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ABSTRACT. We present a local convergence analysis of an eighth order- iterative
method in order to approximate a locally unique solution of an equation in Banach space
setting. Earlier studies such as [13, 18] have used hypotheses up to the fourth derivative
although only the first derivative appears in the definition of these methods. In this study,
we only use the hypothesis of the first derivative. This way we expand the applicability
of these methods. Moreover, we provide a radius of convergence, a uniqueness ball and
computable error bounds based on Lipschitz constants. Numerical examples computing
the radii of the convergence balls as well as examples where earlier results cannot apply
to solve equations but our results can apply are also given in this study.

KEYWORDS: Banach space; eighth-order of convergence; local convergence; efficiency
index.
AMS Subject Classification: Primary 65D10; Secondary 65D99, 65E99.

1. INTRODUCTION

In this study, we are concerned with the problem of approximating a locally
unique solution x* of the nonlinear equation

F(z) =0, (1.1)

where F' is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y. Using mathematical modeling,
many problems in computational sciences and other disciplines can be expressed as
a nonlinear equation (1.1) [1-30]. Closed form solutions of these nonlinear equations
exist only for few special cases which may not be of much practical value. Therefore
solutions of these nonlinear equations (1.1) are approximated by iterative methods.

* Corresponding author.
Email address : iargyros@cameron.edu (Ioannis K. Argyros), sgeorge@nitk.edu.in(Santhosh George).
Article history : Received 4 July 2018; Accepted 3 November 2018.
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In particular, the practice of Numerical Functional Analysis for approximating solu-
tions iteratively is essentially connected to Newton-like methods [1-30]. The study
about convergence matter of iterative procedures is usually based on two types:
semi-local and local convergence analysis. The semi-local convergence matter is,
based on the information around an initial point, to give conditions ensuring the
convergence of the iterative procedure; while the local one is, based on the infor-
mation around a solution, to find estimates of the radii of convergence balls. There
exist many studies which deal with the local and semi-local convergence analysis of
Newton-like methods such as [1-30].

Newton’s method is undoubtedly the most popular method for approximating
a locally unique solution x* provided that the initial point is close enough to the
solution. In order to obtain a higher order of convergence Newton-like methods
have been studied such as Potra-Ptak, Chebyshev, Cauchy Halley and Ostrowski
method [3,6,23,26]. The number of function evaluations per step increases with
the order of convergence. In the scalar case the efficiency index [3,6,21] ET = p#
provides a measure of balance where p is the order of the method and m is the
number of function evaluations.

It is well known that according to the Kung-Traub conjuncture the convergence of
any multi-point method without memory cannot exceed the upper bound 2m~1 [21]
(called the optimal order). Hence the optimal order for a method with three function
evaluations per step is 4. The corresponding efficiency index is EI = 45 = 1.58740...
which is better than Newtons method which is EI = 22 = 1.414.... Therefore, the
study of new optimal methods of order four is important.

We present the local convergence analysis of the eighth-order method defined for
each n =0,1,2... by

Yn = Tn — F/(xn)_lF(xn)
1
Wn = i(yn + xn)
1
Zn = §(4wn — )
Uy = wy+ (F'(2n) — 3F(2,)) 1 F(2n) (1.2)
Vp = Up 4+ 2(F (2n) — 3F (2,)) " F(uy)
Tpny1 = Un+ (F'(2n) = 3F (2,)) ' F(vn),
where z is an initial point. The local convergence analysis of method (1.2) was given
in [13] in the special case when X =Y = R™. The semi-local convergence analysis
of method (1.2) in a Banach space was given in [18]. The computational efficiency
of method (1.2) was also given in [18]. However, the convergence hypotheses for

method (1.2) in these references require hypotheses up to the fourth derivative of
operator F. These hypothesis limit the applicability of method (1.2) and the other

comparable methods given in [13,18]. As a motivational example, let us define
function F on X = [—1, 3] by
3 2 5 4
F(I):{gl;x:g—x x%, x#0
Choose z* = 1. We have that
F'(z) = 32°Inz? + 52" — 423 + 222 F'(1) = 3,
F'(z) = 6zlnz?+202% — 122% 4 102

F"(z) = 6Inz?+ 602% — 242 + 22.
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Then, obviously function F' does not have bounded third derivative in X. Notice
that, in-particular there is a plethora of iterative methods for approximating so-
lutions of nonlinear equations defined on R [I-30]. These results show that if the
initial point xq is sufficiently close to the solution x*, then the sequence {z,} con-
verges to z*. But how close to the solution z* the initial guess x should be? These
local results give no information on the radius of the convergence ball for the cor-
responding method. We address this question for method (1.2) in Section 2. The
same technique can be used to other methods.

In the present study we extend the applicability of the method (1.2) by using hy-
potheses up to the first derivative of function F' and contractions on a Banach space
setting. Moreover we avoid Taylor expansions and use instead Lipschitz parameters.
Moreover, we do not have to use higher order derivatives to show the convergence
of method (1.2). This way we expand the applicability of method (1.2).

The paper is organized as follows. In Section 2 we present the local convergence
analysis. We also provide a radius of convergence, computable error bounds and
uniqueness result not given in the earlier studies using Taylor expansions. Special
cases and numerical examples are presented in the concluding Section 3.

2. LocAL CONVERGENCE ANALYSIS

We present the local convergence analysis of the method (1.2) in this section.
Let Lo > 0, L > 0 and M > 1 be parameters. It is convenient for the local
convergence analysis of method (1.2) that follows to introduce some scalar functions
and parameters. Define functions gi, g2 on the interval [0,1/Lg) by

Lt
)= ———
gl() 2(17L0t)7

92(8) = 51+ 2 (6)
and parameters r 4,79 by
2 1
= Lo i L ro = 3Ly

Moreover, define functions gs, hs, g4, ha, g5 and hs on the interval [0, rg) by

TA

nlt) = 5o (B gt ha(®) = alt) = 1,
910) = (1 25 )0s(0) halt) = ga(0) — 1.
(1) = (14 5 )90

and
hs(t) = gs(t) — 1.

We have that h3(0) = —1 < 0 and hs(t) — 400 as t — 7. It then follows from
the intermediate value theorem that function hs has zeros in the interval (0,7g).
Denote by 73 the smallest such zero. We also have that hy(0) = —1 < 0 and
ha(rs) = % > 0, since gs3(rs) = 1 and 1 — 3Lgrs > 0. Denote by r4 the
smallest zero of function hy in the interval (0, 73). Finally, we have h5(0) = -1 <0
and hs(ry) = 1_?240 = > 0. Denote by r5 the smallest zero of function hs in the
interval (0,ry4). Set

r =min{ra,rs}. (2.1)
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Then, we have that

O0<r<ra (2.2)
and for each t € [0,7)
0<gq(t) <1 (2.3)
0<go(t)<1 (2.4)
0<gs(t) <1 (2.5)
0<galt) <1 (2.6)
and
0<gs(t) <1. (2.7)

Let U(v, p), U(7, p), respectively the open and closed balls in X with center r € X
and of radius 7 € X and of p > 0. Next, we present the local convergence analysis
of the method (1.2), using the preceding notation.

Theorem 2.1. Let F: D C X — Y be a Fréchet-differentiable operator. Suppose
that there exist x* € D, Ly >0, L > 0 and M > 1 such that for each x,y € D

F(a®) = 0, F'(z*)"" € L(Y, X), (2.8)
[F ()" (F'(2) = F'(«*)I| < Lollz — ™|, (2.9)
[F/ (@) " (F (@) = F'(y)| < Lllz — 2], (2.10)
|F' (") 'F'(2)|] < M (2.11)
and
U(z”, gr) cD, (2.12)

where the radius r is given by (2.1). Then, the sequence {x,} generated for xo €
U(z*,r) — {a*} by method (1.2) is well defined , remains in U(xz*,r) for each

n=20,1,2... and converges to x*. Moreover, the following estimates hold
lyn —2*[| < gr(len — 2" Dllzn — 27| < lJan — 27| <, (2.13)
[wn — ™| < ga(llzn — 2" [Dllwn — 2" < [lzn — 27|, (2.14)
lon = 1) < 3 @lwn =2 + lon = 2*) < Sllzn -2l (215)
[un — 2% < gs(|zn — 2"[)|2n — 27| < [lzn — 27, (2.16)
[on = 2| < galllzn — 2") |20 — 2™ <[len — 27| (2.17)

and

[2ni1 — 2" < gs(lzn — 27 [Dllzn — 27| < llzn — 27 | (2.18)
where the “g” functions are defined above Theorem 2.1. Furthermore, if there exist

T € r, L—O) and U(z*,T) € D, then the limit point x* is the only solution of the
equation F(x) =0 in U(x*,T) N D.

Proof: We shall show estimates (2.13)-(2.18) using mathematical induction. By
(2.1), (2.9) and hypothesis zg € U(z*,7) — {*}, we have that

| F' ()" (F'(x0) — F'(x*))|| < Lo|lxo — 2*|| < Lor < 1. (2.19)
) ’ I’ ]

It follows from (2.19) and Banach Lemma on invertible operators [3,6,
that F'(z9)~! € L(Y,X) and
” < 1 < 1

= 1= Lollwo —2*|| "~ 1—Lor

1F" (o)~  F'(27) (2.20)
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Hence, yo,wo and zy are well defined. Using the first sub-step of method (1.2) for
n =0, (2.1), (2.2), (2.8), (2.10) and (2.20), we get in turn that

lyo — a*[| = [lxo — =* — F' ()~ F(wo)||

< |F'(2o) 'z w/ “(F (" + B0 — 7))
— F'(xo))(xo — x*)db)|
Llzo — 2|
~ 2(1 = Lollzo — =*])
= gu(llzo — 2* )20 — 2| < ||zo — "] < (2.21)

which shows (2.13) for n = 0 and yo € U(x*,7). Then, by the second sub-step of
method (1.2) for n =0, (2.1), (2.3) and (2.21), we obtain that

* 1 * *
lwo — ™| < S(llyo —&™ || + [lwo — 27[1)

IN

51+ g1(lzo — 27 [)llzo — 27|
g2(llwo = 2*[Dllwo — 2| < [lwo — ™| <1, (2.22)

which shows (2.14) and wg € U(z*,r). In view of third sub-step of method (1.2) for
n =0, (2.1) and (2.22), we get that

* 1 * *
120 — ™ [lI5 (4(wo — 27) = (zo — 27)l|

1 * *
< 3 (@fwo — 27| + flzo — ™))
1 * *
< 5@z — 27| + Jlwo — ™))
5 5
= §||a:0 -z < 3" (2.23)

which shows (2.15) for n = 0 and zy € U(z*,3r) C D (by (2.12)). Next, we shall
show that (F'(zo) — 3F'(20))~! € L(Y,X). Using (2.1), (2.9) and (2.23), we get
that

(=28 (")) [F o) — 3F'(z0) — F'(z*) + 3F"(a")]|
< SIIF @) (F (o) — F'(a))|
F3IF @) F o) — @)l

Lo . .
< *[leo — 2| + 3|20 — z7[]

L 5

< *(on = 27|+ 3(3)llzo — 27

= 3L0||:I:0 —x"|| < SLQT <1. (2.24)
Hence, we get that ug is well defined by the fourth sub-step of method (1.2) for
n =0 and

1
< L
2(1 = F(llwo — =*[| 4 3llz0 — x*[]))

< 1
- 2(1 73L0||l’0 7$*||)

I(EF" (200) — 3F"(20)) ™" F'(=")|

(2.25)
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Hence, ug, vg and z; are well defined. We can write by (2.8) that
1
F(zo) = F(xg) — F(z*) = / F'(z* +0(xo — %)) (x0 — 2*)d6. (2.26)
0

Notice that ||x*+68(zo—2*)—x*|| = 0||lxg—z*|| < r. That is *+0(xg—z*) € U(z*, ).
Using (2.11) and (2.26), we obtain that
1
IF" (2*) 7 F (o)l = H/ F'(2” + 0(xo — 7)) (w0 — z*)d0||
0
< M||zg — x| (2.27)

We can write in turn by the first, second and fourth sub-step of method (1.2) for
n = 0 that

ug — ¥ = %(yo — {E*) + %(l’o — LL'*) + (F’(.’Eo) — 3F/(Z()))_1F(£L'0) (228)
= Sl — ") g (w0 — 2 F'(zo) " F(xo)
5 F(20) ™ Flwo) + (F'(z0) — 3F(20))~ Flz)
= yo—a

+%F’(x0)_l[F’(x0) — 3F'(20) + 2F" (20)](F'(x0) — 3F'(20)) "  F(z0)
= Yo — x*
+%F'(xo)’1(F'(a:0) — F'(20))(F'(z0) — 3F"(20)) ' F(x).  (2.29)
Using (2.1), (2.5), (2.20), (2.21), (2.25), (2.27) and (2.29), we obtain in turn that
uo — =™ < llyo — (| + gHF’(xo)’lF(xo)ll
< [I1F" (&%)~ H(F (o) — F'(«))[| + [|1F'(«) " (F' (20) — F'(z"))]]
X [|(F" (o) — 3F"(20)) ™ F' (a*)[[|| F' («*) ™ F (o)

