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A NOTE ON A DUAL SCHEME OF A LINEAR FRACTIONAL PROGRAMMING
PROBLEM

TA QUANG SON! & HUYNH KHOA?2

ABSTRACT. We are interested in the duality scheme of a linear fractional programming
problem proposed by Seshan [11]. The remarkable feature of the duality scheme is that the
dual problem and the primal problem have the same linear fractional objective functions.
Although the duality scheme is fascinating and has been introduced in literature, the steps
how to build the scheme still be silent. The aim of this paper is to show that the dual
problem can be obtained based upon the transformation forms given by Charnes-Cooper or
by Dinkelbach with a simple change variable method.

KEYWORDS : Seshan duality; Charnes-Cooper transformation; Dinkelbach transformation.
AMS Subject Classification: 90C32, 90C05, 90C46

1. Introduction

Fractional programming problems were attracted by many authors early [4], [6],
[7], [13]. As a generalization of linear programming problems, the following linear
fractional programming problem was considered.

T
cxr—+co
P) Max F' = —
(P) Max F(z) = 7 =
s.t. Ax < b,
z >0,
C1 d1 b1
Co dg bz
where ¢ = . ,d = . , b= . ; co,dy are constants, A is an
Cn d, b
m X n real matrix (m < n), and rankA = m. There exist several methods for solving
the problem (P) introduced in the books [2], [10]. Moreover, there are several dual
schemes for (P) are proposed for years [1], [5], [6], [11], [12].

1 Corresponding author.
1 Faculty of Applied Mathematics & Applications, Saigon University, Hochiminh City, Vietnam, Email: taquangson@sgu.edu.vn.
2 Nguyen Thi Dieu Highschool, Hochiminh City, Vietnam, Email: khoa2103@gmail.com.
Article history : Received 11 October 2017 Accepted 19 October 2017.
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It is well known that a dual problem of a linear programming problem is also
a linear programming one. Naturally, it was expected that a dual problem of a
linear fractional programming problem is also a linear fractional programming one.
Among dual schemes in linear fractional programming, there exist some ones are
linear fractional problems [3]. We are interested in the one proposed by Seshan
[11]. In the paper the following dual problem for (P) is given.

T
(D) Min I(u,v) = % (1.1)
s.t. c(d™u) — d(cTu) — ATv < ¢od — doc, (1.2)
codTu — docTu +bTo < 0, (1.3)
u>0,v>0. (1.4)

The remarkable feature of the dual scheme is that the dual problem and the pri-
mal problem have the same linear fractional objective functions. For this duality
scheme, the weak and strong duality theorems were established [1 1] and the results
were also quoted in [2].

Although the dual scheme above was introduced since 1980 and was quoted
in literature, as far as we know, the rule for building a dual problem (behind the
construction) from the problem (P) was not introduced and the steps how to obtain
the formulation (1.1)-(1.4) still be silent. In the paper [3], published in 2010, it
was shown that there exist some duality schemes for (P) are equivalences. The
paper only shows that the duality scheme for (P) proposed by Gol’stein [8] can
derive the Seshan’s scheme via the use of a Lagrange function associated with the
Chanes-Cooper transformation [9].

Our aim of this paper is to clarify the way for building the Seshan’s duality
scheme proposed in [1 1]. For this purpose, firstly, we use Charnes - Cooper trans-
formation [9] to change (P) to a linear problem. Next, by using a basic dual rule, we
formulate its dual problem. Lastly, by using a simple change of variable method,
we access to the Seshan’s dual scheme. In addition, by using Dinkelbach trans-
formation [2], we can see that the problem (P) is equivalent to the one in the form
of linear problems. Then, we consider its dual problem. From this step, based on
a simple change variable method, we can reach to the Seshan’s dual problem.

The remains of the paper are organized as follows. The next section is devoted
some basic results. In the last section, we introduce two way to obtain Seshan’s
dual scheme for (P).

2. Preliminaries and notations

Denote by X = {z € R" | Az < b,z > 0} the feasible set of (P). Suppose that
dTz +dy > 0 for all z € X, X is bounded and the objective function F' of (P) is
not constant on X. We also denote the feasible set of (D) by Y and assume that
d"u + dy > 0 for all (u,v) € Y. Using Charnes - Cooper transformation [2], the
problem (P) can be changed to a linear programming (see [2, p.78]) as follows.

Let { = ————— and y = tx we derive the following linear problem:
dTx + dy

(L1) Max G(y,t) = Ly + eot
s.t. Ay — bt <0,
dTy +dot =1,
y>0,t>0.
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Denote by F} the feasible set of (L1). We also note that the problem (P) is solvable
if and only if the problem (L1) is solvable also. Moreover, they have the same optimal
values.

c (7 dy

Settinga= | * |,z= - |.8= * |, A=[A| -], the problem (L;)
Cn Yn dn
Co t d()

can be rewritten in the following formulation:
(Lla) Max alz
s.t. Az < 0,
prz=1,
22> 0 (zp41 > 0).

We need the following results. For the problem (P), set f(z) = ¢’z + ¢y and
g(z) = d¥x + dy where d'x +dy > 0 forall v € X.

Lemma 2.1. ([2, p. 88]) The function F' defined by F/(\) = ma))(([f(:c)f/\g(x)], A ER,
S
is strictly decreasing in \.

Lemma 2.2. ([2, Theorem 3.5.3, p. 87]) The point xq € X is the optimal solution of
(P) if and only if

max[f(z) — Aog(x)] = F(Xo) =0,

where \g =

3. Main results

3.1. Using Charnes - Cooper transformation to derive Seshan duality scheme.
Since the problem (L1a) is a linear programming problem, by using the duality
rule for (L1a), the dual problem of (L1a) is

(DL1) Min H (&) = ¢Ts
st. & >0,i=1,m,

Em+1 ER,
¢'B > al,
&1 0
where ¢ = Em , 5= () ’B:[ﬁ” ;g}
Em+1 1
&
For (DL1), denote a; the i-column of A, 7 = 1,n. Setw = and A = &, 41.
Em
Then,
¢TB = (aFw + Ay, ... aZw + Ady, —bTw + Ady).
Hence,

E'B>al o ATw+ X d>cv —bTw+ Ay > co.
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Note that, ¢7's = &,,41 and A = &,, ;1. The problem (DL1) becomes

(@,) Min A (3.1)
s.t. ATw > ¢ — M\, (3.2)

bTw + cog — Adp <0, (3.3)
w>0,weR™. (3.4)

We will show that the problem (1.1)-(1.4) can be obtained by the problem (3.1)-
(3.4) via the following transformation.

cTu —+ co
dTu+dy’
v = (dTu + do)w. Then, the constraint (1.2) is equivalent to (3.2) and the constraint
(1.3) is equivalent to (3.3).

