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GENERAL VECTOR ALPHA OPTIMIZATION PROBLEMS
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2 Department of Basic Sciences, Thai Nguyen University of Information and Communication

Technology, Thai Nguyen, Vietnam

ABSTRACT. The aim of the paper is to study the closedness of the optimal solution
sets for general vector alpha optimization problems in Hausdorff locally convex topological
vector spaces. Firstly, we present the relationships between the optimal solution sets of
primal and dual general vector alpha optimization problems. Secondly, making use of the
upper semicontinuity of a set-valued mapping, we discuss the results on closedness of the
optimal solution sets for general vector alpha optimization problems in infinite-dimensional
spaces.

KEYWORDS: Dual and primal general vector alpha optimization problems; Optimal
solution sets; Upper C− continuous set-valued mapping; Hausdorff locally convex topo-
logical vector spaces.
AMS Subject Classification: 90C29, 90C46, 49K27

1. Introduction

It is well known that the closedness, upper (lower) semicontinuity and connected-
ness or contractibility of optimal solution sets in set-valued optimization problems
play an important role in the theory of set-valued analysis and applied analysis (see,
e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 17] and the references therein). In recent years,
Gong [5] studied the connectedness and path connectedness of efficient solution sets
of vector equilibrium problems using the scalarization results; Gong and Yao [6, 7]
discussed the results about the lower semicontinuity and connectedness of the effi-
cient solution sets for parametric generalized systems which was introduced by Ding
and Park [4] with monotone bifunction in real locally convex Hausdorff topological
vector spaces; Khanh and Luu [9] obtained the result on the upper semicontinuity of
solution set of quasivariational inequalities in Hausdorff topological vector spaces;

∗Corresponding author.
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Article history : Received 19 July 2018; Accepted 10 January 2020.
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Khanh and Anh [10] investigated the Holder continuity of solution to parametric
multivalued vector equilibrium problems in metric linear spaces; Wu and Wu [17]
have discussed the characterization of solution sets of a general convex program on
a normed vector space using the Gateaux differentiable.

On characterizations of the solution sets for general alpha vector optimization
problems have been extensively investigated in recent years because of their fields
of applications (see, e.g., [11, 12, 13, 14, 15, 16] and the references therein). For
example, Lin and Tan [11, 12] introduced and studied the solution existence results
for the systems of quasivariational inclusion problems of type I and related problems
in infinite dimensional spaces. On using the upper and lower semicontinuity of set-
valued mappings, Tan [15, 16] together with Su [14] have received the result on
existences of solution of generalized systems.

However, so far as we known, there are no results in the literature on the closed-
ness of the efficient solutions for dual and primal general vector alpha optimization
problems in Hausdorff locally convex topological vector spaces. The purpose of the
article is to discuss the closedness for efficient solutions of this problems.

The organization of this paper is as follows. In Section 2, we recall some basic con-
cepts and related properties. Section 3 is devoted to the relationships between the
optimal solution sets of dual and primal general vector alpha optimization problems
in Hausdorff locally convex topological vector spaces. In this section, the closedness
of optimal solution sets plays a central role in this paper. In Section 4, we make a
conclusion to emphasis the obtained results again.

2. Preliminaries

Throughout this paper, let X and Y be two Hausdorff locally convex topological
vector spaces in which Y be partially ordered by a convex cone C. We recall that C
is a cone if tc ∈ C for every c ∈ C and every nonnegative number t. C is said to be
a convex set if for any c, d ∈ C, the line segment [c, d] = {tc+ (1− t)d : 0 ≤ t ≤ 1}
belongs to C. If C is a convex set then a cone C is called a convex cone. If C is
a closed and convex set then a cone C is called a closed and convex cone. We set
l(C) := C ∩ (−C). In this case, if l(C) = {0} then a cone C is called a pointed
cone. We denote D instead of a nonempty subset of X, and F : D ⇒ Y stands for
a set-valued mapping F from D into Y. The domain and the graph of F are defined
respectively by

domF = {x ∈ D : F (x) ̸= ∅},
graphF = {(x, y) ∈ D × Y : x ∈ domF, y ∈ F (x)}.

For A ⊂ X, we denote as usual by intA, cl A intead of the interior and the closure
of A, respectively. The set of Ideal, Pareto, Proper and Weak minimal points of A
with respect to C is denoted respectively as

IMin(A|C), PMin(A|C), P rMin(A|C) and WMin(A|C).

The set of Ideal, Pareto, Proper and Weak maximal points of A with respect to C
is denoted respectively as

IMax(A|C), PMax(A|C), P rMax(A|C) and WMax(A|C).

The concepts of Ideal, Pareto, Proper and Weak minimal and maximal points can
be found in Luc [13].
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In this paper, the primal general vector alpha optimization problems correspond-
ing to D,F and C (to short, (GV OP )α,min) are defined as follows: finding x ∈ D
such that

F (x) ∩ αMin(F (D)|C) ̸= ∅.
The set of such points x is said to be a solutions set of (GV OP )α,min which is denoted
by αSmin(D,F,C). The elements of αMin(F (D)|C) are called alpha optimal values
of (GV OP )α,min, where α = I, α = P, α = Pr and α = W instead of the case of
Ideal, Pareto, Proper and Weak efficient points, respectively.

The dual general vector alpha optimization problems corresponding to D,F and
C of problem (GV OP )α,min, which is denoted by (GV OP )α,max, can be defined as
follows: finding x ∈ D such that

F (x) ∩ αMax(F (D)|C) ̸= ∅.

The set of such points x is said to be a solutions set of (GV OP )α,max which is de-
noted by αSmax(D,F,C). The elements of αMax(F (D)|C) are called alpha optimal
values of (GV OP )α,max. The set D is sometimes called the set of alternatives and
F (D) is the set of outcomes.

We next recall the following definitions which will be needed in the paper.

Definition 2.1. ([13]) Let A be a nonempty subset of Y. We say that
(i) x ∈ A is an ideal efficient (or ideal minimal) point of A with respect to C

if y − x ∈ C for every y ∈ A.
The set of ideal minimal points of A is denoted by IMin(A|C).

(ii) x ∈ A is an efficient (or Pareto-minimal, or nondominated) point of A
with respect to C if there is no y ∈ A with x − y ∈ C \ l(C), where
l(C) := C ∩ (−C).
The set of efficient points of A is denoted by PMin(A|C).

(iii) x ∈ A is a (global) proper efficient point of A with respect to C if there
exists a convex cone

∼
C which is not the whole space and contains C \ l(C)

in its interior such that

x ∈ PMin(A|
∼
C).

The set of proper efficient points of A is denoted by PrMin(A|C).
(iv) Supposing that intC is nonempty, x ∈ A is a weak efficient point of A with

respect to C if
x ∈ PMin(A|intC ∪ {0}).

The set of weak efficient points of A is denoted by WMin(A|C).

The concepts of upper and lower semicontinuity with a set-valued mapping play
an important role in the paper.

Definition 2.2. ([15, 16]) Let F : D ⇒ Y be a set-valued mapping.
(i) F is said to be upper C− continuous in x ∈ domF if for any neighborhood

V of the origin in Y, there exists a neighborhood U of x such that
F (x) ⊂ F (x) + V + C ∀x ∈ U ∩ domF.

(ii) F is said to be lower C− continuous in x ∈ domF if for any neighborhood
V of the origin in Y, there exists a neighborhood U of x such that

F (x) ⊂ F (x) + V − C ∀x ∈ U ∩ domF.
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(iii) If F is upper C− continuous and lower C− continuous in x ∈ domF
simultaneously, we say that F is C− continuous in x.

(iv) If F is upper (resp. lower) C− continuous in any points of x ∈ domF, we
say that F is upper (resp., lower) C− continuous on D.

Let ∅ ̸= A ⊂ Y, C ⊂ Y be a convex cone. By making use of the concepts
in Definition 2.1, we receive the equivalences of efficiency, which can be stated as
follows.

Proposition 2.3. ([13]) A equivalent definition of efficiency:
(i) x ∈ IMin(A|C) if and only if x ∈ A and A ⊂ x+ C.
(ii) x ∈ IMax(A|C) if and only if x ∈ A and A ⊂ x− C.
(iii) x ∈ PMin(A|C) if and only if A ∩ (x − C) ⊂ x + l(C), or equivalently,

when C is pointed, x ∈ PMin(A|C) if and only if A ∩ (x− C) = {x}.
(iv) When C is not the whole space, x ∈ WMin(A|C) if and only if A ∩ (x −

intC) = ∅, or equivalently, there is no y ∈ A such that x− y ∈ {0} ∪ intC
and not y − x ∈ {0} ∪ intC.

It can be easily seen that the following equalities hold

αMin(A| − C) = αMax(A|C),

αMax(A| − C) = αMin(A|C),

where α is one of the notions I, P, Pr and W. Moreover, it follows from Proposition
2.2 in Luc [13] that the following inclusions are true:

PrMin(A|C) ⊂ PMin(A|C) ⊂ WMin(A|C).

If, in addition, IMin(A|C) ̸= ∅ then

PMin(A|C) = IMin(A|C).

Finally, the strict convexity of a set-valued mapping will be provided.

Definition 2.4. ([13]) Let D be a convex subset of domF with F : D ⇒ Y. We say
that

(i) F is called strictly C− convex on D, when intC ̸= ∅, if for x1, x2 ∈ D, x1 ̸=
x2, t ∈ (0, 1), i.e. 0 < t < 1,

F (tx1 + (1− t)x2) ⊂ tF (x1) + (1− t)F (x2)− intC.

(ii) F is called strictly C− quasiconvex on a nonempty convex subset D ⊂ X,
when intC ̸= ∅, if for y ∈ Y, x1, x2 ∈ D, x1 ̸= x2, t ∈ (0, 1), i.e. 0 < t < 1,

F (x1), F (x2) ⊂ y − C implies F (tx1 + (1− t)x2) ⊂ y − intC.
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3. Closedness of the optimal solution sets for problems (GV OP )α,min

and (GV OP )α,max

In this section, we discuss the closedness and relationships between the optimal
solution sets of dual and primal general vector alpha optimization problems in
Hausdorff locally convex topological vector spaces corresponding to D,F and C,
where α is one of the qualifications: Pareto, Proper, Ideal and Weak.

Proposition 3.1. Let αSmin(D,F,C) be the solution set of (GV OP )α,min, where
α is one of the notions I, P, Pr and W. We have the following assertions hold.

(i) ISmin(D,F,C) ⊂ PSmin(D,F,C). Moreover, if IMin(F (D)|C) ̸= ∅ then
ISmin(D,F,C) = PSmin(D,F,C),

and it is has at most a solution whenever C is pointed.

(ii) PrSmin(D,F,C) ⊂ PSmin(D,F,C) ⊂ WSmin(D,F,C).

Proof. Case (i): Let us assume that x be a solution of (GV OP )I,min, which yields
that

F (x) ∩ IMin(F (D)|C) ̸= ∅.
By definitions, it can be easily seen that

F (x) ∩ PMin(F (D)|C) ̸= ∅.
Therefore, the vector x is an optimal solution of (GV OP )P,min. Making use of
Proposition 2.2 [13] in the case IMin(F (D)|C) ̸= ∅, and we obtain the result as
required.

Case (ii): It is evident that
F (x) ∩ PrMin(F (D)|C) ⊂ F (x) ∩ PMin(F (D)|C)

⊂ F (x) ∩WMin(F (D)|C) ∀x ∈ D.

Consequently,
PrSmin(D,F,C) ⊂ PSmin(D,F,C) ⊂ WSmin(D,F,C),

which proves the claim. �

Proposition 3.2. Let αSmax(D,F,C) be the solution set of (GV OP )α,max, where
α is one of the notions I, P, Pr and W. We have the following assertions hold.

(i) ISmax(D,F,C) ⊂ PSmax(D,F,C). Moreover, if IMax(F (D)|C) ̸= ∅ then
ISmax(D,F,C) = PSmax(D,F,C),

and it is has at most a solution whenever C is pointed.

(ii) PrSmax(D,F,C) ⊂ PSmax(D,F,C) ⊂ WSmax(D,F,C).

Proof. Case (i): Let x be a solution of (GV OP )I,max, which means that
F (x) ∩ IMax(F (D)|C) ̸= ∅.

By definitions, it is not hard to see that
F (x) ∩ PMax(F (D)|C) ̸= ∅.

Thus the vector x is a solution of problem (GV OP )P,max. If, in addition, IMax(F (D)|C) ̸=
∅, taking into account of Proposition 2.2 [13], we arrive at the desired conclusion.
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Case (ii): It is evident that
F (x) ∩ PrMax(F (D)|C) ⊂ F (x) ∩ PMax(F (D)|C)

⊂ F (x) ∩WMax(F (D)|C) ∀x ∈ D.

Therefore,
PrSmax(D,F,C) ⊂ PSmax(D,F,C) ⊂ WSmax(D,F,C),

as was to be shown. �

Proposition 3.3. Let D be a nonempty convex subset in X and the set-valued
mapping F : D ⇒ Y be either strictly C− convex or strictly C− quasiconvex on D.
Assume, furthermore, that F (x) is convex set for all x ∈ D. Then

PSmin(D,F,C) = WSmin(D,F,C).

If, in addition, IMin(F (D)|C) ̸= ∅, then
ISmin(D,F,C) = WSmin(D,F,C),

and it is has at most a solution whenever C is pointed.

Proof. Making use of the result obtained in Proposition 3.1 (ii), it suffices to prove
that

WSmin(D,F,C) ⊂ PSmin(D,F,C).

Take arbitrary x ∈ WSmin(D,F,C) and prove that x ∈ PSmin(D,F,C). In fact,
we assume to the contrary, that x ̸∈ PSmin(D,F,C). By definition, one finds an
element y ∈ D such that

F (y) ⊂ F (x)− C \ {0}.
It is well known that

C \ {0} ⊂ C, C \ {0}+ C ⊂ C,

intC ⊂ C, intC + C = intC,
1

2
F (x) +

1

2
F (x) = F (x) ∀x ∈ D.

We set
z =

1

2
x+

1

2
y.

Since D is convex set, it ensures that z ∈ D. Using the definition of strictly C−
quasiconvexity on D and the set F (x) convex, it follows that

F (z) ⊂ 1

2
F (x) +

1

2
F (y)− intC

⊂ 1

2
F (x) +

1

2
F (x)− 1

2
C \ {0} − intC

⊂ 1

2
F (x) +

1

2
F (x)− C − intC

⊂ F (x)− intC,
which contradicting the condition x ∈ WSmin(D,F,C). So, we have the following
equality

PSmin(D,F,C) = WSmin(D,F,C).

The last case is due to preceding Proposition 3.1 and we get the required conclusion.
�
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Remark 3.4. It is worth noting that the results obtained in Proposition 3.3 are
still holds for the senses

PSmax(D,F,C) = WSmax(D,F,C)

and
ISmax(D,F,C) = WSmax(D,F,C),

if the set-valued mapping F is strictly (−C)− convex or strictly (−C)− quasiconvex
on D.

Theorem 3.1. Let D be a nonempty closed subset in X and the set-valued mapping
F : D ⇒ Y be upper C− continuous on D and assumming, in addition, that C be
a closed convex cone in Y and F (x) compact for any x ∈ D. Then ISmin(D,F,C)
is closed.

Proof. Assume to the contrary, that there exists sequence (xα)α ⊂ ISmin(D,F,C)
such that

xα → x, (3.1)
where x ̸∈ ISmin(D,F,C). From the initial assumption, we have that D is a closed
subset in X and (xα)α ⊂ D, and so, it follows that x ∈ D. It is well known that F
is upper C− continuous on D, which yields that F is also upper C− continuous at
x. Making use of Definition 2.2, for any open convex neighborhood V of the origin
in Y, there exists a neighborhood U of x in X such that

F (x) ⊂ F (x) +
1

2
V + C ∀x ∈ U ∩ domF. (3.2)

It follows from (3.1) that there exists α0 > 0 such that
xα ∈ U ∩ domF for every α > α0.

From (3.2) we obtain the following inclusion

F (xα) ⊂ F (x) +
1

2
V + C for every α > α0. (3.3)

We arbitrarily take α > α0. It is clear that F is upper C− continuous at xα. For
the preceding open convex neighborhood V, there exists a neighborhood Uα of xα

satisfying

F (Uα ∩ domF ) ⊂ F (xα) +
1

2
V + C. (3.4)

Since V is convex, it holds that
1

2
V +

1

2
V ⊂ V.

Combining (3.3)-(3.4) yields that
F (Uα ∩ domF ) ⊂ F (x) + V + C. (3.5)

By the initial hypotheses, F (x) is a compact set, C is a closed cone and V is an
open neighborhood arbitrarily, and thus, it follows from (3.5) that

F (Uα ∩ domF ) ⊂ F (x) + C. (3.6)
Let us see that

F (xα) ∩ IMin(F (D)|C) = ∅ ∀α > α0.

In fact, if it was not so, then there would exists an element yα ∈ F (xα) with α > α0

such that
F (D) ⊂ yα + C.
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Because α > α0, it follows from (3.6) that
yα ∈ F (x) + C.

One finds an element cα ∈ C such that yα − cα ∈ F (x). On the other hand, for any
α > α0,

F (D) ⊂
(
yα − cα

)
+ cα + C

⊂
(
yα − cα

)
+ C + C

=
(
yα − cα

)
+ C.

By virtue of Definition 2.1 together with the fact that F (x) ⊂ F (D), one obtains
yα − cα ∈ F (x) ∩ IMin(F (D)|C) ∀α > α0,

this means that x ∈ ISmin(D,F,C), this is a contradiction. We thus will be allowed
to say that the following relation is fulfilled

F (xα) ∩ IMin(F (D)|C) = ∅ ∀α > α0,

it means that for any α > α0, the vector xα does not belong to the solution set
ISmin(D,F,C), which conflicts with the initial assumptions. So the optimal solution
set ISmin(D,F,C) is closed, and we get the desired conclusion. �

Proposition 3.5. Let D be a nonempty closed subset in X and the set-valued
mapping F : D ⇒ Y be upper (−C)− continuous on D and assumming, in addition,
that C be a closed convex cone in Y and F (x) compact for any x ∈ D. Then
ISmax(D,F,C) is closed.

Proof. We take Q = −C, then Q is a closed convex cone in Y and the set-valued
mapping F is upper Q− continuous on D. By using the obtained result in Theorem
3.1, we deduce that ISmin(D,F,Q) is closed. Therefore, the optimal solution set
ISmax(D,F,C) is also closed because the following equality holds

ISmax(D,F,C) = ISmin(D,F,Q),

which completing the proof. �

Theorem 3.2. Let D be a nonempty closed subset in X and the set-valued mapping
F : D ⇒ Y be upper l(C)− continuous on D and assumming, in addition, that C be
a closed convex cone in Y and F (x) compact for any x ∈ D. Then PSmin(D,F,C)
and PSmax(D,F,C) are closed.

Proof. We prove only the case PSmin(D,F,C) is closed because the closedness of
PSmax(D,F,C) is similarly proceeded. In fact, suppose to the contrary, that there
exists sequence (xα)α ⊂ PSmin(D,F,C) such that

xα → x,

where x ̸∈ PSmin(D,F,C). Arguing similarly as for proving Theorem 3.1, there
exist neighborhoods Uα (α > α0) of xα satisfying

F (Uα ∩ domF ) ⊂ F (x) + l(C). (3.7)

We next have to show that
F (xα) ∩ PMin(F (D)|C) = ∅ ∀α > α0. (3.8)
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Indeed, if (3.8) does not hold, it means that there is at least an element zα ∈ F (xα)
with α > α0 such that

F (D) ∩ (zα − C) ⊂ zα + l(C) ∀α > α0.

It should be noted here that for every α > α0, by using the proof of Theorem 3.1,
we obtain xα ∈ Uα, and moreover it leads to the following result holds

zα ∈ F (Uα ∩ domF ).

This along with (3.7) lead to there exists cα ∈ l(C) with α > α0 satisfying
zα − cα ∈ F (x).

It can be seen that
intC ⊂ C, t intC = intC, tC = C, ∀ t > 0,

intC + C = intC, (−intC) + (−C) ⊂ −(C + C) = −C,

C + C ⊂ C implies l(C) + l(C) ⊂ l(C).

We thus have the following relations
F (D) ∩ (zα − cα − C) ⊂ F (D) ∩ (zα − C − C)

⊂ F (D) ∩ (zα − C) ⊂ zα + l(C)

= zα − cα + cα + l(C)

⊂ zα − cα + l(C) + l(C)

= zα − cα + l(C) ∀α > α0.

We set
yα = zα − cα.

Obviously,
yα ∈ F (x) ∩ PMin(F (D)|C) ∀α > α0.

So we conclude that x being an optimal solution of problem (GV OP )P,min, which
conflicts with the fact that x ̸∈ PSmin(D,F,C). Therefore, the optimal solution set
of problem PSmin(D,F,C) is closed in X, which completes the proof. �

Theorem 3.3. Under the assumptions of Theorem 3.1. We have the following
assertions hold.

(i) If ISmin(D,F,C) ̸= ∅ then PSmin(D,F,C) is closed.
(ii) If F is upper (−C)− continuous on D and ISmax(D,F,C) ̸= ∅ then

PSmax(D,F,C) is closed.

Proof. By reasons of similarly, we prove only case (i). In fact, we may assume that
the optimal solution set ISmin(D,F,C) ̸= ∅, then it is plain that

PSmin(D,F,C) = ISmin(D,F,C).

Adapting the result obtained in Theorem 3.1, we conclude that PSmin(D,F,C) is
closed and the claim follows. �

Theorem 3.4. Let D be a nonempty closed subset in X, the set-valued mapping
F : D ⇒ Y and assumming, in addition, that C be a closed convex cone with its
interior nonempty and be not the whole space in Y and F (x) compact for any x ∈ D.
Then

(i) WSmin(D,F,C) is closed if F is upper C− continuous on D .
(ii) WSmax(D,F,C) is closed if F is upper (−C)− continuous on D.



10 J. NONLINEAR ANAL. OPTIM. VOL. 11(1) (2020)

Proof. We proof only case (i) by reasons of similarly. Assume to the contrary, that
there exists sequence (xα)α ⊂ WSmin(D,F,C) and x ̸∈ WSmin(D,F,C) such that

xα → x.

Repeat the proof of preceding Theorem 3.1, then one finds α0 > 0, Uα is a neigh-
borhood of xα such that

F (Uα ∩ domF ) ⊂ F (x) + C ∀α > α0. (3.9)

It is not difficult to check that

F (xα) ∩ PMin(F (D)|C) = ∅ ∀α > α0. (3.10)

Indeed, if (3.10) does not hold, then there exists at least an element wα ∈ F (xα)
with α > α0 such that

wα ∈ PMin(F (D)|C).

Because C is not the whole space, making use of Proposition 2.3 in Luc [13] to
deduce that

F (D) ∩
(
wα − intC

)
= ∅ ∀α > α0.

Note that for every α > α0, then xα ∈ Uα, which leads to the following result holds

wα ∈ F (Uα ∩ domF ).

Together this with (3.9), it yields that there exists cα ∈ C with α > α0 satisfying

wα − cα ∈ F (x).

Since C is a convex cone with its interior nonempty, it yields that the following
equality holds

C + intC = intC.
Consequently,

wα − cα − intC ⊂ wα − intC.
Therefore,

wα − cα ∈ F (x) ∩WMin(F (D)|C) ∀α > α0,

which means that
x ∈ WSmin(D,F,C),

contradicting the fact that x is not an optimal solution of problem (GV OP )W,min.
So the condition (3.10) holds, which leads to xα with α > α0 does not being
optimal solutions of (GV OP )W,min, a contradiction. From here we will be allowed to
conclude that the optimal solution set WSmin(D,F,C) is closed and this completes
the proof. �

Theorem 3.5. Let D be a nonempty closed subset in X, the set-valued mapping
F : D ⇒ Y and assumming, in addition, that C be a closed convex cone with its
interior nonempty, C \ l(C) be open, C be not the whole space in Y and F (x)
compact for any x ∈ D. Then

(i) PrSmin(D,F,C) is closed if F is upper C− continuous on D and the
problem (GV OP )I,min has solution.

(ii) PrSmax(D,F,C) is closed if F is upper (−C)− continuous on D and the
problem (GV OP )I,max has solution.
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Proof. Case (i): We take arbitrary sequence (xα)α ⊂ PrSmin(D,F,C) such that
xα → x ∈ X.

Since xα ∈ D for every α ≥ 1 and the set D is closed, one gets x ∈ D. By the initial
assumption it yields that the problem (GV OP )I,min has solution. On one hand, it
follows from Theorem 3.3 that the optimal solution set PSmin(D,F,C) is closed.
Making use of Proposition 3.1 to deduce that the following result holds

(xα)α ⊂ PSmin(D,F,C).

Consequently,
x ∈ PSmin(D,F,C).

By definitions, we get
F (x) ∩ PMin(F (D)|C) ̸= ∅.

Taking y ∈ F (x) such that
F (D) ∩ (y − C) ⊂ {y}+ l(C).

By picking
K = l(C) ∪ intC.

Then K is a convex cone which is not the whole space and contains C \ l(C) in its
interior. In fact, we get

C \ l(C) = intC ⊂ int
(
l(C) ∪ intC

)
= intK.

