {1, 2, . . . , n}, then

F is called a generalized gKKM mapping with respect to T . If the set-valued
mapping T : X −→ 2Y satisfies the requirement that for any generalized gKKM
mapping F : Y −→ 2Y with respect to T , the family {F (z) : z ∈ Z} has the finite
intersection property, then T is said to have the gKKM property. We denote

gKKM(X,Y ) = {T : X −→ 2Y | T has the gKKM property}

Chen, Chang, and Huang [2010] — AML23
Abstract: We use the conception of the abstract convexity to define the almost

S-KKMc mapping, al-S-KKMc(X,Y, Z) family, and almost Φ-spaces. In the setting
of the almost Φ-spaces, we establish some new fixed point theorems for the al-S-
KKMc type set-valued mapping which is a generalized set contraction mapping.
Our results generalize the results of Amini et al. [2007].

Khamsi and Hussain [2010] — NA73
Let M be a metric type space and X a subadmissible subset of M . A multi-

function G : X −→ 2M is called a KKM mapping, if for each A ∈ ⟨X⟩, we have
A ⊂ G(A) =

∪
{G(a), a ∈ A}. More generally, if Y is a topological space and

G : X −→ 2Y , F : X −→ 2Y are two multifunctions such that for any A ∈ ⟨X⟩, we
gave F ((A)) ⊂ G(A), then G is called a generalized KKM mapping with respect to
F . If the multifunction F : X −→ 2Y satisfies the requirement that for any gener-
alized KKM mapping G : X −→ 2Y with respect to F the family {G(x), x ∈ X}
has the finite intersection property, then F is said to have the KKM property. We
define

KKM(X,Y ) = {F : X −→ 2Y , F has the KKM property}
Turkoglua, Abuloha, and Abdeljawad [2010] — NA72
Let (M,d) be a cone metric space and X a subadmissible subset of M. A multi-

function G : X −→ 2M , is called a KKM mapping, if for each A ∈ ⟨X⟩, Co(A) ⊂
G(A).

If Y is a topological space and G : X −→ 2Y , F : X −→ 2Y are two multifunc-
tions such that for every A ∈ ⟨X⟩, F (Co(A)) ⊂ G(A), then G is called a generalized
KKM mapping with respect to F . If the multifunction F : X −→ 2Y satisfies the
requirement that for any generalized KKM mapping G : X −→ 2Y with respect to
F , the family {cl(G(x) : x ∈ X)} has the finite intersection property (f.i.p.), then
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F is said to have the KKM property. We define
KKM(X,Y ) = {F : X −→ 2Y : F has the KKM property}.

Balaj and Coroianu [2011] — BKMS48
Assume that X is a convex subset of a vector space and Y is a topological space.

If S, T : X ⊸ Y are two set-valued mappings such that T (coA) ⊆ S(A) for each
nonempty finite subset A of X, then we say that S is a KKM mapping with respect
to T . A set-valued mapping T : X ⊸ Y is said to have the KKM property if for
any S : X ⊸ Y , KKM mapping with respect to T , the family {S(x) : x ∈ X} has
the finite intersection property. Denote KKM(X,Y ) = {T : X ⊸ Y : T has the
KKM property}.

Cho, Delavar, Mohammadzadeh, and Roohi [2011] — JIneqAppl2011
Let Y be a nonempty set, Z be a minimal space, s : Y −→ D be a function and

(X,D,Γ) be an abstract convex space. Let T : X ⊸ Z and F : Y ⊸ Z be two
multimaps. we say that F is generalized s-KKM with respect to T if

T (Γ(s(A))) ⊆ F (A) for any A ∈ ⟨Y ⟩.
Comments: Minimal spaces can be made into topological spaces.

Chaipunya and Kumam [2013] — JIA2013

Definition 4.23. Let M be a circular metric space, X be a subadmissible subset
of M and Y be a topological space. Let F, G : X ⊸ Y be two multivalued maps.
If for each A ∈ ⟨X⟩ we have F (ad(A)) ⊂ G(A), then G is said to be a generalized
KKM map with respect to F .

Definition 4.24. LetM be a circular metric space, X be a subadmissible subset of
M and Y be a topological space. A multivalued map F : X ⊸ Y is said to satisfy
the KKM property if for any generalized KKM map G : X ⊸ Y with respect to F ,
the family {G(x) : x ∈ X} has the finite intersection property. In general, we write

KKM(X,Y ) := {F : X ⊸ Y : F satisfy the KKM property}.

Fakhar, Lotfipour, and Zafarani [2013] — JGO55
We assume that X is a convex space, Y a Hausdorff topological space and Z a

Hausdorff topological vector space. . . . Suppose that K ⊆ X and S : K ⇒ X is a
set-valued map, then S is called to be a KKM map if

convA ⊆
∪
x∈A

S(x), for each A ∈ ⟨K⟩.

Let T, H : X ⇒ Y be set-valued maps. The set-valued map H is said to be a
generalized KKM map with respect to (w.r.t.) T if T (convA) ⊆ H(A), for each
A ∈ ⟨X⟩. The set-valued map T has the KKM property if the following statement
is satisfied:

If S : X ⇒ Y is a generalized KKM map w.r.t. T , then the family {clS(x) :
x ∈ X} has the finite intersection property. The family of all set-valued maps
T : X ⇒ Y having the KKM property is denoted by KKM(X,Y ). The class
KKM(X,Y ) was introduced and studied by Chang and Yen [1996].

Tang and Zhang [2014] — AAA2014

Definition 4.25. Let X be a nonempty set, Y a nonempty convex subset of a linear
space, and Z a topological space, and let S : X −→ 2Y , T : Y −→ 2Z , and F :



FROM KKM CLASS TO KC CLASS OF MULTIMAPS 17

X −→ 2Z be three multivalued mappings. F is said to be a A-KKM mapping with
respect to T if, for any {x0, . . . , xn} ∈ ⟨X⟩, there exists yi ∈ S(xi)(i = 0, 1, . . . , n),
such that, for any {yi0 , . . . , yik} ⊂ {y0, . . . , yn}, one has

T (co{yi0 , . . . , yik}) ⊂
k∪
j=0

F (xij ).

The multivalued mapping T : Y −→ 2Z is said to have the A-KKM property,
if, for any A-KKM mapping F with respect to T , the family {F (x) : x ∈ X} has
the finite intersection property. Let the set {T : T has the A-KKM property} be
denoted by A-KKM(X,Y, Z).

Comments: What is the role of A? Simply F could be closed-valued. Moreover,
we can consider the case F is open-valued.

S. Huang [2021] — JNCA22(6)
LetM be a connected Riemannian manifold endowed with a Riemannian metric.

Definition 4.26. Let X and Z be nonempty sets, Y a convex set in M and T :
Y −→ 2Z a multifunction. A multifunction S : X −→ 2Z is a generalized KKM
mapping with respect to T if for any {x1, . . . , xn} ∈ ⟨X⟩, there is {y1, . . . , yn} ∈ ⟨Y ⟩
such that

T (co{yi : i ∈ I}) ⊂
∪

{S(xi) : i ∈ I}, ∀I ⊂ {1, . . . , n},

If Z is a topological space, T is said to have the KKM property if for any general-
ized KKM mapping S : X −→ 2Z with respect to T , the family {S(x) : x ∈ X} has
the finite intersection property. The collection of all multifunctions T : Y −→ 2Z

with KKM property is denoted by KKM(X,Y, Z).

Final Remark for Section 4. We can add up more and more examples on var-
ious types of modifications, imitations, or fake generalizations of G-convex spaces.
But we will stop here.

5. On the classes KC and KO of multimaps

In 1987, W. K. Kim [1987] and Shih and Tan [1987] independently discovered
that the KKM theorem also holds for open-valued multimaps; see also Lassonde
[1990]. Consequently, all papers in Section 4 and many others can be modified to
corresponding open-valued versions.

Moreover, the KKM class of multimaps can be extended to the KC-class of mul-
timaps, and new KO-class and K-class are derived for abstract convex spaces due
to Park in the new millennium.

In this section, we introduce articles concerning such new classes and related
topics.

Park [1997] — NA30
Chang and Yen [1996] extended the class Aκc to multimap class KKM having the

KKM property and obtained some generalized results in the KKM theory and fixed
point theory. We improve their definition as follows:

Let (X,D) be a convex space, Y a Hausdorff space, and T : X ⊸ Y . We say
that T has the KKM property provided that the family {Sx : x ∈ D} has the finite
intersection property whenever S : D ⊸ Y has closed values and T (coN) ⊂ S(N)
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for each N ∈ ⟨D⟩. Let

T ∈ K(X,Y ) ⇐⇒ T : X ⊸ Y has the KKM property.

We will denote their class by K.
Let X be a convex space and Y a Hausdorff space. In this paper, we define a

new “better¡± admissible class B of multimaps as follows:
F ∈ B(X,Y ) ⇐⇒ F : X ⊸ Y such that, for any polytope P in X and any

continuous map f : F (P ) −→ P, f(F |P ) has a fixed point.
Our new class contains the admissible class Aκc due to the author and generalizes

closed maps in KKM due to Chang and Yen [1996].
Comments: In this paper, we first used the notations K and B. Later we changed

their meanings. Note that our K seems to be better than the KKM of Chang and
Yen [1996].

Park [1997a] — MSR Hot-Line 1(9)
We give general Schauder type fixed point theorems for compact multimaps in

the ‘better’ admissible class B defined on admissible convex subsets (in the sense
of Klee) of a topological vector space not necessarily locally convex. Our new the-
orems subsume a large number of particular forms, and generalize them in terms
of the involving spaces and the multimaps as well. We apply our new results to
condensing maps.

Park [1998] — JKMS35(4)
We give general fixed point theorems for compact multimaps in the ‘better’ ad-

missible class Bκ defined on admissible convex subsets (in the sense of Klee) of a
topological vector space not necessarily locally convex. Those theorems are used
to obtain results for Φ-condensing maps. Our new theorems subsume more than
seventy known or possible particular forms, and generalize them in terms of the
involving spaces and the multimaps as well. Further topics closely related to our
new theorems are discussed and some related problems are given in the last section.

In 1998, we obtained the following:

Theorem 5.1. Let E be a Hausdorff t.v.s. and X an admissible (in the sense of
Klee) convex subset of E. Then any compact closed map F ∈ B(X,X) has a fixed
point.

In [1998], it was shown that Theorem subsumes more than sixty known or pos-
sible particular cases and generalizes them in terms of the involving spaces and
multimaps as well. Later, further examples of maps in the class B were known.

Park [2003]— JNCA4
Let (X,D; Γ) be a G-convex space and Y a topological space. A multimap

F : X ⊸ Y is said to have the KKM property if, for any map G : D ⊸ Y with
closed [open] values satisfying

F (ΓA) ⊂ G(A) for all A ∈ ⟨D⟩,

Some authors use the notation KKM(X,Y ). Note that 1X ∈ K(X,X). · · ·
From now on, KC denote the class K for closed-valued maps G, and KO for open-

valued maps G.

Park [2006] — NAF11
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We introduce basic results in the KKM theory on abstract convex spaces and
the map classes K, KC, KO, and B. We study the nature of Kakutani type maps,
B-maps, and KC-maps in G-convex spaces; and show that generalizations of the
key results in known works are consequences of the G-convex space theory and the
new abstract convex space theory.