Proposition 3.1. Assume that d"u + dy > 0 for all uw > 0 and set A =

Proof. We have

ATw>c— M

—ATw < \d—c

— ATy < (M — e)(du + do)
(dTu)e — (cTu)d — ATv < (d¥u)c
(dTu)e — (cTu)d — ATv < (d¥u)c
(d"u)e — (cTu)d — ATv < cod — dye.

Hence, the constraint (1.2) is equivalent to (3.2). Furthermore, we have

lel)‘FC()*)\do SO
54 (dTU + d(])bTU) + C()(dTU + d()) — d(](CTU + C()) <0
< blo+ codTu — docTu < 0.

Thus, the constraint (1.3) is equivalent to (3.3). O

(cTu)d — (dTu + dp)(c — \d)
(cTu)d — (dTu)e — doc + (cT'u + co)d

1 A

Note that, since d"u 4+ dg > 0 and w > 0, v > 0.

Remark 3.2. From Proposition 3.1 and w > 0, we say that the problem (D) can be
reached by (Q)).

3.2. Using Dinkelbach transformation to derive Seshan duality scheme.
Based on Lemma 2.2, an optimal solution of (P) is also an optimal solution of the
following problem:

(L2) Max {(c"x + co) — N(d"x +do)}
s.t. Ax < b,
x>0,

where ) is the optimal value of (P). Note that, the problem (L2) can be rewritten by
the following formulation.

Max {(c — Md)Tz 4 ¢ — Ndo}
s.t. Ax < b,
x> 0.

By applying the basic duality rule for linear programming problem to (L2), we
obtain the following problem

(DL2) Min {b"w + ¢y — Adp}
sit. ATw>c— A,
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w>0,weR™.
Denote by F5 the feasible set of (DL2).

Remark 3.3. The optimal value of (L2) equals to 0 and the optimal value of (DL2)
does also by the strong duality.

Lemma 3.4. The function R defined by
R(\) = ngn{bTw +co— Mo | ATw > ¢ — Md,w > 0,w € R™}
is strictly decreasing.
Proof. Suppose that Ay > ;. We get
R(X\o) = Irzlli)n{bTw +co— Xadp | ATw > ¢ — \od,w > 0,w € R™}
= bW + co — Aady

where w be a optimal solution of (DL2) according to A,. Based on the strong duality
property of linear programming, we get

R(X\s) = m;xx{(c — Xad) 'z + o — Xodp | Az < b,z > 0}
= (c— Xad)TZ + co — Nadp
< (e = Md)" T+ co — Mido
< max{(c—M\d)"z + o — Midy | Av < b,z > 0}
< ngn{bTw +co— Mdo | ATw > ¢ — M\id,w > 0,w € R™} = R(\).
Hence, the function R is strictly decreasing in . (]

Proposition 3.5. Suppose that ) is the optimal value of (P). Then, the vector ¥ is an
optimal solution of (DL2) if and only if (T, A) is an optimal value of (@)).

Proof. Let v be an optimal solution of (DL2). Then, by Remark 3.3, we get
b0 + co — Adg = 0.

Moreover

ATo>c—Adv o >0.
Hence, - -

R()\) =0v (17, )\) € Fs.
On the other hand, for any (w, \) € F», we get

R(\) <0=R(\).

Since the function R is strictly decreasing, it yields X < A. Hence, )\ is the optimal
value of (@,), i.e., (¥, A) is an optimal solution of (@, ).
Conversely, let (7, \) be an optimal solution of (Q,). We have

bT’l_} +co — j\d() S 0,
AT >c—Advo>0.
Since ) is the optimal value of (P), milg {bTw + ¢y — Adp} = 0 by Remark 3.3. On
weky
the other hand, 7% + ¢y — Adg > miII} {bTw + co — Mdp} = 0. We obtain
we ks
bTT/ +co— S\do =0.

This means that v is an optimal solution of (DL2). O
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Remark 3.6. The problem (DL2) equals to (Q)). This together with Remark 3.2
imply that the problem (D) can be reached by (DL2).

8.
9.
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GENERALIZED VARIATIONAL-LIKE INCLUSION PROBLEM INVOLVING
(H(.,.),n)-MONOTONE OPERATORS IN BANACH SPACES

MOHD IQBAL BHAT! AND BISMA ZAHOOR?

IDepartment of Mathematics, South Campus, University of Kashmir, Anantnag-192101, India
2Department of Mathematics, University of Kashmir, Srinagar-190006, India

ABSTRACT. In this paper, we consider the generalized variational-like inclusion problem
involving (H(.,.),n)-monotone operators in Banach spaces. Using proximal operator tech-
nique, we prove the existence of solution and suggest an iterative algorithm for solving the
generalized variational-like inclusion problem. Also, we discuss the convergence analysis of
the iterative algorithm. The results presented in this paper improve and generalize many
known results in the literature.

KEYWORDS : (H(.,.),n)-monotone operator; Generalized 7n-proximal operator; Generalized
variational-like inclusion problem; Iterative algorithm; Convergence analysis.
AMS Subject Classification: 47H04; 47H10; 49J40

1. PRELIMINARIES AND BASIC RESULTS

Throughout this paper unless or otherwise stated, X is a real Banach space with
dual space X*, (-,-) is the dual pair between X and X*, 2% denote the family of
all the nonempty subsets of X. The normalized duality mapping J : X — 2%X " is
defined by

J(u) ={f € X7 (fyw) = [ Fllllull, 11 = llull}, Vo e X.

A selection of the duality mapping J is a single-valued mapping j : X — X*
satisfying j(u) € J(u) for each u € X.
Further, J* : X* — X** be the normalized duality mapping on X* defined by

S () ={f € X (f,0) = | flllloll, [I£1F = oll}, Yo e X,

where X is a dual space of X*. Furthermore, j* denotes a selection of J*
If X = H, a Hilbert space, then J and J* are the identity mappings on H.