On the other hand, it is evident that
F (D) ∩ (y −K) ⊂ {y}+ l(K),

which yields that
y ∈ F (x) ∩ PMin(F (D)|K).

Consequently,
x ∈ PrSmin(D,F,C),

which completing the proof of case (i).
Case (ii): Arguing similarly as for the proof of case (i), where a cone C is replaced

by a cone −C, we also arrive at the conclusion. �

To close this paper, we give an example illustrating Theorem 3.5.

Example 3.6. Let X = R2 = {x = (x1, x2) : x1 ∈ R, x2 ∈ R}, Y = R,
D = [−1, 0]× [−1, 0] ⊂ R2, C = R+ = {x ∈ R : x ≥ 0}. We consider the set-valued
mapping F : D ⇒ R is defined by

F (x1, x2) = {x1 + x2} (∀ (x1, x2) ∈ D).

It can be easily seen that the cone C ̸= Y is closed and convex with intC = R++

(where R++ := intR+) and the cone C \ l(C) = R++ is open. Notice that for any
x ∈ D, the set F (x) is compact. Let us see that F be upper C− continuous on D.
In fact, take arbitrary x := (x1, x2) ∈ D and ϵ > 0, define the neighborhood U of x
by

U =
{
(x1, x2) ∈ R2 : (x1 − x1)

2 + (x2 − x2)
2 ≤ (

ϵ

2
)2
}
.

For every (x1, x2) ∈ U ∩D (note that D = domF ), we obtain the following system{
(x1 − x1)

2 + (x2 − x2)
2 ≤ ( ϵ2 )

2

x1 + x2 ≤ 0.
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We have that
F (x1, x2) ⊂ F (x1, x2) + (−ϵ, ϵ) + R+. (3.11)

Indeed, (3.11) is equivalent to
x1 + x2 ∈ x1 + x2 + (−ϵ, ϵ) + R+,

or equivalently,
x1 + x2 − x1 − x2 ∈ (−ϵ,+∞).

Hence,
x1 + x2 − x1 − x2 > −ϵ. (3.12)

It is well-known that
|x1 + x2| ≤ |x1 + x2 − x1 − x2|+ |x1 + x2|

≤
√
2(
(
x1 − x1)2 + (x2 − x2)2

)
+ |x1 + x2|

< ϵ+ |x1 + x2|.

So, (3.12) is fulfilled, which means that the set-valued mapping F is upper C−
continuous on D. We next check that ISmin(D,F,C) ̸= ∅. Indeed, we first pick
(x1, x2) ∈ D, i.e., xi ∈ [−1, 0] for i = 1, 2, and one second considers F (x1, x2) ∩
IMin(F (D)|C) ̸= ∅. By definitions, x1 + x2 ∈ F (D) and F (D) ⊂ x1 + x2 +R+. By
directly calculating,

F (D) =
∪

(x1,x2)∈D

F (x1, x2) =
[
− 2, 0

]
.

Thus, {
x1 + x2 ≥ −2

x1 + x2 ≤ −2.

This system is equivalent to x1 + x2 = −2, but x1 ≥ −1 and x2 ≥ −1, which leads
to x1 = x2 = −1. So,

ISmin(D,F,C) = {(−1,−1)} ̸= ∅.
Thanks to Theorem 3.5 that the solution sets PrSmin(D,F,C) and PrSmax(D,F,−C)
are closed. In fact, in this setting, it holds that PSmin(D,F,C) = {(−1,−1)} and
further, it follows from Proposition 3.1 that

PrSmin(D,F,C) ⊂ {(−1,−1)}.
We have to show that (−1,−1) ∈ PrSmin(D,F,C). In fact, we define a convex
cone

∼
C = R+ = [0,+∞). It is obvious that

∼
C is not the whole space Y = R and

contains C \ l(C) = intR+ in its interior such that (−1,−1) ∈ PSmin(D,F,
∼
C), and

so, PrSmin(D,F,C) = {(−1,−1)}, which means that it is a closed set. Similarly,
if we take C = −R+ then PrSmax(D,F,C) = {(−1,−1)} is a closed set, as it was
checked.

We close this paper by making some comparisons between the results obtained
in the paper and the existing one in the literature.

Remark 3.7. As far as we know, there have not been results on closedness of the
optimal solution sets for general vector alpha optimization problems in Hausdorff
locally convex topological vector spaces involving the upper (lower) C-continuity
of set-valued mapping. The differences between our result in the paper with the
well-known results of Cheraghi et al. [1], Farajzadeh et al. [2] and Farajzadeh
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and Shafie [3] are as follows. We study in this paper the relationships between the
optimal solution sets of primal and dual general vector alpha optimization prob-
lems in which the closedness of optimal solution sets for the same plays a central
role, while Cheraghi et al. [1] derived a link between subdifferential and Fréchet
differential with ϵ−generalized weak subdifferential and provided a necessary and
sufficient condition for achieving a global minimum of a ϵ−generalized weak sub-
differential function; Farajzadeh et al. [2] formulated the relationship between the
nonsmooth variational-like inequalities and vector optimization problems involving
the existence of solution; Farajzadeh and Shafie [3] obtained some existence theo-
rems of the solution of the system of vector quasi-equilibrium problems for a family
of multivalued mappings in the setting of topological order spaces.

4. Conclusion

In this paper, we have shown that the optimal solution sets of dual and primal
general vector alpha optimization problems in Hausdorff locally convex topological
vector spaces are closed. In addition, some the relationships between the optimal
solution sets of these problems are also obtained well.
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ABSTRACT. Let H1 and H2 be real Hilbert spaces and Aj : H1 −→ H2, 1 ≤ j ≤ r
be bounded linear linear operators, Ui : H1 −→ 2H1 , 1 ≤ i ≤ n and Tj : H2 −→ 2H2 ,
1 ≤ j ≤ r be multi-valued demi-contractive operators. An iterative scheme is constructed
and shown to converge weakly to a solution of generalized split common fixed points
problem (GSCFPP). Under additional mild condition, the scheme is shown to converge
strongly to a solution of GSCFPP. Moreover, our scheme is of special interest.

KEYWORDS: Fixed Point; Multivalued Demi-Contractive Mappings; Split Inverse Prob-
lem.
AMS Subject Classification: 47H04, 470H10.

1. Introduction

Let X and Y be two real Banach spaces. A split inverse problem is to find a point
x∗ ∈ X that solves IP1 such that y∗ = Ax∗ ∈ Y solves IP2, where IP1 and IP2 are
two inverse problems. A simple generalization of inverse problem is split convex fea-
sibility problem (SCFP) which was introduced in 1994 by Censor and Elfving [18] in
finite dimensional Hilbert spaces for modelling inverse problems arising from signal
detection, computer temography, image recovery and radiation therapy treatment
planning (see, e.g.,[5], [16], [19] and [18]). The (SCFP) is formulated as follows:

find a point x∗ ∈ C such that Ax∗ ∈ Q, (1.1)
where H1, H2 are real Hilbert spaces, A : H1 → H2 bounded linear operator, and
C ⊆ H1, Q ⊆ H2 are non-empty, closed and convex sets.
In what follows we denote the solution set of the (SCFP) by

Γ ≡ Γ(U,A) := {y ∈ C : Ay ∈ Q}. (1.2)

∗ Corresponding author.
Email address : mustyisyaku@gmail.com.
Article history : Received 20 July 2018; Accepted 8 December 2019.
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In 2002, Byrne in [5] proved that x∗ is a solution to (1.2) if and only if it is a fixed
point of

PC(I − rA∗(I − PQ)A),

where A∗ is the adjoint operator of A, PC and PD are the metric projections from H1

onto C and from H2 onto Q, respectively, and r > 0 is a positive constant. Indeed,
this can be easily shown using characterization of projection mapping. Censor and
Segal proposed in [21], the following algorithm to solve (1.2)
Algorithm: see [[21], Algorithm 2].
let x∗ ∈ H1 := Rn be arbitrary and for k ∈ N let

xk+1 = U(xk + γA∗(T − I)Axk), (1.3)

where γ ∈ (0, 2
L ), L being the spectral radius of the operator A∗A and I is the

identity operator.

In 2010, Moudafi [32] proved the following result for approximation of solution
of SCFP involving demicontractive mappings. Given a bounded linear operator
A : H1 → H2, let U : H1 → H1 and T : H2 → H2 be demi-contractive (with
constants β, µ, respectively) with nonempty Fix(U) = C and Fix(T ) = Q. Assume
that U−I and T−I are demi-closed at 0. If Γ ̸= ∅, then any sequence {xk} generated
by

xk+1 = (1− αk)uk + αkU(uk), k ≥ 0, (1.4)

where uk = xk + γA∗(T − I)Axk, γ ∈ (0, 1−µ
λ ), λ being the spectral radius of the

operator A∗A and αk ∈ (0, 1),
converges weakly to x∗ ∈ Γ, provided that γ ∈

(
0, 1−µ

L

)
and αk ∈

(
δ, 1− β − δ

)
for

small enough δ > 0.
Recently, inspired and motivated by the result of Moudafi [32], Tang et al. [42] pro-
posed a cyclic algorthm (Algorithm 2 below) to solve the SCFP for demi-contractive
operators {Ui}pi=1 and {Tj}rj=1. Then they proved that the sequence generated by
the proposed algorithm converges weakly to the solution of SCFP. Their work ex-
tends those of Moudafi [32], Censor and Segal [21] and others.
Algorithm 2: [42]
Let x0 ∈ H1 be arbitrary and let the sequence {xk} be defined by

xk+1 = (1− αk)uk + αkUi(k)(uk), k ≥ 0, (1.5)

where uk = xk + γA∗(Tj(k) − I)Axk, i(k) = k(mod p) + 1 and j(k) = k(mod r) + 1,
γ ∈ (0, 1−µ

λ ), λ being the spectral radius of the operator A∗A and αk ∈ (0, 1).
Very recently, in [25], Gibali proved the following strong convergence result for demi-
contractive operators; Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be
a bounded linear operator. Let U : H1 → H1 and T : H2 → H2 be demi-contractive
(with constants β, µ, respectively) with nonempty Fix(U) = C and Fix(T ) = Q.
Assume that U−I and T −I are demi-closed at 0 and that there exists σ ̸= 0 ∈ H1,
such that {

⟨U(q)− q, σ⟩ ≥ 0 ∀ q ∈ H1,

⟨A∗(T − I)Ay, σ⟩ ≥ 0 ∀ y ∈ H1.
(1.6)

If Γ ̸= ∅, then for a suitable x0 ∈ H1 any sequence {xk} generated by

xk+1 = (1− αk)uk + αkU(uk), k ≥ 0, (1.7)
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where uk = xk + γA∗(T − I)Axk, γ ∈ (0, 1−µ
λ ), λ being the spectral radius of the

operator A∗A and αk ∈ (0, 1),
converges strongly to x∗ ∈ Γ, provided that γ ∈

(
0, 1−µ

L

)
and αk ∈

(
δ, 1 − β − δ

)
for small enough δ > 0.
Motivated by the works of Moudafi [32], A. Gibali [25], Censor and Segal [21], it
is our purpose in this paper to solve a general split common fixed points problem
formulated as follows:

Find a point x∗ ∈ C := ∩n
i=1Ci such that Ajx

∗ ∈ Qj , (1.8)
where Aj : H1 → H2 are bounded linear operators, Ci = Fix(Ui), 1 ≤ i ≤ n and
Qj = Fix(Tj), 1 ≤ j ≤ r with Ui : H1 → H1 and Tj : H2 → H2 multi-valued
demi-contractive operators (with constants βi, 1 ≤ i ≤ n and µj , 1 ≤ j ≤ r,
respectively).

2. Preliminaries

We begin with the following definitions and lemmas.

Definition 2.1. Let T : H → H be an operator and D ⊆ H and F (T ) = {x ∈ K :
x = Tx}.

• The operator T is called nonexpansive, if ∀x, y ∈ D

∥Tx− Ty∥ ≤ ∥x− y∥ (2.1)
• T is called quasi-nonexpansive, if ∀(x, q) ∈ D × F (T )

∥Tx− q∥ ≤ ∥x− q∥ (2.2)
• T is called k-strictly pseudo-contractive (see e.g., [28]), if there exists k ∈

[0, 1) such that ∀(x, y) ∈ D

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥x− y − (Tx− Ty)∥2 (2.3)
• T is called demi-contractive (see e.g., [3, 20, 27]), if there exists β ∈ [0, 1)

such that ∀(x, q) ∈ D × Fix(T )

∥Tx− q∥2 ≤ ∥x− q∥2 + β∥x− Tx∥2 (2.4)

Definition 2.2. Let H be a real Hilbert space, an operator T is called demiclosed
at q ∈ H (see e.g., [2]), if
for any sequence {xk}∞k=1 such that xk ⇀ x∗ and Txk → q, we have Tx∗ = q.

Definition 2.3. Let H be a real Hilbert space. The map D : 2H × 2H −→ R+

defined by
D(A,B) = max{sup

y∈A
d(y,B), sup

x∈B
d(x,A)} for all A,B ∈ 2H ,

where d(y,B) := inf
x∈A

d(x, y),

is called Pompeiu-Hausedorff distance.

Remark 1. In general, the map D is not a metric. However, it becomes a metric
if it is defined on a set of closed and bounded subsets of H.

Let T : H → 2H be a multi-valued mapping. An element x∗ ∈ H is said to be a
fixed point of T if x∗ ∈ Tx∗. We denote by F (T ) the fixed points set of T i.e.,

F (T ) := {x ∈ H : x ∈ Tx}. (2.5)
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Definition 2.4. Let H be a real Hilbert space and CB(H) be a set of closed and
bounded subsets of H. T : H → 2CB(H) be a multi-valued mapping. Then, T is
said to be demi-closed at zero if for any sequence {xk} ⊂ H with xk ⇀ x∗, and
d(xk, Txk) −→ 0, we have x∗ ∈ Tx∗.
Definition 2.5. Let H be a real Hilbert space.

• A multi-valued mapping T : D(T ) ⊆ H → 2CB(H) is said to be nonexpan-
sive (see e.g., [22]), if

D(Tx, Ty) ≤ ∥x− y∥ ∀ x, y ∈ D(T ) (2.6)
• The mapping T : D(T ) ⊆ H → 2H is said to be quasi-nonexpansive if

F (T ) ̸= ∅ and

D(Tx, Tx∗) ≤ ∥x− x∗∥ ∀ x ∈ D(T ), x∗ ∈ F (T ). (2.7)
• The mapping T : D(T ) ⊆ H → 2H is said to be k-strictly pseudo-

contractive if there exists there exists a constant k ∈ [0, 1] such that for all
u ∈ Tx, v ∈ Ty

(D(Tx, Ty))2 ≤ ∥x− y∥2 + k∥x− y − (u− v)∥2; and (2.8)
• T : D(T ) ⊆ H → 2H is said to be demi-contractive if F (T ) ̸= ∅ and there

exists a constant k ∈ [0, 1] such that for all x ∈ D(T ), u ∈ Tx

(D(Tx, {y}))2 ≤ ∥x− y∥2 + k∥x− u∥2. (2.9)
The class of demi-contractive operators is a very important generalization of non-
expansive operators Also some operators that arise in optimization problems are of
demi-contractive type. See for example, Chidume and Maruster [11].
It is obvious that, the class of multi-valued quasi-nonexpansive is properly con-
tained in the class of multi-valued demi-contractive operators. Indeed, consider the
following example:
Example 1. (see e.g., [8]) Let H = R with the usual metric. Define T : R → R by

Tx =

{
[−3x,− 5x

2 ], x ∈ [0,∞),

[− 5x
2 ,−3x], x ∈ (−∞, 0].

(2.10)

We have that F (T ) = {0} and T is a multi-valued demi-contractive mapping which
is not quasi-nonexpansive. In fact, for each x ∈ (−∞, 0) ∪ (0,∞), we have(

D(Tx, T0)
)2

= | − 3x− 0|2

= 9|x− 0|2,
which implies that T is not quasi-nonexpansive.
Also, we have that (

d(x, Tx)
)2

= |x− (−5x

2
)|2

=
49

4
|x|2.

Thus, (
D(Tx, T0)

)2
= |x− 0|2 + 8|x− 0|2

= |x− 0|2 + 32

49

(
d(x, Tx)

)2
.

Therefore, T is a demi-contractive mapping with constant k = 32
49 ∈ (0, 1).
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Lemma 2.6. Let (X, ⟨·, ·⟩) be an IPS. Then for any x, y ∈ X, and α ∈ [0, 1] the
following inequality holds:

∥αx+ (1− α)y∥2 = α∥x∥2 − α(1− α)∥x− y∥2 + (1− α)∥y∥2 (2.11)
Lemma 2.7. (see,e.g., [10]) Let A,B ∈ CB(X) and a ∈ A. For every γ > 0,
there exixts b ∈ B such that

d(a, b) ≤ D(A,B) + γ. (2.12)

Lemma 2.8. (see,e.g., [10]) Let X be a reflexive real Banach space and A,B ∈
CB(X). Assume that B is weakly closed. Then, for every a ∈ A, there exists b ∈ B
such that

∥a− b∥ ≤ D(A,B). (2.13)

Lemma 2.9. (see,e.g., [12]) Let E be a normed linear space, B1 ∈ CB(E) and
x0 ∈ E arbitrary. Then the following hold;

D({x0}, B1) = sup
b1∈B1

∥x0 − b1∥

Lemma 2.10. (Opial’s lemma) Let H be a real Hilbert space and {xk} a sequence
in H such that there exists a nonempty set Γ ⊂ H satisfying the following;

i) For every y ∈ Γ, lim ∥xk − y∥ exists.
ii) Any weak-cluster point of the sequence xk belong to Γ.

Then, there exists x̄ ∈ Γ such that {xk} converges weakly to x̄.

Lemma 2.11. Let T : D(T ) ⊆ H → 2H be a demi-contractive, then

⟨x− u, x− p⟩ ≥ 1− β

2
∥x− u∥2 ∀u ∈ Tx. (2.14)

Proof. Definition of T gives
(D(Tx, p))2 ≤ ∥x− p∥2 + β∥x− u∥2 ∀u ∈ Tx

D(Tx, p) ≤
√

∥x− p∥2 + β∥x− u∥2 ∀u ∈ Tx

We have by lemma (2.9) that D(Tx, p) = supu∈Tx ∥u− p∥.
Using this result we get

−β∥x− u∥2 ≤ ∥x− p∥2 − ∥u− p∥2 ∀u ∈ Tx . . . (i)

We observe that 2⟨x− u, x− p⟩ = ∥x− u∥2 + ∥x− p∥2 − ∥u− p∥2,
this implies ∥x− p∥2 − ∥u− p∥2 = 2⟨x− u, x− p⟩ − ∥x− u∥2.
Using this in (i) we have

−β∥x− u∥2 ≤ 2⟨x− u, x− p⟩ − ∥x− u∥2,

hence,
1− β

2
∥x− u∥2 ≤ ⟨x− u, x− p⟩ ∀u ∈ Tx,

which completes the proof. �

3. Main Result

We now prove weak and strong convergence for our proposed iterative scheme.
However, we begin with the following lemma.
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3.1. Weak Convergence Result.{
qk = xk + γ

∑r
j=1 A

∗
j (bj,k −Ajxk), where bj,k ∈ Tj(Ajxk) ∀1 ≤ j ≤ r

xk+1 = (1− αk)qk + αk

n

∑n
i=1 ui,k, where ui,k ∈ Ui(qk) ∀ 1 ≤ i ≤ n,

(3.1)

where Ui and Tj are multi-valued demi-contractive for each 1 ≤ i ≤ n, 1 ≤ j ≤ r,
respectively, γ ∈

(
0, 1−µmax

rL

)
with µmax the maximum of demi-contractive constants

of Ui and L being the spectral radius of the operator A∗A and αk ∈ (0, 1).

Lemma 3.1. Let Aj : H1 → H2, 1 ≤ j ≤ r be bounded linear operators, Ui : H1 →
2H1 , 1 ≤ i ≤ n and Tj : H2 → 2H2 , 1 ≤ j ≤ r be multi-valued demi-contractive
(with constants βi, µj, respectively) such that Ui(p) = {p} for all p ∈ F (Ui) and
nonempty Fix(Ui) = Ci and Fix(Tj) = Qj with Ui(x) and Tj(y) closed and bounded
∀i and j and ∀x ∈ H1, y ∈ H2. Then for arbitrary x0 ∈ H1, the sequence {xk}
generated by algorithm (3.1) is Féjer monotone with respect to Γ, that is for every
x ∈ Γ,

∥xk+1 − x∥ ≤ ∥xk − x∥ ∀ k ∈ N,

provided that γ ∈
(
0, 1−µmax

rL

)
and αk ∈ (0, 1).

Proof. Set L := sup1≤i≤n
1≤j≤r

A∗
iAj , µmax := sup1≤i≤nUi, βmax := sup1≤j≤rTj ; where

Ui and Tj are demi-contractive constants of Ui and Tj , respectively.
Let p ∈ Γ then from (3.1), we have

∥xk+1 − p∥2 = ∥(1− αk)qk +
αk

n

n∑
i=1

ui,k − p∥2

= ∥qk − p+
αk

n

n∑
i=1

(ui,k − qk)∥2

= ∥qk − p∥2 + 2
αk

n
⟨qk − p,

n∑
i=1

(ui,k − qk)⟩

+
α2
k

n2
∥

n∑
i=1

(ui,k − qk)∥2

= ∥qk − p∥2 + 2
αk

n

n∑
i=1

⟨ui,k − qk, qk − p⟩

+
α2
k

n2
∥

n∑
i=1

(ui,k − qk)∥2

= ∥qk − p∥2 − 2
αk

n

n∑
i=1

⟨qk − ui,k, qk − p⟩

+
α2
k

n2
∥

n∑
i=1

(ui,k − qk)∥2

Using lemma (2.11), we have

≤ ∥qk − p∥2 − αk

n

n∑
i=1

(1− βi)∥qk − ui,k∥2

+
α2
k

n2
∥

n∑
i=1

(ui,k − qk)∥2
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≤ ∥qk − p∥2 − αk

n
(1− βmaxi)

n∑
i=1

∥qk − ui,k∥2

+
α2
k

n

n∑
i=1

∥(ui,k − qk)∥2.

Therefore,

∥xk+1 − p∥2 ≤ ∥qk − p∥2 − αk

n
(1− βmax)

n∑
i=1

∥qk − ui,k∥2

+
α2
k

n

n∑
i=1

∥(ui,k − qk)∥2

= ∥qk − p∥2

− αk

n
((1− βmax)− αk)

n∑
i=1

∥ui,k − qk∥2 . . . (3.0.1)

Also from (3.1), we obtain

∥qk − p∥2 = ∥xk − p+ γ

r∑
j=1

A∗
j (bj,k −Ajxk)∥2

= ∥xk − p∥2 + 2γ

r∑
j=1

⟨xk − p,A∗
j (bj,k −Ajxk)⟩

+ γ2∥
r∑

j=1

(bj,k −Ajxk)∥2

= ∥xk − p∥2 − 2γ

r∑
j=1

⟨Ajxk −Ajp,Ajxk − bj,k)⟩

+ γ2∥
r∑

j=1

(bj,k −Ajxk)∥2

Using lemma (2.11), we get

≤ ∥xk − p∥2 − γ

r∑
j=1

(1− µj)∥bj,k −Ajxk∥2

+ γ2rL∥bj,k −Ajxk∥2

Hence,

∥qk − p∥2 ≤ ∥xk − p∥2 − γ

r∑
j=1

(1− µmax)∥bj,k −Ajxk∥2

+ γ2rL∥bj,k −Ajxk∥2

≤ ∥xk − p∥2 − γ(1− µmax)

r∑
j=1

∥bj,k −Ajxk∥2

+ γ2rL∥bj,k −Ajxk∥2

≤ ∥xk − p∥2 − γ((1− µmax)− γrL)
∑r

j=1 ∥bj,k −Ajxk∥2.
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Substituting this in (3.0.1) we have,

∥xk+1 − p∥2 ≤ ∥xk − p∥2 − γ((1− µmax)− γrL)

r∑
j=1

∥bj,k −Ajxk∥2

− αk

n
((1− βmax)− αk)

n∑
i=1

∥ui,k − qk∥2 . . . (3.0.2)

≤ ∥xk − p∥2

provided γ ∈
(
0, 1−µmax

rL

)
and αk ∈

(
0, 1− βmax

)
.

Hence, {xk} is Féjer monotone. �

Let Aj : H1 → H2, 1 ≤ j ≤ r be bounded linear operators, Ui : H1 → 2H1 ,
1 ≤ i ≤ n and Tj : H2 → 2H2 , 1 ≤ j ≤ r be multi-valued demi-contractive (with
constants βi, µj , respectively) such that Ui(p) = {p} for all p ∈ F (Ui) and nonempty
Fix(Ui) = Ci and Fix(Tj) = Qj with Ui(x) and Tj(y) closed and bounded ∀i and j
and ∀x ∈ H1, y ∈ H2.
If Γ ̸= ∅, then any sequence {xk} generated by algorithm (3.1) converges weakly
to a split common fixed point x∗ ∈ Γ, provided that γ ∈

(
0, 1−µmax

rL

)
and αk ∈(

δ, 1− βmax − δ
)

for small enough δ > 0.