Park [2007] — NAF12
We study the mutual relations among multimap classes KC, KO, and B on ab-

stract or generalized convex spaces. We show also that the examples given by Jeng,
Huang, and Zhang [2002] can be used to deduce more examples of KC-maps and
KO-maps. Finally, some historical remarks on classes KC, KO, and B are added.

Park [2007a] — NAF12(2)
Our principal aim is to introduce basic results in the KKM theory on abstract

convex spaces and the map class K as in Park [2008b]. These are applied to simplify
various modifications of the concept of generalized convex spaces. We discuss the
nature of these modifications and criticize recently appeared so-called generaliza-
tions of our previous works due to other authors.

In Section 2, we introduce our new abstract convex spaces, KKM maps, and
the map class KC [or KO] in [2008b], and, in Section 3, a few basic theorems in our
KKM theory for those spaces given there. Section 4 deals with KKM type theorems
for G-convex spaces, which are shown to be easily deduced from our new results
on abstract convex spaces. Sections 5-8 are devoted to various modifications of
G-convex spaces and KKM type maps appeared in the 21st century. We show that
most of them are mere modifications without having any proper example or any
applicability. Such modifications are, for examples, L-spaces, generalized R-KKM
maps, pseudo H-spaces, and others.

Park [2008b] — JKMS45(1)
Definition 5.1. Let (E,D; Γ) be an abstract convex space and Z a set. For a
multimap F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satisfies

F (ΓA) ⊂ G(A) :=
∪
y∈A

G(y) for allA ∈ ⟨D⟩

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a
KKM map with respect to the identity map 1E .

A multimap F : E ⊸ Z is called a K-map if, for a KKM map G : D ⊸ Z with
respect to F , the family {G(y)}y∈D has the finite intersection property. We denote

K(E,Z) := {F : E ⊸ Z | F is a K-map}.
Similarly, when Z is a topological space, a KC-map is defined for closed-valued

mapsG, and a KO-map for open-valued mapsG. Note that if Z is discrete then three
classes K, KC, and KO are identical. Some authors use the notation KKM(E,Z)
instead of KC(E,Z).

Park [2010] — Tamkang41(1)
Abstract: Recent results in the KKM theory on abstract convex spaces and the

related multimap classes KC and KO are applied to deduce generalizations of re-
sults on KKM maps in metric spaces in Amini et al. [2007] and generalized KKM
theorems on hyperconvex metric spaces in Chang et al. in [2008, 2008a].
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Yang, Huang, and Lee [2011] — TJM15(1)
Park [2006] introduced a new concept of abstract convex spaces which include

convex subsets of topological vector spaces, convex spaces, C-spaces and G-convex
spaces as special cases. Park [2006] also introduced certain broad classes RO and
RC of maps (having the KKM property). The class RC(X,Y ) includes the well-
known class KKM(X,Y ) introduced by Chang and Yen [1996] as a special case.
With these new concepts, he obtained some coincidence theorems and fixed point
theorems in abstract convex spaces. Very recently, Park [2008a-d] further studied
KKM theory in abstract convex spaces with applications to fixed points, maximal
elements, equilibria problems and other problems.

Comments: R should be K.

Yang and Huang [2012] — BKMS49(6)
A coincidence theorem for a compact RC-map is proved in an abstract convex

space. Several more general coincidence theorems for noncompact RC-maps are
derived in abstract convex spaces. Some examples are given to illustrate our coin-
cidence theorems. As applications, an alternative theorem concerning the existence
of maximal elements, an alternative theorem concerning equilibrium problems and
a minimax inequality for three functions are proved in abstract convex spaces.”

Recently, Park [2006] introduced a new concept of abstract convex spaces which
include convex subsets of topological vector spaces, convex spaces, C-spaces and
G-convex spaces as special cases. Park [2006] also introduced certain broad classes
RO and RC of maps (having the KKM property), which includes the well-known
class KKM(X,Y ) introduced by Chang and Yen [1996] as a special case. With
these new concepts, some coincidence theorems and fixed point. theorems were
proved in abstract convex spaces by Park [2006]. Very recently, Park [2008a-d]
further studied KKM theory in abstract convex spaces with applications to fixed
points, maximal elements, equilibria problems and other problems. It is noted that,
in the KKM theory, there have appeared a number of coincidence theorems with
many significant applications.

Lu and Hu [2013] — JFSA2013
The main purpose of this paper is to establish a new collectively fixed point

theorem in noncompact abstract convex spaces. As applications of this theorem, we
obtain some new existence theorems of equilibria for generalized abstract economies
in noncompact abstract convex spaces.

Comments: The authors followed our works faithfully, but K, KC, KO are de-
noted as R, RC, RO.

Lu, Zhang, and Li [2021] — AIMS Math.6(11)
Abstract: In this paper, by using the KKM theory and the properties of Γ-

convexity and RC-mapping, we investigate the existence of collectively fixed points
for a family with a finite number of set-valued mappings on the product space of
noncompact abstract convex spaces.

6. Conclusion

In this paper, we followed the original sources faithfully.
Some one said that the progress of mathematics often follows a standard path: the

discovery of a new theorem, followed by a systematic exploration of that theorem.
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(1) Two standard ways of exploring theorems are by weakening the hypotheses
and strengthening the conclusion. Here new hypothesis should be carefully and
properly chosen.

(2) Another way is to find similar situation or similar hypotheses to known results
and follow the same conclusion. Here we see certain parallelism.

Note that most of papers mentioned in Section 4 are of such types (1) or (2) and
variants of the same ones for G-convex spaces.

The papers listed in Section 5 are relatively new and mainly related abstract
convex spaces. However some of their authors misused R instead of traditional K.

This survey is to help the authors to improve their works for the current KKM
theory.
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ABSTRACT. We have applied the Melnikov criterion to examine a homoclinic bifurca-
tion and transition to chaos in the Duffing oscillator driven by different forms of periodic
piecewise linear forces. The periodic piecewise linear forces considered are triangular,
hat, trapezium, quadratic and rectangular types of forces. For all the forces, an analyt-
ical threshold condition for the homoclinic transition to chaos is derived using Melnikov
method and Melnikov threshold curves are drawn in a parameter space. Using the Mel-
nikov threshold curves, we have found a critical forcing amplitude fc above which the
system may behave chaotically. We have analyzed both analytically and numerically the
homoclinic transition to chaos in the Duffing system with ϵ-parametric force also. The
predictions from Melnikov method have been further verified numerically by integrating
the governing equation and finding areas of chaotic behaviour.

KEYWORDS:Duffing oscillator, Melnikov criterion, Piecewise linear force, Homoclinic
bifurcation, Chaos.
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1. Introduction

The forced Duffing oscillator is a seminal system for the study of chaotic dynam-
ics and development of analytical and experimental techniques for nonlinear systems
[1-5]. The problem of its nonlinear dynamics has attracted researchers from vari-
ous fields of research across natural science and physics [6-8], mathematics [9,10],
mechanical engineering [11-13] and electrical engineering [14-16]. Melnikov method
is a powerful analytical tool to provide an approximate criterion for the occurrence
of hetero/homoclinic chaos in a wide class of dynamical systems [17]. It is also
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an effective approach to detect chaotic dynamics and to analyze near homoclinic
motion with deterministic or random perturbation. Usually this method is applied
explicitly to systems which possesses homoclinic orbits in multi-well potential like
Duffing double-well or pendulum systems [18,19]. Recently, this method has been
applied to certain nonlinear systems to predict the occurrence of horseshoe chaos
[20-25].

In recent years there has been a great deal of interest on the study of effect of
various periodic forces in certain linear and nonlinearly damped systems [26-30]. In
the present paper, we study both analytically and numerically the effect of various
periodic piecewise linear forces in the Duffing oscillator equation

ẍ+ α ẋ − ω2
0x+ βx3 = F (t), (1.1)

where α is the damping coefficient, ω0 is the natural frequency and β is the con-
stant parameter which plays the role of nonlinear parameter. F (t) is an external
time dependent periodic driving force. Recently, Baber Ahmad [31] studied both
analytically and numerically the stabilization of the pendulum motion with differ-
ent forms of periodic piecewise linear forces. Our objective here is to explore the
possibility of homoclinic transition to chaos in Eq.(1.1) using both analytical and
numerical techniques. In the present analysis, we use Melnikov analytical method
to study the influence of different forms of periodic piecewise linear forces.

The paper is organized in the following way. In Section 2, we obtain the Melnikov
threshold condition for the transverse intersections of homoclinic orbits for the
system (1.1) separately for each of the above periodic piecewise linear forces. In
Section 3, we analyze the homoclinic transition to chaos by plotting the Melnikov
threshold curves in (f − ω) parameter plane where f and ω are the amplitude and
frequency of the external periodic forces and numerically measuring the time τM
elapsed between two successive transverse intersections for all the forces. We verify
the analytical prediction with the numerically calculated critical values of f at which
the transverse intersections of stable and unstable manifolds of the saddle occur.
The Melnikov threshold value is also compared with the onset of asymptotic chaos
wherever possible. In Section 4 we analyze the homoclinic transition to chaos in
the system (1.1) driven by an ϵ-parametric control force. Finally Section 5 contains
the concluding remarks.

2. Calculation of Melnikov function

We consider the perturbed Duffing equation with periodic piecewise linear forces
in the form

ẋ = y (2.1a)
ẏ = ω2

0x− βx3 + ϵ[−α ẋ + F (t)] (2.1b)
where ϵ is a small parameter. The periodic piecewise linear forces of our interest
are triangular, hat, trapezium, quadratic and rectangular types of forces. Figure 1
depicts the different forms of periodic piecewise linear forces.

The unperturbed system (ϵ = 0) with the potential and Hamiltonian functions
are given by
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Figure 1. Form of various periodic piecewise linear forces (a)
Triangular wave (b) Hat wave (c) Trapezium wave (d) Quadratic
wave and (e) Rectangular wave. For all the forces period is 2π/ω,
ω = 1 and amplitude f is 1.0.

V (x) = −1

2
ω2
0x

2 +
1

4
βx4. (2.2)

H(x, y) =
1

2
y2 − 1

2
ω2
0x

2 +
1

4
βx4. (2.3)

Depending on the set of parameters, it can be considered at least three physi-
cally interesting situations where the potential is single-well, double-well and dou-
ble hump-well. Throughout this paper, our analysis is of the double-well case. The
unperturbed system has three fixed points. The origin is a saddle (x∗, y∗) = (0, 0)

and the other two fixed points are elliptic (x∗, y∗) = (±
√

ω2
0/β, 0) . The saddle

point is connected to itself by two homoclinic orbits. The two homoclinic orbits
connecting the saddle to itself are given by

W±(xh(τ), yh(τ)) =

±

√
2 ω2

0

β
sech

√
ω2
0τ,∓ω2

0

√
2

β
sech

√
ω2
0τ tanh

√
ω2
0τ


(2.4)

where τ = t − t0. The phase space motion of Eq.(2.1) is illustrated in Fig.2. The
homoclinic orbits are indicated in it.