1 Corresponding author.
Email address : igbal92@gmail.com.
Article history : Received 1 August 2017 Accepted 1 February 2018.
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Let CB(X) denotes the family of all nonempty closed and bounded subsets of
X; D(-,-) is the Hausdorff metric on C B(X) defined by

D(A,B) = max{ sup d(u, B),sup cl(A,v)}7 A,B e CB(X).
u€A vEB
The following concepts and results are needed in the sequel:

Lemma 1.1 (10). Let X be a complete metric space, T : X — CB(X) be a set-
valued mapping. Then for any € > 0 and for any u,v € X, x € T(u), there exists
y € T'(v) such that

d(z,y) < (1+ €)D(T'(u), T(v)),
where D is the Hausdor{ff metric on C B(X).

Definition 1.2. Let T : X — X*; AB: X — X, N: X xX — X H:
X xX — X*and n: X x X — X be single-valued mappings. Then Vu,v,- € X

(i) T is monotone, if
<TU—T’U,U—U> > 0.
(i) 7T is strictly monotone, if
<Tu—Tv,u —v> > 0,

and equality holds if and only if u = v.
(iii) 7" is a-strongly monotone, if there exists a constant a > 0 such that

<Tu —Tv,u— v> > allu —v||%
(iv) T is y-Lipschitz continuous, if there exists a constant v > 0 such that
[T —Tol| < ~flu—wvll.
(v) T is n-monotone, if
<Tu —Tv,n(u, v)> > 0.
(vi) T is strictly n-monotone, if
<Tu — T, n(u, v)> >0,

and equality holds if and only if u = v.
(vii) A is said to be §-strongly accretive, if there exists a constant § > 0 and
j(u—v) € J(u — v) such that

(Au - Av,j(u—v)) > dllu - |,
where J is the normalized duality mapping.

(viii) NV (~, ) is [-Lipschitz continuous in the first argument, if there exists a
constant [; > 0 such that

[N (u;-) = N(v, )| < laflu = o]

(ix) N(:,-) is lo-Lipschitz continuous in the second argument, if there exists a
constant [ > 0 such that

ING,uw) = NG o) <laflu—wof.

(x) H(A,") is a;-strongly n-monotone with respect to A, if there exists a con-
stant a7 > 0 such that

<H(Au, ) — H(Av, ), 77(u7v)> > ay|ju — vl
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(xi) H(-, B) is ay-relaxed n-monotone with respect to B, if there exists a con-
stant ap > 0 such that

<H(-, Bu) — H(, Bv)7n(u,u)> > —anl|lu — v||2.
xii) H (~, ) is hq-Lipschitz continuous with respect to A, if there exists a con-
stant A; > 0 such that
[H(Au,-) — H(Av, )| < halju—ol.

(xiii) H(-,-) is ho-Lipschitz continuous with respect to B, if there exists a con-
stant hy > 0 such that

|H (-, Bu) — H(-, Bo)|| < ha|lu—o].
(xiv) 7 is T-Lipschitz continuous, if there exists a constant 7 > 0 such that
In(w, 0| < 7llu— vl

Remark 1.3. If X is a Hilbert space, n(u,v) = u — v, Vu,v € X, then (x) and (xi) of
Definition 1.2 reduces to (i) and (ii) of Definition 1.2, respectively in [12].

Definition 1.4. Let M : X — 2% be a multi-valued mapping, H : X — X*
and 77 : X X X — X be single-valued mappings. Then:

(i) M is monotone, if
(t—y,u—v) >0, Vu,v € X, z€ M(u),y € M(v).
(ii) M is p-monotone, if
(x —y,n(u,v))y >0, Vu,v e X, x € M(u),y € M(v).
(ii) M is strictly n-monotone, if
(x —y,n(u,v)y >0, Vu,v e X, x € M(u),y € M(v),

and equality holds if and only if u = v.
(iv) M is A-strongly n-monotone, if there exists a constant A > 0 such that

(x —y,n(u,v)) > Mu—v|* Yu,ve X, € Mu),y € M(v).
(v) M is m-relaxed n-monotone, if there exists a constant m > 0 such that
(x —y,n(u,v)) > —mlu—v|? Yu,veX, z€Mu),yec M).
(vi) M is maximal monotone, if M is monotone and
(J+AIM)(X)=X* V>0,
where J is the normalized duality mapping.
(vii) M is maximal n-monotone, if M is n-monotone and
(J+AIM)(X)=X*, VA>0.
(viii) M is H-monotone, if M is monotone and
(H+\M)(X)=X*, VA>0.
(ix) M is H-n-monotone, if M is m-relaxed n-monotone and (H + AM)(X) =
X*, V>0

Definition 1.5. For all u,v,- € X, a mapping F' : X x X x X — X* is said to
be €1 -Lipschitz continuous with respect to first argument, if there exists a constant
€1 > 0 such that

||F(u>' a') - F(Ua' a)H < 61”” - UH
Similarly, we can define Lipschitz continuity of F' in other arguments.
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Lemma 1.6 (11). Let X be areal Banach spaceand J : X — 2X” be the normalized
duality mapping. Then, for allu,v € X,

e+ vl < Jull? + 2(v, j(u+ ), Vi(u+v) € T(u+ o),

2. (H(.,.),n)-MONOTONE OPERATOR AND FORMULATION OF THE PROBLEM

Definition 2.1. Let X be a Banach space with the dual space X*. Let H : X X
X —X*n: XxX — X, A B: X — X be single-valued mappings. Then the
set-valued mapping M : X — 2% is said to be (H(.,.),7)-monotone with respect
to A and B, if M is m-relaxed-n-monotone and (H (A, B) + pM)(X) = X*, Vp > 0.

Remark 2.2. (i) If H(Au,Bu) = Hu, Yu € X, then Definition 2.1 reduces to
the definition of H-n-monotone operators considered in [8]. It follows that this
class of operators in Banach spaces provides a unifying framework for the class
of n-subdifferential operators, maximal monotone operators, maximal 7-monotone
operators, H-monotone operators, (H,n)-monotone operators, G-1-monotone op-
erators, A-monotone operators, A-n-monotone operators in Hilbert spaces and H-
monotone operators, H-7-monotone operators, A-monotone operators in Banach
spaces . We remark that (H (., .),n)-monotone operator in Banach spaces acts from
X to X*.

(i) If X = H, a Hilbert space, m = 0 and n(u,v) = u—v, VYu,v € H, then Definition
2.1 reduces to M-monotone operator studied in [12].