L|jzo — a*|? 3MLo(||lzo — ™| + [lz0 — 2" [)l[wo — =™ ||
~ 2(1 = Loflwo —a*|)) ~ 2(1 = Lollzo — *[))(1 = 3Lo[[zo — *|)
= gs([lxo — " )llwo — ™| < [lwo — 2| <, (2.30)
which shows (2.16) for n = 0 and ug € U(z*,r) (where, we also used the estimate
Iz — [+ ll20 — #*1| < lleo — 2*1| + 3llz0 — 2| = &l — 2°]| < &r). Then, as in
(2.27) for zg = wp, we obtain that
[F(2) " F (wo) | < M|wo — |- (2.31)

Using the fifth sub-step of method (1.2) for n = 0, (2.1), (2.6), (2.25), (2.30) and
(2.31), we have that

lvo — 2™ < fluo — =[] + 2[|(F(wo) — 3F"(20)) ™ F' (") [I|F" (2™)  F (uo)

< g — %) + oIt ~ "]
- 1—3L0||l‘0 —l‘*”
2M
= ]_ —x*
T g =
< gallwo — =" Dllao — 2"l < llzo — 2" < (2.32)

which shows (2.17) for n =0 and vy € U(z*,r).
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Then, again as in (2.27) for 29 = vy, we get that
|F" (@) " F(vo)l] < Mjvo — 2. (2.33)

Using the sixth sub-step of method (1.2) for n = 0, (2.1), (2.7), (2.25), (2.32) and
(2.33), we have that

w1 — 2| < [lvo — 27|l + 2[|(F (wo) — 3F" (20)) " F' (&) ||| " (™) =" F (wo)|

2M
=(1+ -z
( 1—3L0||$0—x*”)”v0 =l
= gs([lxo — =" )llzo — ™| < [lwo — 7| <, (2.34)

which shows (2.18) for n = 0 and x; € U(z*,r). By simply replacing xq, yo, wo,
20,0, 1 BY Tk, Yk, Wk, 2k, Vi, Ti+1 in the preceding estimates we arrive at estimates
(2.13) — (2.18). Then, from the estimate ||xp41 — 2% < ||xr — 2*|| < r, we deduce
that limg oo zx = z* and xp41 € U(z*, 7). To show the uniqueness part, let QQ =
fol F'(y* + 0(x* — y*)df for some y* € U(z*,T) with F(y*) = 0. Using (2.9) we get
that

[F' (") 7H(Q — F'(z"))|

IN

1
/ Loly* + 0(z* — y*) — a™|d0
0

IN

1
L
/ Lo(1 — 0)|z* — y*|do < 7OT <1. (2.35)
0

It follows from (2.35) and the Banach Lemma on invertible functions that @ is
invertible. Finally, from the identity 0 = F(z*) — F(y*) = Q(z* — y*), we deduce
that z* = y*.

O

Remark 2.1. 1. In view of (2.9) and the estimate
|F' (@) F ()| = [|[F' (@) (F () — F'(z)) + I
< 14 |[F' (@) THE (2) - F'(@)| < 1+ Lofle — 27|
condition (2.11) can be dropped and be replaced by
M(t) =1+ Lot,

or

since ¢ € [0, ).
2. The results obtained here can be used for operators F' satisfying autonomous
differential equations [3, 0, 17] of the form

F'(x) = G(F(x))

where T is a continuous operator. Then, since F'(z*) = G(F(z*)) = G(0),
we can apply the results without actually knowing x*. For example, let
F(x) = e* — 1. Then, we can choose: G(z) =z + 1.

3. The local results obtained here can be used for projection methods such
as the Arnoldi’s method, the generalized minimum residual method (GM-
RES), the generalized conjugate method(GCR) for combined Newton/finite
projection methods and in connection to the mesh independence principle
can be used to develop the cheapest and most efficient mesh refinement
strategies [3-7].
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4. The parameter r4 = ﬁ was shown by us to be the convergence radius
of Newton’s method [3, 0]

Tpy1 = Tp — F'(2,) ' F(z,) for each n=0,1,2,--- (2.36)

under the conditions (2.8)-(2.10). It follows from the definitions of radii
r that the convergence radius r of these preceding methods cannot be
larger than the convergence radius r 4 of the second order Newton’s method
(2.26). As already noted in [3,6] 74 is at least as large as the convergence
ball given by Rheinboldt [20]

2

3L

In particular, for Ly < L we have that

TR

rr<Ta
and
TR 1 L()
— = — = 0.
TA 3 s L

That is our convergence ball 74 is at most three times larger than Rhein-
boldt’s. The same value for g was given by Traub [28].

5. It is worth noticing that the studied methods are not changing when we use
the conditions of the preceding Theorems instead of the stronger conditions
used in [13, 18]. Moreover, the preceding Theorems we can compute the
computational order of convergence (COC) defined by

[@n — 2| [n—1 —a*|

or the approximate computational order of convergence

£ =In (”%H—xn”> /n (“%—%1”) '
[#n — @n_1]] [Zn—1 — Zn—2l

This way we obtain in practice the order of convergence.

3. NUMERICAL EXAMPLES

The numerical examples are presented in this section.

Example 3.1. Let X =Y = R3 D = U(0,1),2* = (0,0,0)7". Define function F
on D for w = (z,y, 2)T by

e—1
F(U}) = (em - 17 7?/2 +y7z)T'

2
Then, the Fréchet-derivative is given by
e’ 0 0
F'lvy=1| 0 (e—1Ly+1 0
0 0 1

Notice that using the (2.9) conditions, we get Lo = e — 1,L = ¢,M = 2. The
parameters are

ra = 0.3249,7r¢9 = 0.3880,r3 = 0.0471,r4 = 0.0117,r5 = 0.0026 = 7.
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Example 3.2. Let X =Y = C[0, 1], the space of continuous functions defined on
[0,1] and be equipped with the max norm. Let D = U(0,1) and B(z) = F(xz) for
each x € D. Define function F' on D by

F(o)(z) = ¢(x) — 5/0 x0<p(9)3d0. (3.1)

We have that

F'(0(8)(z) = &(x) — 15/0 20 (0)*€(0)do, for each & € D.

Then, we get that «* = 0, Ly = 7.5, L = 15, M = 2. The parameters for method
are

ra = 0.0667, 79 = 0.0889, 73 = 0.0106, 74 = 0.0026,75 = 0.0006 = 7.

Example 3.3. Returning back to the motivational example at the introduction of
this study, we have Ly = L = 146.6629073, M = 2. The parameters are

74 = 0.0045 = rg, 73 = 0.0006, 74 = 0.0001 = r,r5 = 0.0091.
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ABSTRACT. In this paper, we define coupled weak compatible condition and use it
to derive certain coupled coincidence point theorems for four mappings in fuzzy metric
spaces. We use here a t-norm which has equicontinuous iterates at 1. Some coupled fixed
point results in metric spaces are obtained by applications of the results. Our results
are obtained without any assumption of continuity on the mappings. Our main result is
supported by an illustrative example. Some corollaries are also obtained.
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1. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [1] in 1965. After-
wards fuzzy concepts made quick headways in almost all branches of mathematics.
In particular, fuzzy metric space was introduced by Kramosil and Michalek [2].
George and Veeramani modified the definition of Kramosil and Michalek in [3] for
topological reasons. The topology in the space introduced by George and Veera-
mani is a Hausdroff topology. There are several fixed point results for mappings
defined on fuzzy metric spaces in the sense of George and Veeramani. We have
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noted some of these works in [4, 5, 6, 7, 8, 9, 10] and [11].

Coupled fixed point results attracted renewed interest after the publication of a
coupled contraction mapping theorem in partially ordered metric spaces by Gnana-
Bhasker and Lashmikanthm [12]. An interesting application of this result was also
given in the same paper. The result in [12] was extended to coincidence point
results in [13] and [14] under separate sets of sufficient conditions. Several other
works on coupled fixed points have appeared in recent times. Some other works in
this line of research are noted in [15, 16, 17]. Coupled fixed point problems have
also been studied in probabilistic metric spaces [18], in cone metric spaces [19, 20]
and in G- metric spaces [21]. We establish here coupled coincidence and fixed point
results for the cases of coupled Kannan type mappings. Kannan type of mappings
are considered to be important in metric fixed point theory for several reasons. We
mention two of these in the following.

Banach contraction is continuous. A natural question is that whether there ex-
ists a class of mappings satisfying some contractive inequality which necessary have
fixed points in complete metric spaces but need not necessarily be continuous. Kan-
nan type mappings are such mappings [22, 23]. Another reason is its connection
with metric completeness. A Banach contraction mapping may have a fixed point in
a metric space which is not complete. In fact, Connell in [24] has given an example
of a metric space which is not complete but every Banach contraction defined on
which has a fixed point. It has been established in [25] that the metric complete-
ness is implied by the necessary existence of fixed points of the class of Kannan
type mappings. Some of the recent works on Kannan type mappings are noted in
[26, 27, 28]. Tt may be noted that fuzzy functional analysis is a vast area of study
of which some instances are [29, 30, 31, 32, 33, 34,

In this paper we establish a common fixed point and coupled fixed point result for
four mappings. The name ’Kannan type’ is suggested by the form of the inequality
we use here. We apply our result to obtain a new coupled Kannan type common
fixed point result in metric spaces. An example illustrates our result in fuzzy metric
spaces. In this paper we use Hadzic type t-norm which is a t-norm for which the
iterates are equicontinuous at 1.

2. PRELIMINARIES

Definition 2.1[36] A binary operation x : [0,1]2 — [0, 1] is called a t-norm if the
following properties are satisfied:
(i) * is associative and commutative,
(i) ax 1 =a for all a € [0,1],
(iii) @ % b < ¢ * d whenever a < c and b < d, for all a,b,¢,d € [0,1].
Generic examples of t—norms are a*1b = min{a, b}, axab =
a*3b=aband a4 b=max{a+b—1,0}.

Kramosil and Michalek defined fuzzy metric space by extending probabilistic
metric spaces.
Definition 2.2[2] The 3-tuple (X, M, %) is called a fuzzy metric space in the sense
of Kramosil and Michalek if X is a non-empty set, % is a t-norm and M is a fuzzy
set on X? x [0, 00) satisfying the following conditions:
(i) M(xa Y, O) =0,
(ii) M(z,y,t) =1 for all t > 0 if and only if x = y,
(iif) M(z,y,t) = M(y, z,t),
(iv) M(z,y,t) « M(y,z,s) < M(z,z,t+ s) and

b
7max{“a’b’” forO< A <1,
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(v) M(z,y,.): (0,00) — [0, 1] is left-continuous, where ¢,s > 0 and z,y,z € X.
George and Veeramani in their paper [3] introduced a modification of the above
definition. The motivation was to make the corresponding induced topology neces-
sarily into a Hausdroff topology.

Definition 2.3[3] The 3-tuple (X, M, ) is called a fuzzy metric space in the sense
of George and Veeramani if X is a non-empty set, * is a continuous t-norm and M
is a fuzzy set on X2 x (0, o0) satisfying the following conditions for each x,y,z € X
and t,s > 0:

(i) M(x,y,t) >0,

(ii) M (z,y,t) = 1 if and only if x = y,

(iti) M(z,y,t) = M(y, z,t),

(iv) M(x,y,t) * M(y,z,s) < M(x,z,t+ s) and

(v) M(z,y,.): (0,00) —> [0,1] is continuous.

The following details of this space are described in the introductory paper [3].

Let (X, M, *) be a fuzzy metric space. For t > 0, 0 < r < 1, the open ball B(x,t,r)
with center x € X is defined by

B(z,t,r)={ye X : M(z,y,t) >1—r}.

A subset A C X is open if for each x € A, there exist ¢ > 0 and 0 < r < 1 such
that B(x,t,r) C A. Let 7 denote the family of all open subsets of X. Then 7 is
a topology on X induced by the fuzzy metric M. This topology is Hausdorfl and
first countable.

In the present work we will only consider the space as described in definition 2.3
and will refer this space simply as fuzzy metric space.
There are several examples of the fuzzy metric space for which we refer to [3].
Lemma 2.4[37] Let (X, M, %) be a fuzzy metric space. Then M(x,y,.) is nonde-
creasing for all z,y € X.
Definition 2.5[2] Let (X, M, %) be a fuzzy metric space.
(i) A sequence {z,} in X is said to be convergent to a point x € X
if limy, 0o M (xy,z,t) =1 for all t > 0.
(ii) A sequence {z,} in X is called a Cauchy sequence if for each 0 < ¢ < 1 and
t > 0, there exists ng € N such that M (z,,, z,,,t) > 1 — ¢ for each n, m > nyg.
(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to
be complete.
Lemma 2.6[33] M is a continuous function on X? x (0, c0).
Definition 2.7[12] Let X be a nonempty set. An element (z,y) € X x X is called
a coupled fixed point of the mapping F': X x X — X if

F(ac,y) =, F(y,x) =Y.

Further Lakshmikantham and Ciri¢ have introduced the concept of coupled coinci-
dence point.

Definition 2.8[14] Let X be a nonempty set. An element (z,y) € X x X is called
a coupled coincidence point of a mapping F': X x X — X and h: X — X if

F(z,y) = ha, F(y,z) = hy.
Definition 2.9[14] Let X be a nonempty set and the mappings F': X x X — X
and h : X — X are commuting if for all z,y € X
hEF(z,y) = F(hx, hy).