The Melnikov theory [9,12,17,32] allows us to calculate the Melnikov function
M(t0) for a class of perturbed system for which homoclinic or heteroclinic orbit is
known either analytically or numerically. M(t0) is proportional to the distance be-
tween the stable manifold (Ws) and unstable manifold (Wu) of a saddle. When the
stable and unstable manifolds are separated then the sign of M(t0) always remain
same. M(t0) oscillates when (Ws) and (Wu) intersects transversely (horseshoe dy-
namics). A zero of M(t0) corresponds to tangential intersections. The occurrence
of transverse intersections implies that the Poincaré map of the system has the so
called horseshoe chaos.
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Figure 2. Phase trajectories of the unperturbed Duffing oscilla-
tor. The analytical expression for the homoclinic orbits is given by
Eq.(2.4).

For Eq.(2.1), the Melnikov function is

M±(t0) =

∫ +∞

−∞
yh [−α yh + F (τ + t0)] dτ (2.5)

In the following, we calculate the Melnikov function for the system (Eq.(2.1)) with
different forms periodic piecewise linear forces. The period of all the forces are set
to T = 2π/ω.

2.1. Triangular Type Force. For the system (2.1) driven by Triangular type
force,

F (t) =


4ft
T , 0 ≤ t < T

4

− 4ft
T + 2f, T

4 ≤ t < 3T
4

4ft
T − 4f, 3T

4 ≤ t < T,

(2.6)

where t is taken as mod (2π/ω). Its Fourier series is

F (t) =
8f

π2

∞∑
n=1

(−1)(n+1) sin(2n− 1)ωt

(2n− 1)2
. (2.7)

Using Eq.(2.7), the Melnikov function is worked out as

M±(t0) = A± f

∞∑
n=1

Bn cos(2n− 1)ωt0 (2.8a)

where,

A = −4

3

α(ω2
0)

3/2

β
, (2.8b)

Bn =
8
√
2ω

π
√
β

(−1)n+1

(2n− 1)
sech

[
(2n− 1)πω

2
√

ω2
0

]
(2.8c)

2.2. Hat Type Force. For the system (2.1) driven by Hat type force,

F (t) =



f
2 , 0 ≤ t < T

6

f, T
6 ≤ t < T

3
f
2 ,

T
3 ≤ t < T

2
−f
2 , T

2 ≤ t < 2T
3

−f, 2T
3 ≤ t < 5T

6
−f
2 , 5T

6 ≤ t < T

(2.9)
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Its Fourier series is

F (t) =

∞∑
n=1

1

nπ

(
1− cosnπ + 2 cos

nπ

3

)
sinnωt (2.10)

Using Eq.(2.10), the Melnikov function is worked out to be

M±(t0) = A∓ f

∞∑
n=1

Cn n cosnωt0 ± f

∞∑
n=1

Dn [cos(nπ + nωt0)− cos(nπ − nωt0)]

∓f

∞∑
n=1

En [cos(nπ/3 + nωt0)− cos(nπ/3− nωt0)] (2.11a)

where,

Cn =
√
2/β ω sech

[
nπω

2
√

ω2
0

]
(2.11b)

Dn =
1√
2β

ω sech
[

nπω

2
√
ω2
0

]
(2.11c)

En = 2
√

2β ω sech
[

nπω

2
√

ω2
0

]
(2.11d)

2.3. Trapezium Type Force. The mathematical representation for the Trapez-
ium type force is

F (t) =



8ft
T , 0 ≤ t < T

8

f, T
8 ≤ t < 3T

8
8f
T (T2 − t), 3T

8 ≤ t < 5T
8

−f, 5T
8 ≤ t < 7T

8
8f(t−T )

T , 7T
8 ≤ t < T.

(2.12)

Its Fourier series is

F (t) =
16

π2

∞∑
n=0

1

n2
sin
(nπ

4

)
sinnωt (2.13)

Using Eq.(2.13), the Melnikov function is worked out to be

M±(t0) = A∓ f

∞∑
n=1

Fn [sin(nπ/4 + nωt0)− sin(nπ/4− nωt0)] (2.14a)

where,

Fn =
8
√
2/β ω

π

1

n
sech

[
nπω

2
√

ω2
0

]
. (2.14b)

2.4. Quadratic Type Force. The mathematical expresssion for the Quadratic
type force is

F (t) =


f, 0 ≤ t < 3T

8
8f
T (T2 − t), 3T

8 ≤ t < 5T
8

−f, 5T
8 ≤ t < T.

(2.15)

Its Fourier series is

F (t) =

∞∑
n=0

(
2f

nπ
+

8f

n2π2
sin
(nπ

4

))
sinnωt (2.16)



30 J. NONLINEAR ANAL. OPTIM. VOL. 13(1) (2022)

Using Eq.(2.16), the Melnikov function is worked out to be

M±(t0) = A∓ f

∞∑
n=1

Gn cosnωt0 ∓

f

∞∑
n=1

Hn [sin(nπ/4 + nωt0)− sin(nπ/4− nωt0)] (2.17a)

where,

Gn = 2
√

2/β ω sech
[

nπω

2
√

ω2
0

]
(2.17b)

Hn =
4
√
2/β ω

π

1

n
sech

[
nπω

2
√
ω2
0

]
. (2.17c)

2.5. Rectangular Type Force. The mathematical representation for the Rect-
angular type force is

F (t) =

{
f, 0 ≤ t < T

2

−f, T
2 ≤ t < T.

(2.18)

Its Fourier series is

F (t) =
4f

π

∞∑
n=0

1

(2n− 1)
sin(2n− 1)ωt (2.19)

Using Eq.(2.19), the Melnikov function is worked out to be

M±(t0) = A∓ f

∞∑
n=0

In cos(2n− 1)ωt0 (2.20a)

where,

In = 4
√
2/β ω sech

(
(2n− 1)πω

2
√
ω2
0

)
. (2.20b)

From Eqs.(2.8), (2.11), (2.14), (2.17) and (2.20) we can obtain the condition for
transverse intersections of stable manifolds (W±

s ) and unstable manifolds (W±
u ),

that is, M±(t0) to change sign at some t0.

3. Homoclinic Transition to Chaos

In this section we analyze the occurrence of homoclinic transition to chaos in the
system (2.1) driven by different forms of periodic piecewise forces. For our study
we fix the values of the parameters in Eq.(2.1) as α = 0.5, β = 1.0, ω2

0 = 1.0 and
ω = 1.0. We consider sufficiently large number of terms, say, 100 terms in the
summation of equation for M(t0). Figure 3 shows the plot of fM versus n, the
number of terms in the summation (Eq.(2.8)) for the triangular type force. fM
converses to a constant value with increase in n. For n > 5, the variation of fM
is negligible. Similar result is found for other types of periodic piecewise linear
forces also. Hence in our numerical calculation we fix n = 50. First we analyze
the occurrence of homoclinic transition to chaos numerically by measuring the time
τM elapsed between two successive change in the sign of M(t0). For a fixed value
of f , t0 is varied from 0 to 200T , where T = 2π/ω is the period of the driving
force. If the sign of M(t0) remains the same in this time interval then there is no
zero of M(t0) and τM is assumed to infinity. τM can be determined from the Eqs.
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Figure 3. fM versus n, the number of terms in the summation
in Eq.(2.8a), for α = 0.5, β = 1.0, ω2

0 = 1.0 and ω = 1, when the
system (2.1) is driven by the triangular type force. Variation in fM
converges to a constant value with increase in n.

(2.8),(2.11),(2.14),(2.17) and (2.20) for triangular, hat, trapezium, quadratic and
rectangular types of forces. τM is calculated for a range of amplitude of the driving
force. The value of f at which first intersection time of M(t0) changes sign and
thereby giving finite τM is the Melnikov threshold value for homoclinic transition
to chaos. Figure 4 shows the variation of 1/τM versus f for the system (2.1) driven
by different forms of periodic piecewise linear forces. Continuous curve represents
the inverse of first intersection time (1/τM+) of stable and unstable branches of
homoclinic orbits W+. Dashed curve corresponds to the orbits of W−. Homoclinic
transition to chaos does not occur when 1/τM is zero and it occurs in the region
when 1/τM > 0.

In Fig.4(a), when the system (2.1) driven by triangular type force, both 1/τM+

and 1/τM− are zero (that is 1/τM± are infinity) in the interval 0 < f < 0.45707.
This implies that homoclinic transition to chaos does not occur for f < f±

M =

0.45707. For f > f±
M=0.45707, both M+(t0) and M−(t0) oscillate and hence 1/τM

are nonzero. This implies that homoclinic transition to chaos is possible in this
region. The Melnikov threshold values of the other types of periodic piecewise
linear forces, namely, hat, trapezium, quadratic and rectangular types of forces are
f±
M = 0.29206, 0.31680, 0.42605 and 0.27948. From these values, it is observed that,

among the five forces, fM is maximum for the triangular type force and is minimum
for the rectangular type force. Thus the onset of homoclinic transition to chaos can
be either delayed or advanced by an appropriate choice of periodic piecewise linear
forces.

Then we analyze the occurrence of homoclinic transition to chaos by plotting
the threshold curves in the (f − ω) parameters plane also. The threshold curves
for homoclinic transition to chaos in the (f, ω) plane for the different forms of
periodic piecewise linear forces are shown in Fig.5. In the parameter region below
the threshold curve no transverse intersection of stable and unstable manifolds of
saddle occurs and above the threshold curve the transverse intersection of stable
and unstable manifolds of the saddle occur. Just above the Melnikov threshold
curve onset of cross-well chaos is expected. This figure clearly illustrates the effect
of various periodic piecewise forces.
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Figure 4. Variation of 1/τM versus f for the system (2.1) driven
by (a) triangular, (b) hat, (c) trapezium, (d) quadratic and (e)
rectangular types of forces. The values of the other parameters are
α = 0.5, β = 1, ω2

0 = 1 and ω = 1. Solid curve is for positive sign
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Figure 5. Melnikov threshold curves for horseshoe chaos in the
(f−ω) plane for the system (2.1) driven by the forces (a) triangular,
(b) hat, (c) trapezium, (d) quadratic and (e) rectangular types of
forces. The values of the other parameters in Eq.(2.1) are α = 0.5,
β = 1 and ω2

0 = 1.

We have verified the analytical prediction by direct simulation of the system
(1.1). In Fig.6 we plotted the orbits of the saddle for two values of the forces -
one for f < fM and another for f > fM . For clarity, only part of the manifolds
are shown. The unstable manifolds are obtained by numerically integrating the
Eq.(1.1) by the fourth-order Runge-Kutta method in the forward time for a set
of 900 initial conditions chosen around the perturbed saddle point. The stable
manifolds are obtained by integrating the the Eq.(1.1) in reverse time. In the left
side subplots (Figs.6a,6c,6e,6g and 6i), f < fM the stable and unstable manifolds
are well separated. That is homoclinic transition to chaos does not occurs in this
region. In the right side subplots (Figs.6b,6d,6f,6h and 6j) for f > fM , we can clearly
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notice the transverse intersections of orbits at certain places. That is homoclinic
transition to chaos is possible in this region.

4. Homoclinic Transition to Chaos due to an ϵ-Parametric Control
Force

In the previous section, all the above results can be considered as nonparametric
control force. In this section, an ϵ-parametric control force is defined one of the
periodic piecewise linear force. This ϵ-parametric force with 0 < ϵ < 1 is given by
(similar to quadratic type force (Eq.(2.15)),

F (t) =


f, 0 ≤ t < 1−ϵ

2 T
f
ϵ (

−2
T t+ 1), 1−ϵ

2 T ≤ t < 1+ϵ
2 T

−f, 1+ϵ
2 T ≤ t < T.