Now we give some properties of (H(.,.),7)-monotone operator.

Theorem 2.3. Let AAB: X — X, n: XXX — X,and H: X x X — X* be
single-valued mappings and H (A, B) be a-strongly n-monotone with respect to A, [3-
relaxed n-monotone with respect to B and o > . Let M : X — 2% be (H(.,.),n)-

monotone operator with respect to A and B. If <:L — y,n(u, v)> >0,V (v,y) €
Graph (M), then (u,x) € Graph(M), where Graph (M) = {(a7b) eXxX:be
M(a)}.

Theorem 2.4. let A, B: X — X, n: XxX — Xand H: X x X — X*
be single-valued mappings and H(A, B) be a-strongly n-monotone with respect to
A, B-relaxed n-monotone with respect to B and o > . Let M : X — 2% pe
(H(.,.),n)-monotone operator with respect to A and B. Then (H(A, B) + pM)~1 is
a—p

—

a single-valued mapping for 0 < p <

Based on Theorem 2.4, we define the generalized 7n-proximal operator associated
with (H (A, B),n)-monotone operator as under:

Definition 2.5. Let A, B: X — X, n: X xX — Xand H : X x X — X*
be single-valued mappings and H (A, B) be a-strongly n-monotone with respect to
A, B-relaxed n-monotone with respect to B and o > . Let M : X x X — 2%~
be (H(.,.),n)-monotone operator with respect to A and B. Then the generalized

n-proximal operator Jﬁ(('_’ﬁ)’"p : X — X for fixed z € X is defined by

H(.,.)m -1
Tar(p(W) = (H(A’ B) + pM(-,z)) (u), Yu € X.
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Remark 2.6. The generalized 7-proximal operator associated with (H(., .), n)-monotone
operator include as special cases the corresponding proximal operators associ-
ated with maximal monotone operators, 7n-subdifferential operators, maximal 7-
monotone operators, H-monotone operators, (H, n)-monotone operators, G-n-monotone
operators, A-monotone operators, A-n-monotone operators.

One of the important properties of generalized 7-proximal operator is its Lipschitz
continuity which is as under:

Theorem 2.7, et AB: X — X, n: XXX — Xand H: X x X — X~
be single-valued mappings and H(A, B) be a-strongly n-monotone with respect to
A, B-relaxed n-monotone with respect to B and o > . Let M : X x X — 2X°
be (H(.,.),n)-monotone operator with respect to A and B. Then the generalized
n-proximal operator Jﬁ%z))np : X — X for fixed z € X is k-Lipschitz continuous,
where k = ;, that is
a—0B—mp
H(.,
T30 () = T 5 @) < Ellw = o], Yu,v € X,
Now we formulate our main problem:

Let X be a real Banach space. Let S,T,G : X — CB(X) be set-valued map-
pings, N, H : XXX — X*, n: XxX — X, F: XxXxX — X*and A, B,p, g
X — X be single-valued mappings. Let M : X x X — 2% be set-valued
mapping such that for fixed z € G(X), M(.,2) : X x X — 2X" is an (H(.,.),7)-
monotone operator with respect to A and B and Range(g — p) Ndom(M (., z)) # 0.
For any given f € X*, we consider the following generalized variational-like inclu-
sion problem (in short, GVLIP): Find v € X, z € S(u),y € T(u),z € G(u) such
that

0" € N(g(x), A(y) ) + Flu,u,2) + M((g —p)(u), 2) + £, (2.1)

where 0* is the zero element in X*.
We remark that if g —p = I and f = 0, then GVLIP (2.1) reduces to a variational
inclusion of finding u € X, x € S(u),y € T(u), z € G(u) such that

WeN@@%M®+me@+Mm@. (2.2)

Variational inclusion (2.2) is an important generalization of variational inclusions
considered by many researchers including [12,15]. For applications of such varia-
tional inclusions, see [7,8].

IfF=p=f=0,g9g=1and X = H, a Hilbert space, then GVLIP (2.1) reduces to
a generalized mixed quasi-variational-like inclusion involving (H (-, -), 7)-monotone
operators in a Hilbert space: Find u € H, z € S(u),y € T'(u), # € G(u) such that

meN@A@»+MW@. (2.3)

Variational inclusion (2.3) is an important generalization of variational inclusions
considered by Kazmi and Bhat [4,5].

We remark that for the suitable choice of mappings A, B, S, T, G, N, H, F, M,n, g,p
and the underlying space X, GVLIP (2.1) reduces to different classes of new and
already known systems of variational inclusions/inequalities considered by many
researchers including [6,9,13,15,18] and the related references cited therein.
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3. EXISTENCE OF SOLUTION, ITERATIVE ALGORITHM AND CONVERGENCE ANALYSIS

First, we give the following technical result:

Lemma 3.1. Let X, A, B,S,T,G,N,H, F, M,n, g,p be same as in GVLIP (2.1). Then
(u,z,y,2) wherex € S(u),y € T(u),z € G(u) is the solution of GVLIP (2.1) if and
only if

(g-p)(w) = 35050 [H (Alg—p) @), Bl(g=p) () ) —p{ N (9(2), Al) ) +F (., 2)+£ }]

M(.,2),p
and p > 0 is a constant.

~1
and J2G)n (u) = (H(A, B)+pM(., z)) (u) is the generalized n-proximal operator

The above result along with Nadler’s Theorem (Lemma 1.1) allow us to suggest
the following iterative algorithm for solving GVLIP (2.1).

Iterative Algorithm 3.2. For any arbitrary chosenug € X, zg € S(ug), yo € T(ug)
and zy € G(ug), compute the sequences {u,},{zn}, {yn} and {z,} by the iterative
schemes such that

(9= P)wns1) = Jyc20 [H (A9 = ) (wn)), Bl(g = p)(un)))
*p{N<9(xn)7A(yn)> + F'(tn, Un, 2n) + f :|a

2n € S(un): ensr =l < (14 @ +m) ") D(S(uns). S(un));
Yo € T osr =yl < (14 L 0) 1) D(T(uns). Tlun) )
20 € Gun) i Jznsn = zall < (14 (14 1) ™) D(Gluns), Glun) ).
SJoralln=0,1,2,---.

Ifp=1,g—p=1and f = 0, then the Iterative Algorithm 3.2 reduces to the
following iterative algorithm.