Proof. From (3.0.2), we obtained that {∥xk − p∥} is monotone decreasing thus,
{xk} is bounded and lim ∥xk − p∥ exists say, y∗.
Since {xk} is bounded, we have that there exists {xkv

} such that
xkv

⇀ x∗ as v → ∞, which implies that
Ajxkv

−→ Ajx
∗ as v → ∞, and thus

Ajxkv
⇀ Ajx

∗ . . . (3.0.3)

From (3.0.2) also, we have
lim ∥bj,k −Ajxk∥ = 0 as k → ∞,

which implies that d(Tj(Ajxk), Ajxk) ≤ ∥bj,k −Ajxk∥ −→ 0 ∀1 ≤ j ≤ r,

then, d(Tj(Ajxk), Ajxk) −→ 0,

thus, d(Tj(Ajxkv
), Ajxkv

) −→ 0 ∀1 ≤ j ≤ r . . . (3.0.4)

Since (Tj − I) is demi-closed at 0, we have from (3.0.3) and (3.0.4) that
Ajx

∗ ∈ Tj(Ajx
∗)

⇒ Ajx
∗ ∈ F (Tj) ∀1 ≤ j ≤ r

We also have that

qkv = xkv + γ

r∑
j=1

A∗
j (bj,k −Ajxkv )

Therefore,
qkv −→ x∗ . . . (3.0.5)

From (3.0.2), we have ∥ui,k − qk∥ −→ 0 as k −→ 0,

this implies that d(Ui(qk), qk) ≤ ∥ui,k − qk∥ ∀1 ≤ i ≤ n,

then, d(Ui(qk), qk) −→ 0 ∀1 ≤ i ≤ n,

hence, d(Ui(qkv ), qkv ) −→ 0 ∀1 ≤ i ≤ n.
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This together with (3.0.5) imply that x∗ ∈ Ui(x
∗) with implies that x∗ ∈ F (Ui) for

each i = 1, 2, ..., n,
hence, x∗ ∈ ∩n

i=1F (Ui) and Ajx
∗ ∈ F (Tj) for each j = 1, 2, ..., r. Hence, x∗ ∈ Γ.

We have shown for any subsequence {xkv} of {xk} such that xkv ⇀ x∗ that x∗ ∈ Γ.
Thus, applying Opial’s lemma we have that there exists x∗∗ ∈ Γ such that the
sequence xk ⇀ x∗∗.
Hence, weak convergence for {xk} is established. �

We now prove strong convergence for our iterative scheme.

3.2. Strong Convergence Result. Let H1 and H2 be two real Hilbert spaces
and Aj : H1 → H2, 1 ≤ j ≤ r be bounded linear operators, Ui : H1 → 2H1 ,
1 ≤ i ≤ n and Tj : H2 → 2H2 , 1 ≤ j ≤ r be multi-valued demi-contractive (with
constants βi, µj , respectively) such that Ui(p) = {p} for all p ∈ F (Ui) = Ci and
Tj(p) = {p} for all p ∈ F (Tj) = Qj with Ui(x) and Tj(y) closed and bounded
∀i = 1, 2, ..., n and j = 1, 2, ..., r and ∀x ∈ H1, y ∈ H2.
Suppose that there exists σ ̸= 0 ∈ H1, such that{

⟨ui − q, σ⟩ ≥ 0 ∀ 1 ≤ i ≤ n, ui ∈ Ui(q) and q ∈ H1,

⟨A∗
j (bj −Ajy), σ⟩ ≥ 0 ∀ 1 ≤ j ≤ r, bj ∈ Tj(Ajy) and y ∈ H1.

(3.2)

If Γ ̸= ∅, then for a suitable x0 ∈ H1 any sequence {xk} generated by (3.1) converges
strongly to x∗ ∈ Γ, provided that γ ∈

(
0, 1−µmax

rL

)
and αk ∈

(
δ, 1 − βmax − δ

)
for

small enough δ > 0.

Proof. Let x∗ ∈ Γ and choose x0 ∈ H1 such that
⟨x0 − x∗, σ⟩ > 0,

then there exists ϵ > 0 such that
⟨x0 − x∗, σ⟩ ≥ ϵ∥x0 − x∗∥2.

We now proof by induction that
⟨xk+1 − x∗, σ⟩ ≥ ϵ∥xk+1 − x∗∥2 ∀ k ≥ 0. (3.3)

Indeed, assume it holds up to some k ≥ 0, then

⟨xk+1 − x∗, σ⟩ = ⟨xk+1 − xk + xk − x∗, σ⟩
= ⟨xk+1 − xk, σ⟩+ ⟨xk − x∗, σ⟩

= ⟨γ
r∑

j=1

A∗
j (bj,k −Ajxk) +

αk

n

n∑
i=1

(ui,k − qk), σ⟩

+ ⟨xk − x∗, σ⟩

= γ

r∑
j=1

⟨A∗
j (bj,k −Ajxk), σ⟩+

αk

n

n∑
i=1

⟨(ui,k − qk), σ⟩

+ ⟨xk − x∗, σ⟩.

Since γ > 0, αk > 0 and by (3.1) we get
⟨xk+1 − x∗, σ⟩ ≥ ⟨xk − x∗, σ⟩

by the induction assumption we have that
⟨xk+1 − x∗, σ⟩ ≥ ϵ∥xk − x∗∥2,
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by lemma (3.1) the sequence {xk} generated by algorithm (3.1) is Féjer monotone
with respect to Γ, so that

⟨xk+1 − x∗, σ⟩ ≥ ϵ∥xk+1 − x∗∥2.

Therefore, (3.2) holds for all k ≥ 0.
By theorem (3.3) we have

xk ⇀ x∗, so that
⟨g, xk⟩ −→ ⟨g, x∗⟩ ∀ g ∈ H1.

In particular, for g = σ ∈ H1 we get
⟨σ, xk⟩ −→ ⟨σ, x∗⟩whichimplies⟨σ, xk − x∗⟩ −→ 0 as k −→ +∞.

From (3.2) we have

∥xk − x∗∥2 ≤ 1

ϵ
⟨xk − x∗, σ⟩ −→ 0 as k −→ +∞.

Thus ∥xk − x∗∥2 −→ 0 as k −→ +∞.

Consequently, ∥xk − x∗∥ −→ 0 as k −→ +∞; and hence xk −→ x∗ ∈ Γ This
completes the proof. �

The following corollary is a special case of theorem (3.3) when i = j = 1

Corollary 3.2. Let H1 and H2 be two real Hilbert spaces and A : H1 → H2

be a bounded linear operator, U : H1 → H1 and T : H2 → H2 be multi-valued
demi-contractive (with constants β, µ, respectively) such that U(p) = {p} for all
p ∈ F (U) = C and T (p) = {p} for all p ∈ F (T ) = Q with U(x) and T (y) closed
and bounded ∀x ∈ H1, y ∈ H2.
Assume that there exists σ ̸= 0 ∈ H1, such that{

⟨u− q, σ⟩ ≥ 0 ∀ u ∈ U(q) and q ∈ H1,

⟨A∗(b−Ay), σ⟩ ≥ 0 ∀ b ∈ T (Ay) and y ∈ H1.
(3.4)

If Γ ̸= ∅, then for a suitable x0 ∈ H1 any sequence {xk} generated by algorithm (3.1)
converges strongly to x∗ ∈ Γ, provided that γ ∈

(
0, 1−µ

L

)
and αk ∈

(
δ, 1− β − δ

)
for

small enough δ > 0.

The following result generalizes theorem of Moudafi [32] which is a special case
of theorem (3.3) where n = r = 1, and U and T are single-valued demi-contractive.

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a
bounded linear operator. Let U : H1 → H1 and T : H2 → H2 be demi-contractive
(with constants β, µ, respectively) with nonempty Fix(U) = C and Fix(T ) = Q.
Assume that U − I and T − I are demi-closed at 0 and that there exists σ ̸= 0 ∈ H1,
such that {

⟨U(q)− q, σ⟩ ≥ 0 ∀ q ∈ H1,

⟨A∗(T − I)Ay, σ⟩ ≥ 0 ∀ y ∈ H1.
(3.5)

If Γ ̸= ∅, then for a suitable x0 ∈ H1 any sequence {xk} generated by algorithm (3.1)
converges strongly to x∗ ∈ Γ, provided that γ ∈

(
0, 1−µ

L

)
and αk ∈

(
δ, 1− β − δ

)
for

small enough δ > 0.

Corollary 3.4. Let H1 and H2 be two real Hilbert spaces and Aj : H1 → H2,
1 ≤ j ≤ r be bounded linear operators, Ui : H1 → 2H1 , 1 ≤ i ≤ n and Tj : H2 →
2H2 , 1 ≤ j ≤ r be multi-valued quasi-nonexpansive such that Ui(p) = {p} for all
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p ∈ F (Ui) = Ci and Tj(p) = {p} for all p ∈ F (Tj = Qj with Ui(x) and Tj(y) closed
and bounded ∀i = 1, 2, ..., n and j = 1, 2, ..., r and ∀x ∈ H1, y ∈ H2.
Suppose that there exists σ ̸= 0 ∈ H1, such that

{
⟨ui − q, σ⟩ ≥ 0 ∀ 1 ≤ i ≤ n, ui ∈ Ui(q) and q ∈ H1,

⟨A∗
j (bj −Ajy), σ⟩ ≥ 0 ∀ 1 ≤ j ≤ r, bj ∈ Tj(Ajy) and y ∈ H1.

(3.6)

If Γ ̸= ∅, then for a suitable x0 ∈ H1 any sequence {xk} generated by algorithm (3.1)
converges strongly to x∗ ∈ Γ, provided that γ ∈

(
0, 1−µmax

rL

)
and αk ∈

(
δ, 1−βmax−δ

)
for small enough δ > 0.

3.3. Numerical Examples. In order to illustrate numerical application, we con-
sider a special case of our scheme for i = j = 1 and H1 = H2 = R3.

All computations in this section were performed using python 3.5.2 terminal based
on linux running 64-bit. The first 100 iterations of our scheme are presented in
Table 1, and relationship between ∥x − x∗∥ - values and number of iterations are
given in Figure 1, where x∗ = 0 ∈ Γ.

Now, for x0 = (1, 1, 1) ∈ R3, γ = 0.2, αk = 1− αk = 0.5, ∀k ≥ 1

A =

1 0 1
0 1 0
1 0 1

, T =


√

3
20

√
1
20 0√

1
20

√
3
20

√
3
10

0
√

1
5

√
1
10

, and U =


√

1
10 0

√
3
10

0
√

1
5

√
1
10√

3
20 0

√
3
20


we have the following iterations for k = 100.

Iterations ∥x− x∗∥
10 1.09e−01

20 7.00e−03

30 4.00e−04

40 3.37e−05

50 2.30e−06

60 1.54e−07

70 1.04e−08

80 6.10e−10

90 4.72e−11

100 3.20e−12

Table 1. The first 100 iterations generated by (3.1.6).
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Figure 1. Relationship between ∥x− x∗∥ - values and number of iterations.

4. Conclusion

In this paper, we have established the approximation of solution of general split in-
verse problem for multi-valued demi-contractive mappings in Hilbert spaces. More-
over, our result generalises many results in the literature. More precisely, theorem
3.3 generalises theorem 3.8 of [25]. Finally, lemma 2.11 and 3.1 are of special inter-
est.
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ABSTRACT. In this paper, we introduce a new generalized weakly contractive condi-
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1. Introduction

Nowadays, fixed point techniques are widely applied in many branches of math-
ematics, especially in nonlinear analysis. One of the most important theorems in
this regard is the fundamental theorem in metric fixed point theory, known as Ba-
nach contraction principle, which guarantees the existence and uniqueness of fixed
point of contraction mappings (a mapping T : X → X is called a contraction if
there exists a constant c ∈ [0, 1) such that d(T (x), T (y)) ≤ c · d(x, y), ∀ x, y ∈ X)
defined on a complete metric space. There are many generalizations and extensions
of this important result in literature (see, for example [8, 9, 11, 12, 18]). One of
the notable extensions of this into partially ordered metric space is done by Ran
and Reurings [16]. Further, a lot of research work is done in this line, including the
results of Nieto and Lopez [14, 15]. By weakening the condition on contraction,
Alber et al. [1] introduced weakly contractive maps and generalized the Banach
contraction principle in Hilbert spaces. Afterwards Rhodes [18] obtained a fixed
point theorem for weakly contractive maps in complete metric spaces. Followed by
this, fixed points of weakly contractive maps and generalized weakly contractive
maps are studied.
It is very clear that contraction maps are continuous, so the Banach contraction
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principle is applicable only for continuous functions. But Kannan [12] established
a fixed point theorem for functions satisfying contraction condition called Kannan
contraction, which need not be continuous.
In 2006, Gnana Bhaskar and Lakshmikantham followed the method of Nieto and
Lopez, to weaken the contraction condition by considering a partial order on the
metric space, and established coupled fixed point theorems of mixed monotone map-
pings on partially ordered complete metric space. Thereafter several research work
dealing with coupled fixed point theorems are carried out. In 2009, Lakshmikan-
tham and Ciric introduced a new concept called mixed g- monotone mapping and
established coupled coincidence point and coupled common fixed point theorems
for a mapping had a g and mixed g- monotone property. Also in 2011, Berinde [2]
extended the result of Gnana Bhaskar and Lakshmikantham for mixed monotone
mappings by weakening the contractive condition as follows:

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤ k · [d(x, u) + d(y, v)] ∀ x > u, y 6 v

Followed by this, several authors have done research in coupled, coupled coincidence
and coupled common fixed points of mappings satisfying various contractive type
conditions [3, 4, 5, 6, 7]. In 2011, Choudhary et al. [6] established the existence of
coupled coincidence points for pairs of mappings g and mixed g- monotone map-
pings, which are compatible and satisfying the following contractive type condition:

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(gx, gu), d(gy, gv)})−ϕ(max{d(gx, gu), d(gy, gv)})
(1.1)

for all x, y, u, v ∈ X for which gx 6 gu and gy > gv, where ψ, ϕ are two control
functions satisfying different conditions.
Inspired by the contractive type conditions defined by Berinde [2] and Choudhary
et al. [6] and by incorporating the expressions of Kannan type contraction, we have
introduced a new contractive type condition. In this paper, we have proved coupled
coincidence point and coupled common fixed point theorems for pairs of mappings
satisfying the newly introduced contractive condition under the settings of complete
metric spaces.

2. Preliminaries

Some useful definitions are given in this section.

Definition 2.1. [13] Let (X,6) be a partially ordered set and F : X ×X −→ X
and g : X −→ X. We say F has the mixed g- monotone property if F is monotone
g- non-decreasing in its first argument and is monotone g- non-increasing in its
second argument, that is, for any x, y ∈ X
x1, x2 ∈ X, g(x1) 6 g(x2) =⇒ F (x1, y) 6 F (x2, y) and
y1, y2 ∈ X, g(y1) 6 g(y2) =⇒ F (x, y1) > F (x, y2).

Definition 2.2. [5] Let (X, d) be a metric space, F : X×X −→ X and g : X −→ X
be two mappings. Mappings F and g are said to be compatible if

lim
n−→∞

d(g(F (xn, yn)), F (g(xn), g(yn))) = 0, and

lim
n−→∞

d(g(F (yn, xn)), F (g(yn), g(xn))) = 0

hold whenever {xn} and {yn} are sequences in X such that
lim

n−→∞
F (xn, yn) = lim

n−→∞
g(xn) = x and lim

n−→∞
F (yn, xn) = lim

n−→∞
g(yn) = y for some

x, y ∈ X are satisfied.
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Definition 2.3. [10] An element (x, y) ∈ X ×X is said to be a coupled fixed point
of the mapping F : X ×X −→ X if F (x, y) = x and F (y, x) = y.

Definition 2.4. [13] An element (x, y) ∈ X×X is said to be a coupled coincidence
point of the mappings F : X × X −→ X and g : X −→ X if F (x, y) = g(x) and
F (y, x) = g(y).

Definition 2.5. [13] An element (x, y) ∈ X ×X is said to be a coupled common
fixed point of the mappings F : X×X −→ X and g : X −→ X if F (x, y) = g(x) = x
and F (y, x) = g(y) = y.

Definition 2.6. [17] A function f : X → [0,∞), where X is a metric space, is
called lower semi continuous, if for all x ∈ X and {xn} ⊆ X with lim

n→∞
xn = x, we

have f(x) ≤ lim inf
n→∞

f(xn).

3. Main Results

In this section, we prove five coupled coincidence point theorems for pairs of
mapping g and mixed g- monotone mappings. The first three theorems discuss the
existence of coupled coincidence points. One of the results assures the uniqueness of
coupled common fixed point and in the last theorem we give an additional condition
by which the components of coupled coincidence points are proved to be the same.
Throughout this paper let

Ψ = {ψ : [0,∞) → [0,∞)| ψ is continuous, monotone increasing and ψ(t) = 0 ⇔ t = 0}
(3.1)

and
Φ = {ϕ : [0,∞) → [0,∞)| ϕ is lower semi continuous and ϕ(t) = 0 ⇔ t = 0}

(3.2)
Let (X,6) be a partial ordered set. Define a partial order ≼ on X ×X as:
(x, y) ≼ (u, v) ⇔ x 6 u and y > v, ∀ x, y, u, v ∈ X.

Theorem 3.1. Let (X, d,6) be a partially ordered complete metric space and sup-
pose F : X × X → X and g : X → X be two continuous, compatible functions
with F (X ×X) ⊆ g(X), F satisfying the mixed g- monotone property and for all
x, y, u, v ∈ X with g(x) 6 g(u), g(y) > g(v):
ψ[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))] ≤ ψ[M(x, y, u, v)]− ϕ[M(x, y, u, v)]

(3.3)
where ψ ∈ Ψ, ϕ ∈ Φ and
M(x, y, u, v)=max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}.
If there exist x0, y0 ∈ X with g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. Given g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0).
Since F (X × X) ⊆ g(X) and F satisfies the mixed g- monotone property, we
can construct two sequences {xn} and {yn} such that g(xn+1) = F (xn, yn) and
g(yn+1) = F (yn, xn) with g(xn) 6 g(xn+1) and g(yn+1) 6 g(yn), for n = 0, 1, 2, · · ·
If for some n ∈ N, g(xn) = g(xn+1) and g(yn+1) = g(yn) then the proof is complete.
Otherwise we will proceed as follows:
Since g(xn) 6 g(xn+1) and g(yn+1) 6 g(yn), for n = 0, 1, 2, · · · , consider for all
n ∈ N,
ψ[d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))]
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= ψ[d(F (xn−1, yn−1), F (xn, yn)) + d(F (yn−1, xn−1), F (yn, xn))]

≤ ψ[max{d(g(xn−1), F (xn−1, yn−1)) + d(g(yn−1), F (yn−1, xn−1)),

d(g(xn), F (xn, yn)) + d(g(yn), F (yn, xn))}]
−ϕ[max{d(g(xn−1), F (xn−1, yn−1)) + d(g(yn−1), F (yn−1, xn−1)),

d(g(xn), F (xn, yn)) + d(g(yn), F (yn, xn))}]
= ψ[max{d(g(xn−1), g(xn)) + d(g(yn−1), g(yn)), d(g(xn), g(xn+1)) + d(g(yn), g(yn+1))}]
− ϕ[max{d(g(xn−1), g(xn))+d(g(yn−1), g(yn)), d(g(xn), g(xn+1))+d(g(yn), g(yn+1))}](3.4)

Suppose that for some m ∈ N
d(g(xm−1), g(xm)) + d(g(ym−1), g(ym)) ≤ d(g(xm), g(xm+1)) + d(g(ym), g(ym+1)).
Now by (3.4) we have

ψ[d(g(xm), g(xm+1)) + d(g(ym), g(ym+1))] ≤ ψ[d(g(xm), g(xm+1)) + d(g(ym), g(ym+1))]

−ϕ[d(g(xm), g(xm+1)) + d(g(ym), g(ym+1))]

< ψ[d(g(xm), g(xm+1)) + d(g(ym), g(ym+1))]

which is a contradiction.
Therefore for all n ∈ N,
d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)) < d(g(xn−1), g(xn)) + d(g(yn−1), g(yn)).
Thus {d(g(xn), g(xn+1))+d(g(yn), g(yn+1))} is a decreasing sequence of nonnegative
reals, so there exists a δ ≥ 0 such that

lim
n→∞

d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)) = δ

Assume that δ > 0.
By taking the upper limit on both sides of (3.4) we get

ψ[δ] ≤ ψ[δ]− ϕ[δ]

< ψ[δ]

which is a contradiction. Therefore δ = 0.
Next, we prove that both {g(xn)} and {g(yn)} are Cauchy sequences in X.
We have g(xn) 6 g(xn+1) and g(yn+1) 6 g(yn), for n = 0, 1, 2, · · · .
Now consider for n > m,

ψ[d(g(xm), g(xn)) + d(g(ym), g(yn))]

= ψ[d(F (xm−1, ym−1), F (xn−1, yn−1)) + d(F (ym−1, xm−1), F (yn−1, xn−1))]

≤ ψ[max{d(g(xm−1), F (xm−1, ym−1)) + d(g(ym−1), F (ym−1, xm−1)),

d(g(xn−1), F (xn−1, yn−1)) + d(g(yn−1), F (yn−1, xn−1))}]
−ϕ[max{d(g(xm−1), F (xm−1, ym−1)) + d(g(ym−1), F (ym−1, xm−1)),

d(g(xn−1), F (xn−1, yn−1)) + d(g(yn−1), F (yn−1, xn−1))]

= ψ[max{d(g(xm−1), g(xm))+d(g(ym−1), g(ym)), d(g(xn−1), g(xn))+d(g(yn−1), g(yn))}]
−ϕ[max{d(g(xm−1), g(xm))+d(g(ym−1), g(ym)), d(g(xn−1), g(xn))+d(g(yn−1), g(yn))}]

By taking the upper limit as n,m→ ∞ on both sides we get,

lim
n,m→∞

ψ[d(g(xm), g(xn)) + d(g(ym), g(yn))] = 0

Thus both {g(xn)} and {g(yn)} are Cauchy sequences in X.
Since X is a complete metric space there exist x, y ∈ X such that

lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y (3.5)
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Since g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) we have,
lim
n→∞

F (xn, yn) = x and lim
n→∞

F (yn, xn) = y (3.6)

Since F and g are compatible we have,
lim

n−→∞
d(g(F (xn, yn)), F (g(xn), g(yn))) = 0, and

lim
n−→∞

d(g(F (yn, xn)), F (g(yn), g(xn))) = 0

Now, by the continuity of F and g we have, F (x, y) = g(x) and F (y, x) = g(y).
Thus the proof. �

Corollary 3.2. Let (X, d,6) be a partially ordered complete metric space and
suppose F : X ×X → X and g : X → X be two continuous, compatible functions
with F (X ×X) ⊆ g(X), F satisfying the mixed g- monotone property and for all
x, y, u, v ∈ X with g(x) 6 g(u), g(y) > g(v):

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) ≤M(x, y, u, v)− ϕ[M(x, y, u, v)]

where ϕ ∈ Φ and
M(x, y, u, v)=max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}.
If there exist x0, y0 ∈ X with g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. By taking ψ as the identity function on [0,∞) in Theorem 3.1, we get the
result. �

Corollary 3.3. Let (X, d,6) be a partially ordered complete metric space and
suppose F : X ×X → X and g : X → X be two continuous, compatible functions
with F (X ×X) ⊆ g(X), F satisfying the mixed g- monotone property and for all
x, y, u, v ∈ X with g(x) 6 g(u), g(y) > g(v):
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ k ·max{d(g(x), F (x, y)) + d(g(y), F (y, x)), d(g(u), F (u, v)) + d(g(v), F (v, u))}
If there exist x0, y0 ∈ X with g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. By taking ϕ(p) = (1 − k)p, for p ∈ [0,∞) in Corollary 3.2, we get the
result. �

Corollary 3.4. Let (X, d,6) be a partially ordered complete metric space and
suppose F : X × X → X be continuous function with F satisfying the mixed
monotone property and for all x, y, u, v ∈ X with x 6 u, y > v:
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

≤ k ·max{d(x, F (x, y)) + d(y, F (y, x)), d(u, F (u, v)) + d(v, F (v, u))}
If there exist x0, y0 ∈ X with x0 6 F (x0, y0) and y0 > F (y0, x0), then there exist
x, y ∈ X such that x = F (x, y) and y = F (y, x).

Proof. By considering g as the identity function on X in Corollary 3.3, we get the
result. �

The following theorem guarantees the existence of coupled coincidence points of F
and g in which F need not be continuous.

Theorem 3.5. Let (X, d,6) be a partially ordered complete metric space and sup-
pose that X has the following properties:
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(i) if an increasing sequence {xn} converges to x then xn 6 x, ∀n
(ii) if a decreasing sequence {yn} converges to y then y 6 yn, ∀n.

Let F : X×X → X and g : X → X be compatible functions with F (X×X) ⊆ g(X),
g an order preserving, continuous function and F satisfying the mixed g- monotone
property and F and g satisfy the following:
For all x, y, u, v ∈ X with g(x) 6 g(u), g(y) > g(v)

ψ[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))] ≤ ψ[M(x, y, u, v)]− ϕ[M(x, y, u, v)]

where ψ ∈ Ψ, ϕ ∈ Φ and
M(x, y, u, v)=max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}.
If there exist x0, y0 ∈ X with g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0), then there
exist x, y ∈ X such that g(x) = F (x, y) and g(y) = F (y, x).