Definition 2.10[39] A t-norm x is said to be Hadzic type t-norm if the family
{#P}p>0 of its iterates defined for each s € [0, 1] by
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x0(s) = 1, ¥PH1(s) = x(xP(s), s) for all p > 0, is equi-continuous at s = 1, that
is, given A > 0 there exists n(\) € (0, 1) such that
1>s5>n\) =P (s)>1—\forallp>0.

We will require the result of the following recently established lemma to prove
our results.
Lemma 2.11 [40] Let (X, M, x) be a fuzzy metric space with a Hadzic type t-norm
* such that M(x,y,t) — 1 as t — oo, for all z,y € X. If the sequences {z,} and
{yn} in X are such that, for all n > 1, ¢t > 0,
M (zy, Tni1,t) % M(Yn, Ynt1,t) > M(Tn—1,Tn, i) * M (Yn—1, Yn, i)
where 0 < k < 1, then the sequences {z,} and {y,} are Cauchy sequences.

We will use the following class of real mappings.
Definition 2.12 (¥-function) A function ¢ : [0,1] x [0,1] — [0, 1] is said to be a
w-function if
(i) ¢ continuous and monotone increasing in both the variables,
(i) o (t,t) >t for all 0 < ¢ < 1.

3. MAIN RESULTS

We next give the following definition.

Definition 3.1. Two maps F : X x X — X and h : X — X, where X is a
nonempty set, are weakly compatible pair if they commute at their coincidence
point, that is, for any z,y € X, ha = F(z,y) and hy = F(y,x) implies that
h(F(x,y)) = F(ha, hy) and h(F(y,x)) = F(hy, ha).

Theorem 3.2. Let (X, M, *) be a complete fuzzy metric space with a Hadzic type

t-norm where M (xz,y,t) is strictly increasing in the variable t and M(x,y,t) — 1

ast— oo forallz,ye X. Let F: X x X - X, G: X xX —>X,h: X = X and

g: X — X be four mappings satisfying the following conditions:

(i) F(X x X) Cg(X),G(X xX) Ch(X) and h(X),g(X) are two closed subsets of
X7

(ii) (F,h) and (G,g) are weakly compatible pairs,

(ii) M(F(x,y), G(u,v), kt) > (M (hz, F(x,y),t), M(gu, G(u,v),t)), (8.1)

where x,y,u,v € X, t>0,0 < k <1 and) is U-function. Then there existx,y € X

such that x = he = gz = F(x,y) = G(x,y) and y = hy = gy = F(y,z) = G(y, x),

that is, there exist x,y € X such that x and y are common fized points of h and g,

and that (z,y) is a unique coupled fized point of F and G.

Proof. Let xg,yo be two points in X. We define the sequences {x,} and {y,} in X
as follows, for all n > 0,
P2n = 9Toant1 = F(T2n, y2n) and g2, = gy2nt1 = F(Yon, Tan). (3.2)
Pant1 = hoont2 = G(T2n41,Y2nt1) and @1 = hyoni1 = G(Yoni1, Tonyr).  (3.3)
This construction is possible by the condition F(X x X) C g(X), G(X xX) C h(X).
Now, for all ¢ > 0, n > 1, we have
M(anap2n+17 kt) = M(F(:L‘gn, ygn), G(1‘2n+1, y2n+1), k’t) (by(32) and (33))
2 l/)(M(thna F(xQna an)a t)a M(gx2n+17 G(x2n+17 y2n+1)7 t)) (bY(Sl))
> (M (p2n—1,p2n,t), M(p2n, P2n+1,1))-
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If, for some s > 0, and for some n, M (p2n—1,P2n,S) > M (Pan,D2n+1,5), then, from
the above inequality, and using the properties of 1, we obtain

(M (p2n; P2n+1, 5)s M (D2nt1,D2n, 5))
M(p2n7p2n+17 5)

M (p2nt1,p2n, ks) >
>

But this contradicts our assumption that M is strictly increasing in the third vari-
able. Hence we have

M (pan, pan+1, ks) > M(pan—1, pan, s) for all n > 0.
Thus, for all n > 0 and ¢ > 0, we have

M (p2n, P2n+1, kt) > (M (p2n—1, P2n,t), M (P2n—1,P2n, 1)),

that is, for all n > 0, t > 0, we have
M (pan, pan+1, kt) = M(pan—1,pan,t), (using the properties of ¢- function).  (3.4)
Again, for all t > 0, n > 0, we have
M (p2n+1, P22, kt) = M (F(22n+2, Y2nt2), G(@2n+1, Y2n+1), kt) (by(3.2) and (3.3))

> P(M(hxonyo, F(ant2, Yont2), 1), M(922n+1, G(Z2nt1,Yon+1), 1))

(by(3.1))

> (M (pan+1, Pan+2,t); M (p2n, P2nt1, 1))
If, for some s > 0, and for some n, M (pan,pon+t1,5) = M(p2ni1,Poant2,s), then,
from the above inequality, and using the properties of ¥, we obtain

M(p2n+1>p2n+23k5) > ¢(M(P2n+1,p2n+2,8),M(P2n+1,p2n+2,8))
> M(pan+1,P2n+2,5)-

But this contradicts our assumption that M is strictly increasing in the third vari-
able. Hence we have
M (pon+t1, Poant2, ks) > M (pan, pan+1, s) for all n > 0.
Thus, for all n > 0 and ¢ > 0, we have
M (pant1,P2nt2, kt) > (M (pan, P2nt1,t), M (D2n, P2nt1,t)),
that is, for all n > 0, t > 0, we have
M (pan+t1, Pant2, kt) > M (pan, Pan+1,t), (using the properties of - function). (3.5)
From (3.4) and (3.5), for all t > 0, n > 1, we have
M (ppn, Pr+1, kt) > M(pp—1,Dn,t), (using the properties of 1- function). (3.6)
Now, for all t > 0, n > 1, we have
M (q2n, @2nt1, kt) = M(F(y2n, T2n), G(Y2n+1, T2n+1), kt) (by(3.2) and (3.3))
> (M (hyzn, F(Y2n, T2n), ), M (9y2n+1, G(Y2n+1, T2nt1), 1))
(by(3.1))
> (M (q2n—1,q2n,t), M(q2n; G2nt1,t)).
If, for some s > 0, and for some n, M(q2n—1,492n,5) > M(g2n, gan+1,s), then, from
the above inequality, and using the properties of 1, we obtain

M(gon+1,G2n, ks) > (M(gan, @2n+1,5)s M (q2n+1,92n, 5))
2 M(q2n7q2n+173)~

But this contradicts our assumption that M is strictly increasing in the third vari-
able. Hence we have
M(qon, @2n+1, ks) > M(q2n—1, Gon, s) for all n. > 0.

Thus, for all n > 0 and ¢t > 0, we have

M (q2n, @2n+1, kt) > V(M (g2n—1, g2n, ), M(G2n—1, G2n, t)),
that is, for all n > 0, ¢t > 0, we have
M(qon, @2n+1, kt) > M(g2n—1,q2n,t), (using the properties of 1- function).  (3.7)
Again, for all t > 0, n > 1, we have
M (q2n+1, G2nt2, kt) = M(F(y2nt2, T2n+2), G(Y2n+1, Tans1), kt) (by(3.2) and (3.3))
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> (M (hyzn+2, F(Y2n+2, Tant2), 1), M(gy2n+1, G(Y2n+1, Tant1), 1))
(by(3.1))
> Y(M(g2n+1,@2n+2,t), M(q2n, @2n+1,1))-
If, for some s > 0, and for some n, M(qon, gan+1,5) > M(gon+t1,gont2,s), then,
from the above inequality, and using the properties of v, we obtain

M(qon+1,92n+2,ks) > (M (qan+1,92n+2,5): M(@2n+1, 92012, 5))
> M(g2n+1,92n42, 5)-

But this contradicts our assumption that M is strictly increasing in the third vari-
able. Hence we have
M(q2n+1, Gont2, ks) > M(q2n, g2ny1,5) for all n > 0.
Thus, for all n > 0 and ¢ > 0, we have
M (g2n+1,92n+2, kt) > V(M (g2n, g2n+1,1); M (g2n, @2n+1,1)),
that is, for all n > 0, ¢ > 0, we have
M(g2n+1, G2n+2, kt) > M(g2n, @2n+1,t), (using the properties of - function). (3.8)
From (3.7) and (3.8), for all ¢ > 0, n > 1, we have
M(qn, gn+1, kt) > M(Gn-1,qn,t), (using the properties of ¥- function). (3.9)
By (3.6) and (3.9), for all n > 0, ¢ > 0, we have
M (prs P, kt) % M(qn, gn1,kt) > M(pp—1,Pn,t) * M(gn-1,qn 1) (3.10)
In view of (3.10), by Lemma 2.11, we conclude that {p,} and {¢,} are Cauchy
sequences. Since X is complete, there exist z,y € X such that
DPon = GTant+1 = F(Zan, Yon) = Dont1 = honto = G(Tant1,Y2nt+1) = T a8 N — 00
and
92n = 9Y2n+1 = F(y2n; T2n) = Gont1 = MYony1 = G(y2n+1, Topy1) —> Y aS N — 00.
Also z,y € h(X) (N g(X).
Since, G(X x X) C h(X), there exists u € X such that hu = = and also there exists
v € X such that hv = y.
Now for all ¢ > 0, we have
M(F(u7 v), G(T2n+1, 92n+1>7 kt)
> ’(/}(M(hua F(u’ U)v t)’ M(gxany1, G(m2n+17 y2n+1)7 t))
Taking n — oo on the both sides, for all ¢ > 0, we have
M(F(u,v),x, kt)> p(M(z, F(u,v),t), M(z, F(u,v),t))
M(F(ua U)7 Z, kt)z M(:L'a F(u7 ”U), t)a
which implies that F'(u,v) = x.
Therefore, F(u,v) = hu = x.
Similarly, we can prove F(v,u) = hv = y.
Since, FI(X x X) C g(X), there exists € X such that gr = x and also there exists
z € X such that gz = y.
Now for all ¢ > 0, we have
M(z,G(r,2),kt) = M(F (z2n, y2n), G(r, 2), kt)
2 (M (haon, F(xan, Y2n), t), M (gr, G(r, 2),1)) (by (3.1))
Taking n — oo on the both sides, for all ¢ > 0, we have
M(z,G(r,z),kt)> (M (x,G(r, z),t), M(z,G(r, 2),t))
M(z,G(r,z),kt)> M(z,G(r, 2),t),
which implies that G(r, z) = x.
Therefore, G(r,z) = gr = x.
Similarly, we can prove G(z,7) = gz = y.
Therefore, F(u,v) = hu = G(r,z) = gr = x and F(v,u) = hv = G(z,1) =gz = y.
Since, (F,h) is weakly compatible,
therefore hF'(u,v) = F(hu, hv) and hF (v,u) = F(hv, hu),
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which implies hx = F(z,y) and hy = F(y, x).

Since, (G, g) is weakly compatible,

therefore gG(r, z) = G(gr, gz) and gG(z,1) = G(gz, gr),
which implies gz = G(z,y) and gy = G(y, x).

Now we will prove = ha = F(x,y).

For ¢ > 0, we have

> w(M(ha?, (z,y), 1), M(gr, G(r, 2),1)) (by (3.1))
> (1,1)
> 1.

Therefore, F'(z,y) = x. So F(z,y) =hz ==

Similarly, F(y,z) = hy = y.
Again we will prove z = gz = G(x,y).
For t > 0, we have

M(.’ﬂ, G(xa y)> kt) = M(F(uv U) G(xa y)7 kt)
> w( (huv (u,v)7t), M(gx’ G(x,y),t)) (by (31))
> (1,1)
> 1.
Therefore, G(z,y) = . So G(z,y) = gz = x.

Similarly, G(y,z) = gy = y.

Therefore, F'(z,y) = G(z,y) = ha = gr = x and F(y,z) = G(y,x) = hy = gy = y.
So, (x,y) is the coupled common fixed point of F' and G.

To show uniqueness, let (e, e3) be another coupled common fixed point of F' and
G.

Therefore, F(e1,es) = G(e1,e2) = hey =ge; =e;

and
F(eg,e1) = G(ea,e1) = hea =ges =es.
M(z,eq1,kt) = M(F(z,y),G(e1, ea), kt)
> w(M(hx’ F(l‘, y)a t)’ M(gelv G(eh 62)7 t)) (by (31))
> Y(1,1)
> 1.
Therefore e; = x.
M(y,es, kt) = M(F(y,x),G(ea,e1), kt)
> Y(M (hy, F(y, 2), ), M(gea, Glez, e1), 1)) (by (3.1))
>Y(1,1)
> 1.