(4.1)

and is illustrated in Fig.7 with different values of ϵ, namely, ϵ = 0.17, 0.5, 0.7 and
0.9. Its Fourier series is

F (t) =

∞∑
n=1

(
2f

nπ
+

2f

ϵ n2π2
sin (ϵnπ)

)
sinnωt (4.2)

Using Eq.(4.2), the Melnikov function is worked out to be

M±(t0) = A∓ f

∞∑
n=1

Jn cosnωt0 ∓
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f

∞∑
n=1

Kn [sin(ϵnπ + nωt0)− sin(ϵnπ − nωt0)] (4.3a)

where,

Jn = 2
√
2/β ω sech

[
nπω

2
√
ω2
0

]
(4.3b)

Kn =

√
2/β

ϵnπ
ω sech

[
nπω

2
√
ω2
0

]
. (4.3c)

and the value of A is given in Eq.(2.8(b)). The occurrence of homoclinic transition
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Figure 8. Variation of 1/τM versus f for the system (2.1) driven
by the ϵ− parametric force for four values of ϵ, namely, ϵ =
0.17, 0.5, 0.7, 0.9. The values of the other parameters are α = 0.5,
β = 1, ω2

0 = 1 and ω = 1. Solid curve is for positive sign in M(t0)
and dashed curve is for negative sign in M(t0).

to chaos can be studied numerically measuring the time τM elapsed between two
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successive transverse intersections. τM can be determined from Eq.(4.3). Figure 8
shows the variation of 1/τM± versus f for four values of ϵ, namely, ϵ = 0.17, 0.5, 0.7
and 0.9. Continuous curve represents the inverse of first intersection time (1/τM ) of
stable and unstable branches of homoclinic orbits W+. Dashed curve corresponds
to the orbits of W−. Homoclinic transition to chaos does not occur when 1/τ is
zero and it occurs in the region 1/τ > 0. In Fig.8(a), for ϵ = 0.17, both 1/τM+

and 1/τM− are zero in the interval 0 < f < 0.29736. This implies that homoclinic
transition to chaos does not occur for f < f±

M = 0.29736. For f > f±
M = 0.29736,

both M+(t0) and M−(t0) oscillate and hence 1/τM± are nonzero. This implies that
homoclinic transition to chaos is possible in this region. For ϵ = 0.5, 1/τM+ and
1/τM− are zero for f < f+

M = 0.70023 and f < f−
M = 0.46077 respectively. For f

values in the interval f−
M < f < f+

M , M−(t0) alone oscillate which implies that the
homoclinic transition to chaos can take place only in the region x < 0. For f ≥ f+,
homoclinic transition can occur in both regions x < 0 and x > 0. The Melnikov
threshold values for ϵ = 0.7 we find f+

M = 0.66667 and f−
M = 0.44897; for ϵ = 0.9

f+
M = 0.60714 and f−

M = 0.45068.
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Figure 9. Melnikov threshold curves for horseshoe chaos in the
(f−ω) plane for the system (2.1) driven by an ϵ− parametric force
for four values of ϵ, namely, (a) ϵ = 0.17, (b) ϵ = 0.5, (c) ϵ = 0.7
and (d) ϵ = 0.9. The values of the other parameters in Eq.(2.1) are
α = 0.5, β = 1 and ω2

0 = 1.

The threshold curve for homoclinic transition to chaos in the (f, ω) plane for four
values of ϵ, namely, ϵ = 0.17, 0.5, 0.7, 0.9 is shown in Fig.9. Above the threshold
curve, the system can transit to chaotic motions and below the threshold curve
the system shows periodic behaviour. The results are also verified in Fig.10. The
numerically computed W s and Wu of the sadddle in the Poincaré map for ϵ = 0.5
is shown in Fig.10. Transverse intersections of stable and unstable branches of both
the homoclinic orbits are seen in Fig.10(c) for f = 0.8 (which is above the threshold
value f+

M = 0.70023). For ϵ = 0.6 (which is in between f−
M and f+

M ), we see the
transverse intersections of W−

s and W+
s orbits alone at two places, which is clearly

evident in Fig.10(b). The stable and unstable orbits are well separated in Fig.10(a)
for f = 0.2 (which is below f−

M ). Homoclinic transition to chaos does not occur
in this region. Similarly, we can verified the analytical results for other values of
ϵ, namely, ϵ = 0.17, 0.7 and 0.9. For different values of ϵ, the Melnikov threshold
values of the system (2.1) driven by ϵ-parametric force is given in table 1. From
table 1 we observed that the Melnikov threshold value of rectangular force falls
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Figure 10. Numerically computed stable and unstable manifolds
of the saddle fixed point of the system (2.1) driven by an ϵ− para-
metric force for three values of f with ϵ = 0.5. The values of the
other parameters are α = 0.5, β = 1, ω2

0 = 1 and ω = 1.

between ϵ = 0.2 and ϵ = 0.1. More clearly the parametric force with ϵ = 0.17...
gives the Melnikov threshold value (f±

M ) almost equals with rectangular force. For
ϵ → 0, ϵ-parametric force becomes quadratic type force.

Table 1. Melnikov threshold values of the system (2.1) with ϵ−
parametric force for few values of ϵ with α = 0.5, ω2

0 = 1, β = 1.0,
and ω = 1.0

Melnikov Threshold values (f±
M )

ϵ− values f−
M f+

M

0.1 0.17517 0.17517
0.17 0.29736 0.29736
0.2 0.17971 0.34977
0.3 0.44274 0.51077
0.4 0.46088 0.62415
0.5 0.46077 0.70023
0.6 0.46315 0.70805
0.7 0.44898 0.66667
0.8 0.44615 0.62302
0.9 0.45068 0.60714

5. Conclusion

The Melnikov method is sensitive to a global homoclinic bifurcation and gives a
necessary condition for the occurrence of horseshoe chaos . Applying this method,
we obtained the Melnikov threshold condition for onset of homoclinic transition to
chaos that is transverse intersections of stable and unstable branches of homoclinic
orbits. Threshold curves are drawn in a parameter space. These curves separating
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the chaotic and non-chaotic regions are obtained. Among the five periodic piecewise
linear forces, fM is maximum for the triangular type force. Also we have analyzed
the occurrence of homoclinic transition to chaos in the Duffing system with an ϵ−
parametric control force. The analytical results have been confirmed by numeri-
cal simulation. Numerical investigations including the computation of stable and
unstable manifolds saddle and threshold curves are used to detect homoclinic transi-
tion to chaos. With the good agreement obtained between analytical and numerical
predictions, we emphasize that the Melnikov analysis can be successfully used to
predict the onset of chaos in the presence of weak periodic perturbation.

It is important to study the effect of nonlinear fractional damping in Duffing os-
cillator driven by periodic piecewise linear forces such as triangular, hat, trapezium,
quadratic and rectangular types of forces. These will be investigated in future.
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ABSTRACT. The article develops an integrated supply chain coordination for multi-
channel and multi-echelon supply, in which a single manufacturer, multiple non-competitive
distributors, and non-competitive retailers are work together as members of the supply
chain. The formulation of this model is based on deterministic exponential decreasing and
price-dependent demand on the retailer’s end. We formulated the model in two different
scenarios, first, one is decentralized,d and the second one is centralized. The integrated
profit function has been derived for each supply chain member, incorporating sharing
holding costs among the distributors and retailers. We optimized selling price, economical
order quantity, wholesale price, and profits for every echelon supply chain member in the
finite and certain time horizon for decentralized and centralized scenarios respectively.
Finally, we have done sensitivity analysis for some key parameters to examine their influ-
ence on the model’s outputs. On the basis of numerical studies, we have also proposed
managerial insights.

KEYWORDS:Inventory, holding cost, net profit, multi-channel multi-echelon supply
chain, coordination.
AMS Subject Classification: :90B05, 90B30, 90B50.

1. Introduction

Due to globalization of market, growing of business competition, growth of pop-
ulation, awareness of consumer and legislative pressure have encouraged business
industrialist and organizations to work together with their up stream, down stream
members and customers. Furthermore better coordination among all upstream and
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downstream members, make the performance of entire supply chain is effective and
efficient. Consequently collaboration and coordination among all echelon supply
chain members are very important for an efficient supply chain. Otherwise due to
the lack of coordination among each members they would optimizes its own local
objectives ignoring impact on whole supply chain, may causes of lower profit.

In the previous decades, a several number of articles have been developed on sup-
ply chain management. Some relevant articles are mentioned here. Parlar and weng
[17]applied the quantity discount policy in a supplier relationship with considering
linear demand of buyer. They analyzed that quantity discount scheme can be very
useful for obtaining more profit. Weng [30] presented a model in which they de-
termine optimal lot size, optimal quantity discount policies. Also they analyze the
effects of quantity discount on increasing demand of consumer. For development of
models, generally price demand relationship are used by authors but Lau and Lau[2]
developed a inventory model by considering different demand curve functions and
investigate the effects on the single echelon supply chain system along with multi
echelon system.

Most of the previously published literatures had adopted trade credit policy
among suppliers and retailers only but Huang [29] adopted trade credit policy
among not only suppliers and retailers but also retailers and customers in their
supply chain model. Change et al.[8] developed an inventory model for deterio-
rating items assuming that a suppliers offers to purchaser a permission of delay in
payment when the purchased order quantity is large. Chunge and Liao[13] devel-
oped a supply chain model based on trade credit period for exponential deteriorating
items in which they assumed the condition that the supplier offers permission of
delay in payment which is depends on order quantity.

Karim And Suzuki [18] provided a literature review on warranty claim data anal-
ysis in following topics:

(1): Age based claims analysis,
(2): Aggregated warranty claim analysis,
(3): Two dimensional warranty cost analysis,
(4): Warranty cost analysis etc.

Li and Liu, [12] developed optimal supply chain coordination using optimal quan-
tity discount scheme considering probabilistic demand of single product in multiple
time interval. Ding and Chen [9] developed a three layer supply chain model for
short life cycle product. They highlighted, the coordination issues of three layer
supply chain and suggested that three layer supply chain can be fully coordinated
with certain contract of revenue sharing among manufacturer and supplier as long
as supplier and retailers. Cachon and Lariviere [10] provided a two layer supply
chain model with revenue sharing contracts. In this study it has been assumed that
retailer’s have to pay not only a wholesale price per unit of product to supplier but
also pay a fixed percentage of revenue.

Crook Russel and Combs [26] suggested in their inventory model that collabo-
rative environment in supply chain management create much better platform for
each supply chain members to grow. They analyzed in this study that, how a weak
member is benefited from strong a member in collaborative supply chain manage-
ment.

Jain et al.[11] developed literature review on supply chain management and fo-
cused some issues on supply chain management. They gave a classification of more
than 5889 published articles and try to find the status of literature on supply chain
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management. Kadadevaramath et al.[24] developed three layer supply chain coordi-
nation model by using four particle swarm optimization algorithm. They optimize
their objectives by using the following various limitations:

(1): Ordering capacity of vendor
(2): Production capacity of plant
(3): Demand depends on various parameters etc.