Iterative Algorithm 3.3. For any arbitrary chosenug € X, zg € S(uo), yo € T(up)
and zy € G(ug), compute the sequences {u,},{z,}, {yn} and {z,} by the iterative
schemes such that

wr = T H (AGwn), Blun)) = {N (g(e). Alya) ) + Flun e, 20) .

Tn € S(un) : ||Tnp1 — @] < (1 (1 n)_l)D<S(un+1),S(un)>;
U € T(ua) t ywsr =l < (14 (14 0) ™) D(Tw4). Tlua) )

20 € Glun) : |2nst — 2]l < (1 +(1 +n)*1)D(G(un+1),G(un)).

We remark that Iterative Algorithm 3.3 gives the approximate solution to the vari-
ational inclusion (2.2).

Now, we prove the following theorem which ensures the convergence of iterative
sequences generated by the Iterative Algorithm 3.2 to the solution of GVLIP 2.1.

Theorem 3.4. Let X be a real Banach space. Let S,T,G : X — CB(X) be
a1-D-Lipschitz, ao-D-Lipschitz, az-D-Lipschitz continuous mappings, respectively.
Let N : X x X — X™* be l;-Lipschitz continuous and ls-Lipschitz continuous with
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respect to first and second arguments, respectively. 1 : X x X — X be T-Lipschitz
continuous, F' : X x X x X — X* be 3;-Lipschitz continuous with respect to jth
argument, for j = 1,2,3 and A, B,p,g : X — X be single-valued mappings such
that g is r1-Lipschitz continuous, A is r9-Lipschitz continuous, (g — p) is s-Lipschitz
continuous and (g — p — I) is A-strongly accretive. Let H : X x X — X* be
a-strongly n-monotone with respect to A, 3-relaxed n-monotone with respect to B
and h1-Lipschitz continuous and hs-Lipschitz continuous with respect to A and B,
respectively. Let M : X x X — 2X" be set-valued mapping such that for fixed
2€G(X),M(.,2): X x X — 2X" be (H(.,.),n)-monotone operator with respect to
A and B and Range(g — p) N dom(M (., z)) # 0. In addition, suppose there exists a
constant o > 0 such that

H(.,.), H(.,.),
|2 @) = TS @)]| < ol znen =2 |- (3.1)

Furthermore, suppose the following condition is satisfied

0<Q<1,
where () is given by,
1 272
Q = m{k[\/s h‘l —2pl17‘10[1(8h1 +pl17“1a1)

+\/32h§ — 2plaraca(she + plaraca) + p(B1 + B2 + 53043)} + 0043}7 (3.2)

then the sequences {un},{zn},{yn} and {z,}, generated by the Iterative Algo-
rithm 3.2 converge strongly to the unique solution (u,z,y, z), respectively, where
ue X, veSu),yeT(u) and z € G(u) is the solution of GVLIP (2.1).

Proof. From Iterative Algorithm 3.2 and Lemma 2.7, we have

I(g—P)tn+2—(g—p)tnt1]]

= |2 [ (Al = P ), Bl = D))
—p{ N (1), Algnsn)) + Fltn 1, s, 2n1) + 7}
10 [H (Al = P) (), Bllg = p)(un))
~o{ N (), Awa)) + Flun, ) + 1] |

< e T (Al — P ) Bl — p)(wnn))
~p{ N (9(ns1). AWa) + Fltnr, e z) + £ ]
~ T [ (Al = ) ), Bl(g = p) ()

—o{ N (g(wn), Alyn)) + Flan, s 20) + S|

e [1 (A = p) @), Bl ~ p)m))
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—p{N(g(wn)v A(yn)) + F(tn, un; 2n) + f}]
e [ (A = ) (@n)), Bllg - p)(un))

R S|

IN

|[# (A9 = P)(wai1)). BUg = p)wns)
~o{ N (9wr). Alws)) + Flunr, v, 2u) |
~[H (A9 = p)(wn)), Bllg — p)(ua)

_P{N(g(xn)vA(yn)) + F(umunazn)}} H +o

Zn+1 — Zn

IN

K[| (A9 = p)(wns2)), B9 = p)(wn11)))

~H(Al(g = )(wa)). B((g = p)(un1))) = p{ N (9(041). Alyn11))
~N (g(@a), Alynn) b + |2 (Al = P)(wa)). Bl(g = p)(un+1)))
~H(A((g = p)(wa)), B((g = p)(ua)) ) = p{ N (g(z0). Alyn1))

_N(g(er)vA(yn))}H + PHF(un+laun+172n+l> - F(umumzn>

)

+o (3.3)

Zn+1 — Zn||-

Since (g — p) is s-Lipschitz continuous, H(.,.) is hi-Lipschitz continuous with
respect to A, N(.,.) is l1-Lipschitz continuous with respect to first argument and
from Lemma 1.6, we have

|# (A = p)(uns1)), Bllg = p)(wns1))) = H(A((g = p)(un)), B(g = p)(wns1)))
2
—p {N(g(wnﬂ)’ A(yn+1)) - N(g(wn), A(yn+1))} H

< HH(A((g—p)(unH)),B«g—p)(um)))

(Al - (9= )omns) | = 20(N (900011, A1)
N (g(an) yn+1) “(H (A9 = P) (), Bllg = )(ns1)))
(At

—H({A(( ((g - p)(“n+1))) - p{N<g($n+1),A(yn+1))
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~N(g(@n), Alwni1) }))

1#(A(g = ) (un41)), B(g = p) (un41)))

IN

~H (A((g ~ p)(wa). B((g ~ p) ) |

20| ¥ (o). Al)) N (a6 Al
<[ || (A9 = P)wn 1)), Bllg = p)nt1)
—H(A((g = P)(un)), B9~ p)(uns1) |

o[V ), ) = 3 (o), Al |

IN

213 [[unr1 — unl® = 2pl1[|g(2ns1) = g(zn) |

x[shalluns1 = wall + plillg(zns1) = g(@n)ll]. (3.4)

Since g is r1-Lipschitz continuous and S is «y-D-Lipschitz continuous, we have

[ (st Aln)) = ¥ aten), )|

IN

Lllg(zng1) — g(@n)ll

IN

liri]|Tns1 — za]

IN

lirion (1 +(1+ n)_l) ltens1 — unll (3.5)
Using (3.5) in (3.4), we have

15 (A9 = ) (wns1)), Bllg = p)(ns1))) = H(Al(g = p)(un)), B((g = ) (tns1))