Proof. Following as in Theorem 3.1 we can have, an increasing sequence {g(xn)} and
a decreasing sequence {g(yn)} defined as g(xn+1) = F (xn, yn), g(yn+1) = F (yn, xn)
such that

lim
n→∞

g(xn) = x and lim
n→∞

g(yn) = y

By the hypothesis we have, g(xn) 6 x and y 6 g(yn), ∀n ∈ N
Since g is order preserving, we get g(g(xn)) 6 g(x) and g(y) 6 g(g(yn)), ∀n ∈ N.
Since g is continuous and F and g are compatible we have

g(x) = lim
n→∞

g(F (xn, yn)) = lim
n→∞

F (g(xn), g(yn))

and g(y) = lim
n→∞

g(F (yn, xn)) = lim
n→∞

F (g(yn), g(xn))

Suppose F (x, y) ̸= g(x) or F (y, x) ̸= g(y).
Since g(g(xn)) 6 g(x) and g(y) 6 g(g(yn)), ∀n ∈ N, we have

ψ[d(F (g(xn), g(yn)), F (x, y)) + d(F (g(yn), g(xn)), F (y, x))]

≤ ψ[max{d(g(g(xn)), F (g(xn), g(yn))) + d(g(g(yn)), F (g(yn), g(xn))),

d(g(x), F (x, y)) + d(g(y), F (y, x))}]
−ϕ[max{d(g(g(xn)), F (g(xn), g(yn))) + d(g(g(yn)), F (g(yn), g(xn))),

d(g(x), F (x, y)) + d(g(y), F (y, x))}]

By taking the upper limit on both sides we get

ψ[d(g(x), F (x, y)) + d(g(y), F (y, x))] ≤ ψ[d(g(x), F (x, y)) + d(g(y), F (y, x))]

−ϕ[d(g(x), F (x, y)) + d(g(y), F (y, x))]

< ψ[d(g(x), F (x, y)) + d(g(y), F (y, x))]

which is a contradiction. Thus g(x) = F (x, y) and g(y) = F (y, x).
Hence the proof. �

In the following theorem we omit the completeness of the underlying space X and
the compatibility and continuity conditions of the functions F and g assumed in
Theorem 3.1. The following theorem guarantees the existence of coupled coincidence
points of F and g.

Theorem 3.6. Let (X, d,6) be a partially ordered metric space and X has the
following property:

(i) if an increasing sequence {xn} converges to x then xn 6 x, ∀n
(ii) if a decreasing sequence {yn} converges to y then y 6 yn, ∀n.



COUPLED COINCIDENCE POINT THEOREMS 35

Let F : X × X → X and g : X → X be two functions with F (X × X) ⊆ g(X)
and F satisfying the mixed g- monotone property and for all x, y, u, v ∈ X with
g(x) 6 g(u), g(y) > g(v):
ψ[d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))] ≤ ψ[M(x, y, u, v)]− ϕ[M(x, y, u, v)]

where ψ ∈ Ψ, ϕ ∈ Φ and
M(x, y, u, v)=max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}.
Suppose g(X) is a complete subspace of X and if there exist x0, y0 ∈ X with
g(x0) 6 F (x0, y0) and g(y0) > F (y0, x0), then there exist x, y ∈ X such that
g(x) = F (x, y) and g(y) = F (y, x).

Proof. Following as in Theorem 3.1, we get an increasing Cauchy sequence {g(xn)}
and a decreasing Cauchy sequence {g(yn)} in X defined as g(xn+1) = F (xn, yn)
and g(yn+1) = F (yn, xn).
Since g(X) is a complete subspace of X, there exist x, y ∈ X such that

lim
n→∞

g(xn) = g(x) and lim
n→∞

g(yn) = g(y)

By the hypothesis we have, g(xn) 6 g(x) and g(y) 6 g(yn), ∀n ∈ N.
Suppose F (x, y) ̸= g(x) or F (y, x) ̸= g(y).
Now consider,
ψ[d(F (xn, yn), F (x, y)) + d(F (yn, xn), F (y, x))]

≤ ψ[max{d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)), d(g(x), F (x, y)) + d(g(y), F (y, x))}]
−ϕ[max{d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)), d(g(x), F (x, y)) + d(g(y), F (y, x))}]

Taking the upper limit on both sides we get
ψ[d(g(x), F (x, y)) + d(g(y), F (y, x))] ≤ ψ[d(g(x), F (x, y)) + d(g(y), F (y, x))]

−ϕ[d(g(x), F (x, y)) + d(g(y), F (y, x))]

< ψ[d(g(x), F (x, y)) + d(g(y), F (y, x))]

which is a contradiction.
Thus g(x) = F (x, y) and g(y) = F (y, x). �

Theorem 3.7. In addition to the hypothesis of Theorem 3.1 suppose that for any
(x, y), (u, v) ∈ X×X there exist (α, β) ∈ X×X such that (g(α), g(β)) is comparable
to (F (α, β), F (β, α)) and (F (α, β), F (β, α)) is comparable to both (F (x, y), F (y, x))
and (F (u, v), F (v, u)), then F and g have a unique coupled common fixed point.

Proof. Theorem 3.1 ensures that the set of all coupled coincidence points of F and
g is nonempty.
Let (x, y), (u, v) ∈ X ×X be any two coupled coincidence points of F and g.
That is, g(x) = F (x, y), g(y) = F (y, x) and g(u) = F (u, v), g(v) = F (v, u).
First we shall prove that

g(x) = g(u), g(y) = g(v) (3.7)
By the hypothesis there exist (α, β) ∈ X ×X such that (g(α), g(β)) is comparable
to (F (α, β), F (β, α)).
Following as in Theorem 3.1 we can construct an increasing, converging sequence
{g(αn)} and a decreasing, converging sequence {g(βn)} where g(αn+1) = F (αn, βn)
and g(βn+1) = F (βn, αn), n ∈ N ∪ {0} with α0 = α and β0 = β.
By the hypothesis (F (α, β), F (β, α)) is comparable to both (F (x, y), F (y, x)) and
(F (u, v), F (v, u)).
Since (x, y) and (u, v) are coupled coincidence points of F and g and using the mixed
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g- monotone property of F we get (g(αn), g(βn)) is comparable to both (g(x), g(y))
and (g(u), g(v)).
Consider,

ψ[d(g(x), g(αn+1)) + d(g(y), g(βn+1))]

=ψ[d(F (x, y), F (αn, βn)) + d(F (y, x), F (βn, αn))]

≤ψ[max{d(g(x), F (x, y)) + d(g(y), F (y, x)), d(g(αn), F (αn, βn)) + d(g(βn), F (βn, αn))}]
−ϕ[max{d(g(x), F (x, y)) + d(g(y), F (y, x)), d(g(αn), F (αn, βn)) + d(g(βn), F (βn, αn))}]

=ψ[d(g(αn), F (αn, βn))+d(g(βn), F (βn, αn))]−ϕ[d(g(αn), F (αn, βn))+d(g(βn), F (βn, αn))]

Taking the upper limit on both sides as n→ ∞ we get
lim
n→∞

{ψ[d(g(x), g(αn+1)) + d(g(y), g(βn+1))]} = 0

Similarly, it can be proved that lim
n→∞

{ψ[d(g(u), g(αn+1)) + d(g(v), g(βn+1))]}=0

Thus g(x) = g(u) and g(y) = g(v).
That is, for any two coupled coincidence points (x, y) and (u, v) of F and g,
g(x) = g(u) and g(y) = g(v).
Let γ = g(x) and δ = g(y).
Since (x, y) is a coupled coincidence point of F and g we have
F (x, y) = γ and F (y, x) = δ
Since F and g are compatible we have
g(γ) = F (γ, δ) and g(δ) = F (δ, γ).
That is, (γ, δ) is a coupled coincidence point of F and g.
Therefore g(γ) = g(x) = γ and g(δ) = g(y) = δ
Therefore (γ, δ) is a coupled common fixed point of F and g.
The uniqueness of coupled common fixed point of F and g follows from (3.7). �

Theorem 3.8. In addition to the hypothesis of Theorem 3.1, suppose that g(x0)
and g(y0) are comparable, then x = y.

Proof. Without loss of generality assume that g(x0) 6 g(y0).
By following Theorem 3.1 we get lim

n→∞
g(xn) = x and lim

n→∞
g(yn) = y

where g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn).
By the mixed g- monotone property of F , it can be easily verified that
g(xn) 6 g(yn), ∀n ∈ N. Now consider,

ψ[d(F (xn, yn), F (yn, xn)) + d(F (yn, xn), F (xn, yn))]

≤ ψ[max{d(g(xn), g(xn+1)) + d(g(yn), g(yn+1)), d(g(yn), g(yn+1)) + d(g(xn), g(xn+1))}]
−ϕ[max{d(g(xn), g(xn+1))+d(g(yn), g(yn+1)), d(g(yn), g(yn+1))+d(g(xn), g(xn+1))}]

By taking the upper limit as n→ ∞ on both sides we get, ψ[d(x, y) + d(y, x)] = 0
Thus x = y. �

The following example illustrates Theorem 3.5.

Example 3.9. Let X = [0, 1] with the usual order ≤ and the usual metric
d(x, y) = |x− y|, ∀ x, y ∈ X.
Clearly X is a partially ordered complete metric space satisfying the two properties
assumed in Theorem 3.5.
Let g : X → X and F : X ×X → X be defined as

g(x) =
4

5
x and F (x, y) =

{
0 if x ∈ [0, 67 )
1
35 if x ∈ [ 67 , 1]
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It can be seen that F and g are compatible mappings and F is a mixed g- monotone
mapping.
Here F (X ×X) ⊆ g(X), g is continuous and order preserving mapping on X.
Let ψ, ϕ : [0,∞) → [0,∞) be defined as ψ(x) = x2 and ϕ(x) =

400

529
x2, then F and

g satisfy the contractive type condition (3.3).
If all x, y, u, v ∈ X satisfying g(x) ≤ g(u), and g(y) ≥ g(v), belong to either [0, 67 )

or [ 67 , 1] then the contractive type condition (3.3) is obvious. In the remaining
possible cases for the values of x, y, u, v ∈ X satisfying g(x) ≤ g(u) and g(y) ≥ g(v),
we consider three different cases and verify the validity of the contractive type
condition (3.3), which will cover the remaining cases.
Case 1: When x, v ∈ [0, 67 ) and u, y ∈ [ 67 , 1]

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) =
∣∣∣0− 1

35

∣∣∣+ ∣∣∣ 1
35

− 0
∣∣∣

=
2

35
(3.8)

d(g(x), F (x, y)) + d(g(y), F (y, x)) =
∣∣∣4
5
x− 0

∣∣∣+ ∣∣∣4
5
y − 1

35

∣∣∣
=

4

5
x+

∣∣∣4
5
y − 1

35

∣∣∣
≥

∣∣∣4
5
· 6
7
− 1

35

∣∣∣
=

23

35
(3.9)

d(g(u), F (u, v)) + d(g(v), F (v, u)) =
∣∣∣4
5
u− 1

35

∣∣∣+ ∣∣∣4
5
v − 0

∣∣∣
=

∣∣∣4
5
u− 1

35

∣∣∣+ 4

5
v

≥
∣∣∣4
5
· 6
7
− 1

35

∣∣∣
=

23

35
(3.10)

By (3.9) and (3.10) we have,

M(x, y, u, v) = max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}

≥ 23

35
(3.11)

Now, by (3.8) and (3.11) we have,

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) =
4

1225

ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)) =
129

529
·M(x, y, u, v)2

≥ 129

529
· 529

1225

=
129

1225

Therefore,

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) ≤ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v))
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Case 2: x, u, v ∈ [0, 67 ) and y ∈ [ 67 , 1]

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) = |0− 0|+
∣∣∣ 1
35

− 0
∣∣∣

=
1

35
(3.12)

d(g(x), F (x, y)) + d(g(y), F (y, x)) =
∣∣∣4
5
x− 0

∣∣∣+ ∣∣∣4
5
y − 1

35

∣∣∣
=

4

5
x+

∣∣∣4
5
y − 1

35

∣∣∣
≥

∣∣∣4
5
· 6
7
− 1

35

∣∣∣
=

23

35
(3.13)

d(g(u), F (u, v)) + d(g(v), F (v, u)) =
∣∣∣4
5
u− 0

∣∣∣+ ∣∣∣4
5
v − 0

∣∣∣
=

4

5
(u+ v) (3.14)

By (3.13) and (3.14) we have,

M(x, y, u, v) = max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}

≥ 23

35
(3.15)

Now by (3.12) and (3.15) we have,

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) =
1

1225

ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)) =
129

529
·M(x, y, u, v)2

≥ 129

529
· 529

1225

=
129

1225

Therefore

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) ≤ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v))

Case 3: x ∈ [0, 67 ) and y, u, v ∈ [ 67 , 1]

d(F (x, y), F (u, v)) + d(F (y, x), F (v, u)) =
∣∣∣0− 1

35

∣∣∣+ ∣∣∣ 1
35

− 1

35

∣∣∣
=

1

35
(3.16)

d(g(x), F (x, y)) + d(g(y), F (y, x)) =
∣∣∣4
5
x− 0

∣∣∣+ ∣∣∣4
5
y − 1

35

∣∣∣
=

4

5
x+

∣∣∣4
5
y − 1

35

∣∣∣
≥

∣∣∣4
5
· 6
7
− 1

35

∣∣∣
=

23

35
(3.17)

d(g(u), F (u, v)) + d(g(v), F (v, u)) =
∣∣∣4
5
u− 1

35

∣∣∣+ ∣∣∣4
5
v − 1

35

∣∣∣
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≥ 2
∣∣∣4
5
· 6
7
− 1

35

∣∣∣ (3.18)

=
2 · 23
35

(3.19)

By (3.17) and (3.19) we have,

M(x, y, u, v) = max{d(g(x), F (x, y))+d(g(y), F (y, x)), d(g(u), F (u, v))+d(g(v), F (v, u))}

≥ 2 · 23
35

(3.20)

Now by (3.16) and (3.20) we have,

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) =
1

1225

ψ(M(x, y, u, v))− ϕ(M(x, y, u, v)) =
129

529
·M(x, y, u, v)2

≥ 129

529
· 4 · 529
1225

=
516

1225

Therefore

ψ(d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))) ≤ ψ(M(x, y, u, v))− ϕ(M(x, y, u, v))

Here (0, 0) is the only coupled common fixed point of F and g.

Remark 3.10. The above example also illustrates that the contractive type con-
ditions (1.1) and (3.3) are independent.

For, take x = y = v = 6
7 − ϵ and u = 6

7 where 0 < ϵ ≤ 6
7 .

Now

ψ(d(F (x, y), F (u, v))) = ψ
(∣∣∣0− 1

35

∣∣∣) = ψ
( 1

35

)
ψ(max(d(gx, gu), d(gy, gv)))− ϕ(max(d(gx, gu), d(gy, gv)))

= ψ
(∣∣∣4

5

(6
7
− ϵ

)
− 4

5
· 6
7

∣∣∣)− ϕ
(∣∣∣4

5

(6
7
− ϵ

)
− 4

5
· 6
7

∣∣∣)
= ψ

(4
5
· ϵ
)
− ϕ

(4
5
· ϵ
)

Since ψ and ϕ in (1.1) are continuous and ψ−1{0} = {0} and ϕ−1{0} = {0}
we have as ϵ→ 0,
ψ(max(d(gx, gu), d(gy, gv)))− ϕ(max(d(gx, gu), d(gy, gv))) → 0
but ψ(d(F (x, y), F (u, v))) = ψ( 1

35 ) > 0 for all ϵ > 0.
Thus F and g does not satisfy the contractive type condition (1.1).
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ABSTRACT. The main objective of this work is to modify the sequence {xn} of the
explicit projection algorithm of asymptotically nonexpansive semigroups. We prove the
strong convergence theorem of a sequence {xn} to the common fixed point of asymptoti-
cally nonexpansive semigroups and the solutions of split equilibrium problems. Our main
results extended and improved the results of Pei Zhou and Gou-Jie Zhao [17] and many
authors.
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1. Introduction

R, where R is the set of real numbers. The equilibrium problem for F : C×C −→
R is to find x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by EP.
The split equilibrium problem was introduced by Moudafi [12], he considers the

following pair of equilibrium problems in different spaces. Let H1 and H2 be two
real Hilbert spaces, let F1 : C×C → R and F2 : Q×Q → R be nonlinear bifunctions
and let A : H1 → H2 be a bounded linear operator which C and Q are closed convex
subsets of H1 and H2, respectively. Then the split equilibrium problem (SEP) is to
find x∗ ∈ C such that

F1(x
∗, x) ≥ 0, ∀x ∈ C. (1.2)

∗ Corresponding author.
Email address : peissara@uru.ac.th.
Article history : Received 4 November 2019; Accepted 10 January 2020.
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and such that
y∗ ∈ Ax∗ ∈ Q, F2(y

∗, y) ≥ 0, ∀y ∈ Q. (1.3)
The solution set of SEP (1.2)-(1.3) is denote by Ω = {p ∈ EP(F1) : Ap ∈ EP(F2)}.

Recall that, a mapping T : C → C and a self mapping f of C is a contraction
if ∥f(x) − f(y)∥ ≤ α∥x − y∥ for some α ∈ (0, 1) and T is a nonexpansive if ∥Tx −
Ty∥ ≤ ∥x − y∥ for all x, y ∈ C, and T is asymptotically nonexpansive [5] if there
exists a sequence {kn} with kn ≥ 1 for all n and limn→∞ kn = 1 and such that
∥Tnx − Tny∥ ≤ kn∥x − y∥ for all n ≥ 1 and x, y ∈ C. A point x ∈ C is a
fixed point of T provided Tx = x. Denote by Fix(T ) the set of fixed points of
T ; that is, Fix(T ) = {x ∈ C : Tx = x}. Recall also that a one-parameter family
T = {T (t)|0 ≤ t < ∞} of self-mappings of a nonempty closed convex subset C of
a Hilbert space H is said to be a (continuous) Lipschitian semigroup on C (see, e.
g., [15]) if the following conditions are satisfied:

(i) T (0)x = x, x ∈ C
(ii) T (s+ t)(x) = T (s)T (t), s, t ≥ 0, x ∈ C
(iii) for each x ∈ C, the maps t 7→ T (t)x is continuous on [0,∞)
(iv) there exists a bounded measurable function L : [0,∞) → [0,∞) such that,

for each t > 0

∥T (t)x− T (t)y∥ ≤ Lt∥x− y∥, x, y ∈ C.

A Lipschitzian semigroup T is called nonexpansive (or a contraction semigroup) if
Lt = 1 for all t > 0, and asymptotically nonexpansive semigroup if lim supt→∞ Lt ≤
1, respectively. We use Fix(T ) to denote the common fixed point set of the semi-
group; that is Fix(T ) = {x ∈ C : T (t)x = x, t > 0}.

In 2010, Tian [16] introduced the following general iterative scheme for finding an
element of set of solutions to the fixed point of nonexpansive mapping in a Hilbert
space. Define the sequence {xn} by

xn+1 = αnγf(xn) + (I − µαnB)Txn, (1.4)
where B is k−Lipscitzian and η−strongly monotone operator. Then he prove that
if the sequence {αn} satisfies appropriate conditions, the sequence {xn} gererate by
(1.4) converges strongly to the unique solution x∗ ∈ Fix(T ) of variational inequality

⟨(γf − µB)x∗, x− x∗⟩ ≤ 0,∀x ∈ Fix(T ). (1.5)
In 2011, Ceng et al. [4] added the metric project to the method of Tian (1.4)

and studied the following explicit iterative scheme to find fixed points:
xn+1 = PC [αnγf(xn) + (I − µαnB)Txn] . (1.6)

They prove the strong converge of {xn} to a fixed point x∗ ∈ Fix(T ) of the same
variational in equality (1.5).

In 2008, Plubtieng and Punpaeng [13] introduced the following implicit itera-
tive algorithm to prove a strong convergence theorem for fixed point problem with
nonexpansive semigroup:

xn = αnf(xn) + (I − αn)
1

sn

∫ sn

0

T (s)xnds, (1.7)

where xn is a continuous net and sn is a positive real divergent net.
In 2014, Kazmi and Rizvi [8] studied the following implcit iterative algorithm.

Under some asummptions, they obtain some strong convergence theorem for EP(1.1)
and the fixed point problem:

un = TF1
rn (xn + δA∗(TF2

rn − I)Axn),
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xn = αnγf(xn) + (I − αnB)
1

sn

∫ sn

0

T (s)unds, (1.8)

where sn and rn are the continuous nets in (0, 1).
In the same year, Zhou and Zhao [17] introduce an explicit iterative scheme

for finding a common element of the set of solutions SEP and fixed point for a
nonexpansive semigroup in real Hilbert spaces. Starting with an arbitrary x1 ∈ H,
define sequences {xn} and {un} by

un = TF1
rn (xn + δA∗(TF2

rn − I)Axn),

xn+1 = PC

[
αnγf(xn) + (I − µαnB)

1

sn

∫ sn

0

T (s)unds

]
. (1.9)

Under suitable conditions, some strong convergence theorems for approximating
to these common elements are proved.

Next, we studies some examples for relationship between a nonexpansive semi-
group and an asymptotically nonexpansive semigroup for motivation of this work.

Example 1.1. Let H1 = H2 = R and let T := {T (s) : 0 ≤ s < ∞}, where
T (s)x = 1

1+2sx, ∀x ∈ R. We see that for any x, y ∈ R

∥T (s)x− T (s)y∥ = ∥( 1

1 + 2s
)x− (

1

1 + 2s
)y∥ = (

1

1 + 2s
)∥x− y∥,

then we have T is nonexpansive semigroup. If Ls = 1 we have lim sups→∞ Ls = 1
then T is asymptotically nonexpansive semigroup.

Example 1.2. Let H1 = H2 = R and let T := {T (s) : 0 ≤ s < ∞}, where
T (s)x = 2+2s

1+2sx, ∀x ∈ R. We see that for any x, y ∈ R

∥T (s)x− T (s)y∥ = ∥(2 + 2s

1 + 2s
)x− (

2 + 2s

1 + 2s
)y∥ = (

2 + 2s

1 + 2s
)∥x− y∥,

put Ls = ( 2+2s
1+2s ) we have lim sups→∞ Ls = lim sups→∞( 2+2s

1+2s ) = 1 then T is asymp-
totically nonexpansive semigroup. If we let s = 1 we have 2+2s

1+2s = 4
3 ̸< 1, then T is

not necessary nonexpansive semigroup.

From above example we see that a mapping T is a nonexpansive semigroup
then T is asymptotically nonexpansive semigroup. But T is an asymptotically
nonexpansive semigroup is not necessary nonexpansive semigroup.

Inspired and motivate by above and [17], the purpose of this paper to introduce
an explicit iterative scheme for finding a common element of the set of solutions
SEP and fixed point for an asymptotically nonexpansive semigroup in real Hilbert
spaces.

2. Preliminaries

In this section, we collect and give some useful lemmas that will be used for
our main result in the next section.

Lemma 2.1. Let H be a real Hilbert space, then the following hold:
(i) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨x, y⟩+ ∥y∥2,∀x, y ∈ H;
(ii) ∥tx+(1− t)y∥2 = t∥x∥2 +(1− t)∥y∥2 − t(1− t)∥x− y∥2, t ∈ [0, 1],∀x, y ∈ H.

(iii) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,∀x, y ∈ H.

Let C be a nonempty closed convex subset of H. Then for any x ∈ H, there
exists a unique nearest point of C, denoted by PCx, such that ∥x−PCx∥ ≤ ∥x− y∥
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foe all y ∈ C, such PC is called the metric projection from H into C. We know that
PC is nonexpansive. It is also known that PCx ∈ C and

⟨x− PCx, PCx− z⟩ ≥ 0, ∀x ∈ H, z ∈ C. (2.1)
It is easy to see that (2.1) is equivalent to

∥x− z∥2 ≥ ∥x− PCx∥2 + ∥PCx− z∥2, ∀x ∈ H, z ∈ C. (2.2)
Let B : C → H be a nonlinear mapping. Recall the following definitions.

Definition 2.2. B is said to be
(i) monotone if

⟨Bx−By, x− y⟩ ≥ 0, ∀x, y ∈ C, (2.3)
(ii) strongly monotone if there exists a constant α > 0 such that

⟨Bx−By, x− y⟩ ≥ α∥x− y∥2, ∀x, y ∈ C, (2.4)
for such a case, B is said to be α−strongly monotone,

(iii) α−inverse strongly monotone(α−ism) if there exists a constant α > 0 such
that

⟨Bx−By, x− y⟩ ≥ α∥Bx−By∥2, ∀x, y ∈ C, (2.5)
(iv) k−Lipschitz continuous if exists a constant k ≥ 0 such that

∥Bx−By∥ ≤ k∥x− y∥, ∀x, y ∈ C. (2.6)

Remark 2.3. Let F = µB − γf , where B is a k−Lipschitz and η−strongly mono-
tone operator on H with k > 0 and f is a Lipschitz mapping on H with coeffi-
cient L > 0, 0 < γ ≤ µη/L. It is a simple matter to see that the operator F is
(µη − γL)−strongly monotone over H; that is

⟨Fx−Fy, x− y⟩ ≥ (µη − γL)∥x− y∥2, ∀x, y ∈ H, (2.7)

Lemma 2.4. [6] Let T be a nonexpansive mapping of a closed convex subset C of a
Hilbert space H. If T has a fixed point, then I − T is demiclosed; that is, whenever
the sequence of xn is weakly convergent to x and (I − T )xn is strongly convergent
to y, then (I − T )x = y.