Barron et al. [14] modified the model of Kadadevaramath et al.[24]. In this study
optimality can be optimized by using integer linear programing solver technique in
place of particle swarm optimization algorithm Kadadevaramathet al.[24]. Further
they removed the following limitations of Kadadevaramath et al.[24] model:

(1): single product model is converted into multiple products model,
(2): single time interval is converted into multiple interval.

Barronet al.[15] proposed a vendor managed EOQ inventory model for multi prod-
ucts in which they considered multiple restrictions for optimizing total cost. It is
more advance in the following three aspects than previously published works:

(1): The total cost is less than recently research work,
(2): The number of evaluations of the total cost function is less than recently

research work,
(3): Computational time is less than recently research work.

Daya et al.[16] developed a three stage supply chain model, which formed by single
supplier single manufacturer and multiple retailers. In this study they proposed
a derivative free solution procedure to derive a optimal solution considering all
inputs are constant. They optimized setup cost, holding cost, raw material cost and
ordering cost along with the profits of each echelon member. Sarkar and Majumdar
[7] developed integrated supply chain coordination for vendor and buyer, based on
the following two different approaches:

(1): demand is a function of lead time which depends on probability distri-
bution,

(2): demand is free from lead time.
They optimizes lead time and ordering cost for buyer and reorder point and setup
cost for vendor. They also suggested that discrete investment gives better results
instead of continuous investment and it may be reduce the setup cost. Modak et
al.[20] presented two layer dual-channel supply chain, incorporating social responsi-
bility in two different scenario first one is centralize and another one is decentralize.
The development of this study is based on the following two different approaches:

(1): price dependent retail demand function,
(2): price dependent e-tail demand function.

After investigation they suggested in the centralized scenario model outputs are
better than decentralized.

Pal et al.[5] proposed three layer production inventory model considering with
three stage credit policy in which supplier provides the certain credit period to
manufacturer, manufacturer a provide certain credit period to retailer and retailer
also offers credit period to customers. They optimized replenishment lot size, and
production rate for manufacturer. Sana [25] presented a three stage supply chain
production inventory model which contains, a supplier, a manufacturer and a re-
tailer. During the production he assume that perfect and imperfect both items are
produced. They optimized production rate and replenishment rate per unit time for
maximization of average profit. Pal et al.[6] developed perfect and imperfect three
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layer production inventory model consisting supplier, manufacturer and retailer.
They assumed that the imperfect products are reworkable and rework process is
started after end of regular production. They optimized order size of raw material,
production rate per unit, production cost per unit and lead time.

Zhao and Chen[23] focused on the pricing strategies of a two-echelon supply chain
for single manufacturer and two retailers. They developed price decision model
considering the sensitivity of the retail quantity to the wholesale price of manufac-
turer and sales prices of the retailers. Khedlekar et al.[27] developed a production
inventory model for deteriorating items. For this they designed two cases, first
one is production without disruption and another one is production with disruption
system allowing with shortage. Khedlekar et al.[28] developed continuous two layer
supply chain inventory model by considering price and stock dependent demand for
deteriorating items. Revenue sharing on preservation technology are also considered
by authors.

Modak et al.[21] proposed a two layer supply chain formed by single manufac-
turer and single retailer for single product. They consider demand function as a
function of quality, warranty, and sales price of the product. They optimized profit
functions of the manufacturer and retailer under two the scenarios, centralized
and decentralized. Nigwal et al.[4] developed a three layer multi channel reverse
supply chain inventory model for used product in which a single remanufacturer
multi-collector and multi-retailer work together as supply chain members. Gupta
et al.[19] developed an imperfect production inventory model in which they consider
imperfect production with and without disruption allowing with and without short-
age. Modak et al.[22] developed a multi-channel, multi-echelon inventory model
for single product incorporating single manufacturer more than one retailers and
distributors as the members of the chain. The profit functions of each members
have been formulated and optimized. The formulation of profit functions are based
on demand of retailer’s end.

In this model we considered a three layer multi-channel and multi-echelon sup-
ply chain model consisting a single manufacturer, more than one distributors and
retailers. It is shown in the Figure (1). At starting the manufacturer provides the
fixed lot size of the products to kth (k=1 2...n) distributors and kth (k=1 2...n) dis-
tributors supplies the products to jkth (j=1 2 3....nk), (k=1 2....n) retailers, where
each retailer is associated to a certain distributor according to the geographical
conditions. Since requisition of products is to be made at retailer’s end therefor the
total demand of all retailers is fulfilled by all distributors and the total demand of all
distributors are fulfilled by the single manufacturer. Manufacturer and distributors
assimilates EOQ delivery policy. In this paper we considered random order cycle
time for manufacturer which is equally applicable for all distributors as well as all
retailers.

The objective of this research is to find optimal retail price, initial order size for
retailers in decentralized and centralized situation considering retailer’s price sensi-
tive and time dependent demand with sharing holding cost. We will also determine
which coordination policy can be adopted that maximize model outputs.

2. Notations and Assumptions

Following notations are used in this model.
pm : Maximum retail price determined by manufacturer,
Dr

jk : jkthretailer’s demand (per unit time) depends on retailer’s price and time
t in decentralized policy,



A THREE LAYER SUPPLY CHAIN COORDINATION POLICIES FOR... 43

Figure 1. Supply Chain Distribution Network

Dd
k : kth distributors’s demand (per unit time) in decentralized policy,

Dm : Manufacture’s demand (per unit time) in decentralized policy,
prjk : Retailing price per unit product of jkth retailer in decentralized policy,
prcjk : Retailing price per unit product of jkth retailer in centralized policy,
wd

k : kth Distributor’s wholesale price per unit product in decentralized policy,
wm : Manufacturer’s wholesale price per unit product in decentralized policy,

c : Production cost per unit product,
NP r

jk : Net profit of jkth retailer in decentralized policy,
NP d

k : Net profit of kth distributor in decentralized policy,
NPm : Net profit of manufacturer in decentralized policy,

n : Total number of distributors,
nr : Total number of retailers,

NP c : Net profit of whole channel in centralized policy,
β : Difference coefficient of (prjk − pm) which may be positive or negative,
η : Price sensitive factor of demand function,
T : Total time horizon,

Qr
jk : Initial demand of jkth retailer,
Qd

k : Initial demand of kth distributor,
Qm : Initial demand of manufacturer,
λ : Sharing coefficient of holding cost,
h : Holding cost per unit per unit time.

Assumptions: The following assumptions are made in this model
• Demand of product in the market is Dr

jk at the rate per unit time t; where
Dr

jk=ajke
−αt − ηprjk + β(pm − prjk), is nonnegative exponential function of

t and prjk, where ajk is demand scale parameter, β is difference coefficient
of pm and prjk, α > 0, ajk > 0, β > 0, η > 0, and 0 ≤ t ≤ T ,

• Holding cost is constant and it is shared by retailers and distributors,
• The lead time is zero, and replenishment rate is infinite, however the plan-

ning horizon is finite,
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• ak =
∑nk

j=1 ajk and a =
∑nk

j=1

∑n
j=1 ajk,

• There is no competitive environment between retailers and distributors
because each retailer’s and distributors are associated according different
geographical areas.

• We used the forward and backward substitution method to find the optimal
decision variables.

3.

The study has been developed under the following two situations:

3.1. Decentralized Policy. In this scenario the all supply chain members are in-
dependent to take their decisions to optimize their objectives and manufacturer is a
leader of supply chain. Therefore, firstly manufacturer announce the wholesale price
of product, and letter distributors and retailers optimize their decision variables.
Formulation of model is based on deterministic demand of retailer’s end. Therefore
firstly proposed model of retailer could be formulated as

3.1.1. Mathematical Model for Retailers. Since manufacturer manufactures the prod-
uct, he absolutely knows all those cost which are related to the production. There-
fore manufacturer can lead the supply chain of the product and also determine the
maximum retail price at which the product is expected to be sold. This retail price
of the product is called manufacturer’s determined retail price (MDRP). The MDRP
generally printed on the packet or tag of the product. It can be easily searched by
the customer. In generally according to the market conditions consumers are satis-
fied or dissatisfied with MDRP.Initially we assume that the certain lot of product
is distributed by manufacturer to n distributors d1, d2, d3,...dn. Distributors d1, d2,
d3,...dn supply certain lot of the products to n1 n2 n3...nk retailers respectively. As
per assumptions jktht retailer receives the stock, at time t, 0 ≤ t ≤ T . The rate of
changes in the jkth retailer’s inventory level is balanced by demand. At any time t
the following nonlinear equation may represent the inventory status of jkth retailer

dIrjk(t)

dt
= −Dr

jk, where 0 ≤ t ≤ T.

= −
(
ajke

−αt − ηprjk + β(pm − prjk)
)
,

(3.1)

where j = 1, 2, 3, ..., nk and k = 1, 2, 3, ..., n, with boundary condition Irjk(t) =0, at
t = T . solution of equation (3.1) gives

Irjk(t) =
ajk
α

(e−αt − e−αT ) + (η + β)prjk(t− T ) + βpm(T − t) (3.2)

The initial inventory level Irjk(0) for jkth retailer at time t = 0, where t ∈ [0, T ] is

Irjk(0) = Qr
jk =

ajk
α

(1− e−αT )− (η + β)prjkT + βpmT (3.3)

The sales revenue SRr
jk in replenishment time period [0, T ] can be formulated as

SRr
jk =

∫ T

0

prjkD
r
jkdt

SRr
jk = prjk

(ajk
α

(1− e−αT )− (η + β)prjkT + βPmT
)

(3.4)

Purchase cost PCr
jk of jkthretailer can be formulated as

PCr
jk =

∫ T

0

wd
kD

r
jkd



A THREE LAYER SUPPLY CHAIN COORDINATION POLICIES FOR... 45

PCr
jk = wd

k

(ajk
α

(1− e−αT )− (η + β)prjkT + βpmT
)

(3.5)

The inventory holding cost IHCr
jk per unit of per unit time of jkthretailer is

IHCr
jk = h

∫ T

0

Irjk(t)dt

IHCr
jk = h

∫ T

0

ajk
α

(e−αt − e−αT ) + (η + β)prjk(t− T ) + βpm(T − t)dt (3.6)

IHCr
jk = h

(
ajk
α2

(1− e−αt − Tαe−αT )− (η + β)prjk
T 2

2
+ βpm

T 2

2

)
(3.7)

The net profit of jkth retailer must be after subtraction of purchasing cost and
sharing holding costs from sales revenue. Hence the net profit function NP r

jk of
jkth retailer is

NP r
jk = (prjk − wd

k)
[ajk
α

(1− e−αT )− (η + β)prjkT + βpmT
]

− hλ

[
ajk
α2

(1− e−αt − Tαe−αT )− (η + β)prjk
T 2

2
+ βpm

T 2

2

] (3.8)

According to the Taylor’s theorem for small value of α the exponential function
e−at can be approximated by 1−αT + α2T 2

2 i.e e−aT ≈ 1−αT + α2T 2

2 . Substituting
the approximated value into the equation (3.8) we have

NP r
jk = (prjk − wd

k)

[
ajk

(
T − αT 2

2

)
− (η + β)prjkT + βpmT

]
− hλ

[
ajk
2

(T 2 − αT 3)− (η + β)prjk
T 2

2
+ βpm

T 2

2

] (3.9)

Proposition 3.1. The optimal selling price pr∗jk of jkth retailer associated with kth

distributor’s wholesale price wd
k is pr∗jk and where

pr∗jk =
wd

k

2
+

βpm

2(η + β)
+

λhT

4
+

ajk(1−e−αT )

2α(η + β)T
(3.10)

Proof. At an optimal point, NP r
jk, ∂NP r

jk

∂pr
jk

must vanish i.e.