—p {N(g(xn+1)7 A(yn+1)> - N(g(x”)’ A(yn+1))} H

< \/SQh% — 2pliran (1 +(1+ n)—l) X {shl + pliriog (1 +(1+ n)—l)}

) (3.6)

Similarly, using ho-Lipschitz continuity of H(.,.) with respect to B, lo-Lipschitz
continuity of N(-,-) with respect to second argument, s-Lipschitz continuity of
(g — p) and Lemma 1.6, we have the following estimate:

1 (A9 = p)wn)). Bllg = p)(un+1))) = H (Allg = p)(wn)), B((g = p)(un)))
o {8 (glrn). Alwnin)) — N (glen). Aw)) |

< PR3 lungr — unl® = 2plal| A(Yns1) — Ayn) |
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x[shalluns1 = wall + plal| Ay 1) = Ayl (3.7)

Since A is ro-Lipschitz continuous and T is as-D-Lipschitz continuous, we have

A(ynJrl) - A(yn)

IA

7"2‘ Yn+1 — Yn

IN

r2a2(1+(1+n)—1)|\un+1 — . (3.8)
Using (3.8) in (3.7), we have

H(A((g = )(un)) B((g = P)(ns1)) ) = H(Alg = p)(n). Bllg = p)(un)))
~p{N (g(zn): A@as1)) = N (g(@a), Awn)) } |

< \/Sth — 2plaraaey (1 +(1+ n)—l) X [Shg + plgrgag(l +(1+ n)—l)}

) (3.9)

Since F(.,.,.) is 8;-Lipschitz continuous in the jth argument, for j = 1,2,3, G is
as3-D-Lipschitz continuous and using Iterative Algorithm 3.2, we have

HF(unJrhunJthnJrl) - F(Un,U»,“Zn)
S HF(un-‘rlaun-l-laZn-&-l) - F(unyun-‘rlazn-&-l)H

+’ F(Un;u71,+1azn+1) - F(un;unazn—i-l)H

+‘ F(unaunyzn+1) - F(unaunazn)

IN

B

+ﬁ2‘

+ B3

—

Up+1 — Un Up41 — Unp Zn+1 — Zn

IN

Upt1 — Up || (3.10)

[51 + B2 + 53043(1 +(1+ ”)71” ‘
Using (3.6),(3.9) and (3.10) in (3.3), we have

(g—P)tn+2—(g—p)tnt1l

< {k [\/SQh% — 2plirian (1 +(1+ n)—1> X [shl + plirion (1 +(1+ n)—l)}

—|—\/82h§ — 2plaroas (1 +(1+ n)—l) X [shg + plaroa (1 +(1+ n)—l)}

+p4 B+ B2 + Bgag(l +(1+ n)_l) }]

Unt1 — Un||- (3.11)

toas(1+(1+ n)_l)} ‘
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Since (g — p — I) is A-strongly accretive, by Lemma 1.6 and (3.11), we have the
following estimate:

||Un+2 - un+1H2 < H(g — P)Unt2 — (9 —P)Un+1 + Up42 — Upt1
2
- ((9 —P)Uuny2 — (9 — p)un+1) H
< (g = p)unt2 — (g — P)un+1||2
_2<(g —Dp—- I)un+2 - (g —pP— ]>un+1aj<un+2 - un+1>>
< (g = P)unt2 — (9 = P)tns1l> = 2A\[thny2 — uns1)|[%.

Hence,

llunio — Un+1H

1

m{k‘ [\/SQh% —2plirian (1 + (14 n)—l) X [Shl + pliriaq (1 +(1+ n)_lﬂ

Jr\/th% — 2plaraan (1 +(1+ n)*1> X |:Sh2 + plaraas (1 + (14 n)*l)]

+P{51 + B2 + 5303(1 +(1+ n)_l)}

+ O'Oég(l +(1+ n)_l) } X | tng1 — |

< Gt |[ungr — unll, (3.12)
where
¢n+1
1

- m{k [\/52]1% = 2plirioen (1 +(1+ n)_l) X |:3h1 + plirias (1 +(1+ n)—l)}

—I—\/SQh% — 2plarocey (1 +(1+ n)—l) X |:Sh2 + plgrgag(l +(1+ n)—1>]

+p{B1+ B2+ Baas (1 + (1 +m)7") }

+Ja3<1 +(1 +n)1)}.

Let

1
¢ = \/ﬁ {]{; l\/szh% — 2pl1’l‘1041 (Shl + pl17”10¢1)

+\/52h§ — 2plaracry <Sh2 + plzT‘QOéQ) + P(ﬂl + B2 + 53013)

+ 0'0[3}.
Then we know that ¢, — ¢ as n — oo.
By condition (3.2), we know that ¢ € (0,1) and hence there exist ny > 0 and
@0 € (0,1) such that ¢, 1 < ¢g for all n > ng. Therefore by (3.12), we have
[unt2 — tns1|l < olltnt1 — unll, V0 > no.
This implies
a1 = unll < &6 lung+1 — tng |-
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Hence, for any m > n > ng, we have

m—1

D s — wel|

t=n

m—1
< Y G gt — tng .

t=n

IN

[tm — unl|

It follows ||ty — uy,|| — 0 as n — oo so that {u,} is a Cauchy sequence in X.
Then there exists © € X such that u,, — v as n — oo.
Now from «-D-Lipschitz continuity of S and Iterative Algorithm 3.2, we have

(14 +m)7)D(Suns1), S(un))

(1+(1+n)_1)a1|\un+1 — . (3.13)

IN

[Zn+1 — Tall

IN

Since {u,} being Cauchy in X, (3.13) implies that {x,} is a Cauchy sequence in
X. Thus, in general, there exist x, y, z in X such thatz,, — =, y, — Y, 2, — 2
asn — .

Now, we show that x € S(u). Since z,, € S(u,), we have

Az, S() <z =zl + dl@a, Sw)
&= @all + D(S(un). S(w))

|z — zn|| + 01|t — u|| — 0 as n — oo.

IN

IN

Since S(u) is closed, it implies that € S(u). Similarly, we can show thaty € T'(u),
z € G(u). By assumption (3.1), Lipschitz continuity of proximal mapping Jﬁiz))"p
continuity of the respective mappings and Iterative Algorithm 3.2, it follows that u €
X,z e Su),ye€T(u), z€ G(u), where Jﬁgg)"p(u) = (H(A7B) + PM(.7Z)) 1(u)
and p are constants. By Lemma 3.1, (u,z,y, 2) is the solution of GVLIP 2.1. This
completes the proof. d

Finally, we give the following result which gives the convergence of the sequences
generated by the Iterative Algorithm 3.3 to the solution of Problem 2.2.