Therefore e; = y.
Therefore (x,y) is the unique coupled common fixed point of F' and G.
Thus completes the proof. O

Corollary 3.3 Let (X, M, *) be a complete fuzzy metric space with a Hadzic type
t-norm where M (z,y,t) is strictly increasing in the variable ¢ and M (z,y,t) — 1
ast > oo forall z;y € X. Let FF: X x X — X, h: X — X be two mappings
satisfying the following conditions:

(i) M(F(z,y), F(u,v), kt) > (M (ha, F(a,y),t), M(hu, F(u,v),1)), (3.11)
(ii) F(X x X) C h(X) and h(X) are two closed subsets of X,

(iii) (F,h) is weakly compatible pair,

for every z,y,u,v € X, for t > 0, 0 < k < 1 and v is U-function. Then there exist
x,y € X such that x = ha = F(z,y) and y = hy = F(y,z), that is, there exist
x,y € X such that « and y are fixed points of h, and that (z,y) is a unique coupled
fixed point of F.
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Proof. The proof follows by putting F = G, h = g in Theorem 3.2.

Corollary 3.4 Let (X, M, %) be a complete fuzzy metric space with a Hadzic type
t-norm where M (x,y,t) is strictly increasing in the variable ¢ and M(z,y,t) — 1
ast — oo forall x,y € X. Let F': X x X — X be a mapping satisfies the following
condition:

M(F(x,y), F(u,v), kt) = (M(z, F(z,y),t), M(u, F(u,v),1)),
for every z,y,u,v € X, 0 < k < 1 and v is U-function. Then there exist x,y € X
such that F(z,y) = = and F(y,x) = y, that is, F' has unique coupled fixed point in
X.
Proof. The proof follows by putting F' = G, h = g = I, the identity function, in
Theorem 3.2.
Example 3.5 Let X = [0,1]. Let M(x,y,t) = e~ and axb= min{a,b}. Then
(X, M, ) is a complete fuzzy metric space with the property that M is strictly
increasing in t and M(z,y,t) — 1 as t — oo for all z,y € X. Let the mappings
F:XxX—=Xand G: X xX — X be defined as follows:

1, ifzx> 1,
F(z,y) = G(z,y) = { 0, if otherwise,

and the mappings h: X — X and g : X — X be defined as follows:

ha — . 3, if 0 <z 1,
T= 9= 200, ifr > 1,

Let, for all z,y € X, ¢(z,y) = min{z,y}. Then all the conditions of Theorem 3.2
are satisfied. Here (0,0) is unique coupled common fixed point F' and G, and 0 is
a fixed point of h and g.

4. APPLICATIONS TO RESULT IN METRIC SPACES

In this section we present a coupled coincidence point result in metric spaces.
This is obtained by an application of the theorem established in the previous sec-
tion.

Theorem 4.1 Let (X,d) be a complete metric space. Let F': X x X — X and
h: X — X be two mappings satisfying the following conditions:
(i) F(X x X) C h(X) and h(X) is closed subsets of X,
(ii) (h, F') is weakly compatible pair,
(iii) d(F(z,y), F(u,v)) < E[d(ha, F(z,y)) + d(hu, F(u,v))], (4.1)
for all z,y,u,v € X and 0 < k < 1. Then there exist x,y € X such that
x = hx = F(z,y) and y = hy = F(y,x), that is, F' and h have unique coupled
common fixed point in X.
Proof. For all z,y € X and ¢ > 0, we define

M(z,9,1) = Fraeg
and a * b = min{a, b}. Then, as noted earlier, (X, M, *) is a fuzzy metric space.
Further, from the above definition of M, M (x,y,t) — 1 ast — oo, for all z,y € X.
Next we show that the inequality (4.1) implies (3.11) with ¢(x,y) = min{z,y}. If
otherwise, from (3.11), for some t > 0, z,y,u,v € X we have

t

. t ¢
T Ld(F(2.9) Flun) mln{ter(hw,F(:v,y))’ TFd(hu, F(w,0)) 2
that is, t + +d(F(z,y), F(u,v)) > t + d(hz, F(z,y)) and
t+ +d(F(z,y), F(u,v)) >t + d(hu, F(u,v)).
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Combining the above two inequalities, we have that

d(F(x,y), F(u,v)) > £[d(hx, F(x,y)) + d(hu, F(u, )],
which is a contradiction with (4.1).
The proof is then completed by an application of corollary 3.2. O

5. CONCLUSION

We use Hadzic type t-norm in our main result. It has an advantage for use due to
the fact that the iterates are equicontinuous at s = 1. The fuzzy metric space theory
depends strongly on the type of t-norm used in its description. Our main theorem
depends on a lemma which in turn depends on the aforesaid equicontinuous of the t-
norm. Also the coupled fixed point for two maps are obtained under the assumption
of weak compatibility between ordinary maps and coupled maps which is a concept
defined in this paper. It may be used elsewhere under different conditions to obtain
other fixed point results. Since this definition does not depend on the structure
associated with the set on which the mappings are defined, it is possible that such
definitions are used in some other spaces as well.
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ABSTRACT. In this paper, we first prove strong convergence theorems of a new itera-
tion method finding a common fixed point of three Berinde nonexpansive mappings and
introduce a new iteration method and study stability of the proposed method and Noor
iteration for a class of Berinde contraction mappings in complete metric space. We also
compare the rate of convergence between our iteration method and Noor iteration under
some suitable control conditions.
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1. INTRODUCTION AND PRELIMINARIES

Let C' be a nonempty convex subset of a Banach space X, and T : C — C
be a mapping. A point x € C is a fixed point of T if Tx = z. We denote
F(T) the set of all fixed points of T'. There are two important problems in fixed
point theory. The first one is the existence problem. Many mathematicians are
interested in finding sufficient conditions to guarantee the existence of fixed point
and common fixed point of mappings. The second problem is to study how to
approximate a fixed point and a common fixed point of mappings. Many iteration
methods were introduced and studied. Some conditions for convergence of those
methods were given, see for instance [11, 9, 13, 18, g].

In 2003, Berinde [3, 4] introduced and studied a weak contraction mapping. It
is very interesting to study this mapping because it generalizes many well-known
mappings such as contraction and Zamfirescu mappings.

In 2004, Berinde [5] provided the concept of how to compare the rate of conver-
gence of the iterative methods and proved that Picard iteration converges faster than
Mann iteration for a class of Zamfirescu operators and a class of quasi-contractive
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Article history : Received 4 July 2018; Accepted 3 November 2018.
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operator in arbitrary Banach spaces. After that there are many works concerning
comparision of the rate of convergence, see [2, 14, 19, 16, 13] for examples.
A mapping T : X — X is said to be
(1) a contraction if there exists k € [0, 1) such that for z,y € X,
[Tz =Tyl < kllz—yll, (1.1)
(2) nonexpansive if for x,y € X,

[Tz =Tyl < llz—yl, (1.2)

In 1968, Kannan extended a contraction mapping to mapping that need not be
continuous. A mapping T : X — X is called a Kannan mapping if for x,y € X,

there is a constant 0 < b < 5 such that

[Tz =Tyl < b |z =Tzl +lly — Tyl ] (1.3)
In 1972, Chatterjea introduced a mapping that is dual of Kannan mapping.
A mapping T : X — X is called a Chatterjea mapping if for z,y € X, there

exists 0 < ¢ < 3 such that

[Tz =Tyl < c[llz =Tyl + [ly = Tz| ]. (1.4)

In 1972, Zamfirescu obtained a very interesting nonlinear mapping by combining

(1.1), (1.3) and (1.4). A mapping T': X — X is said to be a Zamfirescu operator if
1

there exist a € [0,1),b, ¢ € (0, 5) such that for x,y € X, satisfy at least one of the
following :
(a) || Tz =Tyl < allz—yl;
(b) [Tz =Ty| < b |z —Tz| +lly — Tyl J;
(©) [Tz =Tyl < |z =Tyl +[ly = Tz| ].

In 1974, Ciric introduced a mapping that is one of the most general contraction

condition. A mapping T : X — X is called a quasi-contraction mapping if for
x,y € X, there exists 0 < h <1 such that

[Tz =Tyl < hmax{ ||z —yll, [« = Tz, [ly = Tyl [« = Tyl ly = T| }. (1.5)

It is obvious any mapping that satisfies (1.1), (1.3), (1.4) and Zamfirescu mapping
is a quasi-contraction mapping.

Definition 1.1. (condition (*)) Let X be a Banach space. A mapping T : X — X

is said to satisfy condition () if there exists a constant ¢’ € (0,1) and L’ > 0 such
that for all z,y € C

1Tz =Tyl < &'llz =yl + L'lly — Tyl (1.6)

Definition 1.2. Let X be a Banach space. A mapping T : X — X is called a F'-

contraction if F(T) # () and there exists 0 < k < 1 such that for z € X, p € F(T),

[Tz —p|| < kllz - pl|. (L.7)

We can show that a F-contraction mapping with F(T') # () has a unique fixed

point and it easy to see that any mapping which satisfies condition (%) (1.6) with
F(T) # 0 is F-contraction.

Definition 1.3. Let X be a Banach space. A mapping 7' : X — X with F(T) # ()
is called a quasi-nonexpansive if for x € X, p € F(T),

[Tz —pll < llz—pll. (1.8)
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It is clearly that any F-contraction mapping is quasi-nonexpansive.

Example 1.4. [7] Let X =[* and C ={{z,} : -1 <21 <3, -1<u23<1, 2, =
0, Vn > 3}. Define T': C — C by

T(J}l,IQ,O,...) = (l‘l,—.’lﬁg,o,...), V.T,’Q 75 O,

T( 0 ) ($17‘.’E1|,07...), if —1<ux <1,
1,0,...) =
' ($17‘Z‘1—2|,07,..), if1 < <3.

Then T is a quasi-nonexpansive mapping with F(T') = {(0,0,0,...),(2,0,0,...)}.

In 2003, Berinde [3] introduced a weak contraction mapping and proved the
following existence fixed point theorem in Banach spaces.

Definition 1.5. Let C' be a nonempty subset of a Banach space X. A mapping
T : C — C is called weak contraction or Berinde contraction if there exists a
constant § € (0,1) and L > 0 such that for all =,y € C,

[Tz =Tyl < dlz —yll + Ly — T|. (1.9)

The class of Berinde contraction mappings includes classes of contraction, Kannan,
Zamfirescu, Chatterjea and quasi-contraction mappings.

Proposition 1.6. [3] Let C be a nonempty closed subset of a Banach space X
and T : C — C be a weak contraction, Then F(T) # @. Moreover, the Picard
iteration {x,} defined by x; € C' and x,4; = Tz, for all n € N, converges to a
fixed point of T.

Let C be a nonempty convex subset of a Banach space X, and T': C' — C be a
mapping. The Mann iteration is defined by sg € C,

Snt+1 = (1 — ap)sy + anTsy, for all n >0, (1.10)
where {a,,} is a sequence in [0,1].
For «, = A (constant), the iteration (1.10) reduces to the so-called Krasnoselskij
iteration. For «, = 1, we obtain the Picard iteration.
The Ishikawa iteration is defined by so € C,
Wn, = (1 - Bn)Sn + BT sy,
Snt1 = (1 — ap)sy + e, Twy,, for all n > 0, (1.11)
where {a,,} and {B,} are sequencesin [0, 1].
The Noor iteration is defined by sy € C,
Snte1 = (1 — an)sn + apTw,, for all n >0, (1.12)
where {an}, {Bn} and {7y,} are sequencesin [0,1].
It is easy to see that Mann and Ishikawa iterations are special cases of Noor itera-
tions.
In this paper, we introduce an iterative method as follows.
Let {x,} be a sequence defined by zg € C,
“n = (1 - 'Yn)xn + Y TTn,
Yn = (1 - 6n)zn + BT 2y,
Tnt1 = (1 —an)Tz, + apTyy, for all n >0, (1.13)
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where {an},{8.} and {v,} are sequences in [0,1]. The main purpose of the
paper is to study stability of the proposed method and Noor iteration for a class of
Berinde contraction mappings in a complete metric space. We also compare rate of
convergence between our iteration method and Noor iteration under some suitable
control conditions.

2. CONVERGENCE THEOREM AND STABILITY

We first recall the definition of Berinde nonexpansive mappings introduced by
Kosol [10] as follow:

Definition 2.1. Let C' be a nonempty subset of a Banach space X. A mapping
T :C — C is called Berinde nonexpansive if there exists a constant L > 0 such
that for all x,y € C,

[Tz =Tyl < llz -yl + Llly — Tx||. (2.1)

It is easy to see that all nonexpansive mappings and weak contraction mappings
are Berinde nonexpansive.

Example 2.2. Let X =R and C = [0, 1]. Define T : C — C by

1
22, ifx e [0,2),
T(x) = 2
1, ifzxze [
ifxe | 5
Then T is a Berinde nonexpansive with L = 4, but is not a nonexpansive mapping.

1].