− (prjk−wd
k)(η+β)T +

[ajk
α

(1− e−αT )− (η + β)prjkT + βpmT
]
+hλ(η+β)

T 2

2
= 0

(3.11)
optimal value of prjk is given by following equation

prjk =
wd

k

2
+

βpm

2(η + β)
+

λhT

4
+

ajk(1− e−αT )

2α(η + β)T
(3.12)

□

Proposition 3.2. NP r
jk shows concavity in prjk if η > 0 and β > 0.

Proof. Second order partial derivatives of NP r
jk in prjk is

∂2NP r
jk

∂pr2jk
= −2(η + β)T. (3.13)



46 J. NONLINEAR ANAL. OPTIM. VOL. 13(1) (2022)

Hence NP r
jk is a concave function in prjk if η > 0 and β > 0.

By using backward substitution method the optimal demand of the product at jkth
(j=1 2 3 ...nk ,k=1 2 3 ...n) retailer’s fag end is

Dr∗
jk = ajke

−αT − c(η + β)

8
− (1− e−αT )

2αT

(
a

4nr
+

ak
2nj

+ ajk

)
+

15βpm

8
(3.14)

□

3.1.2. Mathematical Model for Distributors. There are nth distributors d1, d2, d3,...dn
and demand at kth distributor’s end is the sum of all jkth retailer’s demand. Hence
the demand of kth distributors can be written as

Dd
k =

nk∑
j=1

Dr
jk = ake

−αt − (η + β)

nk∑
j=1

prjk + njβp
m

Therefor the rate of changes in the kth distributor’s inventory is balanced by de-
mand. At any time t following nonlinear equation represents the inventory status
of kth distributor

dIdk (t)

dt
= −Dd

k where 0 ≤ t ≤ T,

dIdk (t)

dt
= −

ake
−αt − (η + β)

nk∑
j=1

prjk + njβp
m

where 0 ≤ t ≤ T.

(3.15)

with boundary condition Im(ts) = 0, at t = T. Now we derived the net profit
function for kth distributor during a time interval of length [0, T ]. The net profit
function for kth distributor must be after subtraction of purchasing cost and sharing
holding costs from sales revenue. The solution of equation (3.15) gives

Idk (t) =
ak
α
(e−αt − e−αT ) + (η + β)

nk∑
j=1

prjk(t− T ) + βpmnj(T − t) (3.16)

At the initial time t = 0 the inventory level for kth retailer is, where t ∈ [0, T ]

Idk (0) = Qd
k =

ak
α
(1− e−αT )− (η + β)

nk∑
j=1

prjkT + βpmnjT (3.17)

The sales revenue SRd
k in the replenishment time period [0, T ] can be formulated as

SRd
k =

∫ T

0

wd
kD

d
kdt

SRd
k = wd

k

ak
α
(1− e−αT )− (η + β)

nk∑
j=1

prjkT + βpmTηj

 (3.18)

Purchase cost of kth distributor in the interval [0, T ] is

PCd
k =

∫ T

0

wmDd
kdt

PCr
jk = wm

ak
α
(1− e−αT )− (η + β)

nk∑
j=1

prjkT + βpmTηj

 (3.19)
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The inventory holding cost IHCr
jk per unit per unit time is

IHCd
k = h

∫ T

0

Idk (t)dt

IHCd
k = h

ak
α2

(1− e−αt − Tαe−αT )− (η + β)

nk∑
j=1

prjk
T 2

2
+ βpmηj

T 2

2

 (3.20)

Hence the net profit function for kth distributor per unit time is

NP d
k = (wd

k − wm)

ak
α
(1− e−αT )− (η + β)

nk∑
j=1

prjkT + βpmTηj


− h(1− λ)

ak
α2

(1− e−αt − Tαe−αT )− (η + β)

nk∑
j=1

prjk
T 2

2
+ βpmηj

T 2

2


(3.21)

where prjk is given by (3.10)

Proposition 3.3. The optimal wholesale price of kth distributor associated with
manufacturer’s wholesale price wm is wd∗

k , where

wd∗
k =

wm

2
+

ak(1− e−αT )

2α(η + β)Tnj
− λhT

2
+

βpm

2(η + β)
+

Th

4
(3.22)

Proof. Partial differentiation of equation (3.21) gives
∂NP d

k

∂wd
k

=− (wd
k − wm)nk(η + β)

T

2
+

ak
2α

(1− e−αT )− wd
knk(η + β)

T

2
+ βpmnk

T

2

− (η + β)λhnk
T 2

4
+ h(1− λ)nk(η + β)

T 2

4
(3.23)

If wd∗
k is an optimal value of wd

k then ∂NPd
k

∂wd
k

= 0 i.e.

− (wd
k − wm)nk(η + β)

T

2
+

ak
2α

(1− e−αT )− wd
knk(η + β)

T

2
+ βpmnk

T

2

− (η + β)λhnk
T 2

4
+ h(1− λ)nk(η + β)

T 2

4
= 0

(3.24)

solution of equation (3.24) gives

wd∗
k =

wm

2
+

ak(1− e−αT )

2α(η + β)Tnk
− λhT

2
+

βpm

2(η + β)
+

Th

4
(3.25)

for optimality of NP d
k at point wd

k =wd∗
k , we have ∂2NPd

k

∂wd2

k

= −nj(η+β)T2 for β > 0

and η > 0. Hence the optimal values of NP d
k exists at wd∗

k □

3.1.3. Mathematical Model for Manufacturer. Manufacturer provides the initial lot
of product to all distributors according to their demands. Therefore demand of
product at manufacturer end is equal to the sum of all kth distributor’s demand.
Hence the demand of manufacturer can be written as

Dm =

n∑
k=1

Dd
k = ae−αt − (η + β)

nk∑
j=1

n∑
k=1

prjk + nrβpm
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Hence the rate of changes in the manufacturer’s inventory is balanced by demand
of all distributors. At any time T the following nonlinear equation may represent
the inventory status:

dIdk (t)

dt
= −Dm where 0 ≤ t ≤ T,

dIdk (t)

dt
= −

ae−αt − (η + β)

nk∑
j=1

n∑
k=1

prjk + nrβPm

where 0 ≤ t ≤ T.

(3.26)

with boundary condition Im(ts) = 0, at t = T. The solution of equation (3.26) gives

Im(t) =
a

α
(e−αt − e−αT ) + (η + β)

nk∑
j=1

n∑
k=1

prjk(t− T ) + βpmnr(T − t) (3.27)

The initial inventory level for manufacturer at time t = 0, where t ∈ [0, T ] is

Im(0) = Qm =
a

α
(1− e−αT )− (η + β)

nk∑
j=1

n∑
k=1

prjkT + βpmnrT (3.28)

Now we derived the net profit function of manufacturer during a time interval of
length [0, T ]. The net profit function of manufacturer after can be obtain, after
subtraction of production cost per unit from sales revenue. The sales revenue of
manufacturer in the replenishment time period [0, T ] can be formulated as

SRm =

∫ T

0

wmDmdt

SRm = wm

 a

α
(1− e−αT )− (η + β)

nj∑
j=1

n∑
k=1

prjkT + βpmTnr

 (3.29)

Manufacturing cost of product for manufacturer is

PCd = c

∫ T

0

Dmdt

PCm = c

ak
α
(1− e−αT )− (η + β)

nk∑
j=1

n∑
k=1

prjkT + βpmTnr

 (3.30)

Hence the net profit function NPm of manufacturer is

NPm = (wm − c)

 a

α
(1− e−αT )− (η + β)

nk∑
j=1

n∑
k=1

prjkT + βpmTnr

 (3.31)

where prjk is given by (3.10)

Proposition 3.4. The optimal wholesales price of manufacturer associated with
production cost of unit product is wm∗, where

wm∗ =
c

2
+

a(1− e−αT )

2α(η + β)Tnr
−hT

4
+

βpm

2(η + β)
(3.32)
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Proof. Partial differentiation of equation (3.31) gives

∂NPm

∂wm
=− (wm − c)(η + β)nr T

4
+

a(1− e−αT )

4α
− (η + β)wmnr T

4
+ nrβpm

T

4

− (η + β)hnr T
2

8
(3.33)

If wm∗ is an optimal value of wm then ∂NPm

∂wm = 0 i.e.

−(wm−c)(η+β)nr T

4
+
a(1− e−αT )

4α
−(η+β)wmnr T

4
+nrβpm

T

4
−(η+β)hnr T

2

8
= 0

(3.34)
where prjk is given by (3.10), equation (3.34) yields

wm∗ =
c

2
+

a(1− e−αT )

2α(η + β)Tnr
− hT

4
+

βpm

2(η + β)
(3.35)

for optimality of NPm at point wm =wm∗, we have ∂2NPd
kk

∂wd2

k

= −nr(η + β)T2 , for
β > 0 and η > 0. Hence optimal profit NPm exists at wm∗ □

Proposition 3.5. If pm is an optimum suggested price and wm∗ is a wholesale
price given by manufacturer, also wd∗

k is an optimum wholesales price given by
distributors , then optimal selling price is given by

(i) pr∗jk =
c

8
+

a(1− e−αT )

2α(η + β)

(
a

4nr
+

ak
2nk

+ ajk

)
+

7βpm

8(η + β)
, (3.36)

where j=1 2 3....nk, and k=1 2 3....n,

(ii) wd∗
k − wm∗ > 0,

where k=1 2 3....n,

(iii) pr∗jk − wd∗
k > 0

Proof. (i) Substituting the values of wd∗
k and wm∗ from equations (3.25) and (3.35)

respectively into the equation (3.12) we get pr∗jk in terms of T and other parameters,
which obvious. (ii) It is obvious from equation (3.12) and equation (3.25) and model
stability. (iii) It is also obvious from part (i) and equation (3.25). □

3.2. Centralized Policy. In the centralized scenario all supply chain members
work together as a single unit and cooperate to each other. In this scenario only
manufacturer can take all decisions about supply chain and which are equally ap-
plicable on all supply chain members. The mathematical model can be formulated
as following

3.2.1. Mathematical Model. In this scenario manufacturer is a leader of whole sup-
ply chain and he is a single decision maker, therefore he can take all decisions to
optimize profit of whole chain. If prcjk is a retail price of jkth retailer, wd

j is a whole
sale price of kth distributor, wm is a whole sale price of manufacturer, c is a manu-
facturing cost, IHCr

jk is a holding cost of jkth retailer and IHCd
k a is holding cost
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of kth distributor, then the profit function is

NP c =

nk∑
j=1

n∑
k=1

[(
prcjk − wd

j

)
Dr

jk − λ(IHCr
jk)

]
+

n∑
k=1

[
(wr

k − wm)Dd
k − (1− λ)IHCd

k

]
+ (wm − c)

=

nk∑
j=1

n∑
k=1

[(
prcjk − c

)
Dr

jk − λ(IHCr
jk)

]

NP c =

nk∑
j=1

n∑
k=1

(
prcjk − c

) (ajk
α

(1− e−αT )− (η + β)prcjkT + βpmT
)

−
nk∑
j=1

n∑
k=1

h

(
ajk
α2

(1− e−αt − Tαe−αT )− (η + β)prcjk
T 2

2
+ βpm

T 2

2

) (3.37)

By using backward substitution method the optimal demand of the products at
jkth (j=1 2 3 ...nk ,k=1 2 3 ...n) retailer’s fag end is as

Drc
jk = ajke

−αT − c(η + β)

2
− ajk(1− e−αT )

2αT
+

βpm

2
+

(η + β)Th

4
(3.38)

Proposition 3.6. In the centralized scenario the optimal selling price of jkth re-
tailer associated with manufacturing cost is prc∗jk , where

prc∗jk =
c(η + β)T +

ajk

α (1− e−αT ) + βpmT − (η + β)T
2

2

2(η + β)Th
(3.39)

Proof. Partial differentiation of equation (3.37) gives

∂NP c

∂pr∗jk
=

nk∑
j=1

n∑
k=1

[
−
(
prjk − c

)
(η + β)T +

(ajk
α

(1− e−αT )− (η + β)prjkT + βpmT
)]

−
nk∑
j=1

n∑
k=1

(η + β)
T 2

2
h

(3.40)
If prc∗jk is an optimal value of prcjk then ∂NP c

∂pr∗
jk

= 0

i.e.