Lemma 2.5. [10] Assume that A is a strongly positive linear bounded operator on
Hilbert space H with coefficient τ > 0 and 0 < ρ ≤ ∥A∥−1. Then ∥I−ρA∥ ≤ 1−ρτ.

Lemma 2.6. [7] Let C be a nonempty bounded closed convex subset of real Hilbert
space H and let T := {T (s) : 0 ≤ s < ∞} an asymptotically nonexpansive semigroup
on C, If {xn} is a sequence in C satisfying the properties:

(i) xn ⇀ z; and
(ii) lim supt→∞ lim supn→∞ ∥T (t)xn − xn∥ = 0,

then z ∈ Fix(T ).

Lemma 2.7. [7] Let C be a nonempty bounded closed convex subset of real Hilbert
space H and let T := {T (s) : 0 ≤ s < ∞} an asymptotically nonexpansive semigroup
on C, then for any u ≥ 0,

lim sup
u→∞

lim sup
t→∞

sup
x∈C

∥1
t

∫ t

0

T (s)xds− T (u)(
1

t

∫ t

0

T (s)xds)∥ = 0.

Lemma 2.8. [9] Let T be an asymptotically nonexpansive mapping defined on a
bounded convex subset C of a Hilbert space H. If {xn} is a sequence in C such that
xn ⇀ x and Txn − xn → 0, then x ∈ F (T ).
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Lemma 2.9. [11] Let C be a nonempty closed convex subset of H. Let {xn} be a
sequence in H and u ∈ H. Let q = PCu. If {xn} is such that ωw(xn) ⊂ C and
satisfies the condition

∥xn − u∥ ≤ ∥u− q∥
for all n ≥ 1, then xn → q.

Definition 2.10. [12] A mapping T : H → H is said to be averaged if it can be
written as the average of the identity mapping and a nonexpansive mapping; that
is,

T = (1− ϵ)I + ϵS, (2.8)
where ϵ ∈ (0, 1), S : H → H is nonexpansive, and I is the identity operator on H.

Proposition 2.11. [12]
(i) If T = (1 − ϵ)S + ϵV , where S : H → H is averaged, V : H → H is

nonexpansive, and ϵ ∈ (0, 1), then T is averaged.
(ii) The composite of finite many averaged mappings is averaged.
(iii) If T is ν − ism, then for γ > 0, γT is (ν/γ)− ism.
(iv) T is averaged if and only if its complement I − T is ν − ism for some

ν > 1
2 .

Assumption 2.12. [1] For solving the equilibrium problem for a bifunction F :
C × C → R, let us assume that F satisfies the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, that is F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;
(A3) for each x, y ∈ C,

lim
t→0

F (tz + (1− t)x, y) ≤ F (x, y); (2.9)

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 2.13. [2] Let C be a nonempty closed convex subset of H, and let F be a
bifunction of C × C into R satisfying (A1)(A4). Let r > 0 and x ∈ H. Then there
exists z ∈ C such that

F (x, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C. (2.10)

Define a mapping Tr : H → C as follows:

TF
r (x) =

{
z ∈ C : F (x, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

}
, (2.11)

for all x ∈ H. Then the following hold:
(i) TF

r is single valued;
(ii) TF

r is firmly nonexpansive; that is, for any x, y ∈ H

∥TF
r x− TF

r y∥2 ≤ ⟨Trx− Try, x− y⟩; (2.12)

(iii) F (TF
r ) = EP(F );

(iv) EP(F ) is closed and convex.

Lemma 2.14. [3] Let C be a nonempty closed convex subset of a Hilbert space H,
and let F : C × C → R be a bifunction. Let x ∈ C and r1, r2 ∈ (0,∞). Then∥∥TF

r1x− TF
r2x
∥∥ ≤

∣∣∣∣1− r2
r1

∣∣∣∣ (∥∥TF
r1x
∥∥+ ∥x∥). (2.13)
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Lemma 2.15. [14] Assume that {an}, {bn}, {cn} are sequence of nonnegative real
numbers such that

an+1 ≤ (1− cn)an + bn, n ≥ 0

where {an} is asequence in (0, 1) and {bn} is a sequence in R such that
(i) Σ∞

n=0cn = ∞,
(ii) lim supn→∞

bn
cn

≤ 0 or Σ∞
n=0|bn| < ∞.

Then limn→∞ an = 0.

3. Main Results

Let f : H1 → H1 be a contractive mapping with constant β ∈ (0, 1) and
let A : H1 → H2, B : H1 → H1 be a η−strongly monotone and θ−Lipschitzian
with θ > 0, η > 0. In this work, we may assume that 0 < µ < 2η

θ2 and 0 <

γ < µ(η − µθ2

2 )/β = τ
β . Let ℑ = {T (s) : 0 ≤ s < ∞} be an aymptotically

nonexpansive semigroup on C such that Γ = F (ℑ)∩Ω ̸= ∅. Assume {rn} and {sn}
are the continuous nets of positive real numbers such that limn→0 rn = r > 0 and
limn→0 sn = +∞.

In this section, we introduce the following explicit iterative scheme that the nets
{un} and {xn} are generated by

un = TF1
rn (xn + δA∗(TF2

rn − I)Axn),

xn+1 = PC

[
αnγf(xn) + (I − µαnB)

1

sn

∫ sn

0

T (s)unds

]
, (3.1)

where PC : H1 → C, δ ∈ (0, 1/L), L is the spectral radius of the operator A∗A and
A∗ is the adjoint of A.

We prove the strong convergence of {un} and {xn} to a fixed point x∗ ∈ F (ℑ)
which solve the following variational inequality:

⟨(µF − γg)x∗, x∗ − x⟩ ≤ 0,∀x ∈ Γ = F (ℑ) ∩ Ω. (3.2)
In the sequel, we denote by {yn} the sequence defined by

yn =
1

sn

∫ sn

0

T (s)unds. (3.3)

Theorem 3.1. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and
Q ⊆ H2 be nonempty closed subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R are the bifunctions satisfying
Assumption 2.12 and F2 is upper semicontinuous in the first argument. Let the
sequence {un} and {xn} be generated by (3.1), and suppose that the sequence {αn}
satisfies the following conditions:

(i) αn ∈ (0, 1) and limn→∞ αn = 0;
(ii) Σ∞

n=0αn = 0;
(iii) either Σ∞

n=0|αn+1 − αn| < ∞ or limn→∞
αn

αn+1
= 1.

where s̃n = 1
sn

∫ sn
0

LT
s ds → 1 as n → ∞. Then the sequence {un} and {xn}

converge strongly to x∗ ∈ Γ = F (ℑ) ∩ Ω, where x∗ = PΓ(I − µB + γf)x∗, which is
the unique solution of the variational inequality (3.2).

Proof. For αn ∈ (0, 1) and ∀x ∈ H1, define a mapping G : H1 → H2 by

Gx = PC

[
αnγf(x) + (I − µαnB)

1

sn

∫ sn

0

T (s)TF1
rn (x+ δA∗(TF2

rn − I)Ax)ds

]
.

(3.4)
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From Lemma 2.13 we easily know that TF1
rn and TF2

rn both are firmly nonexpansive
mappings and are averaged operators. From Proposition 2.11, we can obtain that
the operator (I + δA∗(TF2

rn − I)A) is averaged and hence nonexpansive. Following
Lemma 2.14 and ∀x, y ∈ H1, we get

∥Gx−Gy∥ = ∥PC

[
αnγf(x) + (I − µαnB)

1

sn

∫ sn

0

T (s)TF1
rn (x+ δA∗(TF2

rn − I)Ax)ds

]
− PC

[
αnγf(y) + (I − µαnB)

1

sn

∫ sn

0

T (s)TF1
rn (y + δA∗(TF2

rn − I)Ay)ds

]
∥

≤ ∥
[
αnγf(x) + (I − µαnB)

1

sn

∫ sn

0

T (s)TF1
rn (x+ δA∗(TF2

rn − I)Ax)ds

]
−

[
αnγf(y) + (I − µαnB)

1

sn

∫ sn

0

T (s)TF1
rn (y + δA∗(TF2

rn − I)Ay)ds

]
∥

≤ αnγ∥f(x)− f(y)∥

+(1− αnτ)∥
1

sn

∫ sn

0

[T (s)(TF1
rn (x+ δA∗(TF2

rn − I)Ax))

−T (s)(TF1
rn (y + δA∗(TF2

rn − I)Ay))ds]∥
≤ αnγ∥f(x)− f(y)∥

+(1− αnτ)
1

sn

∫ sn

0

∥T (s)(TF1
rn (x+ δA∗(TF2

rn − I)Ax)

−T (s)(TF1
rn (y + δA∗(TF2

rn − I)Ay))∥ds
≤ αnγ∥f(x)− f(y)∥

+(1− αnτ)
1

sn

∫ sn

0

LT
s ∥TF1

rn (x+ δA∗(TF2
rn − I)Ax)

−TF1
rn (y + δA∗(TF2

rn − I)Ay))∥ds

≤ αnγ∥f(x)− f(y)∥+ (1− αnτ)
1

sn

∫ sn

0

LT
s ∥x− y∥ ds

≤ αnγ∥f(x)− f(y)∥+ (1− αnτ)
1

sn

∫ sn

0

LT
s ds ∥x− y∥

≤ αnγβ∥x− y∥+ (1− αnτ)s̃n∥x− y∥
= (1− αn(τ s̃n − γβ))∥x− y∥. (3.5)

Since γ < τ
β and αn ∈ (0, 1) then (1 − αn(τ s̃n − γβ)) < 1, it follows that G is

contraction, by Banach contraction principle, there exists a unique a fixed point x∗.
Next, we proved that {un}, {xn} are bounded. Let p ∈ Γ = F (S) ∩ Ω, we obtain
that p = TF1

rn p and p = TF2
rn Ap and p = T (s)p. From (3.1), we have
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∥un − p∥2 = ∥TF1
rn (I + δA∗(TF2

rn − I)A)xn − p∥2

= ∥TF1
rn (I + δA∗(TF2

rn − I)A)xn − TF1
rn p∥2

≤ ∥xn + δA∗(TF2
rn − I)Axn − p∥2

≤ ∥xn − p∥2 + ∥δA∗(TF2
rn − I)Axn∥2 + 2δ⟨xn − p,A∗(TF2

rn − I)Axn⟩
≤ ∥xn − p∥2 + δ2⟨(TF2

rn − I)Axn, AA∗(TF2
rn − I)Axn⟩

+2δ⟨A(xn − p), (TF2
rn − I)Axn⟩

≤ ∥xn − p∥2 + Lδ2⟨(TF2
rn − I)Axn, (T

F2
rn − I)Axn⟩

+2δ⟨A(xn − p) + (TF2
rn − I)Axn − (TF2

rn − I)Axn, A
∗(TF2

rn − I)Axn⟩
≤ ∥xn − p∥2 + Lδ2∥(TF2

rn − I)Axn∥2

+2δ
{
⟨TF2

rn Axn −Ap, (TF2
rn − I)Axn⟩ − ∥(TF2

rn − I)Axn∥2
}

≤ ∥xn − p∥2 + Lδ2∥(TF2
rn − I)Axn∥2

+2δ

{
1

2
∥(TF2

rn − I)Axn∥2 − ∥(TF2
rn − I)Axn∥2

}
≤ ∥xn − p∥2 + Lδ2∥(TF2

rn − I)Axn∥2 − δ∥(TF2
rn − I)Axn∥2

= ∥xn − p∥2 + δ(Lδ − 1)∥(TF2
rn − I)Axn∥2. (3.6)

Since δ ∈ (0, 1/L), we have

∥un − p∥ ≤ ∥xn − p∥. (3.7)

Put yn = 1
sn

∫ sn
0

T (s)unds, it follows that

∥yn − p∥ =

∥∥∥∥ 1

sn

∫ sn

0

T (s)unds− p

∥∥∥∥
≤ 1

sn

∥∥∥∥∫ sn

0

(T (s)un − T (s)p)ds

∥∥∥∥
≤ ∥un − p∥ ≤ ∥xn − p∥. (3.8)

And we obtain that

∥xn+1 − p∥ =

∥∥∥∥PC

[
αnγf(xn) + (I − µαnB)

1

sn

∫ sn

0

T (s)unds

]
− p

∥∥∥∥
≤

∥∥∥∥αnγf(xn) + (I − µαnB)
1

sn

∫ sn

0

T (s)unds− p

∥∥∥∥
=

∥∥∥∥αn(γf(xn)− µBp) + (I − µαnB)
1

sn

∫ sn

0

T (s)unds− (I − µαnB)p

∥∥∥∥(3.9)

≤ αn∥γf(xn)− µBp∥+ (1− αnτ)

∥∥∥∥ 1

sn

∫ sn

0

T (s)unds− p

∥∥∥∥
≤ αn∥γf(xn)− µBp∥+ (1− αnτ)

1

sn

∫ sn

0

∥T (s)un − T (s)p∥ ds

≤ αn∥γf(xn)− µBp∥+ (1− αnτ)
1

sn

∫ sn

0

LT
s ∥un − p∥ ds

≤ αn∥γf(xn)− µBp∥+ (1− αnτ)
1

sn

∫ sn

0

LT
s ds ∥un − p∥

≤ αn∥γf(xn)− µBp∥+ (1− αnτ)s̃n ∥un − p∥
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≤ αnγ∥f(xn)− f(p)∥+ αn∥γf(p)− µBp∥+ (1− αnτ)s̃n ∥un − p∥
≤ αnγβ∥xn − p∥+ αn∥γf(p)− µBp∥+ (1− αnτ)s̃n ∥xn − p∥
≤ [s̃n − αn(τ s̃n − γβ)]∥xn − p∥+ αn∥γf(p)− µBp∥ (3.10)

Since {s̃n − αn(τ s̃n − γβ)} is convergence sequence of real number then it is a
bounded dequence, we have K ∈ R such that

∥xn+1 − p∥ ≤ K∥xn − p∥+ αn∥γf(p)− µBp∥, (3.11)

we have {xn} is bounded and therefore {un}, {yn} and {f(xn)} are bounded. From
(3.10), {∥xn − p∥} is bounded and decreasing sequence, hence limn→∞ ∥xn − p∥
exists.

Next, we claim that limn→∞ ∥xn − un∥ = 0. From (3.9), we have

∥xn+1 − p∥2 ≤
∥∥∥∥αn(γf(xn)− µBp) + (I − µαnB)

1

sn

∫ sn

0

T (s)unds− (I − µαnB)p

∥∥∥∥2
≤ (1− αnτ)

2

∥∥∥∥ 1

sn

∫ sn

0

T (s)unds− p

∥∥∥∥2
+2αn⟨γf(xn)− γf(p) + γf(p)− µBp, xn − p⟩

≤ (1− αnτ)
2∥un − p∥2 + 2αnγβ∥xn − p∥

+2αn⟨γf(p)− µBp, xn − p⟩
≤ ∥un − p∥2 + αnτ

2∥xn − p∥2 + 2αnγβ∥xn − p∥
+2αn∥γf(p)− µBp∥∥xn − p∥

≤ ∥xn − p∥2 + δ(Lδ − 1)∥(TF2
rn − I)Axn∥2 + αnτ

2∥xn − p∥2

+2αnγβ∥xn − p∥+ 2αn∥γf(p)− µBp∥∥xn − p∥. (3.12)

From (3.12), we obtain

δ(1− Lδ)∥(TF2
rn − I)Axn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2

+αn(τ
2∥xn − p∥2 + 2γβ∥xn − p∥

+ 2∥γf(p)− µBp∥∥xn − p∥). (3.13)

Since {xn} is bounded, limn→∞ ∥xn − p∥ exists, limn→∞ αn = 0 and δ(1−Lδ) > 0,
we obtain that

lim
n→∞

∥(TF2
rn − I)Axn∥ = 0. (3.14)

From (3.1), we have

∥un − p∥2 =
∥∥TF1

rn (I + δA∗(TF2
rn − I)A)xn − p

∥∥2
=

∥∥TF1
rn (I + δA∗(TF2

rn − I)A)xn − TF1
rn p

∥∥2
≤ ⟨un − p, xn + δA∗(TF2

rn − I)Axn − p⟩

=
1

2
{∥un − p∥2 + ∥xn + δA∗(TF2

rn − I)Axn − p∥2

−∥un − p− [xn + δA∗(TF2
rn − I)Axn − p]∥2} (3.15)

≤ 1

2

{
∥un − p∥2 + ∥xn − p∥2 − ∥un − xn − δA∗(TF2

rn − I)Axn∥2
}

≤ 1

2
{∥un − p∥2 + ∥xn − p∥2 − ∥un − xn∥2 − δ∥A∗(TF2

rn − I)Axn∥2

+2δ∥A(un − xn)∥∥(TF2
rn − I)Axn∥}.
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Hence, we obtain

∥un − p∥2 = ∥xn − p∥2 − ∥un − xn∥2 − δ∥A∗(TF2
rn − I)Axn∥2

+2δ∥A(un − xn)∥∥(TF2
rn − I)Axn∥

≤ ∥xn − p∥2 − ∥un − xn∥2 + 2δ∥A(un − xn)∥∥(TF2
rn − I)Axn∥.

(3.16)

It follows from (3.12) and (3.16) that

∥xn+1 − p∥2 ≤ ∥un − p∥2 + αnτ
2∥xn − p∥2 + 2αnγβ∥xn − p∥

+2αn∥γf(p)− µBp∥∥xn − p∥
≤ ∥xn − p∥2 − ∥un − xn∥2 + 2δ∥A(un − xn)∥∥(TF2

rn − I)Axn∥
+αnτ

2∥xn − p∥2

+2αnγβ∥xn − p∥+ 2αn∥γf(p)− µBp∥∥xn − p∥ (3.17)
= ∥xn − p∥2 − ∥un − xn∥2 + 2δ∥A(un − xn)∥∥(TF2

rn − I)Axn∥
+αnτ

2M1,

where M1 = τ2∥xn − p∥2 + 2γβ∥xn − p∥+ 2∥γf(p)− µBp∥∥xn − p∥. From (3.17),
we obtain

∥un−xn∥2 ≤ ∥xn−p∥2−∥xn+1−p∥2++2δ∥A(un−xn)∥∥(TF2
rn −I)Axn∥+αnτ

2M1

(3.18)
From (3.18), (3.14), {xn} is bounded, limn→∞ ∥xn − p∥ exists limn→∞ αn = 0 and
δ > 0, we obtain

lim
n→∞

∥un − xn∥ = 0. (3.19)

Next, we prove that limn→∞ ∥xn+1−xn∥ = 0. From (1.4) and Lemma 2.14, we have

∥un − un+1∥ = ∥TF1
rn (I + δA∗(TF2

rn − I)A)xn − TF1
rn (I + δA∗(TF2

rn−1
− I)A)xn−1∥

≤ ∥(xn + δA∗(TF2
rn − I)Axn)− (xn−1 + δA∗(TF2

rn−1
− I)Axn−1)∥

+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF1
rn (xn + δA∗(TF2

rn − I)Axn)

− (xn−1 + δA∗(TF2
rn−1

− I)Axn−1)∥
≤ ∥xn − xn−1 − δA∗A(xn − xn−1)∥

+δ∥A∥∥TF2
rn−1

Axn − TF2
rn−1

Axn−1∥

+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF1
rn (xn + δA∗(TF2

rn − I)Axn)

− (xn−1 + δA∗(TF2
rn−1

− I)Axn−1)∥

≤
(
∥xn − xn−1∥2 − 2δ∥A(xn − xn−1)∥2 + δ2∥A∥4∥xn − xn−1∥2

) 1
2

+δ∥A∥
(
∥Axn(xn − xn−1)∥+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF2
rn Axn −Axn−1∥

)
+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF1
rn (xn + δA∗(TF2

rn − I)Axn)

− (xn + δA∗(TF2
rn − I)Axn)∥

≤
(
1− 2δ∥A∥2 + δ2∥A∥4

) 1
2 ∥xn − xn−1∥

+δ∥A∥2
(
∥xn − xn−1∥+ ∥TF2

rn Axn −Axn−1∥
)
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+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF1
rn (xn + δA∗(TF2

rn − I)Axn)

− (xn + δA∗(TF2
rn − I)Axn)∥

≤ (1− δ∥A∥2)∥xn − xn−1∥+ δ∥A∥2(∥xn − xn−1∥

+ |1− δ∥A∥rn−1

rn
|∥TF2

rn Axn −Axn−1∥)

+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF1
rn (xn + δA∗(TF2

rn − I)Axn)

− (xn + δA∗(TF2
rn − I)Axn)∥

= ∥xn − xn−1∥+ δ∥A∥|1− rn−1

rn
|∥TF2

rn Axn −Axn−1∥

+

∣∣∣∣1− rn−1

rn

∣∣∣∣ ∥TF1
rn (xn + δA∗(TF2

rn − I)Axn)

− (xn + δA∗(TF2
rn − I)Axn)∥

= ∥xn − xn−1∥+ δ∥A∥|1− rn−1

rn
|(δ∥A∥εn + ξn), (3.20)

where
εn = ∥TF2

rn Axn −Axn−1∥
ξn = ∥TF1

rn (xn + δA∗(TF2
rn − I)Axn)− (xn + δA∗(TF2

rn − I)Axn)∥. (3.21)
From (3.3), we obtain

∥yn − yn−1∥ = ∥ 1

sn

∫ sn

0

T (s)unds−
1

sn−1

∫ sn−1

0

T (s)un−1ds∥

≤ ∥ 1

sn

∫ sn

0

T (s)unds−
1

sn

∫ sn

0

T (s)un−1ds∥

+∥ 1

sn

∫ sn

0

T (s)un−1ds−
1

sn−1

∫ sn−1

0

T (s)un−1ds∥

≤ 1

sn

∫ sn

0

∥T (s)(un − un−1)∥ds

+∥ 1

sn

∫ sn

0

T (s)un−1ds−
s1

sn−1

∫ sn−1

0

T (s)un−1ds∥

≤ s̃n∥un − un−1∥+
∣∣∣∣ 1sn − 1

sn−1

∣∣∣∣ ∥∥∥∥∫ sn−1

0

T (s)un−1ds

∥∥∥∥
+

1

sn

∥∥∥∥∥
∫ sn

sn−1

T (s)un−1ds

∥∥∥∥∥ . (3.22)

From (3.20) and (3.22), we obtain

∥yn − yn−1∥ ≤ ∥xn − xn−1∥+ δ∥A∥|1− rn−1

rn
|(δ∥A∥εn + ξn)

+

∣∣∣∣ 1sn − 1

sn−1

∣∣∣∣ ∥∥∥∥∫ sn−1

0

T (s)un−1ds

∥∥∥∥+ 1

sn

∥∥∥∥∥
∫ sn

sn−1

T (s)un−1ds

∥∥∥∥∥ .
(3.23)

From (3.1) again, we obtain
∥xn+1 − xn∥ = ∥PC [αnγf(xn) + (I − µαnB)yn]
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− PC [αn−1γf(xn−1) + (I − µαn−1B)yn−1] ∥
≤ ∥(αnγf(xn) + (I − µαnB)yn)− (αn−1γf(xn−1)

+ (I − µαn−1B)yn−1)∥
= ∥(αnγ(f(xn)− f(xn−1)) + γ(αn − αn−1)f(xn−1)

+ (I − µαnB)(yn − yn−1) + µ(αn − αn−1)yn−1)∥
≤ αnγβ∥xn − xn−1∥+ γ|αn − αn−1|∥f(xn−1)∥

+ (I − αnτ)∥yn − yn−1∥+ µ|αn − αn−1|∥yn−1)∥
≤ αnγβ∥xn − xn−1∥+ γ|αn − αn−1|∥f(xn−1)∥

+(I − αnτ)(∥xn − xn−1∥+ δ∥A∥|1− rn−1

rn
|(δ∥A∥εn + ξn)

+

∣∣∣∣ 1sn − 1

sn−1

∣∣∣∣ ∥∥∥∥∫ sn−1

0

T (s)un−1ds

∥∥∥∥+ 1

sn

∥∥∥∥∥
∫ sn

sn−1

T (s)un−1ds

∥∥∥∥∥)
+µ|αn − αn−1|∥yn−1∥

= (1− αn(τ − γβ))(∥xn − xn−1∥

+ γ|αn − αn−1|∥f(xn−1)∥|1−
rn−1

rn
|(δ∥A∥εn + ξn))

+

∣∣∣∣ 1sn − 1

sn−1

∣∣∣∣ ∥∥∥∥∫ sn−1

0

T (s)un−1ds

∥∥∥∥+ 1

sn

∥∥∥∥∥
∫ sn

sn−1

T (s)un−1ds

∥∥∥∥∥
+µ|αn − αn−1|∥yn−1∥

≤ (1− αn(τ − γβ))∥xn − xn−1∥

+M2(γ|αn − αn−1|+
∣∣∣∣1− rn−1

rn

∣∣∣∣+ ∣∣∣∣ 1sn − 1

sn−1

∣∣∣∣+ ∣∣∣∣ 1

sn−1

∣∣∣∣
+ µ|αn − αn−1|), (3.24)

where

M2 = max

{
sup
n≤1

(δ∥A∥εn + ξn), sup
n≤1

(∥∥∥∥∥
∫ sn

sn−1

T (s)un−1ds

∥∥∥∥∥
)
, sup
n≤1

∥yn−1∥

}
. (3.25)

Since {xn}, {un} and {yn} are bounded, we have {Axn} and {T (s)un−1} are bounded.
Then M2 < ∞.