1
Proof.  (i). If z,y € [0, 5), we have

Tz —Ty| = |2° —y?| = |[(x+y)(z—y)
= |z +yllz -yl
< |z -yl

1 1
ii). fzel0,-),y €[z, 1],
(ii). If = [2)y b]
Tz —Ty| = |2 —1] = 1 —2?
1
< 4.-
= 7y

and |Tz—Ty| < |z —y|+ 4|z — Tyl
1
(iii). f z,y € [5,1],then |Tx —Ty| = 0 < |z —y|

So, we have [Tz —Ty| < |z—y|+4|z—Ty| and |[Tx—Tz| < |x—y|+4|ly—Tx|, for all
x,y € [0,1]. So T is a Berinde nonexpansive mapping, but it is not a nonexpansive

1 1
mapping because |T(§) -7 > |§ —1]. O
Let T; : C — C,i = 1,2,3 be mappings. In order to approximate a common

fixed point of Berinde nonexpansive mappings, we introduce the following iterative
method. Let {x,} be a sequence defined by z¢ € C,

Rn = (1 - ’Yn)-rn + T,
Yn = (1 - ﬂn)zn + ﬂnTQZna
Tnt1 = (1 — an)Ts52, + apT5yy, forall n >0, (2.2)
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where {an}, {B,} and {7,} are sequencesin [0,1].
The Noor iteration is defined by sg € C' and

hn = (1 - ’)/n)sn + ’YnTlsn;
Wwnp = (]- - Bn)sn + BnTtha
Snt1 = (1 —ap)sp + apTswy,, for all n €N, (2.3)
where {a,},{8.} and {v,} are sequencesin [0, 1].
First, we will prove a convergence theorem of the proposed iteration method (2.2)
for finding a common fixed point of Berinde nonexpansive mappings.

Let T; : C — C, i = 1,2,3, be Berinde nonexpansive mappings. Through out
this thesis, we let L;,i = 1,2, 3, be nonnegative real numbers such that for z,y € C,

ITix = Toyll < llz = yll + Lilly — Tiz[].

Lemma 2.3. [6] Let X be a uniformly convex Banach space and B, = {z € X :
llz]] < r}, » > 0. Then there exists a continuous, strictly increasing, and convex
function g : [0,00) — [0, 00), ¢g(0) = 0 such that

Az + By + 21> < Al=l* + Bllyll* +Allzl1> = A8 - g(ll= =yl
for all x,y,z € B, and all A\, 8,7 € [0,1] with A+ 8+~ =1.

Lemma 2.4. Let X be a Banach space and C be a nonempty closed convex

subset of X. For each i = 1,2,3., let T; : C' — C be a quasi-nonexpansive map-
3

ping. Assume that ﬂ F(T;) # 0 and {x,} is a sequence generated by (2.2) and

i=1
{an}, {Bn}, {7} are sequences in [0,1]. Then,
3
() l&nt1 —pll < ll#n —pl, VneNand Vpe () F(Ty).
i=1
(ii) nh_}rgo |z — p|| exists.

3
Proof. Let p € ﬂ F(T;). By using (2.2), we have
i=1
Iz =2l < (L =v)llen = pll + vl Tran = pl
< (1 =w)llen = pll + llzn — pll

lyn =l < (1= B)llzn — pll + BnlT22n — pll
< (1=Ba)llzn = pll + Ballzn — pll
< zn —pll.
From above inequalities, we get

(1 = ap) | T32n — p| + || T3yn — ||
(1 — an)llzn — pll + anllyn — 2l
|zn — pll,

[#nt1 — Pl

ININ IN o=

s0 ||znt1 — pll < ||#n — pl|. Since {||z, — p||} is a non-increasing sequence and
bounded below by 0, lim ||z, —p| exists. O
n— oo
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Theorem 2.5. Let X be a uniformly convex Banach space and C' be a nonempty

closed convex subset of X. For each ¢ = 1,2,3, let T; : C — C be a Berinde
3

nonexpansive and quasi-nonexpansive mapping. Assume that ﬂ F(T;) # 0 and T;
i=1

is demicompact, for some i € {1,2}. Let {x,} be a sequence generated by (2.2)

where {a, }, {Bn}, {7n} are sequences in [0, 1] which satisfy the following conditions

(i) 0 < liminfa, <limsupa, < 1;
n—00 n—oo
(ii) 0 < liminf g3, <limsup g, < 1;
n—00 n—oo
(iii) 0 < liminf~, <limsup~, < 1.
n— o0

n—oo
Then {z,,} converges strongly to a common fixed point of {T;}3_;.
3
Proof. Let p € m F(T;). From Lemma 2.4, lim |z, — p|| exists, then we have
n—oo

i=1
{l|zn — p||} is bounded, that is, 3IM > 0 such that for each n € N, |z, — p|| < M.
By quasi-nonexpansiveness of T;, {x,, —p}, {T1@n — 0}, {zn — 0}, {T22n — p}, {1320 —
p}, {T5yn — p} C Bas. By Lemma 2.3, there exists a continuous, strictly increasing,
and convex function g : [0,00) — [0,00), with g¢(0) = 0 such that

lzn = pl1? = [I(1 = ) (@0 — p) + A (Trzn — p)|®
< (T =)llzn _pH2 + Wl Tz, — pH2 = (I =v)mg(lzn — Trza|)
< T =mw)lzn *p||2 + Ynllzs *p”Z — (1 =) mg(llzn — Thzn|)

= |lzn — plI> = (1 = w)ymg(lzn — Trza|),

Hyn _p||2 = H(l - Bn)(zn _p) =+ ﬁn(TQZn _p)H2
< (1= Bn)llzn = 2l + BullTezn — plI* = (1 = Bn)Brg (|20 — Tozall)
< (1= Bu)llzn —PI* 4 Bullzn — plI> = (1 = B)Brg(l2n — Toznl|)

[E2 —p||2 — (1= Bn)Bng(lzn — Taznl]).

From above inequalities, we have

[#ni1 = plI* = (1 = an)(T32n — p) + an(Tsy, — p)|?
< (1= an)llzn = pl* + anllyn = plI* = (1 = an)ang (| Tszn — Tsyal))
(1 —an)llzn — p||2 + anllzn —p||2 = (1= Bn)Brang(|lzn — Taznll)
— (1= an)ang(|Ts2n — Tayn||)
|2 — p||2 — (1= Bn)Brang(llzn — Toznl|)
— (L= an)ang(|T52n — Tayn||)
< lzw = plI* = (1 =) mg(len — Trza|)
— (1= Bn)Brang(llzn — Toznl) — (1 — an)ang([|T52n — Tsynll)-

By assumptions on the control sequences, there exist ng € N and n,72 € (0,1)

such that 0 < n; < min{a,, Bn, yn}t and max{an, Bn, ¥n} < 12 < 1, for all n > ny.
Then,

IN N

IA

(1 - '7n)7ng(||xn - Tlan)

= ||1'n _p”2 - ||mn+1 —p||2,

m(1=mn2)g((|lzn — Tran))

A
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(1 =m)g(llzn —Tozull) < (1= Ba)Bncng(llzn — Tozal)
< lzn = plI? = |z — pll?,
< (1= an)ang(|T32n — T3ynl|)

< lwn = plI? = lznss — o>

m(1 —=n2)g(|Tszn — Tsynll)

Since lim ||z, — p|| exists, it implies that lim g(||z, — Tiz,|]) = lm g(||lz, —
n—oo n—oo n—oo
Tozn||) = lim g(||T52n — T5yn||) = 0. Since g is continuous and g(0) = 0, we have
n—oQ

lim ||z, — Thz,| = lim ||z, — Toz,|| = lim || T2, — T5y,| = 0. It follows that
n—oo n— oo n—0o0

7n|‘xn _Tlan
|z — Thzs| — 0,

|2n — @l

|z, — Tozn]| — 0,

Hanrl - T3Zn|| anHTSZn - T3ynH

<
<
[yn — znll < Bullzn — Toznl
<
<
< T3z, — Taynll — 0.
By Berinde nonexpansiveness of 75, we have
[#n = Toxn|| < flzn = 20l + ll2n — Toznll + | T22n — Tomn ||
< ln = zull + [l2n — Toznll + (|20 — 2all + Lall2n — Tozall )
< lzn — zall + [l2n — Toznll + |20 — 2al|
+ Lo( [|#zn — 2all + [|2n — T22nl| ) — 0.
It implies that nll)n;o |z, — Toxy,|| = 0. Now, suppose that T;, is demicompact,

for some ig € {1,2}. Then Iz, } C {z,} such that z,, — ¢, I¢. From above
inequalities, we have

[Thzp, —Tigll < llon, —all + Lillg — Ty, ||
< ||xnk - QH + Ll( ||q - mnk” + Hwﬂk - Tlxnk” ) -0,
T2z, — T2qll < llzn, — all + L2llg — T2z, ||
< zne = @l + |2, — 4l

+ L2( Hq - xnk” + ||x77/k - an:H + ”z’ﬂk - TQanH ) — 0,
and
[y = all + Lsllg — Tsyn, ||

||ynk - an” + ”an - xnk“ + H'Tnk - QH

+ L3( Hq - xnkJrlH + ||‘T7lk+1 - T3an|| + HTSan - T3y’ﬂk|| ) — 0.

1 T3Yn, — T3q]|

It follows that

lg —Tigll < llg — x|l + |20, — Trzn, | + [ T120, — T1ql| — 0,
lg —T2qll < llg —zn,ll + |20, — 20 || + 200 — T22n, ||
+ 11220, — T2q|| — 0O,

IN

”q - xnk“l‘l” + Hxnk“l‘l - T3an” + ||T3an - T3ynk ”
+ | T5yn,. — Tsqll — 0.

llg — Tsq||
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3
So g € ﬂ F(T;). By Theorem 2.4, lim ||z, — ¢|| exists. Since ||z, —q| — 0, it
implies that lim x, = q. O
n—oo

Theorem 2.6. [20] Let X be a uniformly convex Banach space and C be a

nonempty closed convex subset of X. For each i = 1,2,3., let T; : C' — C be a
3

Berinde nonexpansive and quasi-nonexpansive mapping. Assume that ﬂ F(T;) #
i=1

§ and T; is a demicompact, for some i € {1,2,3}. Suppose {s,} is a sequence

generated by Noor iteration (2.3) and {ay}, {Bn}, {7} are sequences in [0, 1] which

satisfy the following conditions :

(i) 0< 1innl>i£f ap, < limsup o, < 1;

n—oo
(ii) 0 < liminf B, <limsup B, < 1;
n—00 n—00
(iii) 0 < liminf~y, <limsup~y, < 1.
n—co n—00
Then lim ||s, — Tisn|| = 0, for all i = 1,2,3 and {s,} converges strongly to a
n—oo

common fixed point of {T;}?_;.

In concrete applications, when calculating {x, }, we usually follow the step :

(i) We choose the initail approximation zy € X.

(ii) We compute z1 = f(T,xo). Because of the various error, we do not get
the exact value of x1, but a different one, say y;, which is however closed
enough to x1, i.e., y1 = x1.

(iii) Consequently, when computing zo = f(7, 1) we will actually compute xo
as xo = f(T,y1), and error again from the computations, we will obtain
in fact another valued, say ys, closed enough to xo, i.e., yo &~ w2, and so
on.

In this way, instead of the theoretical sequence {z,, } defined by the given iterative
method, we will practically obtain an approzimate sequence {y, }. We shall consider
the given fixed point iteration method to be numerically stable if and only if for
{yn} closed enough to {x,} at each stage, the approximate sequence {y,} still
converges to the fixed point of T'.

Definition 2.7. Let {z,} be a sequence in above procedure and converge to a fixed
point p of T. Let {y,} be an arbitary sequence in X and set

en = Yns1 — F(T,un)l-

We shall say that the fixed point iteration procedure {z,} is T-stable or stable with
respect to T if

lim ¢, =0 if and only if lim y, =p.

n—oo n—oo
Theorem 2.8. Let C be a nonempty closed convex subset of a uniformly convex
Banach space X and let T : C — C be a weak contraction and F-contraction
mapping. Suppose {x, } is a sequence generated by (1.13) and {c, }, {Bn}, {7} are
sequences in [0, 1] which satisfy the following conditions :

(i) 0 < liminf o, < limsup a,, < 15
n—roo

n—oo
(ii) 0 < liminf 3,, <limsup 3, < 1;
n—00 n—00
(iii) 0 < liminf~, <limsup~y, < 1.
n—oo

n—roo
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Let {y,} be an arbitary sequence in C' and define
sn = (1 =v)yn + 10 Tyn,
hen = (1= By)sn + BT sy,
€n = [[yn+1 — (1 — o) Tsn + @ Thy)|.
Then {z,} is T-stable.
Proof. By Proposition 1.6 and Theorem 2.5, {x,} converges strongly to a unique
fixed point of T', say x*. Since T is a weak contraction and F-contraction, we have
(1 —ap)Tsn + anThy — || < (1 —an)||Tsn — z*|| + an||Thn — 7|
(1 —an)dlsn — ™| + and|[hn — 27|
(1 —an)dfsn — 2"
+and [(1=Bn)llsn — 2" + Budllsn — 27| ]
= [0(1 =y + an(l = Bn) + @ B0) Il|sn — 27|
= 6(1 — anfn(l = 9))|lsn — =7
§(1 = onfBp(1=6)) [ (1 = vn)llyn — 2" + nbllyn — =*[| ]
= 0(1 = anfn(1 = 0))(1 = yn(1 = 6))[lyn — =7||
(= nfBn(1=0))(1 = (L = 6))llyn — 27|

Next, assume that lim e, = 0. By above inequality, we have
n—oo

IN A

IN

IN

lyn+1 — 2| < llynt1 — [(1 — an)Tsn + anThy]ll + I[(1 = an)T'sp + anThy,] — 7|
< et (1= anfn(l=6))(1 —vn(l —6))|lyn — 7.