(
prjk − c

)
(η + β)T −

(ajk
α

(1− e−αT )− (η + β)prjkT + βpmT
)

+ (η + β)
T 2

2
h = 0

(3.41)

solution of equation (3.41) gives

prc∗jk =
c(η + β)T +

ajk

α (1− e−αT ) + βpmT − (η + β)T
2

2 h

2(η + β)T
(3.42)

for optimality of NP c at point prcjk=prc∗jk , we have
−2nr(η + β)T , for η > 0 and β > 0,
Hence optimum value of NP c exists at prc∗jk . □
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3.3. Numerical example. For numerically illustration of this supply chain model
we have assumed that the supply chain is formed by a manufacturer M, two dis-
tributors (D1, D2) and four retailers (R11,R12, R21 and R22). According to the
Figure (1), each retailer is associated with certain distributors. A manufacturer
has to provide certain quantity of product and distributors have to provide certain
quantity of product to respective retailers. We consider the following data set, the
demand scale parameters at each retailer’s end are a11 =75, a12 = 73, a21 = 74,
a22 = 76 units, manufacturer determined maximum retail price is pm=275 price
coefficient parameter is η = 0.1, difference coefficient of retail price and suggested
price is β = 1.5, production cost is c =150, shape parameter is α = 0.002 and
random time is T=1.05. The model outputs are given in the following table:

Table 1: Decentralized Policy
Optimal R11 R12 R21 R22 D1 D2 M

Price 285.11 284.48 284.80 285.80 265.58 265.89 227.15
Demand 31 30 30 31 61 61 122

EOL 32 31 34 33 - - -
Profit 640.40 600.10 610 650.68 2480.54 2522.15 10002

Total profit 17515.87

Table 2: Centralized Policy
Optimal R11 R12 R21 R22 D1 D2 M

Price 227.31 226.69 227 227.62 - - -
Demand - - - - - - 493

Profit - - - - - - 40050.14
Total profit 40050.14

3.4. Sensitivity Analysis. Through the analysis of table 1 and 2 shows that, in
the decentralized policy retail price of product is comparatively higher than the
centralized policy but due to less demand of products, total profit of whole supply
chain is more less than the centralized policy.

Proposition 3.7. All profits are as follows with respect to basic demand of product
∂NP r

jk

∂ajk
> 0, ∂NPd

k

∂ak
> 0, ∂NPm

∂a > 0, and ∂NP c

∂ajk
> 0,

Intuitively, all supply chain member’s profit in both policy shows incremental
property with respect to basic demand when retailing price and suggested retail
price are constant. It is shown in the table 3.

Table 3: Sensitive analysis with base demand parameter
changes NP r

11 NP r
12 NP r

21 NP r
22 NP d

1 NP d
2 NPm NP c

-15% 585.3 546.8 556.3 595.2 2263.8 2303.6 8697.2 36566
a -5% 621.0 580.4 590.2 630.2 2400.6 2441.5 9220.4 38765

5% 661.1 620.1 630.2 621.4 2561.8 2604.0 9837.1 41356
15% 698.0 655.9 666.3 708.6 2707.2 2750.6 10393.1 43692

Proposition 3.8. Behavior of each profit function with respect to α are as follow
∂NP r

jk

∂α < 0, ∂NPd
k

∂α < 0, ∂NPm

∂α < 0, and ∂NP c

∂α < 0,
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Proposition 3.8 states the impact of shape parameter on each supply chain members,
when selling price and suggested retail price are constant, then profit of each supply
chain member decreases, as α increases.

Table 4: Sensitive analysis with base scale parameter
changes NP r

11 NP r
12 NP r

21 NP r
22 NP d

1 NP d
2 NPm NP c

-15% 640.4 600.1 610.0 650.7 2480.6 2522.2 9526.6 40051
α -5% 640.5 600.2 610.0 650.8 2480.8 2522.4 9527.2 40053

5% 640.4 600.1 610.0 650.7 2480.5 2522.0 9526.0 40048
15% 640.3 600.1 610.0 650.7 2480.3 2521.2 9526.4 40046

Proposition 3.9. Partial derivative all profits with respect to η are as follow
∂NP r

jk

∂η < 0, ∂NPd
k

∂η < 0, ∂NPm

∂η < 0, and ∂NP c

∂η < 0,

Proposition 3.9 states the influence of the parameter η, which measure the sensitivity
of consumers to the retailing price of product, profit of each supply chain member
is decreases as η increases.

Table 5: Sensitive analysis with η

changes NP r
11 NP r

12 NP r
21 NP r

22 NP d
1 NP d

2 NPm NP c

-15% 658.2 617.1 627.2 668.6 2550.0 2592.4 9792.5 41168
η -5% 646.3 605.8 615.8 656.6 2503.5 2545.4 9614.3 40420

5% 634.5 594.5 604.4 644.8 2457.7 2499.1 9439.0 39683
15% 547.6 511.4 520.3 556.9 2117.5 2155.1 8135.6 34205

Proposition 3.10. Partial derivatives of all profits with respect to β are as follow
∂NP r

jk

∂β > 0, ∂NPd
k

∂β > 0, ∂NPm

∂β > 0, and ∂NP c

∂β > 0,

Proposition 3.10 shows the influence of coefficient of difference between manufac-
turer determined retail price and actual selling price β of the product. Increment
of β increases the profit of all supply chain members.

Table 6: Sensitive analysis with β

changes NP r
11 NP r

12 NP r
21 NP r

22 NP d
1 NP d

2 NPm NP c

-15% 586.9 545.4 555.6 597.5 2216.5 2259.5 8702.7 36596
β -5% 622.4 581.8 591.8 632.8 2407.9 2449.8 9256.2 38891

5% 658.4 618.5 628.4 668.7 2553.6 2594.9 9803.8 41215
15% 694.9 655.5 665.3 704.9 2700.6 2741.4 10362.7 43562

Proposition 3.11. Behavior of each profit function with respect to pm are as follow
∂NP r

jk

∂pm > 0, ∂NPd
k

∂pm > 0, ∂NPm

∂pm > 0, and ∂NP c

∂pm > 0,

For certain data set proposition shows that profits of all supply chain member
increases as manufacturer determined selling price pm increases which is shown in
the following table.

Table 7: Sensitive analysis with pm

changes NP r
11 NP r

12 NP r
21 NP r

22 NP d
1 NP d

2 NPm NP c

275 640.4 600.1 610.0 650.6 2480.54 2522.15 10002 40050
pm 280 679.4 637.9 648.1 690.0 2634.15 2677.00 10619 42519

285 719.6 676.8 687.3 730.4 2792.37 2836.47 11254 45061
290 760.9 716.9 727.7 772.1 2955.21 3000.56 11908 47678
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4. Conclusion

We have developed an integrated multi-channel and multi-echelon supply chain
coordination policy for two different scenarios, in which first one is decentralized
and second one is centralized scenario. The model follows the exponential time de-
clining, price sensitive and manufacturer determined retail price dependent demand,
incorporating sharing holding cost among retailers and distributors. Particularly,
the manufacturer who act as stackelberg leader of whole chain, decides wholesale
and suggested retail price of product, according to their goal and expenditure. On
the basis of manufacturer’s decision we optimized the retail price, wholesale price
of distributors, initial order quantity for retailers, distributors and manufacturer,
optimal profits of each supply members in certain finite time horizon. Model may
be applicable on those products which are well established in the market and have
high holding cost as long as non fluctuated demand with time.

Management should follow the following suggestions for beneficial purposes (i)
Keep balance between retail price and suggested retail price, because profits of all
supply chain members show positive behavior with suggested retail price. But in-
crement of suggested retail price may causes reducing demand. (ii) Keep always
pm > prjk i.e β > 0, because profits of all supply chain members show positive
behavior with respect to β. (iii) Proposition 3.8 shows the profit of all supply chain
members are sensitive with retailing price, therefore management should make bet-
ter strategies before making the changes in retail price. (iv) Managerial insights
of study is that firstly management should collect all information about demand
of product with the help of retailers and then announce the whole sale price and
manufacturer determined retail price. Observation of model outputs shows that
management should make a contractual policy for better coordination among all
supply chain members because in the centralized scenario model outputs are better
than the decentralized scenario. One can be extended this model by incorporating
stockout situation at retailers end. One can be extend this model by incorporating
probabilistic demand or discrete demand and also one can extend this model by in-
corporating variable holding cost. One can be extended this model by incorporating
setup cost dependent suggested retail price by manufacturer.
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1. Introduction

The area of an equilibrium theory is dynamic and has been experiencing an
explosive growth in both theory and applications, as a consequences of research
techniques and problems drawn from various fields. This theory of equilibrium
problem is being intensively studied by Blum and Oettli [2], where they proposed
it as a generalization of optimization and variational inequality problem to study a
wide class of problems. It has been extended to vector equilibrium problems, vector
optimization problems and vector saddle point problems, see [2, 6, 8, 12]. In 2005,
Kazmi and Raouf [10] introduced a class of operator equilibrium problems and from
this there are plentiful problems for equilibrium problems with operator solutions,
see for example [7, 10, 14, 15, 16, 17, 18] and the references therein. Implicit vector
equilibrium problem is a generalization of implicit vector variational inequality, for
more detail, we refer to [1, 3, 4, 13].

In 1929, Knaster, Kuratowski and Mazurkiewicz [11] established the well-known
KKM theory, which is one of the few areas among the subjects from nonlinear anal-
ysis that could provide an easy and convenient forms and tools for the study of
problems from applied sciences, such as economics, optimization and game theory.
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We have employed KKM theorems to prove the existence of solutions of implicit
vector equilibrium problems.
Throughout this paper, Let Z be an ordered topological vector space with an or-
dering cone C in Z. Note that the cone C in Z defines a partial ordering ≤C as
follows:

x ≤ y ⇔ y − x ∈ C, ∀x, y ∈ Z,

x ≰ y ⇔ y − x /∈ C, ∀x, y ∈ Z.