It follows from condition (1)−(3) we have limn→∞ rn = r > 0, limn→∞ sn = +∞
and Lemma 2.15, we obtain that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.26)

Next, we claim that limn→∞ ∥T (s)xn−xn∥ = 0. From (3.1) and (3.3), we obtain

∥xn+1 − yn∥ ≤
∥∥∥∥PC

[
αnγf(xn) + (I − µαnB)

1

sn

∫ sn

0

T (s)unds

]
− PCyn

∥∥∥∥
≤

∥∥∥∥αnγf(xn) + (I − µαnB)
1

sn

∫ sn

0

T (s)unds− yn

∥∥∥∥
≤ αn

∥∥∥∥γf(xn)− µB
1

sn

∫ sn

0

T (s)unds

∥∥∥∥ .
(3.27)

Since limn→∞ αn = 0 and {xn}, {un} are bounded, we have
lim
n→∞

∥xn+1 − yn∥ = 0. (3.28)
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From (3.26) and (3.28), we get

∥xn − yn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − yn∥, (3.29)

it follows that
lim
n→∞

∥xn − yn∥ = 0. (3.30)

On the other hand, from (3.1), we have

∥T (s)xn − xn∥ =

∥∥∥∥T (s)xn − T (s)
1

sn

∫ sn

0

T (s)unds

∥∥∥∥
+

∥∥∥∥T (s) 1

sn

∫ sn

0

T (s)unds−
1

sn

∫ sn

0

T (s)unds

∥∥∥∥
+

∥∥∥∥ 1

sn

∫ sn

0

T (s)unds− xn

∥∥∥∥
≤

∥∥∥∥xn − 1

sn

∫ sn

0

T (s)unds

∥∥∥∥
+

∥∥∥∥T (s) 1

sn

∫ sn

0

T (s)unds−
1

sn

∫ sn

0

T (s)unds

∥∥∥∥
+

∥∥∥∥ 1

sn

∫ sn

0

T (s)unds− xn

∥∥∥∥
≤ 2∥xn − yn∥+

∥∥∥∥T (s) 1

sn

∫ sn

0

T (s)unds−
1

sn

∫ sn

0

T (s)unds

∥∥∥∥ ,
(3.31)

So without loss of generality, we assume that ℑ = {T (s) : 0 ≤ s < +∞} is asymp-
totically nonexpansive semigroup on C, and from Lemma 2, we have

lim
n→∞

∥∥∥∥T (s) 1

sn

∫ sn

0

T (s)unds−
1

sn

∫ sn

0

T (s)unds

∥∥∥∥ = 0. (3.32)

It follows from (3.30), (3.31) and (3.32), we have

lim
n→∞

∥T (s)xn − xn∥ = 0. (3.33)

Next, we claim that there exists a common fixed point of EP (F1) ∩ EP (F2).
Since {xn} is bounded on Hilbert space, there exists a subsequence {xni} of {xn}

which converges weakly to some z ∈ X. From (3.19), yni
⇀ z. Now, we show that

z ∈ EP (F1). From (3.1) and (A2), for any y ∈ H, we have
1

rn
⟨y − un, un − xn⟩ ≥ F1(y, un) (3.34)

and hence ⟨
y − uni

,
uni

−
xni

rni

⟩
≥ F1(y, uni

). (3.35)

Since uni

− xnirni → 0 and uni ⇀ z, from (A1), it follows that 0 ≥ F1(y, z) for all
y ∈ H. For t with 0 < t ≤ 1 and y ∈ H, let yt = ty + (1 − t)z, then we get
0 ≥ F1(yt, z). From (A1) and (A2), we have

0 = F1(yt, yt) ≤ tF1(yt, y) + (1− t)F1(yt, z) ≤ tF1(yt, y) (3.36)

and hence 0 ≤ F1(yt, y). From (A3), we have 0 ≤ F1(z, y) for all y ∈ H. Therefor,
z ∈ EP (F1).
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Since xni
⇀ z and A is a bounded linear operator, we obtain Axni

⇀ Az.
Let vnj

= Axnj
− TF2

rnj
xnj

. It follows from (3.14), we have limn→∞ vnj
= 0 and

Axnj
− vnj

= TF2
rnj

xnj
. Then from Lemma 2.13, we get

F2(Axnj
− vnj

, y) +
1

rnj

⟨
y − (Axnj

− vnj
), (Axnj

− vnj
)−Axnj

⟩
≥ 0,∀y ∈ Q.

(3.37)
Since F2 is upper semicontinuous in the first argument, and lim supn→∞ rn = r > 0,
we taking j → ∞, we have

F2(Az − vnj
, y) ≥ 0,∀y ∈ Q (3.38)

that is Az ∈ EP (F2) and hence z ∈ Ω.
Next, we claim that ⟨(µF − γf)x∗, x∗ − x⟩ ≤ 0,∀x ∈ Γ = F (S) ∩ Ω. From (3.1),

putting

zn = αnγf(xn) + (I − µαnB)
1

sn

∫ sn

0

T (s)unds, (3.39)

we can observe that

xn+1 = PCzn = PCzn − zn + αnγf(xn) + (I − µαnB)
1

sn

∫ sn

0

T (s)unds

(3.40)
it follows that

(µB − γf)xn =
1

αn
(PCzn − zn) +

1

αn
(xn − xn+1) +

1

αn
(I − µℵnB)(yn − xn).

(3.41)
Hence, for each p ∈ Γ = F (S) ∩ Ω, we obtain that

⟨(µB − γf)xn, xn − p⟩ =
1

αn
⟨PCzn − zn, xn − p⟩+ 1

αn
⟨xn − xn+1, xn − p⟩

+
1

αn
⟨(I − µℵnB)(yn − xn), xn − p⟩

=
1

αn
⟨PCzn − zn, xn − p⟩+ 1

αn
⟨xn − xn+1, xn − p⟩

+
1

αn
⟨yn − xn, xn − p⟩+ 1

αn
⟨Byn −Bxn, xn − p⟩.

(3.42)
From (3.42) taking limit n → ∞, we have Byn−Bxn → Bx∗−Bx∗ = 0, yn−xn → 0
and PCzn − zn → PCx

∗ − x∗ = 0, we have
⟨(µB − γf)xn, xn − p⟩ ≤ 0, (3.43)

which implies that z = PΓ(I − µB + γf).
Next, we claim that z ∈ Γ = F (S) ∩ Ω. From (3.1), we have xn+1 = PCzn, and

for x∗ ∈ Γ, we have
xn+1 − x∗ = PCzn − zn + zn − x∗

= PCzn − zn + αn(γf(xn)− µBx∗) + (I − µαnB)yn − (I − µαnB)x∗.

(3.44)
Since PC is the metric projection from H1 onto C, we obtain

⟨PCzn − zn, PCzn − x∗⟩ ≤ 0. (3.45)
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It follows from (3.44) and (3.45), we have

∥xn+1 − x∗∥2 = ⟨PCzn − zn, xn+1 − x∗⟩+ αn⟨(γf(xn)− µBx∗), xn+1 − x∗⟩
+⟨(I − µαnB)(yn − x∗), xn+1 − x∗⟩

≤ αn⟨(γf(xn)− µBx∗), xn+1 − x∗⟩
+⟨(I − µαnB)(yn − x∗), xn+1 − x∗⟩

≤ αnγ⟨f(xn)− f(x∗), xn+1 − x∗⟩
+αn⟨γf(x∗)− µBx∗), xn+1 − x∗⟩
+⟨(I − µαnB)(yn − x∗), xn+1 − x∗⟩

≤ αnγβ∥xn − x∗∥∥xn+1 − x∗∥+ αn⟨γf(x∗)− µBx∗), xn+1 − x∗⟩
+(1− αnτ)∥yn − x∗∥∥xn+1 − x∗∥

≤ αnγβ∥xn − x∗∥∥xn+1 − x∗∥+ αn⟨γf(x∗)− µBx∗), xn+1 − x∗⟩
+(1− αnτ)∥xn − x∗∥∥xn+1 − x∗∥

≤ (1− αn(τ − γβ))∥xn − x∗∥∥xn+1 − x∗∥
+αn⟨γf(x∗)− µBx∗), xn+1 − x∗⟩

≤ (1− αn(τ − γβ))

2

(
∥xn − x∗∥2 − ∥xn+1 − x∗∥2

)
+αn⟨γf(x∗)− µBx∗), xn+1 − x∗⟩, (3.46)

it implies that

∥xn+1 − x∗∥2 ≤ (1− αn(τ − γβ))

(1 + αn(τ − γβ))
∥xn − x∗∥2

+
2αn

(1 + αn(τ − γβ))
⟨γf(x∗)− µBx∗), xn+1 − x∗⟩

≤ (1− αn(τ − γβ))∥xn − x∗∥2

+
2αn

(1 + αn(τ − γβ))
⟨γf(x∗)− µBx∗), xn+1 − x∗⟩

≤ (1− an)∥xn − x∗∥2 + αnbn, (3.47)

where

an = αn(τ − γβ),

bn =
2

(1 + αn(τ − γβ))
⟨γf(x∗)− µBx∗), xn+1 − x∗⟩. (3.48)

We see that Σ∞
n=0 = +∞ and lim supn→∞ bn ≤ 0. From Lemma 2.15, we have

xn → x∗. This completes the proof. �

Corollary 3.2. [17] Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1

and Q ⊆ H2 be nonempty closed subsets. Let A : H1 → H2 be a bounded linear
operator. Assume that F1 : C × C → R and F2 : Q × Q → R are the bifunctions
satisfying Assumption 2.12 and F2 is upper semicontinuous in the first argument.
Let ℑ = {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C such that Γ =
F (ℑ) ∩ Ω ̸= ∅. Let the sequence {un} and {xn} be generated by (3.1), and suppose
that the sequence {αn} satisfies the following conditions:

(i) αn ∈ (0, 1) and limn→∞ αn = 0;
(ii) Σ∞

n=0αn = 0;
(iii) either Σ∞

n=0|αn+1 − αn| < ∞ or limn→∞
αn

αn+1
= 1.
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where s̃n = 1
sn

∫ sn
0

LT
s ds → 1 as n → ∞. Then the sequence {un} and {xn}

generated by (3.1) converge strongly to x∗ ∈ Γ = F (ℑ) ∩ Ω, where x∗ = PΓ(I −
µB + γf)x∗, which is the unique solution of the variational inequality (3.2).

Proof. From example 1.1 and example 1.2, we see that a nonexpansive semigroup is
T is asymptotically nonexpansive semigroup. Then this theorem cover by theorem
3.1. �

Corollary 3.3. Let H1 and H2 be two real Hilbert spaces and let C ⊆ H1 and
Q ⊆ H2 be nonempty closed subsets. Let A : H1 → H2 be a bounded linear operator.
Assume that F1 : C × C → R and F2 : Q × Q → R are the bifunctions satisfying
Assumption 2.12 and F2 is upper semicontinuous in the first argument. Let the
sequence {un} and {xn} be generated by are generated by

un = TF1
rn (xn + δA∗(TF2

rn − I)Axn),

xn+1 = αnγf(xn) + (I − µαnB)
1

sn

∫ sn

0

T (s)unds, (3.49)

the sequence {αn} satisfies the following conditions:
(i) αn ∈ (0, 1) and limn→∞ αn = 0;
(ii) Σ∞

n=0αn = 0;
(iii) either Σ∞

n=0|αn+1 − αn| < ∞ or limn→∞
αn

αn+1
= 1.

where s̃n = 1
sn

∫ sn
0

LT
s ds → 1 as n → ∞. Then the sequence {un} and {xn}

converge strongly to x∗ ∈ Γ = F (ℑ) ∩ Ω, where x∗ = PΓ(I − µB + γf)x∗, which is
the unique solution of the variational inequality (3.2).
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ABSTRACT. The main aim of this article is to present an inexact proximal point al-
gorithm for constrained multiobjective optimization problems under the locally Lipschitz
condition of the cost function. Convergence analysis of the considered method, Fritz-John
necessary optimality condition of ϵ-quasi weakly Pareto solution in terms of Clarke subd-
ifferential is derived. The suitable conditions to guarantee that the accumulation points
of the generated sequences are Pareto-Clarke critical points are provided.

KEYWORDS:Multiobjective optimization; Quasi-convex functions; Lipschitz continu-
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1. Introduction

With the development of optimization theory, multiobjective optimization prob-
lems have increasingly received much attentions, and have been greatly applied
to management, decision-making disciplines, resource planning, engineering, the
design of aircraft control systems and so on, see, for example, [30, 31]. In multiob-
jective optimization, one considers optimization problems with several conflicting
objective functions. It is usually hard to find an optimal solution that satisfies all
objectives from the mathematical point of view (i.e., there is no ideal minimizer),
but we obtain a set of alternatives with different trade-offs, called efficient solutions.

The multiobjective optimization problem is considering the following context:
For I = {1, 2, ...,m}, we put Rm

+ = {x ∈ Rm : xj ≥ 0, j ∈ I}, and Rm
++ = {x ∈ Rm :

xj > 0, j ∈ I}. For y, z ∈ Rm, (z ≽ y or y ≼ z) means that z − y ∈ Rm
+ , and (z ≻ y
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or y ≺ z) means that z−y ∈ Rm
++. By using these relations, we consider the efficient

solution concepts of the (constrained) multiobjective minimization problem
min
x∈C

F (x), (1.1)

where C ⊂ Rn is the constrained set and F : Rn → Rm is the objective mapping.
There are a number of works that pay attention to the methods for finding ef-

ficient solutions of multiobjective optimization problem (1.1). Such as, in 2007,
Ceng and Yao [9] developed both an absolute and a relative version of approximate
proximal point algorithm. They considered the approximate proximal method via
the subproblems of finding weakly efficient points for suitable regularizations of
the original mapping. Later, in 2015, Papa Quiroz et al. [29] proposed an inexact
proximal point method of constrained multiobjective problems involving locally Lip-
schitz quasiconvex objective functions. They used proximal distances and assumed
that the function is also bounded from below, lower semicontinuous for convergence
analysis of the method. They proved that the sequence generated by the proposed
method converges to a stationary point of the problem. After that, in 2018, João
Carlos de O. Souza [33] studied the convergence of exact and inexact versions of
the proximal point method with a generalized regularization function in Hadamard
manifolds for solving scalar and vectorial optimization problems involving Lipschitz
functions. In 2018, Bento et al. [5] considered the exact proximal point method of
the constrained nonsmooth multiobjective optimization problem. They used non-
scalarization approach for convergence analysis of the method, where the first order
optimality condition of the problem is replaced by a necessary condition for weak
Pareto points of a multiobjective problem. For more information on the related
works in this direction, ones may see [1, 4, 5, 6, 7, 16, 17, 33]) and the references
therein.

In this paper, our interest is to consider an inexact proximal point method for
solving the multiobjective optimization problem (1.1).

Using the same technique as in Bento et al. [5], we propose an inexact proximal
point algorithm for constrained nonsmooth multiobjective optimization problem. In
terms of Clarke subdifferential, we introduce Fritz-John optimality condition of an
ϵ-quasi weak Pareto solution, which we use for convergence analysis of our method.
We also show that our proposed algorithm is well defined and the sequence achieved
by the proposed algorithm converges to a Pareto-Clarke critical point. For a convex
objective function F , we obtain the convergence to a weak Pareto solution of the
problem.

2. Preliminaries

In this section, we present some basic concepts and results that are of fundamen-
tal importance for the development of our work.

The domain of f , denoted by dom f , is the subset of Rn on which f has a finite
valued. A function f is said to be proper when dom f ̸= ∅. We denote the closed
unit ball in Rn by BRn . We say that a scalar valued function f : Rn → R ∪ {+∞}
is locally Lipschitz at x ∈ Rn if there exist a neighborhood U of x and a positive
real number L such that

|f(z)− f(y)| ≤ L∥z − y∥, ∀z, y ∈ U.

A vector valued function F : Rn → Rm is locally Lipschitz if all components of F
are locally Lipschitz.

Next, we recall some concepts of Clarke directional derivative.
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The Clarke directional derivative of a proper locally Lipschitz function f : Rn →
R∪{+∞} at x ∈ Rn in the direction of d ∈ Rn is denoted by f⋄(x, d), and is defined
as

f⋄(x, d) = lim
t→0

sup
y→x

f(y + td)− f(y)

t
.

Now, we recall some concepts involving locally Lipschitz functions and noncon-
vex constrained sets.
Let C ⊂ Rn be a nonempty and closed set. We denote the distance function
d : Rn → R of a point x ∈ Rn to a set C ⊂ Rn as

dC(x) := inf{∥x− c∥ : c ∈ C}. (2.1)
We say that a point x ∈ C is a Pareto-Clarke critical point of F in C if, for any
element v ∈ TC(x), there exists i = 1, ...,m such that

f⋄
i (x, v) ≥ 0, (2.2)

where fi is the ith component of F and TC(x) := {v ∈ Rn : d⋄C(x, v) = 0} denotes
the set of all tangent vectors to C at x. As mentioned in [10], page 11, a vector v
belongs to TC(x) if and only if it satisfies the following property: for every sequence
{xk} in C converging to x and every sequence tk in (0,∞) converging to 0, there
is a sequence vk converging to v such that xk + tkv

k belongs to C for all k. The
normal cone is the one obtained from tangent cone TC(x) by polarity. Therefore,
the normal cone NC(x) to C at x is as follows:

NC(x) := {ς ∈ Rn : ⟨ς, v⟩ ≤ 0,∀v ∈ TC(x)},

see [5]. If C is convex, NC(x) coincides with normal cones in the sense of convex
analysis; (see [10], Proposition 2.4.4).

Now, we remind some basic concepts and properties of multiobjective optimiza-
tion, which can be found in [24].
A sequence {xk} ⊂ Rm is called a decreasing sequence if xp ≺ xk for k < p. A point
x̄ is said to be an infimum of {xk}, if there is no x such that x ≼ x̄ and x ≼ xk

satisfying x̄ ≼ xk, for all k ∈ N.
Next, we recall some definitions of optimal solutions and approximate optimal

solutions of multiobjective function F : Rn → Rm.
Consider a nonempty subset C ⊂ Rn and ϵ := (ϵ1, ..., ϵm) ∈ Rm

+ , a point x∗ ∈ C is
called

(i) a weak Pareto solution of problem (1.1) if there exists no x ∈ C such that
fi(x) < fi(x

∗), for all i ∈ {1, ...,m}.
(ii) an ϵ-weak Pareto solution of problem (1.1) if there exists no x ∈ C such

that fi(x) + ϵi < fi(x
∗), for all i ∈ {1, ...,m}.

(iii) an ϵ-quasi weak Pareto solution of problem (1.1) if there is no x ∈ C such
that fi(x) + ϵi∥x− x∗∥ < fi(x

∗), for all i ∈ {1, ...,m}.
We denote the set of weak Pareto, ϵ-weak Pareto and ϵ-quasi weak Pareto so-
lutions of problem (1.1) by argminw{F (x)|x ∈ C}, argminϵw{F (x)|x ∈ C} and
argminϵq−w{F (x)|x ∈ C}, respectively. For the detail, see [13] and [25].

Remark 2.1. It is apparent that, if ϵ = 0 , then the notions of an ϵ-weakly Pareto
solution and an ϵ-weakly quasi Pareto solution defined above coincide with the
usual one of a weak Pareto solution. Also, for the case, ϵ ̸= 0, it is easy to see
that, argminw{F (x)|x ∈ C} ⊂ argminϵw{F (x)|x ∈ C} and argminw{F (x)|x ∈
C} ⊂ argminϵq−w{F (x)|x ∈ C}. While, the sets argminϵw{F (x)|x ∈ C} and
argminϵq−w{F (x)|x ∈ C} might be two different sets. For detail, see [13].
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Now, we remind Clarke subdifferential concept of scalar and vector functions.
The Clarke subdifferential of scalar valued function f : Rn → R at x, denoted by
∂f(x), is defined as

∂f(x) := {w ∈ Rn : ⟨w, d⟩ ≤ f⋄(x, d), ∀d ∈ Rn},

see Clarke [11].
The Clarke subdifferential of F : Rn → Rm at x ∈ Rn, denoted by ∂F (x), is defined
as

∂F (x) := {U ∈ Rm×n : UT d ≼ F ⋄(x, d), ∀d ∈ Rn},
where F ⋄(x, d) := {f⋄

1 (x, d), ..., f
⋄
m(x, d)}.

Proposition 2.2. ([11], Proposition 1.4) f⋄(x; v) = max{ξ · v : ξ ∈ ∂f(x)}.

Remark 2.3. It is noted in [5] that, combining (2.2) with Proposition 2.2, we have
the following alternative definition: a point x ∈ Rn is a Pareto-Clarke critical point
of F in C if, for any v ∈ TC(x), there exist i ∈ {1, ...,m} and ξ ∈ ∂fi(x) such that
⟨ξ, v⟩ ≥ 0. Thus, if x is not a Pareto-Clarke critical point of F in C, there exists
v ∈ TC(x) such that Uv ≺ 0, ∀U ∈ ∂F (x).

The necessary condition for a point to be a Pareto-Clarke critical point of a
vector-valued function can be found in Bento et al. ([5] Lemma 1), and is given
below.

Proposition 2.4. [5] Let w ∈ Rm
+ \ {0} and assume that C is closed and nonempty

set. If −UTw ∈ NC(x) for some U ∈ ∂F (x), then x is a Pareto-Clarke critical
point of F .

For the nonconvex case, a formula for the Clarke sudifferential of the distance
function (2.1) defined in Burke, Ferris and Qian [3] is as follows:

Proposition 2.5. [3] Let C ⊂ Rm be a nonempty and closed set: If x ∈ C, then
∂dC(x) ⊂ B[0, 1] ∩NC(x), (2.3)

where B[0, 1] denotes the closed unit ball in Rm.

Now, we recall some basic definitions of multiobjective functions.
Consider a vector function F : Rn → Rm, we say that
i) F is called Rm

+ -convex if, for every x, y ∈ Rn, the following condition holds:
F ((1− t)x+ ty) ≼ (1− t)F (x) + tF (y), ∀t ∈ [0, 1].

ii) F is called Rm
+ -quasiconvex if, for every x, y ∈ Rn, the following condition holds:
F ((1− t)x+ ty) ≼ max{F (x), F (y)}, ∀t ∈ [0, 1],

where the maximum is considered coordinate by coordinate.

Remark 2.6. A vector function F : Rn → Rm is convex (resp. quasi-convex) iff F
is componentwise convex (resp. quasi-convex), see Definition 6.2 and Corollary 6.6
of [24], pages 29, 31, respectively.

Next propositions will be useful in the following section.

Proposition 2.7. ([34], Theorem 3.2.1) Let C ⊂ Rn be a nonempty set and f :
Rn → R be a Lipschitz function on Rn with constant L. If x̄ is a minimizer for the
constrained minimization problem,

min f(x), x ∈ C, (2.4)
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and τ ≥ L, then x̄ is also a minimizer for the unconstrained minimization problem

min{f(x) + τdC(x)}, x ∈ Rn. (2.5)

If τ > L and C is a closed set, then the converse assertion is also true: Any mini-
mizer x̄ for the unconstrained problem (2.5) is also a minimizer for the constrained
problem (2.4).

Proposition 2.8. ([1], Proposition 2.6.1) Let C = Rn and x̂ be a Pareto-Clarke
critical point of a locally Lipschitz function F : Rn → Rm. If F is Rm

+ -convex, then
x̂ is a weak Pareto solution of the problem (1.1).

Proposition 2.9. ([28], Proposition 5.3(ii)) For a function f : Rn → R locally
Lipschitz at x̄ ∈ Rn with modulus l > 0, it holds that

∥x∗∥ ≤ l, ∀x∗ ∈ ∂f(x̄). (2.6)

Proposition 2.10. ([28], Theorem 5.10) Let f1, f2 : Rn → R be locally Lipschitz
functions at x̄ ∈ Rn, then

∂(f1 + f2)(x̄) ⊂ ∂f1(x̄) + ∂f2(x̄). (2.7)

Proposition 2.11. [10] Let fi : Rn → R∪{+∞}, i = 1, 2, ...,m, be locally Lipschitz
function at x ∈ Rn for all i = {1, ...,m}. Then, the function f(x) := max{fi(x)|i ∈
{1, ...,m}} is also locally Lipschitz at x and

∂f(x) ⊂
∪{

∂(

m∑
i=1

λifi)(x)|λi ≥ 0,

m∑
i=1

λi = 1, λi[fi(x)− f(x)] = 0

}
.

Proposition 2.12. ([2], Theorem 2.1) Let f : Rn → R ∪ {+∞} be a proper
quasiconvex locally Lipschitz function on Rn. If x∗ ∈ ∂f(x) such that ⟨x∗, x̂−x⟩ > 0,
then f(x) ≤ f(x̂).