Theorem 3.5. Let X be a real Banach space. Let S,T,G : X — CB(X) be
a1-D-Lipschitz, ao-D-Lipschitz, as-D-Lipschitz continuous mappings, respectively.
Let N : X x X — X* be l;-Lipschitz continuous and ls-Lipschitz continuous with
respect to first and second arguments, respectively. n : X x X — X be T-Lipschitz
continuous, F' : X x X x X — X* be 3;-Lipschitz continuous with respect to jth
argument, for j = 1,2,3 and A, B,p,g : X — X be single-valued mappings such
that g is r1 -Lipschitz continuous, A is ro-Lipschitz continuous. Let H : X x X — X*
be a-strongly n-monotone with respect to A, 3-relaxed n-monotone with respect to B
and hi-Lipschitz continuous and hs-Lipschitz continuous with respect to A and B,
respectively. Let M : X x X — 2% " be set-valued mapping such that for fixed
ze€ G(X),M(.,2): X x X — 2X" be (H(.,.),n)-monotone operator with respect to
A and B. In addition, suppose there exists a constant o > 0 such that

H(.,.), H(.,.),
HJME.,Z)HL)(“) - JME.,Z))U(U)H <ollznir—zn -

Furthermore, suppose the following condition is satisfied

0<P<1,
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where P is given by,

P = k{\/h% — 2[1’!‘10&1(}11 + l17‘1011) + \/h% — QZQT‘QOQ(hQ + ZQT'QOZQ)

+(B1 + B2 + 53013)} +oas,

then the sequences {un},{zn},{yn} and {z,}, generated by the Iterative Algo-
rithm 3.3 conwerge strongly to the unique solution (u,x,y, z), respectively, where
ue X, veSu),yeT(u) and z € G(u) is the solution of the problem (2.2).

Remark 3.6. Using the technique developed in this paper we can extend the results
of Bhat and Zahoor [1], Chang et. al [2], Kazmi and Bhat [3-6], Mitrovic [9], Verma
[14] and the related results cited therein for the system of variational inclusions.

Acknowledgment. The authors are thankful to the referee for his valuable com-
ments and suggestions, which improved the original version of the manuscript.
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ABSTRACT. In this paper, we introduce implicit and explicit iterative methods for finding
a common element of the set of solutions of a variational inequality and the set of common
fixed points for a countable family of nonexpansive mappings in a Hilbert space. For these
methods, we prove some strong convergence theorems. These theorems improve and extend
some results of Yao et al. [21] and Xu [20].
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1. INTRODUCTION

Let H be a real Hilbert space and A be a bounded operator on H. In this paper,
we assume A is strongly positive; that is, there exists a constant 7 > 0 such that
(Az,x) > 7||z||?, for all z € H. A typical problem is that of minimizing a quadratic
function over the set of the fixed points of nonexpansive mapping on a real Hilbert
space:

1
in = (Az,z) — (,b
wén;(r}g)2< z,x) — (z,b),

where b is a given point in H.

We recall a mapping T of H into itself is called nonexpansive, if ||Tx — Ty|| <
|z —y| forall z,y € H. Let F(T) denote the fixed points set of T, and a contraction
on H is a self-mapping f of H such that ||f(z) — f(y)|| < a|lz —y| for all z,y € H,
where o € [0,1) is a constant.

Finding an optimal point in the intersection F' of the fixed points set of a family
of nonexpansive mappings is one that occurs frequently in various areas of math-
ematical sciences and engineering. For example, the well-known convex feasibility
problem reduces to finding a point in the intersection of the fixed points set of
a family of nonexpansive mappings; see, e.g., [3, 5]. The problem of finding an
optimal point that minimizes a given cost function © : H — R over F is of wide
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interdisciplinary interest and practical importance see, e.g., [2, 4, 6, 23]. A simple
algorithmic solution to the problem of minimizing a quadratic function over F' is of
extreme value in many applications including the set theoretic signal estimation,
see, e.g., [23, 9]. The best approximation problem of finding the projection Pr(a)
(in the norm induced by inner product of H) from any given point a in H is the
simplest case of our problem.

In 2006, Marino and Xu [10] considered an iterative method for a single non-
expansive mapping. Let f be a contraction on H and A : H — H be a strongly
positive bounded linear operator. Starting with an arbitrary initial o € H, define
a sequence {x, } recursively by

Tnt1 = anYf(xn) + (I — a4, A)Tx,, n>0, (1.1)
where v > 0 is a constant and {«, } is a sequence in (0, 1) satisfying the following
conditions:

M lim, oo a, = 0;
m >0 oy = 00;

am >0 |an — apg| < 0o or limy, o0 s =1
Consequently, Marino and Xu [10] proved the sequence {z,} generated by (1.1)

converges strongly to the unique solution of the following variational inequality:
(A=~vf)z* 2" —x) <0, forall z € F(T),

which is the optimality condition for minimization problem

min 1<A;U,:c> — h(z),
zeF(T) 2
where h is a potential function for v f(i.e., '(z) = vf(x) for x € H).
In 2012, Razani and Yazdi [13] study convergence of a composite iterative scheme
which generalizes iterative sequence (1.1).
In 2008, Yao et al. [21] introduced the iterative sequence

Tnt1 = Y f(2n) + Bnxn + (1 — Bp)] — a, AYWyay,, foralln > 0, (1.2)

where W, is the W-mapping generated by an infinite countable family of nonex-
pansive mappings 11,75, ..., Ty, ... and A\, Ao,..., Ay, ... such that the common
fixed points set F' := (),—, F(T},) # (. Under very mild conditions on the param-
eters, it was proved the sequence {x,} converges strongly to p € F' where p is the

unique solution in F of the following variational inequality:
((A=~f)p,p—2*) <0, for all z* € F, (1.3)

which is the optimality condition for minimization problem

1
min 5(14:107 x) — h(z).

In this paper, motivated by Yao et al. [21] and Rhoades [14], we introduce an
implicit and explicit iterative schemes for finding a common element of the set
of solutions of a variational inequality and the set of common fixed points for a
countable family of nonexpansive mappings in a Hilbert space. Then, we prove
some strong convergence theorems which improve and extend some results of Yao
et al. [21] and Xu [20].