If the intC ̸= ϕ, then the weak ordering in Z is defined as follows:
x < y ⇔ y − x ∈ intC, ∀x, y ∈ Z,

x ≮ y ⇔ y − x /∈ intC, ∀x, y ∈ Z.

Now we will work under the following settings:

Let X,Y and Z be real Hausdorff topological vector spaces, and let K ⊆ X
and D ⊆ Y be nonempty set. Let C be a closed and convex cone in Z such that
intC ̸= ϕ. Let S : K → 2K and T : K → 2D be set-valued mappings. In this paper,
we consider the following implicit vector equilibrium problem:

Find x∗ ∈ K, y ∈ T (x∗) such that
F (h(x∗), y, u) /∈ −intC, ∀u ∈ S(x∗), (1.1)

where F : K ×D ×K → Z be a trifunction and h : K → K be a map from K into
itself.

Throughout the paper, 2X denotes the set of all nonempty subsets of X.

Some special cases

(i) If h : K → K is the identity map on K, then (1.1) reduces to the problem
of finding x∗ ∈ K such that

F (x∗, y, u) /∈ −intC, for all y ∈ T (x∗), u ∈ S(x∗), (1.2)
which is called the implicit vector variational inequality studied by Chiang
et al. [3].

(ii) If S(x) = K, ∀x ∈ K, then (1.2) reduces to the problem of finding x∗ ∈ K
such that

F (x∗, y, u) /∈ −intC, for all u ∈ K,

which is extensively studied in [4].
(iii) If Z = R, C = [0,∞), and X as well as Y are finite dimensional spaces,

then (1.2) reduces to implicit variational inequality studied by Cubiotti
and Yao [5].

(iv) If Z = R, C = [0,∞), and Y = X∗, the topological dual of X and
F (x∗, y, u) = ⟨y, u− x∗⟩,

where ⟨., .⟩ is the dual pairing between X∗ and X, then (1.2) reduces to
generalized quasi variational inequality studied by Shih and Tan [19], and
Yao [20].

The main aim of this paper is to study the existence of solution of implicit vector
equilibrium problems for trifunction in real Hausdorff topological vector spaces by
using KKM -lemma. In section- 2, we recall some necessary definitions and results
which are needed in the latter section. Some new existence results for the solution



ON EXISTENCE OF SOLUTION OF IMPLICIT VECTOR EQUILIBRIUM PROBLEMS 57

of implicit vector equilibrium problems for trifunction have been established in
section-3.

2. Preliminaries

Now we give some definitions and preliminary results needed in the next sections.

Definition 2.1. A set-valued map T : K → 2Y is called a KKM-map, if for

every finite subset {x1, x2, ....., xn} of K, co {x1, x2, .....xn} ⊆
n∪

i=1

T (xi), where

co {x1, x2, .....xn} denotes the convex hull of the set {x1, x2, .....xn}.

Definition 2.2. A set-valued map T : X → 2Y is called upper semicontinuous (for
short, u.s.c) at x0 ∈ X, if for any net {xλ} in X such that xλ → x0 and for any net
{yλ} in Y with yλ ∈ T (xλ) such that yλ → y0 in Y, we have y0 ∈ T (x0). T is called
upper semicontinuous on X if it is upper semicontinuous at every point of X.

To prove the existence results for the solutions of problem (1.1), we shall use the
following lemmas:

Lemma 2.3. [9] Let K be a nonempty convex subset of a Hausdorff topological
vector space X. Let T : K → 2X be a KKM-map, such that for any y ∈ K, T (y)
is closed and T (y∗) is contained in a compact set B ⊆ X for some y∗ ∈ K. Then,
there exist x∗ ∈ B such that x∗ ∈ T (y), for all y ∈ K, that is,

∩
y∈K

T (y) ̸= ϕ.

Lemma 2.4. [13] Let (Z,C) be an ordered topological vector space with a closed
and convex cone C. Then for any x, y, z ∈ Z, we have

(i) x− y ∈ −intC and x /∈ −intC =⇒ y /∈ −intC.
(ii) x+ y ∈ −C and x+ z /∈ −intC =⇒ z − y /∈ −intC.
(iii) x+ z − y /∈ −intC and −y ∈ −C =⇒ x+ z /∈ −intC.
(iv) x+ y /∈ −intC and y − z ∈ −C =⇒ x+ z /∈ −intC.

3. Existence Results

In this section, we prove some new existence results for the solutions of implicit
vector equilibrium problem for trifunction.

Theorem 3.1. Let K ⊆ X be a nonempty convex set and D ⊆ Y be a nonempty
set. Let C be a closed and convex cone in Z such that intC ̸= ϕ. Let S : K → 2K

and T : K → 2D be continuous set-valued mappings. Let h : K → K be a continuous
mapping. Let F : K×D×K → Z be a continuous mapping with respect to the first
argument. Suppose that the following assumptions holds:

(1) the map W : K → 2Z defined by W (x) = Z \ {−intC} , ∀x ∈ K is upper
semicontinuous on K,

(2) there exists a set-valued map G : K ×D ×K → Z such that
(i) G(h(x), y, x) /∈ −intC, for all x ∈ K, y ∈ T (x),
(ii) G(h(x), y, u) − F (h(x), y, u) /∈ −intC, for all x ∈ K, y ∈ T (x), u ∈

S(x),
(iii) {u ∈ K : G(h(x), y, u) ∈ −intC} is convex, for all x ∈ K, y ∈ T (x), u ∈

S(x),
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(3) furthermore, suppose that there exists a nonempty compact and convex
subset M of K such that for each x ∈ K \M, y ∈ T (x), there exists u ∈ M
such that F (h(x), y, u) ∈ −intC.

Then, there exists x∗ ∈ K, y ∈ T (x) such that F (h(x∗), y, u) /∈ −intC, for all u ∈
S(x∗).

Proof. For each u ∈ K, define a set-valued map P : K → 2M as
P (u) = {x ∈ M : F (h(x), y, u) /∈ −intC, ∀y ∈ T (x), ∀u ∈ S(x)} .

We first prove that P (u) is closed,for all u ∈ K. For this, let {xα} be a net in P (u)
such that xα → x. Then x ∈ M (as M is compact). It follows from xα ∈ P (u) that

F (h(xα), y, u) /∈ −intC, ∀y ∈ T (xα), ∀u ∈ S(xα).

So, F (h(xα), y, u) ∈ W (xα) = Z \ {−intC} , ∀y ∈ T (xα), ∀u ∈ S(xα).

Again, since F (x, y, u) is continuous with respect to x and h, S, T are also continu-
ous, we have

F (h(xα), y, u) → F (h(x), y, u).

Therefore by the upper semicontinuity of W, we have
F (h(x), y, u) ∈ W (x), ∀y ∈ T (x), ∀u ∈ S(x).

Therefore, F (h(x), y, u) /∈ −intC, ∀y ∈ T (x), ∀u ∈ S(x).

Hence P (u) is closed, for all u ∈ K.
Next, we will show that ∩

u∈K

P (u) ̸= ϕ.

Since M is compact, it is sufficient to show that the family {P (u)}u∈K has the fi-
nite intersection property. For this, let {u1, u2, · · · , un} be a finite subset of K. Set
N = co[M ∪{u1, u2, · · · , un}]. Clearly, N is compact and convex subset of K. Next,
for each u ∈ K, we define two set-valued mappings, T1, T2 : K → 2N as follows:

T1(u) = {x ∈ N : F (h(x), y, u) /∈ −intC, ∀y ∈ T (x), ∀u ∈ S(x)}
and

T2(u) = {x ∈ N : G(h(x), y, u) /∈ −intC, ∀y ∈ T (x), ∀u ∈ S(x)} .
By assumption (i), (ii) of (2), we have

G(h(u), y, u) /∈ −intC

and
G(h(u), y, u)− F (h(u), y, u) ∈ −intC.

It follows from Lemma 2.4(i), F (h(u), y, u) /∈ −intC. and so T1(u) ̸= ϕ.
Since T1(u) is a closed subset of a compact set N. Therefore T1(u) is compact.
Now we will show that T2 is a KKM-map. Suppose there exists a finite subset
{x1, x2, · · · , xn} of N and λi ≥ 0, i = 1, 2, · · · , n with

∑n
i=1 λi = 1 such that

x̄ =

n∑
i=1

λixi /∈
n∪

j=1

T2(xj).

Then G(h(x̄), y, xj) ∈ −intC , j = 1, 2, · · · , n.
From assumption (2)(iii), we have

G(h(x̄), y, x̄) ∈ −intC,
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which is a contradiction to (2)(i). Hence T2 is a KKM-map.
From assumption (2)(ii) and Lemma 2.4(i), we have

T2(u) ⊆ T1(u) ,∀u ∈ K.

Infact, x ∈ T2(u) implies G(h(x), y, u) /∈ −intC and by assumption (2)(ii), we have,

G(h(x), y, u)− F (h(x), y, u) ∈ −intC

or F (h(x), y, u) /∈ −intC and hence x ∈ T1(u).

So, T1 is also a KKM -map.

From Lemma 2.3, there exists x∗ ∈ N such that x∗ ∈ T1(u), for all u ∈ K.

This implies that there exists x∗ ∈ N such that

F (h(x∗), y, u) /∈ −intC.

Therefore by assumption (3), we have x∗ ∈ M and moreover x∗ ∈ P (ui) , i =
1, 2, · · · , n. Hence {P (u)}u∈K has the finite intersection property.This completes
the proof. □

Corollary 3.2. Let K ⊆ X be a nonempty convex set and D ⊆ Y be a nonempty
set. Let C be a closed and convex cone in Z such that intC ̸= ϕ. Let S : K → 2K

and T : K → 2D be a continuous set-valued mapping. Let F : K ×D ×K → Z be
continuous mappings with respect to the first argument. Suppose that the following
assumptions holds:

(1) the map W : K → 2Z defined by W (x) = Z \ {−intC} , for all x ∈ K is
upper semicontinuous on K,

(2) there exists a set-valued map G : K ×D ×K → Z such that
(i) G(x, y, x) /∈ −intC, for all x ∈ K, y ∈ T (x),
(ii) G(x, y, u)− F (x, y, u) /∈ −intC, for all x ∈ K, y ∈ T (x), u ∈ S(x),
(iii) {u ∈ K : G(x, y, u) ∈ −intC} is convex, for all x ∈ K, y ∈ T (x), u ∈

S(x),
(3) furthermore, suppose that there exists a nonempty compact and convex

subset M of K such that for each x ∈ K \M, y ∈ T (x), there exists u ∈ M
such that F (x, y, u) ∈ −intC.

Then there exists x∗ ∈ K, y ∈ T (x) such that

F (x∗, y, u) /∈ −intC, for all u ∈ S(x∗).

Proof. If h : K → K be the identity map in the above Theorem 3.1, then it can be
easily checked that all the assumptions of Theorem 3.1 are satisfied. □

Remark 3.3. The above corollary gives the existence results for the solution of
implicit vector equilibrium problem for trifunction in Chiang et al. [3] without the
compactness of K, closedness of D if we replace assumptions (i)-(vi) in [3] by the
hypotheses of above Corollary 3.2 of this paper.

4. Conclusion

In this work, implicit vector equilibrium problems for trifunction in real Hausdorff
topological vector space is considered, and established some existence results for the
solution of the problems by using KKM-lemma. Some special cases have also been
discussed to show that our results are generalization of several authors.
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