The next definition and result will be useful for the existence of the set of
minimizers of a vector function which can be found in [24].

Definition 2.13. [24] A subset A of Rm is said to be Rm
+ -complete, if any decreasing

sequence of A is bounded by an element of A, i.e., whenever {xk} ⊂ A is a decreasing
sequence, then there exists x ∈ A such that x ≼ xk, for all k ≥ 0.

Proposition 2.14. ([24], Lemma 3.5) If A ⊂ Rm is closed, has a lower bound (i.e.,
∃ some a ∈ A such that, for all x ∈ A, a ≼ x), then A is Rm

+ -complete.

Proposition 2.15. ([24], Theorem 3.3) Consider the multiobjective problem (1.1).
Then, argmin{F (x)|x ∈ C} is nonempty iff F (C) has a Rm

+ -complete section.

3. Necessary optimality condition

In this section, we consider multiobjective optimization problem (1.1) of finding
the quasi-weak Pareto point of a vector valued function F subject to the following
constrained set

C := {x ∈ D|gj(x) ≤ 0, j = 1, ..., p},
where D ⊂ Rn is a nonempty and closed set, and gj : Rn → R is a locally Lipschitz
function. We provide necessary conditions for a point x∗ ∈ C to be an ϵ-quasi weak
Pareto solution associated to the problem (1.1).



64 J. NONLINEAR ANAL. OPTIM. VOL. 11(1) (2020)

Proposition 3.1. Let x∗ ∈ argminϵq−w{F (x)|x ∈ C}. Then, there exist ti ≥ 0
and µj ≥ 0 for i ∈ {1, ...,m} and j ∈ {1, ..., p} with

∑m
i=1 ti +

∑p
j=1 µj = 1 and

τ > 0 such that

0 ∈
m∑
i=1

ti∂fi(x
∗) +

p∑
j=1

µj∂gj(x
∗) +

m∑
i=1

tiϵiBx∗ + τ∂dD(x∗),

where fi : Rn → R, ϵi ∈ Rm
+ for i ∈ {1, ...,m} and Bx∗ denotes the closed unit ball

of x∗.

Proof. For each x ∈ C, put Ψ(x) = maxi∈{1,...,m}
j∈{1,...,p}

{fi(x)−fi(x
∗)+ϵi∥x−x∗∥, gj(x)}.

Observe that Ψ(x∗) = 0.
Next, since x∗ is an ϵ-quasi weak Pareto optimal point, then there is no x ∈ C such
that

fi(x) + ϵi∥x− x∗∥ < fi(x
∗), ∀i ∈ {1, ...,m}. (3.1)

It can be easily verified that 0 ≤ Ψ(x), which infers that for all x ∈ C, we have

Ψ(x∗) = inf
x∈C

Ψ(x).

It follows that x∗ is also a minimizer to the constrained optimization problem

min
x∈C

Ψ(x).

Proposition 2.11 and locally Lipschitz properties of functions fi and gj imply
that the function Ψ is also locally Lipschitz around x∗. Let L be a locally Lipschitz
constant of Ψ at x∗ and τ ≥ L, then applying the Proposition 2.7 to the last
problem, we obtain

0 ∈ ∂(Ψ(x∗) + τdD(x∗)). (3.2)

Also, the sum rule (2.7) implies that

0 ∈ ∂Ψ(x∗) + τ∂dD(x∗). (3.3)

Now, by Proposition 2.11 and invoking the sum rule (2.7) applied to the Ψ, there
exist non-negative real numbers ti ≥ 0 and µj ≥ 0 such that

∑m
i=1 ti+

∑p
j=1 µj = 1

and

∂Ψ(x∗) ⊂
{ m∑

i=1

ti∂fi(x
∗) +

m∑
i=1

tiϵiBx∗ +

p∑
j=1

µj∂gj(x
∗)

}
. (3.4)

and the desired result follows by combining (3.3) with (3.4). �

4. Inexact Proximal Point Algorithm

In this section, we consider C ⊂ Rn a nonempty and closed set and F : Rn → Rm

is locally Lipschitz function.
Next, we consider the inexact proximal point algorithm, for obtaining a Pareto-

Clarke critical point of F in C. Take a bounded sequence of positive real numbers
{λk}, and a sequence {ek} ⊂ Rm

++ such that ∥ek∥ = 1, for all k ∈ N. The method
generates the sequence {xk} ∈ C as follows.
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4.1. Algorithm.
INITIALIZATION: Choose an arbitrary initial point

x1 ∈ C. (4.1)
STOPPING CRITERION: Given xk, if xk is a Pareto-Clarke critical point, then
stop. Otherwise go to the iterative step.
ITERATIVE STEP: Take the next iterate xk+1 ∈ C as y such that there exists
ϵk ∈ Rm

+ satisfying

y ∈ argminϵkq−w{F (x) +
λk

2
∥x− xk∥2ek|x ∈ Ωk}, (4.2)

ϵk ≼ σk
λk

2
∥y − xk∥ek, (4.3)

where Ωk := {x ∈ C|F (x) ≼ F (xk)} and {σk} ⊂ [0, 1).
From now on, we will assume that 0 ≺ F .

4.2. Existence of iterates.

Proposition 4.1. Let F : Rn → Rm be a continuous function. Then, the sequence
{xk}, generated by Algorithm 4.1, is well defined.

Proof. We proceed by induction: It holds for k = 1, due to (4.1). Assume that xk

exists and define
Fk(x) := F (x) +

λk

2
∥x− xk∥2ek.

Since xk ∈ Ωk, we have, Fk(Ωk) ̸= ∅. By assumption on F , that is 0 ≺ F , we get,
0 ≺ Fk(x). Now, let {yp} ⊂ Fk(Ωk) such that yp → y. Since yp ∈ Fk(Ωk), there
exists zp ∈ Ωk satisfying yp = Fk(z

p), for any p. We claim that {zp} is bounded,
if not, then there is {pj} ⊂ {p} such that zpj → ∞ as j → ∞, then coercivity of
Fk infers that ∥Fk(z

pj )∥ → +∞ as j → ∞. On the other hand, ∥Fk(z
p)∥ → ∥y∥

because yp = Fk(z
p) and yp → y, which is a contradiction. Hence, we proved that

{zp} is a bounded sequence. Subsequently, there are {zpj} ⊂ {zp} and z ∈ Rn such
that zpj → z as j → ∞. Moreover, by the continuity of F , we know that Ωk is a
closed set. Hence, z ∈ Ωk. Applying continuity of Fk and using uniqueness of limit,
we can assert that y ∈ Fk(Ωk). This proves Fk(Ωk) is closed.
Subsequently, by Proposition 2.14 and property of Rm

+ that all decreasing sequences
having lower bound converges to its infimum, we know that Fk(Ωk) is Rm

+ -complete.
Thus, Proposition 2.15 infers that

argminw{Fk(x)|x ∈ Ωk}
is not empty. Therefore, by Remark 2.1, it follows that argminϵkq−w{Fk(x)|x ∈
Ωk} ̸= ∅. �

Remark 4.2. Note that if Algorithm 4.1 terminates after finite number of itera-
tions, then it terminates at a Pareto-Clarke critical point.

4.3. Convergence Analysis.
In this section, first we present some results which play an important role in

our subsequent considerations. Then, we show that the sequence generated by our
algorithm converges to a Pareto-Clarke critical point.

Proposition 4.3. For all k ∈ N, there exists Ak ∈ Rm×n, αk, βk ∈ Rm
+ , τk > 0

and wk ∈ Rn such that
AT

k (α
k + βk) + λk−1⟨ek−1, αk⟩(xk − xk−1) + ⟨ϵk−1, αk⟩vk + τkw

k = 0, (4.4)
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where vk ∈ Bxk , wk ∈ B[0, 1] ∩NC(x
k) and

∑m
i=1(α

k
i + βk

i ) = 1, ∀k ∈ N.

Proof. For every k, consider the functions

Wk(x) := F (x)− F (xk), and Fk(x) := F (x) +
λk

2
∥x− xk∥2ek.

As, F and ∥x − xk∥2 are locally Lipschitz, the coordinate functions (Wk)i(.) :=

F (.) − F (xk) and (Fk)i(.) := F (.) +
λk

2
∥. − xk∥2ek, i ∈ {1, ...,m}, of Wk(x) and

Fk(x), respectively, are also locally Lipschitz.
Since xk is an ϵ-quasi weak Pareto solution for

minFk−1(x) such that Wk−1(x) ≼ 0,

hence the desired result follows by applying Proposition 3.1, for each k ∈ N fixed
with fi and gj by Fk−1 and Wk−1, respectively, and taking into account that, from
Proposition 2.5, we have

∂dC(x
k) ⊂ B[0, 1] ∩NC(x

k), ∀k ∈ N.

In this case, AT
k = [uk

1 ....u
k
m], where uk

i ∈ ∂fi(x
k) with i ∈ {1, ...,m}, αk =

(αk
1 , ..., α

k
m)T and βk = (βk

1 , ..., β
k
m)T . �

Proposition 4.4. If there exists k ∈ N such that xk+1 = xk, then xk is a Pareto-
Clarke critical point of F .

Proof. Suppose that for any k ∈ N, xk+1 = xk, which implies that ϵk = 0. Then by
Proposition 4.3, we obtain

AT
k+1(α

k+1 + βk+1) + τkw
k+1 = 0, (4.5)

which infers that
−AT

k+1(α
k+1 + βk+1) ∈ NC(x

k+1). (4.6)
Since

∑m
i=1(α

k+1
i +βk+1

i ) = 1, we can say that (αk+1+βk+1) ∈ Rm
+ \{0}. Moreover,

Ak+1 ∈ ∂F (xk+1), then using Proposition 2.4, we obtain the desired result. �

Proposition 4.5. Let k0 ∈ N be such that αk0 = 0. Then xk0 is a Pareto-Clarke
critical point of F .

Proof. If there exists k0 ∈ N such that αk0
= 0 then, from (4.4), we have

AT
k0
βk0 + τk0

wk0 = 0, (4.7)

where τk0
> 0, wk0 ∈ NC(x

k0). Since Ak0
∈ ∂F (xk0) and βk0 ∈ Rm

+ \ {0}, the
desired result follows by using Proposition 2.4. �

From now on, we will assume the sequences {λk}, {ϵk} and {xk} are infinite
sequences generated by Algorithm 4.1, then αk ̸= 0 and xk+1 ̸= xk, in view of
Proposition 4.4 and 4.5, respectively.
Next we prove that every cluster point of xk, if any, is Pareto-Clarke critical point.

Theorem 4.1. Assume that there exist scalars a, b, c, d ∈ R++ such that a ≤ λk ≤ b,
c ≤ eki ≤ d, σk ≤ d < 1, for all k ∈ N and i ∈ {1, ...,m}. Then, every cluster point
of {xk}, if any, is a Pareto-Clarke critical point of F .

Proof. Since

xk+1 ∈ argminϵkq−w{F (x) +
λk

2
∥x− xk∥2ek|x ∈ Ωk},
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we have

max
1≤i≤m

{fi(xk)− fi(x
k+1) + ϵki ∥xk − xk+1∥ − λk

2
∥xk+1 − xk∥2eki } ≥ 0.

Hence for any k, there exists some index i0 := i0(k) ∈ {1, ...,m}, where the maxi-
mum in the last inequality is attained. Thus,

fi0(x
k)− fi0(x

k+1) + ϵki0∥x
k − xk+1∥ − λk

2
∥xk+1 − xk∥2eki0 ≥ 0,

which provides us
λk

2
∥xk+1 − xk∥2eki0 − ϵki0∥x

k − xk+1∥ ≤ fi0(x
k)− fi0(x

k+1).

By (4.3) and boundedness assumption of {λk} and {ek}, we obtain

fi0(x
k)− fi0(x

k+1) ≥ λk

2
∥xk+1 − xk∥2eki0 − ϵki0∥x

k+1 − xk∥

≥ λk

2
∥xk+1 − xk∥2eki0 − σk

λk

2
∥xk+1 − xk∥2eki0

≥ (1− σk)
λk

2
∥xk+1 − xk∥2eki0 .

Then, from the boundedness of {λk}, {ϵk} and {σk}, we obtain

(1− d)
ac

2
∥xk+1 − xk∥2 ≤ fi0(x

k)− fi0(x
k+1). (4.8)

Combining (4.2) with the definition of Ωk, it follows that {F (xk)} is nonincreasing
sequence, and by assumption on F , i.e, 0 ≺ F , we have that {F (xk)} is a convergent
sequence. Hence, by taking k → +∞ on (4.8), we get

lim
k→+∞

(xk+1 − xk) = 0. (4.9)

Take x̄ as a cluster point of {xk}, then there exists subsequence {xkj} of {xk}
converging to x̄. Therefore, by applying Proposition 4.3 for the sequence {xkj},
we have that there exist sequences Akj+1 ∈ ∂F (xkj+1), αkj+1, βkj+1 ∈ Rm

+ and
vkj+1 ∈ Bxkj+1 such that

AT
kj+1(α

kj+1+βkj+1)+λkj ⟨ekj , αkj+1⟩(xkj+1−xkj )+⟨ϵkj , αkj+1⟩vkj+1+τkj+1w
kj+1 = 0,

(4.10)
where

∑m
i=1(α

kj+1
i + β

kj+1
i ) = 1 and wkj+1 ∈ NC(x

kj+1).
From the convergence of {xkj}, we obtain that {xkj} is bounded. By locally

Lipschitz property of F , it follows by (2.6) that their subgradients are bounded. So
from the above conditions, the sequences Akj , vkj , αkj , βkj , wkj are bounded. Thus,
equality (4.10) implies that τkj

is also bounded. Now, without loss of generality, we
may assume that the sequences Akj , vkj , αkj , βkj , wkj and τkj converge to Ā, v̄,
ᾱ, β̄, w̄ and τ̄ respectively. Also, since λkj ⟨ekj , αkj+1⟩ is bounded, then by letting
kj goes to infinity in (4.10), we obtain

ĀT (ᾱ+ β̄) + τ̄ w̄ = 0. (4.11)
Since w̄ ∈ NC(x̄), (ᾱ+ β̄) ∈ Rm

+ \ {0}, Ā ∈ ∂F (x̄), it follows from (4.11) that

−ĀT (ᾱ+ β̄) ∈ NC(x̄),

and this together with Proposition 2.4, enables us to say that x̄ is a Pareto-Clarke
critical point of F . This completes the proof. �
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Next, we will present full covergence theorem of proposed Algorithm 4.1. The
following definition and lemma will be useful in our proof.

Definition 4.6. Let Ω ⊂ Rn be a nonempty set. A sequence {zk} ⊂ Ω is said to
be Fejér convergent to a nonempty set Ω iff, for all z ∈ Ω,

∥zk+1 − z∥2 ≤ ∥zk − z∥2 + ϑk, k = 0, 1, ...

where {ϑk} ⊂ (0,∞) satisfies
∑∞

k=1 ϑk < ∞.

The following result on Fejér convergence is well known.

Lemma 4.7. [15] Let Ω ⊂ Rn be a nonempty set and {zk} ⊂ Ω be a Fejér convergent
sequence to Ω, then:

• The sequence {zk} is bounded.
• If a cluster point z̄ of {zk} belongs to Ω, the whole sequence {zk} converges

to z̄ as k goes to +∞.

Now, we will consider that F : Rn → Rm is Rm
+ -quasiconvex, C is convex set,

and the following well-known assumption.
H1: The set (F (x0)− Rm

+ ) ∩ F (C) is Rm
+ -complete.

Theorem 4.2. Assume that H1 holds true and
∑+∞

k=0 σk < +∞. Then, the sequence
{xk} generated by the Algorithm 4.1, converges to a Pareto-Clarke critical point of
F .

Proof. Define

E :=

+∞∩
k=0

Ωk.

Assumption H1 implies that E is nonempty. Take x∗ ∈ E, which infers that x∗ ∈ Ωk

for k ∈ N. It is easy to see that:
∥xk−x∗∥2 = ∥xk+1−x∗∥2+∥xk−xk+1∥2+2⟨xk − xk+1, xk+1 − x∗⟩, ∀k ∈ N. (4.12)

Following the steps of the proof of Theorem 4.1,
λk⟨ek, αk+1⟩(xk−xk+1) = AT

k+1(α
k+1+βk+1)+⟨ϵk, αk+1⟩vk+1+τk+1w

k+1, ∀k ∈ N.
(4.13)

Now, combining (4.12) with (4.13), we get
λkbk
2

(
∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − ∥xk − xk+1∥2

)
=

⟨
AT

k+1(α
k+1 + βk+1) + ⟨ϵk, αk+1⟩vk+1 + τk+1w

k+1, xk+1 − x∗
⟩

=

m∑
i=1

(αk+1
i + βk+1

i )⟨uk+1
i , xk+1 − x∗⟩+

m∑
i=1

αk+1
i ϵki ⟨vk+1, xk+1 − x∗⟩

+ τk+1⟨wk+1, xk+1 − x∗⟩,

(4.14)

where bk = ⟨ek, αk+1⟩, uk+1
i ∈ ∂fi(x

k+1),∀k ∈ N and i ∈ {1, ...,m}. Since F is
Rm

+ -quasiconvex function, in particular, fi is quasiconvex for each i ∈ {1, ...,m}. As
x∗ ∈ Ωk and uk+1

i ∈ ∂fi(x
k+1), it follows by Proposition 2.12 that

m∑
i=1

(αk+1
i + βk+1

i )⟨uk+1
i , xk+1 − x∗⟩ ≥ 0, ∀k ∈ N. (4.15)
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As C is a convex set, wk+1 ∈ NC(x
k+1) together with τk+1 > 0 and characterization

of convex normal cone imply that
τk+1⟨wk+1, xk+1 − x∗⟩ ≥ 0, ∀k ∈ N. (4.16)

By combining the inequalities (4.15), (4.16) with (4.14), we obtain

∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − ∥xk − xk+1∥2 ≥ − 2

λkbk

m∑
i=1

αk+1
i ϵki ⟨vk+1, xk+1 − x∗⟩

≥ −σk∥xk+1 − xk∥∥x∗ − xk+1∥, ∀k ∈ N.
(4.17)

As, r+ s ≥ 2
√
rs holds for r, s ≥ 0, taking s := ∥xk+1 − xk∥ and r := ∥x∗ − xk+1∥,

we obtain
∥xk − x∗∥2−∥xk+1 − x∗∥2−∥xk − xk+1∥2 ≥ −σk

2

[
∥xk+1−xk∥2+∥x∗−xk+1∥2

]
, ∀k ∈ N.

Thus, we get

∥xk+1 − x∗∥2 ≤
(

1

1− σk

)
∥xk − x∗∥2 − ∥xk+1 − xk∥2

≤
(
1 +

σk

1− σk

)
∥xk − x∗∥2, ∀k ∈ N.

(4.18)

Since
∑∞

k=0 σ
2
k < +∞, it follows that

K0 :=

+∞∑
k=k0

2σ2
k

1− 2σ2
k

< +∞ and K1 :=

+∞∏
j=k0

(
1 +

2σ2
j

1− 2σ2
j

)
< +∞.

By (4.18), observe that for all k ≥ k0

∥xk+1 − x∗∥2 ≤
(
1 +

2σ2
k

1− 2σ2
k

)
∥xk − x∗∥2

≤
(
1 +

2σ2
k−1

1− 2σ2
k−1

)(
1 +

2σ2
k

1− 2σ2
k

)
∥xk−1 − x∗∥2

...

≤
k∏

j=k0

(
1 +

2σ2
j

1− 2σ2
j

)
∥xk0 − x∗∥2

≤
∞∏

j=k0

(
1 +

2σ2
j

1− 2σ2
j

)
∥xk0 − x∗∥2

= K1∥xk0 − x∗∥2.

This shows that {xk} is bounded. Then (4.18) becomes

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + 2σ2
k

1− 2σ2
k

K2, ∀k ∈ N. (4.19)

where K = supk ∥xk−x∗∥. Take ηk =
2σ2

k

1−2σ2
k
K2. Since ηk > 0 and

∑∞
k=1 ηk < +∞,

we obtain that {xk} is quasi-Fejér convergent to E and boundedness of {xk} implies
that the sequence {xk} has a cluster point x̄. Since Theorem 4.1 implies that x̄ ∈ E.
Therefore using Lemma 4.7 with U = E, we conclude that the whole sequence {xk}
converges to x̄ as k goes to +∞, where x̄ is a Pareto-Clarke critical point of F . �
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Corollary 4.8. If C = Rn, F : Rn → Rm is Rm
+ -convex and locally Lipschitz

function, then the sequence {xk} converges to a weak Pareto optimal point of F .

Proof. It is immediate from Proposition 2.8. �

5. Conclusion

Bento et al. [5] proposed an exact proximal point method for nonconvex and
non-differentiable constrained multiobjective optimization problems. Later, Bento
et al. [6] extended the above work in the Riemannian context. Furthermore, for
full convergence analysis, they assumed that the objective function is convex. After
that Lucas Vidal de [23] proposed and analyzed an inexact version of proximal point
method presented by Bento et al. [6]. They also derived the Fritz John necessary
optimality condition in terms of Mordukovich subdifferential for convergence anal-
ysis of the algorithm.
In this article, we developed an inexact version of proximal point method of Bento
et al. [5]. In terms of Clarke subdifferential, we introduced Fritz-John necessary
optimality condition of ϵ-quasi weakly Pareto solution, which we apply for con-
vergence analysis of our proposed method. We also presented that the proposed
method is well defined and under some suitable conditions the sequence attained by
our proposed method converges to a Pareto-Clarke critical point. The newly pro-
posed inexact proximal point algorithm is important because of its practical point
of view. Notice that, the proximal point method is a conceptual algorithm, and
its computational performance strongly depends on the method used to solve the
subproblems. Hence, in practice computations introduce numerical errors in order
to solve the auxiliary minimization problems and these methods usually provide
only approximate solutions of the subproblems. Clearly, it is very important, from
the view of practice, to study the asymptotic behavior of iterations of the algorithm
in the presence of computational errors.
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1. Introduction

Let E be an ordered Banach space with the partial order≤ . A mapping T : E → E
said to be monotone if Tx ≤ Ty for all x, y ∈ E with x ≤ y and monotone
nonexpansive if T is monotone and

‖Tx− Ty‖ ≤ ‖x− y‖,
for all x, y ∈ E with x ≤ y.

In 2015, Dehaish and Khamsi [1] consider Mann’s iteration {xn} for a monotone
nonexpansive mapping T : C → C defined by

xn+1 = βnxn + (1− βn)Txn,

for each n ≥ 1, where {βn} in (0, 1) for finding some order fixed points of monotone
nonexpansive mappings in uniformly convex ordered Banach spaces for prove some
weak convergence theorems. The results of Dehaish and Khamsi , they gave the
control condition {βn} in [a, b] with a > 0 and b < 1, but their results do not entail
βn = 1

n+1

Thus, to improve the results mentioned above, in 2016, Song et al. [2] they
proved some weak convergence theorems of Mann’s iteration satisfies the following
condition:

∞∑
n=1

βn(1− βn) =∞.

Clearly, this control condition {βn} contains βn = 1
n+1 as a special case.

In 2016, Song et al. [3] considered the convergence theorems of Mann’s iteration
for a monotone α-nonexpansive mapping T in an ordered Banach space E.

In 2017, Muangchoo-in et al. [4] introduced the notion of a monotone (α, β)-
nonexpansive mapping T in an ordered Banach space E and proved some existence
theorems of fixed points by using the assumption lim inf

n−→∞
‖xn − Txn‖ = 0. and some

weak and strong convergence theorems of Ishikawa type iteration as follows are
obtained : {

yn = (1− sn)xn + snTxn,
xn+1 = (1− sn)xn + snT (yn)

(1.1)

for each n ≥ 1, where {sn} is the sequences in [0, 1]. Under the control condition

lim inf
n−→∞

sn(1− sn) > 0 or lim sup
n−→∞

sn(1− sn) > 0.

In 2013, Sahu, D.R. [5] introduced Normal S-iteration process defined as follows :
For C a convex subset of normed space X and a non-linear mapping T of C into
itself, for each x1 ∈ C, the sequence {xn} in C is defined by{

yn = (1− sn)xn + snTxn,
xn+1 = T (yn)

(1.2)

for each n ≥ 1, where {sn} is the sequences in (0, 1).
Motivated by the results mentioned above, in this paper, we show some existence

of a fixed point of a monotone (α, β)-nonexpansive mapping in ordered Banach
spaces by do not use the condition lim inf

n−→∞
‖xn − Txn‖ = 0. And we prove some

weak and strong convergence theorems of Normal S-iteration for a monotone (α, β)-
nonexpansive mapping under the condition

lim sup
n−→∞

sn(1− sn) > 0, lim inf
n−→∞

sn(1− sn) > 0.