Since lim &, = 0, by assumption of control sequences and Lemma 2.4, we conclude

n—oo
that lim y, = z*. Conversely, suppose that lim y, = 2", then
n—oo n—oo
en = [[Ynt1 = (1 — an)T'sp + anThy)||
< yntr =2+ llz" = [(1 — an)Tsn + anTha]||
< yntr =27+ (1 = anfBn(l = 6))(1 — (1 = 0))llyn — 27|
< lynar =27+ llyn — 2.
Since y, — x*, we obtain that lim e, = 0.
n—oo
Hence {z,} is T-stable. O
Theorem 2.9. [20] Let C be a nonempty closed convex subset of a uniformly

convex Banach space X and T : C — C be a weak contraction and F-contraction
mapping. Suppose that {s, } is a sequence generated by Noor iteration (1.12) where
{an}, {Bn}, {7} are sequences in [0, 1] which satisfy the following conditions :
(i) 0 < liminfa, <limsupa, < 1;
n—00 n—00
(ii) 0 < liminf g3, <limsup g, < 1;
n—00 n—00
(iii) 0 < liminf~, <limsup~, < 1.
n— oo

n—oo

Let {y,} be an arbitary sequence in C' and define
Un = (1 =Yn)Yn + VT Yn,
Zn = (1 - 6n)yn + BT uy,,
€n = |[ynt1 — [ (1 — an)yn + anTzn ||



30 J. NONLINEAR ANAL. OPTIM. VOL. 10(1) (2019)

Then {s,} is T-stable.

3. THE RATE OF CONVERGENCE THEOREM

There are a few papers concerning comparison of the rate of convergence of
iteration methods. In 1976, Rhoades [15] introduced the concept to compare the
rate of convergence of iterative methods as follows :

Definition 3.1. Let {z,} and {z,} be two iteration methods which converge to
the same fixed point p, we shall say that {x,} converges faster than {z,} if

lzn —pl| < |lzn —pl|, forall n € N.

In 2004, Berinde [5] provided the following concept to compare the rate of con-
vergence of the iterative methods.

Definition 3.2. Let {a,} and {b,} be two sequences of real numbers that converge
to a and b, respectively, and assume that there exists
. lan — al
Il = lim ——.
n—o00 |bn — b|
(i) If I =0, then it can be said that {a,} converges faster to a than {b,} to
b.
(if) If 0 < < oo, then it can be said that {a,} and {b,} have the same rate
of convergence.

Remark 3.3. (i) In the case 1. we use the notation a, —a = o(b, —b).
(ii) If I = oo, then the sequence {b,} converges faster than {a,}, that is
b, —b=o(a, — a).

Suppose that for two fixed point iteration methods {z,} and {y,}, both converging
to the same fixed point p, the error estimates

Hl'n—p” S Qn, TL:O,I,Z,Z‘},...
||yn_p|| < bna n:0717233,"'

are available, where {a,} and {b,} are two sequences of positive numbers (converg-
ing to zero). Then, in view of Definition 3.2, the following concept appears to be
very natural.

Definition 3.4. Let {z,} and {y,} be two fixed point iteration procedures that
converge to the same fixed point p and satisfy above inequalities. If {a,} converges
faster than {b,}, then it can be said that {x,} converges faster than {y,} to p.

To comparision the rate of convergence in above definition depends on the error
estimate sequences. So, in 2013, Phuengrattana and Suantai [13] modified above
definition to compare the rate of convergence as follows :

Definition 3.5. Let {z,} and {y,} be two iterative methods converging to the
same fixed point z of a mapping 7. We say that {x,} converges faster than {y,}

to z if
[z — 2l _

lim = 0.

n=o0 ||yn — 2||
Theorem 3.6. Let C' be a nonempty closed convex subset of Banach space X
and let T : C — C be a weak contraction and F-contraction mapping. Suppose
{zn}, {pn} and {s, } are sequences generated by (1.13) and Noor iteration (1.12), re-
spectively, which converge to a fixed point of T where g = sg, and {a, }, {Bn}, {0},
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are sequences in [0, 1]. Then,

< 1 an(1+9)
1+6 (1-9)

then {z,} converges faster than {s,}.

if 0 < a,

< <1and Zanﬁn:oo,

n=0

Proof. By Proposition 1.6, F(T') is nonempty. Since T is a F-contraction mapping,
we obtain that a fixed point of map T is unique, say p. and by assumption, {z, }
and {s,} converge to p.

First, from iteration (1.13), we have

1= an)[Tzn = pll + n| Tyn — p

lznsr —pll < (
(1= an)dllzn = pll + andlyn — pll
(
[

ININ TN

1 —an)dllzn — pll + and [ (1 = Bu)llzn — pll + Brdll2n — pll ]
6(1 = an + an(l = By) + anfnd) Jllzn — pll
= (1 — anfn(l =9))]lzn — pl
6(1 — anfn(l = 0)) [ (1 = w)llzn — pll +¥ndllzn — pl ]
= 6(1 = oy Bn(1 = 6))(1 = yu(1 = 0))[|zn — p

IN

n+1

0" T = a1 = 8)( = (1 = 6))llzo — - (3.1)
k=1

IN

Next, by iteration (1.12), we have

[snr1 =2l = (|1 —an)(sn = p) + an(Twn — p)|
> (1—an)llsn —pll — anl|Tw, — p|
> (1= an)llsn — pll — andllw, —p|
> (I=ay)llsn —pll = nd( (1 = Bu)llsn — pll + BullTha — pll )
> (L—an)llsn —pll — and( (1 = Bn)llsn — pll + Brdllhn — pll )
> (1—an—and(l—By))llsn —pll
— @ fn6° (1 = (1 = 8))[sn — p
= (I=an(1+61—Ba(1=6(1=7(1-6))))lsn —pll
> (L—an(1+36))lsn —pll
n+1
> H(l —ag(1+9))[[so — pl|-
k=1
Then
1 1

< .
Fswer 2l =TI — a1+ )50 —
It follows by (3.1) and (3.2) that

s —pll [Tt (1wl = 8)(1 = (1~ 9))
lsnn—pll = i (1= an(1+90))
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n+1
< JJ—awBe(=06) —o.
k=1
Then {x,} converges faster than {s,}. O
Example 3.7. [13] Let T : [0,1] — [0, 1] be defined by
2
f, ifze [0,2),
Tx = g 5
Toifre [g 1]
5’ 5

Then T is a weak contraction and F-contraction mapping.

Proof. Let z,y € [0,1].

2
If z,y € [073)7
T Y 1
Tz —Tyl = |5 -4 = 5le—yl.
If T,y € [771]3
2z 2y 2
Te-Tyl = | = - 2| = 2|z
[Tz — Tyl - s |z =l
2
Ifxel0,-)and y € [5,1],
T 2y 1 y 2y
Te—Tyl = |2 - 2| < S|z g2
Te=Tyl = |5- 5| = 3l +‘3 5
<1|x— H—i
=3Py

1
< glx—y\+lTw—y|~

2
Choose § = 5 and L =1, so T is a weak contraction. With the same argument as

2 1
above, we can show that T satisfies condition (1.1) with §' = R L' = T So T is a

F-contraction. O

Let {z,,} and {s, } be sequences generated by iteration (1.13) and Noor iteration

(1.12), respectively. The comparison of the convergence, we assume that the initial

1
int = = 1 and th trol diti n=P0n =M = —0—5—— and
point zg = sg an e control conditions « B 302 1 1) an
1

BT Then these control conditions satisfy Theorem 3.6.

’7 =
n nO-

Proof. We know that {n%2 + 1} is a strictly increasing sequence in [2,00) and by

above example, we have 1 + § = 3 and 1—6 = E Then

1 oL 51
3(n%24+1) — n02+1 ~ 7 144
1
that is ap, + Bn + A\ < T35 It is clearly that nh—>Holo - = 0. So we obtain

that o, + 8, + A\, = 0. Next,

an(1496) = gan < %an = Y, (1 =9).
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Then

an(1+9)
-9

< v, < 1. Next, we will show that Z anfBn = 0.

n=1

Since 9(n%2 4+ 1)2 < 9(n%2 + n%2)2 = 9(2n°2)% = 3614, then we get

9(n02 4 1)2

Moreover, by the same argument as above we can show that Z Ay =

oo
. By the p-series (p < 1), implies that Z p B = o0.

n=1

n=1

36m0-4 =

Z’Yn_oo

It make all sequences, {z,} and {s,}, converge to unique fixed point of T that is

0. (]
Iteration (1.13) Noor iteration

1 0.2753333333333333 0.892

2 0.0622866840398323 0.8028618015300142
3 0.0143843416773601 0.7263593546244763
4 0.0033696365323228 0.6595078099795465
5 7.9797524777686E-4 0.6004531818917709
22 3.9117640537377E-14 0.1322059479152645
23 9.9227426469139E-15 0.1215354334180748
24 2.5215123540173E-15 0.1117829732321454
25 6.4183893837157E-16 0.1028630625344521
26 1.6364198777878E-16 0.0946989830319073
27 4.1786674254824E-17 0.0872217855864026
28 1.0686318847965E-17 0.0803694081047037
29 2.7367843754926E-18 0.0740859078126916
30 7.0186215448254E-19 0.0683207907741172

TABLE 1. Comparison of the rate of convergence of the iterative
methods (1.13) and Noor iterations for the mapping given in Ex-
ample 3.7
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ABSTRACT. In this paper, a new class of generalized preinvex set-valued maps is
introduced and its characterization in terms of their contingent epi-derivatives is obtained.
Then we derive necessary and sufficient optimality conditions for a set-valued fractional
programming problem using generalized cone invexity. Wolfe and Mond Weir type duals
are formulated and various duality results are established.
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1. INTRODUCTION

In the last decade, there has been increasing interest in the extension of vector
optimization to set-valued optimization. The theory of set-valued optimization
problems has wide applications in differential inclusion, variational inequality,
optimal control, game theory, economic equilibrium problem, viability theory etc.
Realizing the importance of the application of the set-valued maps, it becomes
essential to study the notion of derivative for a set-valued map as it is most
important for the formulation of optimality conditions. Aubin [1] introduced
the notion of contingent derivative of a set-valued map. Later it was observed
by Corley [4] that in case of contingent derivative, necessary and sufficient
optimality conditions do not coincide under standard assumptions. Therefore, while
characterizing optimality conditions, derivatives involving epigraph of set-valued
maps were considered rather than their graph [7, 9]. These derivatives were termed
as epiderivatives of different types. These epiderivatives differed either on the basis
of their tangent cones or on the nature of the minimizers. Working in this direction,
Jahn and Rauh [7] introduced contingent epiderivative in set-valued analysis.
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Luc and Malivert [8] extended the study of invexity to set-valued maps and
vector optimization problems with set-valued data. Sach and Craven [9] proved
Wolfe type (WD) and Mond Weir type (MWD) duality theorems for set-valued
optimization problems under invexity assumptions. Later on Bhatia and Mehra
[3] introduced preinvex set-valued map as an extension of the notion of convex
set-valued map. Bao-huai and San-Yang [2] investigated the KKT optimality
conditions for preinvex set-valued optimization problems with the help of the
generalized contingent epiderivative. Recently Das and Nahak [5, 6] and Yu and
Kong [10] studied various types of generalized convexity notions for studying set-
valued optimization problem via contingent epiderivatives.

In this paper, we study set-valued fractional programming problem (FP) and
its associated parametric problem (FP)y«. It is structured as follows: In Section
2 we recall some well known definitions and results. We also introduce a new
class of generalized setvalued cone preinvex maps. Then we give characterization
of these maps in terms of contingent epiderivatives. In section 3 necessary and
sufficient optimality conditions are obtained for a weak minimizer of the problems
(FP) and (FP)y~. In section 4, we formulate Parametric type dual, Wolfe type dual
and Mond Weir type dual of (FP) and establish weak duality, strong duality and
converse duality results for the same.

2. DEFINITIONS AND PRELIMINARIES

Throughout this paper, let X and Y be real normed spaces. Let K C Y be a
closed, pointed convex cone with non-empty interior. Then its positive dual cone
K™ is defined as follows:

Kt={y*eY:{y",y)>0forallye K}

Several kinds of tangent cones have been studied in literature. We now give the
definition of tangent cone namely, the contingent (or Bouligand tangent) cone.

Definition 2.1. Let B be a non-empty subset of Y. Then the contingent (or
Bouligand tangent) cone to B at y* € B is denoted by T(B,y*) and is defined as

T(B,y")={y€Y :3y, — y",yn € B,t, > 0,n — ocosuch that ¢, (y,—y*) — y}
or
T(B,y*)={yeY:3y, — y",yn € B,t, | 0 such that y* + t,y, € B}

Let F : X — 2Y be a set-valued map where X and Y are real normed spaces.
Let the space Y be partially ordered by a closed convex pointed cone K C Y with
nonempty interior. The domain, graph and epigraph of F' are defined as

domF ={zx e X :F(z) # ¢};
gr F={(z,y):x € X,y € F(a)};
epiF ={(z,y):x € X,y € F(z)+ K}.

Jahn and Rauh [7] gave the following notion of contingent epiderivative relating
epigraph of the derivative with the contingent cone.