Finally, we give a numerical example to illustrate the main result in this paper.
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2. Preliminaries

Let P be a closed and convex cone of a real Banach space E. A partial order “≤”
with respect to P in E is defined as follows:

x ≤ y (x < y) if and only if y − x ∈ P (y − x ∈ P̊ ),

for all x, y ∈ E, where P̊ is the interior of P .
In this paper, let E be a Banach space with the norm ‖ · ‖ and the partial order

≤. Let F (T ) = {x ∈ E : Tx = x} denote the set of all fixed points of a mapping T .
Also, we assume that the order intervals are convex and closed. Recall that an order
interval is any of the subsets

[x,→) = {p ∈ E;x ≤ p} or (←, x] = {p ∈ E; p ≤ x}

for any a ∈ C. An order interval [x, y] for all x, y ∈ E is given by

[x, y] = [x,→) ∩ (←, y] = {z ∈ E : x ≤ z ≤ y}. (2.1)

Then the convexity of the order interval [x, y] implies that

x ≤ tx+ (1− t)y ≤ y, (2.2)

for all x, y ∈ E with x ≤ y.
A Banach space E is said to be:

(1) strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y;

(2) uniformly convex if, for all ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖2 <
1− δ for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

The following inequality was shown by Xu [6] in a uniformly convex Banach space
E, which is known as Xu’s inequality.

Lemma 2.1. [6] For any real numbers q > 1 and r > 0, a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing convex
function g : [0,+∞) −→ [0,+∞) with g(0) = 0 such that

‖tx+ (1− t)y‖q ≤ t‖x‖q + (1− t)‖y‖q − ω(q, t)g(‖x− y‖), (2.3)

for all x, y ∈ Br(0) = {x ∈ E; ‖x‖ ≤ r} and t ∈ [0, 1], where ω(q, t) = tq(1 − t) +
t(1− t)q.
In particular, take q = 2 and t = 1

2 ,∥∥∥x+ y

2

∥∥∥2 ≤ 1

2
‖x‖2 +

1

2
‖y‖2 − 1

4
g(‖x− y‖). (2.4)

Lemma 2.2. [7] Let K be a nonempty closed convex subset of a reflexive Banach
space E. Assume that ρ : K −→ R is a proper convex lower semi-continuous and
coercive function. Then the function ρ attains its minimum on K, that is, there
exists x ∈ K such that

ρ(x) = inf
y∈K

ρ(y).

Lemma 2.3. [8] A Banach space E is said to satisfy Opial’s condition if, whenever
any sequence {xn} in E converges weakly to a point x,

lim sup
n−→∞

||xn − x|| < lim sup
n−→∞

||xn − y||

for any y ∈ E such that y 6= x.

Definition 2.4. [4] Let K be a nonempty closed subset of an ordered Banach space
(E,≤). A mapping T : K → K is said to be :



76 J. NONLINEAR ANAL. OPTIM. VOL. 11(1) (2020)

(1) monotone (α, β)-nonexpansive if T is monotone and, for some α, β < 1,

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2,
for all x, y ∈ K with x ≤ y, which is equivalent to

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖ [‖x− y‖+ ‖Tx− Ty‖] . (2.5)

(2) monotone quasi-nonexpansive if T is monotone, F (T ) 6= ∅ and ‖Tx− p‖ ≤
‖x− p‖
for all p ∈ F (T ) and x ∈ K with x ≤ p or p ≤ x.

Remark 2.5. If β = α, then (α, β)-nonexpansive is α-nonexpansive mapping.

3. Main Results

3.1. The existence of fixed points. We denote

F≤(T ) = {p ∈ F (T ) : p ≤ x1}, F≥(T ) = {p ∈ F (T ) : x1 ≤ p}.
Note that, since the partial order ≤ is defined by the closed convex cone P , it is

obvious that both F≤(T ) and F≥(T ) are closed convex.
Now, we introduce the following lemma to find fixed points of a monotone

(α, β)-nonexpansive mapping in Banach space E:

Lemma 3.1. Let K be a nonempty closed and convex subset of a Banach space
(E,≤). Let T : K → K be a monotone mapping and assume that the sequence {xn}
defined by Normal S-iteration (1.2) and x1 ≤ Tx1 (or Tx1 ≤ x1). Then we have

(1) xn ≤ yn ≤ xn+1 (or xn ≥ yn ≥ xn+1);

(2) xn ≤ x (orx ≤ xn) for all n ≤ 1 if {xn} weakly converges to a point x ∈ K.

Proof. (1) Let k1, k2 ∈ K such that k1 ≤ k2. Then we have

k1 ≤ (1− α)k1 + αk2 ≤ k2
for all α ∈ [0, 1] since order intervals are convex. By the assumption, we have
x1 ≤ Tx1 and so the inequality is true for n = 1. Assume that xk ≤ Txk for k ≥ 2.
We will show that xk+1 ≤ Txk+1 by convexity and monotonicity, we have

xk ≤ (1− sk)xk + skTxk = yk ≤ Txk,
i.e., xk ≤ yk ≤ Txk ≤ Tyk = xk=1. since yk ≤ xk+1 by T is monotone then
Tyk = xk+1 ≤ Txk+1. By induction, we can conclude that xn ≤ Txn is true for all
n ≥ 1.
Now we have xn ≤ Txn for all n ≥ 1 by convexity

xn ≤ (1− sn)xn + snTxn = yn ≤ Txn,
since T is monotonicity xn ≤ yn then Txn ≤ Tyn, that is xn ≤ yn ≤ Txn ≤ Tyn =
xn+1. Hence, we conclude that xn ≤ yn ≤ xn+1

On the other hand, if we assume Tx1 ≤ x1, then we can show that xn ≥ yn ≥ xn+1

(2) From Dehaish and Khamsi [1, Lemma 3.1]), we have the conclusion. This
completes the proof. �

Next, we show some existence theorems of fixed points of monotone (α, β)-
nonexpansive mappings in a uniformly convex ordered Banach space (E,≤).
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Theorem 3.1. Let K be a nonempty and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and a mapping T : K → K be a monotone (α, β)-
nonexpansive mapping. Assume x1 ≤ Tx1 and the sequence {xn} defined by Normal
S-iteration (1.2) is bounded with xn ≤ w for some w ∈ K. Then F≥(T ) 6= ∅.

Proof. From Lemma 3.1, we have x1 ≤ · · · ≤ xn ≤ xn+1. Let Cn = {z ∈ K : xn ≤ z}
for all n ≥ 1. Then Cn is closed convex and w ∈ Cn. So Cn is nonempty. Let

C∗ =
∞⋂
n=1

Cn. Then C∗ is a nonempty and closed convex subset of K. Since {xn} is

bounded, we can define a function ρ : C∗ −→ [0,+∞) by

ρ(z) = lim sup
n−→∞

‖xn − z‖2,

for all z ∈ C∗. it follows from Lemma 2.2 that, there exists z∗ ∈ C∗ such that

ρ(z∗) = inf
z∈C∗

ρ(z). (3.1)

By the definition of C∗, we have

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · ≤ z∗.
Since T is monotone, it follows from Lemma 3.1 that

xn ≤ Txn+1 ≤ Tz∗,

for each k ≥ 1, which means that Tz∗ ∈ C∗ and hence z∗+Tz∗

2 ∈ C∗. Thus, by (3.1),
we have

ρ(z∗) ≤ ρ
(z∗ + Tz∗

2

)
, ρ(z∗) ≤ ρ(Tz∗). (3.2)

On the other hand, it follows from Definition 2.4 that

‖Txn − Tz∗‖2 ≤ ‖xn − z∗‖2 +
α+ β

1− β
‖Txn − xn‖2

+
2

1− β
‖Txn − xn‖

[
|α|‖xn − z∗‖+ |β|‖Txn − Tz∗‖

]
.

Since the sequence {xn} is bounded and lim inf
k−→∞

‖xn − Txn‖ = 0, we have

‖Txn − Tz∗‖2 ≤ ‖xn − z∗‖2,
and then

lim sup
k−→∞

‖Txn − Tz∗‖2 ≤ lim sup
k−→∞

‖xn − z∗‖2. (3.3)

Thus, using (3.3), we have

ρ(Tz∗) = lim sup
k−→∞

‖xn − Tz∗‖2

= lim sup
k−→∞

‖Txn − Tz∗‖2

≤ lim sup
k−→∞

[‖xn − z∗‖2

= ρ(z∗). (3.4)

Now, we show that z∗ = Tz∗. From Lemma 2.1 with q = 2 and t = 1
2 and (3.4)

that is,

ρ
(z∗ + Tz∗

2

)
= lim sup

k−→∞

∥∥∥xn − z∗ + Tz∗

2

∥∥∥2
= lim sup

k−→∞

∥∥∥xn − z∗
2

+
xn − Tz∗

2

∥∥∥2
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≤ lim sup
k−→∞

(1

2
‖xn − z∗‖2 +

1

2
‖xn − Tz∗‖2 −

1

4
g(‖z∗ − Tz∗‖)

)
≤ 1

2
ρ(z∗) +

1

2
ρ(Tz∗)− 1

4
g(‖z∗ − Tz∗‖)

= ρ(z∗)− 1

4
g(‖z∗ − Tz∗‖).

By Lemma 2.1, we have

1

4
g(‖z∗ − Tz∗‖) ≤ ρ(z∗)− ρ

(z∗ + Tz∗

2

)
≤ 0.

Thus we have g(‖z∗ − Tz∗‖) = 0 and so z∗ = Tz∗ by the property of g. �

Theorem 3.2. Let K be a nonempty and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and a mapping T : K → K be a monotone (α, β)-
nonexpansive mapping. Assume Tx1 ≤ x1 and the sequence {xn} defined by Normal
S-iteration (1.2) is bounded with w ≤ xn for some w ∈ K Then F≤(T ) 6= ∅.

Proof. the proof same Theorem 3.1, by let xn+1 ≤ xn ≤ · · · ≤ x1. �

3.2. The convergence of Normal S-iteration. In this section, we prove some
convergence theorems of Normal S-iteration for a monotone (α, β)-nonexpansive
mapping in an ordered Banach space E.

Theorem 3.3. Let K be a nonempty and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by Normal S-
iteration(1.2) with x1 ≤ Tx1 (or Tx1 ≤ x1) and F≥(T ) 6= ∅ (or F≤(T ) 6= ∅). Then
we have

(1) the sequence {xn} is bounded;

(2) ‖xn+1− p‖ ≤ ‖xn− p‖ and limn−→∞ ‖xn− p‖ exists for all p ∈ F≥(T ) 6= ∅
(or F≤(T ) 6= ∅);

(3) lim infn−→∞ ‖xn − Txn‖ = 0 provided lim supn−→∞ sn(1− sn) > 0;

(4) limn−→∞ ‖xn − Txn‖ = 0 provided lim infn−→∞ sn(1− sn) > 0.

Proof. Without loss of generality, we assume that x1 ≤ p ∈ F≥(T ) 6= ∅. Now,
we claim xn ≤ p for all n ≥ 1. In fact, a mapping T is monotone, we have
x1 ≤ Tx1 ≤ Tp = p and x1 ≤ y1 ≤ Tx1 ≤ p then we have y1 ≤ p. Again from T
is monotone, then Ty1 ≤ Tp = p from x1 ≤ Ty1. By convex we can get x2 ≤ p,
and so x1 ≤ x2 ≤ p. Suppose that xk ≤ p for some k ≥ 2. Then Txk ≤ Tp = p by
monotonicity, from the condition (1) of Lemma 3.1 we have xk ≤ yk ≤ Txk ≤ Tyk
and xk ≤ yk ≤ Txk ≤ p. Since yk ≤ p then Tyk ≤ Tp = p. And xk ≤ Tyk by
convexity

xk ≤ (1− sk)xk + skTyk = xk+1 ≤ Tyk.
That is, we get xk+1 ≤ p. Hence we conclude xn ≤ p for all n ≤ 1.
It follows from Lemma 3.1 that ‖Txn − p‖ ≤ ‖xn − p‖ for all n ≥ 1 and so

‖yn − p‖ = ‖(1− sn)xn + snTxn − p‖
≤ (1− sn)‖xn − p‖+ sn‖T (xn)− p‖
≤ (1− sn)‖xn − p‖+ sn‖xn − p‖
= ‖xn − p‖.

Consequently, we have

‖xn+1 − p‖ = ‖T (yn)− p‖
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≤ ‖yn − p‖
≤ ‖xn − p‖
· · ·
≤ ‖x1 − p‖.

Then the sequence {‖xn − p‖} is non-increasing and bounded and hence the conclu-
sions (1) and (2) hold.

Now, we show that the conclusion (3) and (4) hold. From Lemma 2.1 with q = 2,
t = sn and Lemma 3.1 it follows that,

‖xn+1 − p‖2 = ‖Tyn − p‖2

= ‖yn − p‖2

≤ ‖(1− sn)(xn − p) + sn(Txn − p)‖2

≤ (1− sn)‖xn − p‖2 + sn‖xn − p‖2 − sn(1− sn)g(‖xn − Txn‖)
= ‖xn − p‖2 − sn(1− sn)g(‖xn − Txn‖)

which implies that

sn(1− sn)g(‖xn − Txn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Then it follows from the conclusion (2) that

lim sup
n−→∞

sn(1− sn)g(‖xn − Txn‖) = 0.

From the conclusion (3), since lim supn−→∞ sn(1− sn) > 0,(
lim sup
n−→∞

sn(1− sn)

)(
lim inf
n−→∞

g(‖xn − Txn‖)
)
≤ lim sup

n−→∞
sn(1− sn)g(‖xn − Txn‖),

we have

lim inf
n−→∞

g(‖xn − Txn‖) = 0.

Hence we have

lim inf
n−→∞

‖xn − Txn‖ = 0,

by the properties of g. From the conclusion (4), since lim infn−→∞ sn(1− sn) > 0,(
lim inf
n−→∞

sn(1− sn)
)(

lim sup
n−→∞

g(‖xn − Txn‖)
)
≤ lim sup

n−→∞
sn(1− sn)g(‖xn − Txn‖),

we have

lim
n−→∞

g(‖xn − Txn‖) = lim sup
n−→∞

g(‖xn − Txn‖) = 0.

Hence we have

lim
n−→∞

‖xn − Txn‖ = 0,

by the properties of g. �

Theorem 3.4. Let K be a nonempty and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume that E satisfies Opial’s condition and the
sequence {xn} is defined by Normal S-iteration(1.2) with x1 ≤ Tx1 (or Tx1 ≤ x1).
If F≥(T ) 6= ∅ (or F≤(T ) 6= ∅) and lim infn−→∞ sn(1 − sn) > 0, then the sequence
{xn} converges weakly to a fixed point z of T .
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Proof. It follows from Theorem 3.3 that {xn} is bounded and limn−→∞ ‖xn−Txn‖ =
0. Then there exists a subsequence {xnk

} of {xn} such that {xnk
} converges weakly

to a point z ∈ K. From Lemma 3.1, it follows that x1 ≤ xnk
≤ z (or z ≤ xnk

≤ xn)
for all k ≥ 1.
From Definition 2.4 that

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− y‖+ |β|‖Tx− Ty‖

]
.

Since the sequence {xn} is bounded and limk−→∞ ‖xnk
− Txnk

‖ = 0, we have

lim sup
k−→∞

‖Txnk
− Tz‖2 ≤ lim sup

k−→∞
‖xnk

− z‖2

and hence

lim sup
k−→∞

‖Txnk
− Tz‖ ≤ lim sup

k−→∞
‖xnk

− z‖. (3.5)

Now, we prove that z = Tz. In fact, suppose that z 6= Tz. Then, by (3.5) and
Opial’s condition, we have

lim sup
k−→∞

‖xnk
− z‖ ≤ lim sup

k−→∞
‖xnk

− Tz‖

≤ lim sup
k−→∞

(‖xnk
− Txnk

‖+ ‖Txnk
− Tz‖)

≤ lim sup
k−→∞

‖xnk
− z‖,

which is a contraction. This implies that z ∈ F≥(T ) (or z ∈ F≤(T )). Using the
conclusion (2) of Theorem 3.3, limn−→∞ ‖xn − z‖ exists.

Now, we show that the sequence {xn} converge weakly to the point z. Suppose
that this does not hold. Then there exists a subsequence {xnj

} to converge weakly
to a point x ∈ K and z 6= x. Similarly, we must have x = Tx and limn−→∞ ‖xn−x‖
exists. It follows from Opial’s condition that

lim
n−→∞

‖xn − z‖ < lim
n−→∞

‖xn − x‖ = lim sup
j−→∞

‖xnj
− x‖ < lim

n−→∞
‖xn − z‖,

which is a contradiction and hence we get x = z. �

Theorem 3.5. Let K be a nonempty compact and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by Normal S-
iteration(1.2) with x1 ≤ Tx1. If lim supn−→∞ sn(1 − sn) > 0, then the sequence
{xn} converges strongly to a fixed point p ∈ F≥(T ).

Proof. Since K is compact, there exists a subsequence {xnk
} of {xn} such that {xnk

}
converges strongly to a point p ∈ K. From Lemma 3.1, it follows that x1 ≤ xnk

≤ p
for all k ≥ 1. By Theorem 3.1, we have F≥(T ) 6= ∅ and it follows from Theorem 3.3
that {xn} is bounded and

lim inf
n−→∞

‖xn − Txn‖ = 0.

Assume that

lim inf
k−→∞

‖xnk
− Txnk

‖ = 0.

From Definition 2.4 that

‖Tx− Tp‖2 ≤ ‖x− p‖2 +
α+ β

1− β
‖Tx− x‖2
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+
2

1− β
‖Tx− x‖

[
|α|‖x− p‖+ |β|‖Tx− Tp‖

]
.

Since the sequence {xnk
} is bounded and

lim
k−→∞

‖xnk
− p‖ = 0, lim

k−→∞
‖xnk

− Txnk
‖ = 0,

we have

lim sup
k−→∞

‖Txnk
− Tp‖2 ≤ 0

and hence

lim
k−→∞

‖Txnk
− Tp‖ = 0. (3.6)

Therefore, we have

lim sup
k−→∞

‖xnk
− Tp‖ ≤ lim sup

k−→∞
(‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖) = 0

and so limk−→∞ ‖xnk
−Tp‖ = 0, which implies that p ∈ F≥(T ). Using the conclusion

(2) of Theorem 3.3, limk−→∞ ‖xnk
− p‖ exists and so limk−→∞ ‖xn − p‖ = 0. �

Theorem 3.6. Let K be a nonempty compact and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by Normal S-
iteration(1.2) with x1 ≤ Tx1. If lim infn−→∞ sn(1− sn) > 0, then the sequence {xn}
converges strongly to a fixed point p ∈ F≥(T ).

Proof. Since K is compact, there exists a subsequence {xnk
} of {xn} such that {xnk

}
converges strongly to a point p ∈ K. From Lemma 3.1, it follows that x1 ≤ xnk

≤ p
for all k ≥ 1. By Theorem 3.1, we have F≥(T ) 6= ∅ and it follows from Theorem 3.3
that {xn} is bounded and

lim inf
n−→∞

‖xn − Txn‖ = 0.

Without loss of generality, we can assume that

lim inf
k−→∞

‖xnk
− Txnk

‖ = 0.

From Definition 2.4 that

‖Tx− Tp‖2 ≤ ‖x− p‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− p‖+ |β|‖Tx− Tp‖

]
.

Since the sequence {xnk
} is bounded and

lim
k−→∞

‖xnk
− p‖ = 0, lim

k−→∞
‖xnk

− Txnk
‖ = 0,

we have

lim inf
k−→∞

‖Txnk
− Tp‖2 ≤ 0

and hence

lim
k−→∞

‖Txnk
− Tp‖ = 0. (3.7)

Therefore, we have

lim inf
k−→∞

‖xnk
− Tp‖ ≤ lim inf

k−→∞
(‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖) = 0

and so limk−→∞ ‖xnk
−Tp‖ = 0, which implies that p ∈ F≥(T ). Using the conclusion

(2) of Theorem 3.3, limk−→∞ ‖xnk
− p‖ exists and so limk−→∞ ‖xn − p‖ = 0. �
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Similarly, the following theorem can be proved:

Theorem 3.7. Let K be a nonempty compact and closed convex subset of a uni-
formly convex ordered Banach space (E,≤) and a mapping T : K → K be a
monotone (α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by
Normal S-iteration(1.2) with Tx1 ≤ x1. If either lim infn−→∞ sn(1 − sn) > 0 or
lim supn−→∞ sn(1− sn) > 0, then the sequence {xn} converges strongly to a fixed
point p ∈ F≤(T ).

From Theorem 3.5, we have the following:

3.3. The numerical examples. Now, we give two numerical examples to illustrate
the following examples, by we add Normal-S iteration for compare with Mann’s
iteration and Ishiwaka’s iteration of [4] in the first example. And the last, we show
the example between Mann’s iteration and Normal-S iteration.

Example 3.2. Let T : [0, 1]→ [0, 1] be a mapping defined by

Tx =

{
0.25 if x 6= 1,
0.5 if x = 1.

for any x ∈ [0, 1]. Then T is a (0.8, 0.2)-nonexpansive mapping. Define the sequences
sn = 1

4 + 1
n2 for each n ≥ 1, then lim supn→∞ sn(1−sn) > 0. Then all the conditions

of Theorem 3.5 are satisfied. Also, 0.25 is a fixed point of T .

Table 1. The convergent step of {xn} for Example with sn = 1
4 + 1

n2

Number of iterations Sequence of Mann Sequence of Ishikawa Sequence of Normal-S
1 0.5000000 0.5000000 0.5000000
2 0.1875000 0.3294046 0.2500000
4 0.2300347 0.2518192 0.2500000
6 0.2402544 0.2502132 0.2500000
8 0.2448648 0.2500322 0.2500000
10 0.2472181 0.2500053 0.2500000
12 0.2484731 0.2500009 0.2500000
14 0.2491557 0.2500001 0.2500000
16 0.2495311 0.2500000 0.2500000

Example 3.3. Let T1 : [−1.5,−1] → [−1.5,−1] or T2 : [1, 1.5] → [1, 1.5] be the
mappings defined by

Tx = arctan(5x).

The fixed points of mappings T1 and T2 are −1.4320322 and 1.4320322 respectively.
It is easy to see that T is monotone. Next we will show that T is a (0.9, 0.1)-

nonexpansive mapping. By using Matlab R2015b software, we get

min
x,y∈[1,1.5]

{
0.9‖arctan(5x)− y‖2 + 0.1‖arctan(5y)− x‖2 + (1− 0.9− 0.1)‖x− y‖2

− ‖arctan(5x)− arctan(5y)‖2
}

= 4.37 · 10−0.6 > 0.

then implies that

‖arctan(5x)−arctan(5y)‖2 ≤ 0.9‖arctan(5x)−y‖2+0.1‖arctan(5y)−x‖2+(1−0.9−0.1)‖x−y‖2

for all x, y ∈ [1, 1.5]. And it is true for all x, y ∈ [−1.5,−1] too. Therefore T is a
monotone (0.9, 0.1)-nonexpansive mapping.
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Figure 1. The fixed points of T are −1.4320322 and 1.4320322

Figure 2. The value of mappings T1 and T2

Next we show the numerical solution of T , the numerical solution of this example
is presented in Table 2.

Note that, if we set x = 1.5, y = 1 and α = β = 0.9 then, the mapping T is not
α-nonexpansive mapping.

From observing the numerical behavior, if we choose x0 nearly is the solution
then the sequence convergence is fast. Next we will show the convergent behavior
of {sn} for iterative comparison between Mann’s iteration, Ishikawa’s iteration and
normal-S iteration. by fixing x0 = 1.2 and using three groups of sequences sn for
n ≥ 1 are :

(i) sn = 1
4 + 1

nk , k ∈ {0.01, 2, 5};
(ii) sn = 1

4 + 1
logk(n+1)

, k ∈ {0.01, 2, 5};

(iii) sn = 1
4 + logk(n+1)

n+2 , k ∈ {0.01, 2, 5}:
All these sequences satisfy all condition of convergence theorems, Next figures

describe the convergent behavior of three situations for value k.



84 J. NONLINEAR ANAL. OPTIM. VOL. 11(1) (2020)

Table 2. The convergent step of {xn} for Example 3.3 with sn =
1
4 + 1

n2

Number of Iterations
Sequence value of Mann Sequence value of Normal S
x0 = 1.2 x0 = −1.3 x0 = 1.2 x0 = −1.3

1 1.2000000 -1.3000000 1.2000000 -1.3000000
2 1.4570595 -1.4476837 1.4343860 -1.4335135
3 1.4457227 -1.4405986 1.4321554 -1.4321098
4 1.4412475 -1.4377994 1.4320401 -1.4320372
5 1.4386414 -1.4361689 1.4320327 -1.4320325
6 1.4369073 -1.4350837 1.4320322 -1.4320322
7 1.4356822 -1.4343169 1.4320322 -1.4320322
8 1.4347894 -1.4337581 1.4320322 -1.4320322
9 1.4341269 -1.4333435 1.4320322 -1.4320322
10 1.4336299 -1.4330323 1.4320322 -1.4320322

Figure 3. The behavior of sequence by fixing k = 0.01

Figure 4. The behavior of sequence by fixing k = 2

The last figure describes the convergent behaviour for comparison k in three
groups
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Figure 5. The behavior of sequence by fixing k = 5

Figure 6. The convergent behaviour of each k for cases of group(i),
group(ii) and group(iii)

4. Conclusion

We get the results about the convergence theorems of monotone (α, β)-nonexpansive
mapping for the sequence {xn} is defined by normal-S iteration. In part of numerical,
we give the examples for show the convergent behavior of sequence {sn} of normal-S
iteration (in Figure 3 4 5 6)
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