Definition 2.2. A single valued map DF(z*,y*) : X — Y whose epigraph is the
contingent cone to epi ' at (z*,y*) € gr F, that is,

epi DF (2%, y") = T(epi F' (2", 7))
is called the contingent epiderivative of F' at (x*,y*).

In the present paper we assume condition C on 7 defined as follows:
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Condition C ([2]). Let n: X x X — X be a map. Then 7 is said to be satisfy
Condition C if for any z,y € X.
(C1) n(z,z) =0;

(€2) U n(z,y) =X, VyeX;
€X

(C3) n(Az, \y) = An(z,y), n(x — x0,y — x0) = n(z,y), for all z,xg,y € X
Consider the following set-valued fractional programming problem
... F(x) Fi(x) Fy(x) F ()
FP - = o
(FP) K-minimize Gl) ( Gl G G
subject to H(z) N (—Q) # ¢,

where X is a real normed space and S is a non-empty subset of X, F: § — 28"
G:S— 28" and H: S — 28" are set-valued maps.
K and Q are closed convex pointed cones in R™ and R* respectively with non-
empty interiors. The feasible set of the problem (FP) is
X0 —{zeS: H)N(-Q) # 6}
Throughout the paper, we denote
ORm == (0,07 ceey O) S R”L

Definition 2.3. A point (mﬂ%) € X x R™, with z* € X%, y* € F(2*) and
z* € G(z*) is called a minimizer of the problem (FP) if there exist no z € X0,
y € F(z) and z € G(x) such that

y_v

z oz
Definition 2.4. A point (m*,g—*) € X x R™, with z* € X", y* € F(2*) and
2* € G(z*) is called a weak minimizer of the problem (FP) if there exist no z € X°,
y € F(z) and z € G(x) such that

g—y—*e—intK.
z oz

€ —K\{Ogm}.

Consider the parametric problem (FP) - associated with the set-valued fractional
programming problem (FP):

(FP),. K- miniGHSﬂze F(z) = N*G(x)
subject to H(z) N (—Q) # ¢.

Definition 2.5. A point (z*,y* — \*2*) € X x R™, with \* = Z—:, z* € X0,
y* € F(z*) and z* € G(z*) is called a minimizer of the problem (FP)j« if there
exist no z € X, y € F(z) and 2z € G(x) such that

(y—A2)—(y* = A"2*) e =K\ {Ogm}.

Definition 2.6. A point (z*,y* — A\*z*) € X x R™, with \* = ‘Z—:, r* e XO,
y* € F(z*) and z* € G(z*) is called a weak minimizer of the problem (FP)y. if

there exist no xz € X%, y € F(x) and z € G(z) such that

(y—A2)—(y" = A2 e —int K.
Lemma 2.1 (3). A point (x*, g—) € X x R™ is a weak minimizer of the problem
(FP) if and only if (x*,0rm) is a weak minimizer of the problem (FP)x~, where
A=
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Let X, Y be real normed spaces. Let 1 : S xS — X be a vector valued function.
Let S C X be a non-empty set.

Definition 2.7. A subset S C X is said to be an #n-invex set if for every z,z* € S
there exists a map 7 : S x .S — X such that
x* + Anp(z,z*) € S, for all X € [0,1].
Now, we introduce the notion of p-cone preinvexity of set-valued maps.

Definition 2.8. Let S C X be an n-invex set. Let e € int K and F : S — 2Y be
a set-valued map. Then F is called p — K — n-preinvex at * € S with respect to e
on S if there exists p € R such that

(1= NF(") + AF(z) € F(@* + Az, 2%)) + (1 = Nplln(z, 2|2 + K,
for all z € S and X € [0, 1].
F is p — K — n-preinvex with respect to e on S if F' is p — K — n-preinvex with
respect to e for all z* € S.

Remark 2.1. (i) If p = 0, then the definition of p — K — 7 preinvex reduces
to the usual notion of cone K — 7 preinvexity of set-valued maps defined by
Bhatia and Mehra [3].

(i) If n(z,2*) = z —a*, then p— K — 1 preinvex functions reduce to p — K-convex
functions defined by Das and Nahak in [6].

Now we give a characterization of p-cone preinvexity of set-valued maps in terms
of their contingent epiderivatives.

Theorem 2.1. Let S C X be an n-invex set, e € int K and F : S — 2Y be
p — K — n-preinvex with respect to e on S. Let x* € S and y* € F(z*). Suppose
that F is contingent epiderivable at (x*,y*). Then

F(z) —y* C DF(z*,y*)n(z,2*) + plln(z, z*)|?e + K, for all z € S.

Proof. Let x € S and y € F(x). As F is p — K — n preinvex with respect to e on S,
therefore

(1= NF(*) + \F(2) € F(z* + An(a,2)) + pA1 = Nlln(e, %)% + K,
for all z € S and A € [0,1].

Define a sequence {(Zn, yn)}neny Wwith

1
Tp ="+ —n(z,x*)
n

and
1 1 1 1
Yn =—y+ <1 - ) Yy —p— <1 — ) ln(z, z*)||%e, for all n € N.
n n n n
Therefore )
Yn € F (az* + nn(m,x*)) + K, forallzelb.
Thus

yn € F(x,) + K, forallz e S.
It is clear that

Tp — 2%, Yy — y*, n(x, — ) — n(x, "), when n — oo and

* * 1 *
i =) === p (1= 1) o)
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—y —y* — pln(z,xz*)|%e, when n — occ.
Therefore
(n(z,2*),y —y* — plin(z,2*)|1e) € T(epi(F), (z,2*)) = epi(DF (¢*,y%)).
Consequently
y—y* —pln(z,z")||’e € DF(z*, y")n(z,2*) + K,
which is true for all y € F(x).
Therefore
F(x) —y* C DF(a*,y*)n(z,2*) + plln(z,z*)||%e + K, for all x € S.
O

Remark 2.2. If F satisfies the above condition then it is said to be p— K — 7 invex
function.

3. OPTIMALITY CONDITIONS

We shall use the following Slater type constraint qualification to prove the
necessary optimality Kuhn Tucker conditions for (FP)y«.

Definition 3.1. A set-valued map H : S — 27" is said to satisfy the generalized
Slater’s constraint qualification if there exists an element & € S such that

H(Z)N—intQ # ¢.

Bao-Huai and San Yang [2] investigated KKT necessary optimality conditions
for a set-valued vector optimization problem in terms of alpha order contingent
epiderivatives by assuming the objective and the constraint function to be alpha
order preinvex.

If we take o = 1, then we can get the following necessary optimality conditions
for (FP)y«.

Theorem 3.1 (Karush-Kuhn-Tucker Necessary Optimality Conditions). Let S C
X be a n-invex set satisfying Condition C. Let (z*,y* — X\*2*) be a weak minimizer
of (FP)x«. Let F : S — 2" be K —n preinvex set-valued map, —\*G : S — oR*
be K —n preinvex set-valued map and H : S — 2R" pe Q — n preinvex set-valued
map. If H satisfies generalized Slater’s constraint qualification and F' is contingent
epiderivable at (z*,y*), —A\*G is contingent epiderivable at (x*,—\*z*) and H s
contingent epiderivable at (z*,w*), where w* € H(z*) N (—Q), then there exists
(t*,u*) € Kt x QF, with 7* # Orm such that
(7%, DF (=", y")n(z,2%) + D(=A"G)(z", =A"z")n(z, 27))
(", DH(z*,w*)n(z,z*)) > 0, for all x € S. (3.1)
(B, w) =0 (32)
In the light of Lemma 2.1, we have the following necessary optimality theorem
for (FP).

Theorem 3.2 (Karush-Kuhn-Tucker Necessary Optimality Conditions). Let

S C X be an n-invex set satisfying Condition C. Let | z*, y—* be a weak minimizer
z

of (FP). Let 2*F : S — 28" be K —n preinvex set-valued map, —y*G : S — oR"

be K —n preinvex set-valued map and H : S — 28" e Q — n preinvex set-valued
map. If H satisfies generalized Slater’s constraint qualification and z* F' is contingent
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epiderivable at (x*,y*z*), —y*G is contingent epiderivable at (z*,—y*z*) and H
is contingent epiderivable at (z*,w*), where w* € H(x*) N (—Q), then there exists
(7%, 1*) € K+ x QF, with 7* # Ogm such that
(%, D(z"F)(a",y") + D(—y*G) (", —y"2")n(x, 27))
+ (@, DH (", w*)n(xz,x™)) >0, for allz € S (3.3)
and condition (3.2) hold.

Now we establish sufficient optimality conditions for the problems (FP) and
(FP)x« by assuming that the objective and constraint set-valued maps are p-cone
invex as well as contingent epiderivable.

Theorem 3.3 (Sufficiency). Let S C X be an n-invex set, z* € X°, y* € F(x*),
z* € G(z*), \* = Z—* and w* € H(z*) N (—Q). Assume that F is p1 — K — n invex
with respect to e, —\*G is po — K — n invex with respect to e and H is p3 — Q —n
invex with respect to e on S. Let F' be contingent epiderivable at (z*,y*), —A*G be
contingent epiderivable at (z*,—A*z*) and H be contingent epiderivable at (z*,w™*).
Suppose there exist 0 # 7% € KT and p* € Q% satisfying the conditions (3.1)
and (3.2), then (x*,y* — A\*2*) is a weak minimizer of the problem (FP)x~ provided
(p1+p2)(T7,€) + ps(u™,e) 2 0 (34)

Proof. Let if possible (z*, y* —\*2*) be not a weak minimizer of the problem (FP)-.
Then there exist € X°, y € F(z) and z € G(x) such that
(y—A2z)—(y" —A"2") € —int K.
As y* — X*z* =0, so we have
y—ANz€e—int K.
Hence (7*,y — A\*z) < 0.
Therefore we have (7*,y — A*z — (y* — A*z*)) < 0.
Since xg € X , there exists an element w € H(z) N (—Q).
Therefore {(p*,w) < 0.
So, (u*,w —w*) < 0.
Hence
(T y—ANz—(y = N2") + (W, w—w") <0. (3.5)
As F'is py — K — n invex with respect to e, —A*G is ps — K — 7 invex with respect
to e and H is p3 — @ — 7 invex with respect to e on S. We have
F(z) —y* C DF(a",y")n(z,z") + pr|n(z, z)|*e + K,
= NG(x) + X2" C D(=NG) (", =A\"2")n(x,2%) + pol|n(a, z*) | *e + K

and
H(z) —w* C DH(z*, w*)n(x,z*) + ps||n(z, z*)||%e + Q.

Hence

y—y* € DF(z", y )z, a*) + pr[n(z, 2*)|*e + K,

=Nz +N2" € D(=NG)(*, =N 2")n(z, ") + palln(z,2")|*e + K
and

w—w* € DH(a*,w*)n(z,2*) + pslln(z,z”)|*e + Q.

This gives

y—y* — DF(z*,y")n(z,z*) — p1|n(z,2*)|%e € K,
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— N2+ N2 = D(=NG)(x*, =N 2*)n(x, %) — pa|n(z, z*)|*e € K
and
w—w" = DH("w)n(z,2") — paln(z, %)% € Q.
This further gives
<T*7y - y* - A"z + )‘*Z*> - <T*7 DF(m*7y*)n(xax*) + D(—A*G)(.’E*7 —)\*Z*)T](Q?,QE*»
- (pl + p2)<7—*7 6>||?’](I, ‘T*)”z + <.u*a w — w*> - <,[L*, DH(I*v W*)ﬁ(l’» :E*)>
= pa{u”, e)ln(z,z*)|* = 0
By condition (3.4), this implies
(T —y" = A2+ X°2") = (77, DF (2", y")n(x, 2") + D(=A"G) (2", —=A"2")n(z, 2"))
+ (" w —w") = (W — DH(z",w*)n(z,2%)) 2 0
By condition (3.1), this implies
Ty =y = A2+ A2 + (s w —w™) 20
which contradicts (3.5).

Therefore (x*, y* — A\*z*) is a weak minimizers of (FP)j-. O
Theorem 3.4 (Sufficiency). Let S C X be an n-invez set, z* € X°, y* € F(z*),
z* € G(z*) and w* € H(z*) N (—Q). Assume that z*F 1is p1 — K —n invex with
respect to e, —y*G is py — K — n invex with respect to e and H is ps — Q — n invex
with respect to e on S. Assume that z*F is a contingent epiderivable at (z*,y*z*),
—y*G s contingent epiderivable at (x*, —y*z*) and H is contingent epiderivable at
(z*,w*). Further suppose that there exist (7%, u*) x KT x QT with 7* # Ogm such
that condition

(7%, D(Z"F) (™, y" 2" )n(z,
+ (W, DH (2", w*)n(x, 7))

D(=y*G)(z", —y*z")n(z, 27))
, forallz € S

")+

>0
and condition (3.2) are satisfied. Then ( —*) is a weak minimizer of the problem
(FP) provided condition (3.4) holds.

4. DUALITY

We now formulate parametric, Mond-Weir and Wolfe type duals for the problem
(FP) and study duality theorems for the same.

Parametric type dual. We associate the following parametric type dual (PD)
with the primal problem (FP).
(PD) maximize A
subject to
(1, DF (u,v)n(x,u) + D(=AG)(u, —N)n(x, u))
+ {u, DH (u, q)n(z,u)) >0, for all zg € X,
(n,q) >0,

uesS, veF(u), l € Gu), )\:%7 q € H(u).

0£7€ K", pe@t and (r,e) = 1.

A point (u*,v*,1*, \*, ¢*, 7", p*) satisfying all the constraints of the problem (PD)
is called a feasible point of (PD).
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Definition 4.1. A feasible point (u*,v*,1*, \*,¢*,7*, u*) of the problem (PD) is
called a weak maximizer of (PD) if there exists no feasible point (u,v,l, A, q, 7, 1)
of (PD) such that
A=A €int K.

Theorem 4.1 (Weak Duality). Let S C X be an n-inver set, T € X and
(u*, v*, I* ) \*, ¢*, 7%, 1u*) be a feasible point of the problem (PD). Suppose that F is
p1 — K —n invexr with respect to e, —A\*G is pa — K — n invex with respect to e and
H is p3 — Q — n invex with respect to e on S. Further assume that F is contingent
epiderivable at (u*,v*), —A\*G is contingent epiderivable at (u*,—A\*1) and H is
contingent epiderivable at (u*,q*). Then

F(z)

G(z)
provided condition (3.4) holds.

— A CR™\ —int K,

Proof. Let if possible for some © € F(z) and | € G(z),
% — A\ eintK.

Thus o — A\*[ € —int K.
Hence (7,0 — X\*I) < 0.
Therefore, (7*,0 — X[ — (v* — A*I*)) < 0.
Now as z € X°, we have
H(z)N(-Q) # ¢
Let § € H(z) N (—Q). Then

(0", q) <0.
Again, from the constraints of (PD), we have
(W q") > 0.
Hence (4", — ¢*) < 0.
Therefore
(T, — XN — (v* = XN I*) + (1", — ¢*) < 0. (4.1)

As F is py — K — 7 invex with respect to e, —A*G is po — K — n with respect to e
and H is p3 — Q — n invex with respect to e on S, we have

F(z) —v* C DF(u",v*)n(z,u") + pr[[n(z,u*)|e + K,
(=X*G)(Z) + A1 C D(=X*G)(u*, = \I*) +n(Z,u*) + pa||n(z, u*)||*e + K
and
H(z) - ¢" C DH(u",¢")n(z,u*) + p3|n(z,u*)|%e € Q.
Hence
0 —v* € DF(u*,v*)n(z,u*) + p1||n(Z,u")|%e + K,
— N4 N1 € D(=XG)(u*, =N )n(z,u*) + po||n(z, u*)|?e + K
and
q—q" € DH(u",q")n(z, u") + p3|n(z, u")|*e + Q.
Hence, from the constraints of (PD) and condition (3.4), we have
(75,0 — N1 — (v = N1%)) + (u*, g — ¢*) >0,

which contradicts equation (4.1).
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Thus )
% “A\ ¢ it K.
Since © € F(&) and [ € G(&) are arbitrary, therefore
F(z)
—A*CR™\ —int K.
G(z) - \—in
By the Theorems 3.1 and 4.1, we get the following result. O

Theorem 4.2 (Strong Duality). Let S C X be an n-invez set satisfying Condition
C. Let (z*,y* — \*2*) be a weak minimizer of (FP)y-. Let F : S — 28" bpe
K — n preinvex set-valued map, —\*G : S — 2R e K — 7 preinvex set-valued
map and H : S — 2F" pe Q — n preinvez set-valued map. Further assume that H
satisfies generalized Slater’s constraint qualification and F is contingent epiderivable
at (z*,y*), —A*G is contingent epiderivable at (x*,—A*2*) and H is contingent
epiderivable at (z*,w*), w* € H(xz*) N —(Q). Then there exist 0 # 7" € KT,
pt € QF such (x*,y*, 2%, N\, w*, 7, 1u*) is feasible for (PD). Moreover, if for
each feasible point of (PD), hypothesis of Weak Duality Theorem 4.1 holds, then
(z*, y*, 2%, X5, w*, 7%, u*) is a weak mazimizer of (PD).

Theorem 4.3 (Converse Duality). Let S C X be an n-invex set and (u*,v*,1*, \*,

q*, 7, 1) be a feasible point of the problem (PD), where \* = 7—* Suppose that
F is py — K — n invex with respect to e, —\*G is po — K — n invex with respect
to e and H is p3 — Q — n invex with respect to e on S. Also let F be contingent
epiderivable at (u*,v*), —X\*G be contingent epiderivable at (u*, —\*1*) and H be
contingent epiderivable at (u*,q*). If u* is a feasible point of the problem (FP)x«,
then (u*,v* — A*1*) is a weak minimizer of the problem (FP)x« provided condition

(3.4) holds.

Proof. Let if possible (u*, v* —A*I*) be not a weak minimizer of the problem (FP)y-.
Then there exist € X, v € F(z) and | € G(x) such that
(v=A1) — (v* = A"") € —int K.

This gives

v—ANl€e—int K
Since Opm # 7% € KT, so this further gives

(T, o= X"1) <0
Therefore

(",0 = A"l — (v* = \*1")) < 0.

Proceeding on the same lines as in the proof of Theorem 4.1, we will get the

result. O

Mond-Weir type dual. We now associate the following Mond-Weir type dual
with the primal problem (FP).

(MWD) maximize %

subject to

(1, D(LF) (u, vl)n(z,u) + D(—vG)(u, —vl)n(x, u))
+ {u, DH (u, q)n(z,u)) >0, for all z € X°,

(. q) >0,
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ueS, veF(u),l€Gu), gec Hu), 0#7€ K", peQ”"

and (1,e) = 1.
A point (u*,v*,l* ¢*, 7%, n*) which satisfies all the constraints of the dual
problem (MWD) is a feasible point of (MWD).

Definition 4.2. A feasible point (u*,v*,l*,¢*, 7%, u*) of the problem (MWD) is
called a weak maximizer of (MWD) if there exists no feasible point (u,v,l,q, T, 1)
of (MWD) such that

% - 1;—* € int K
Theorem 4.4 (Weak Duality). Let S C X be an n-invez set, z € X° and (u*,v*,1*,
q*, 7%, 1*) be a feasible point of the problem (MWD). Suppose that I*F is p1 — K —n
invex with respect to e, —v*G is po — K —n invex with respect to e and H is p3—Q—n
invex with respect to e on S. Also let I*F be contingent epiderivable at (u*,v*1*),
—v*G be contingent epiderivable at (u*, —v*l*) and H be contingent epiderivable at
(u*,q*), then
F(z) v

— — CR™\ —int K
Gz) 1= \—int K,
provided condition (3.4) holds.

Proof. Let if possible for some © € F(z) and | € G(Z),

As [I* € R*, so this implies
o —vle —int K.

Thus (7%, 00" —v*l) < 0.
Now Z € X©, so there exists an element g € H(Z) N (—Q).

Therefore
(n",q) <0
Again, from the constraints of (MWD), we have
(w,q%) = 0.
So
(W,q—q") <0
Hence,

(0 — ')+ (0 G —q7) < 0. (4.2)

Since [*F is p; — K — n invex with respect to e, —v*G is po — K — 7 invex with
respect to e and H is p3 — @ — i invex with respect to e on S, we have

("F)(@) = v"1" € DU F)(u", 0" )n(,u”) + pi]n(z, u”)|%e + K,
(—v"G) (@) —v"I* € D(v*G)(uw", v* (T, u”) + pal|n(z, w”)|*e + K
and
H(z)—q" € DH(u",q")n(@,u") + ps|n(@,u”)[Ie + Q.
This gives
I —v*l* € D(I*F)(u*, v* 1" )n(Z, u*) + p1||n(z, u*)|%e + K,
— 0"l + 01 € D(—v*G)(u*, —v* T)n(T,u*) + po|n(T,u*)|?e + K
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and
G—q" € DH(",¢")n(z,u") + pslln(@, u’)|*e + Q.
Thus, from the constraints of (MWD) and condition (3.4), we have
(70l =o'l + (W, g~ q") 2 0

which contradicts equation (4.2).

Hence
S ¢ —mtK.
[
v _ F(Z) .
Since — € is arbitrary, so
[ G() Y
F(z) o* .
——~ - — CR"™\ —int K. O
G SR\

By the Theorems 3.2 and 4.4, we will get the following result.

Theorem 4.5 (Strong Duality). Let S C X be an n-invez set satisfying Condition

*

C. Let (1:*, y*> be an weak minimizer of (FP). Let z*F : S — 28" be K — 1
z

preinver set-valued map —y*G : S — 2R pe K — n preinvex set-valued map and
H:S —2F" pe Q — n preinvez set-valued map. If H satisfies generalized Slater’s
constraint qualification and z*F is contingent epiderivable at (x*,y*z*), —y*G is
contingent epiderivable at (x*, —y*z*) and H is contingent epiderivable at (z*,w*),
where w* € H(xz*) N (—=Q). Then there exists Opm # 7 € KT, p* € QF, such that
(z*,y*, 2%, w*, 7%, u*) is feasible for (MWD). Moreover, if for each feasible point of
(MWD), hypothesis of Weak Duality Theorem 4.4 holds, then (x*,y*, z*, w*, 7%, u*)
is a weak maximizer of (MWD).

Theorem 4.6 (Converse Duality). Let S C X be an n-invex set and (u*,v* 1*,
q*,n*, 1) be a feasible point of the problem (MWD). Suppose that I*F is py — K —1)
invex with respect to e, —v*G is pa— K —n invex with respect to e and H is p3—Q—n
invex with respect to e on S. Also let I*F' be contingent epiderivable at (u*,v*[*),

—v*G be contingent epiderivable at (u*, —v*l*) and H be contingent epiderivable
*

at (u*,q*). If u* is a feasible point of the problem (FP), then (U*, ;) is a weak
minimizer of the problem (FP) provided condition (3.4) holds.
1

Proof. Let if possible <v*, Y ) be not a weak minimizer of the problem (FP). Then

there exist z € X°, v € F(x) and [ € G(x) such that

v vF .
7 — F € —int K
This gives

vl* —v*l e —int K.

Thus (7%, vl* —v*l) < 0.
Proceeding on the same lines as in the proof of Theorem 4.4, we will get a

U*
contradiction which proves that (u*, l*) must be a weak minimizer of (FP). O



46 J. NONLINEAR ANAL. OPTIM. VOL. 10(1) (2019)

Wolfe Type Dual. We now associate the following Wolfe-type dual with the
primal problem (FP).

(WD) maximize M
subject to
(1, D(IF) (u, vl)n(z,u) + D(—vG)(u, —vl)n(x,u) > 0, for all z € X°.
(4.3)
{1, DH (u, @)n(x,u)) >0, for all x € X°, (4.4)
ueS, veF(u), l€Gu), Opm #T€ KT, ne@t
and (1,e) = 1.

Definition 4.3. A feasible point (u*,v*,*, ¢*, 7", u*) of the problem (WD) is called
a weak maximizer of (WD) if there exists no feasible point (u,v,lq, 7, u) of (WD)
such that
vt (g v+t q)
l I*

The following results can easily be established for the Wolfe type dual.

€ int K.

Theorem 4.7 (Weak Duality). Let S C X be an n-invex set, & € X° and (u*,v*,1*,
q*, 7", 1) be a feasible point of the problem (WD). Suppose I*F is p1 — K —n invex
with respect to e, —v*G is pa — K — n invex with respect to e and H is ps — Q —n
invex with respect to e, on S. Also I*F is contingent epiderivable at (u*,v*l*),
—v*G is contingent epiderivable at (u*, —v*1*) and H is contingent epiderivable at
(u*,q*). Then

F(z v* 4 (u*, q%)e .

GE@;_ <éi a) CR"™\ —intK,

provided
(p1+ p2){(7*,€) 2 0 and p3(u*,e) >0 (4.5)

Theorem 4.8 (Strong Duality). Let (x*, Z—*) be a weak minimizer of the problem
(FP) and w* € H(z*) N (—Q). Suppose that there exists 7" € KT, u* € Q1 with
(t*,e) > 1 such that conditions (4.3) and (4.4) are satisfied at (x*,y*, z*,w*, 7%, u*).
Then (z*,y*, z*,w*, 7%, u*) is a feasible solution of the problem (WD). Furthermore,
if for each feasible point of (WD) the conditions of Weak Duality Theorem 4.7 hold,
then (x*,y*, z*, w*, 7%, u*) is a weak mazimizer of (WD).

Theorem 4.9 (Converse Duality). Let S C X be an n-invexr set and
(u*,v*,I*,¢*, 7", u*) be a feasible point of the problem (WD) and {u*,q*) = 0.
Suppose that I*F is p1 — K — n invex with respect to e, —v*G is po — K — n invex
with respect to e and H is ps — Q — n invex with respect to e, on S. Also let [*F' be
contingent epiderivable at (u*,v*I*), —v*G be contingent epiderivable at (u*, —v*1*)
and H be contingent epiderivable at (u*,q*). If u* is a feasible point of the problem

*

(F'P), then (u*, % is a weak minimizer of the problem (FP) provided condition
(4.5) hold.
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