Now, we collect some lemmas which will be used in the main result.

Lemma 1.1. [10] Assume A is a strongly positive bounded linear operator on a
Hilbert space H with coefficienty > 0 and 0 < p < ||A[|71. Then ||I — pA| < 1 —p7.
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Lemma 1.2. Let H be a real Hilbert space. Then, for allx,y € H
() =z +yl? < llz]* + 2(y, 2 + y);
(D) [lz +yl[* > [|=]|* + 2{y, z).

Lemma 1.3. [17] Let {z,,} and {y, } be bounded sequences in Banach space X and
{8} a sequence in [0, 1] with 0 < liminf,,_, B, < limsup,,_, . Bn < 1. Suppose

Tnt1 = (1 = Bn)yn + Bnxn for all integer n > 0 and limsup,, , oo (|[yn+1 — ynll —
|Znt1 — znl|) < 0. Thenlim, oo ||€n — ynl| = 0.

Lemma 1.4. [16] Assume {s,} and {7,} are two sequences of nonnegative real
numbers such that
Snt1 < Sn = ¥ (sn) +n, n 21,
where ¥ is a continuous and strict increasing function on [0, oo) with ¥(0) = 0 and
{rn} is a sequence of positive numbers satisfying the conditions:
(I) doneymn =003
(IT) limsup,,_, ., = =0.
Thenlim,, .o Sy, =0
Lemma 1.5. [19] Assume {an} is a sequence of nonnegative real numbers such that
Ap41 S (]- - ’Yn)an + 5n7
where {7, } is a sequence in (0,1) and {0, } is a sequence such that
(I) Yoniim = 00;
(IT) limsup,,_, - % <0or) 2 |6,] < .
Then lim,,_, o a,, = 0.

2. MAIN RESULTS

Let H be a real Hilbert space with inner product (.,.) and the norm ||.||. We de-
note weak convergence and strong convergence by notation — and —, respectively.
Let {T},}2°; be a sequence of nonexpansive self-mappings on H and {\,}52, be a
sequence of nonnegative numbers in [0, 1]. For any n > 1, define a mapping W,, of
H into itself as follows:

Un,n+1 =1 ’
Un,n = )\nTnUn,nJrl + (]- - An)ja

Une = MTUp g1 + (1 — )1,

2.1
Unj—1 = Ae—1Th-1Upn ik + (1 — Mp—1)], (@.1)

Un2 = XU, 3+ (1 — )1,
W, =Up1=MT1Up2 + (1—=X)I.

Such a mapping W, is called the W —mapping generated by 7,,,7,,—1,...,71 and
Ans An—1y .oy AL

Lemma 2.1. [15] Let C' be a nonempty closed convex subset of a strictly convex
Banach space X, {T,,}52_, be a sequence of nonexpansive self-mappings on C' such
that (), F(T,,) # 0 and {\,}22, be a sequence of positive numbers in [0,b] for
someb € (0,1). Then, for every z € C and k > 1, the limit lim,,_, o, Uy, x& exists.

Remark 2.2. [22] It can be known from Lemma 2.1 that if D is a nonempty bounded
subset of C, then for € > 0 there exists ng > k such that for all n > ng

sup ||Uy xz — Ugz|| <e.
zeD
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Remark 2.3. [22] Using Lemma 2.1, one can define mapping W : C — C as
follows:

Wz = lim Wyox = lim U, iz,
,
n—oo n—oo

for all z € C. Such a W is called the W —mapping generated by {7,,}52; and
{An}52,. Since W, is nonexpansive, W : C' — C is also nonexpansive.

If {z,} is a bounded sequence in C, then we put D = {z,, : n > 0}. Hence, it is
clear from Remark 2.2 that for an arbitrary € > 0 there exists Ny > 1 such that for
all n > Ny

Whzn — Wep| = ||Upizn — Uiz, < sug |Up1x — Urz|| <e.
S

This implies
lim [|[W,z, — Wz,| =0.
n—oo

Throughout this paper, we assume {\,, }° ; is a sequence of positive numbers
in [0,b] for some b € (0,1).

Lemma 2.4. [15] Let C' be a nonempty closed convex subset of a strictly convex
Banach space X, {T,,}52, be a sequence of nonexpansive self-mappings on C' such
that ", F(T,,) # 0 and {\,}22, be a sequence of positive numbers in [0, b] for
someb € (0,1). Then F(W) = (., F(T,).

n=1

Definition 2.5. [18] A self-mapping f : C' — C'is called weak contraction with the
function ¥ if there exists a continuous and nondecreasing function ¥ : [0, 00) —
[0,00) such that ¥(s) > 0, for all s > 0, ¥(0) = 0, lims_,o ¥(s) = +00 and for any
2,y € G |[f(x) = W)l < [l = yll = |z = yl)-

Remark 2.6. Clearly a contraction with constant & must be a weak contraction,
where U(s) = (1 — k)s, but the converse is not true.

Example 2.7. [1] The mapping Az = sinz from [0, 1] to [0, 1] is a weak contraction

with U(s) = %. But A is not a contraction. Indeed, suppose that A is a contraction

with constant k£ € (0,1), i.e.,
|sinz —siny| < k|z — y|, for all z,y € [0, 1]. (2.2)

Since lim,_.q Si;““ =1, taking ¢ = 1 — k, there exists § > 0 as 0 < z < J, we have

822 1] < 1 — k. Therefore k < [$2£=800| ' e k[z — 0| < |sinz — sin0|, which
contradicts the assumption of (2.2). Thus A is not a contraction.
Lemma 2.8. [14] Let (X, d) be a complete metric space and f : X — X be a weak

contraction. Then [ has a unique fixed point in X.

Lemma 2.9. [7] Let H be a real Hilbert space, C be a closed convex subset of H
and T : C — C be a nonexpansive mapping with F(T) # 0. If {z,,} is a sequence in
C weakly conwerging to x and if {(I — T)x,,} converges toy, then (I — Tz = y.

Lemma 2.10. [3] Let {T,,} be a sequence of nonexpansive mapping on a closed
convex subset C of H and A be a strongly positive bounded linear operator on H
with coefficient 0 < v < 7. Let {a,} and {8,} be two sequences in [0, 1] with
limy, 00 0y = 0,37 v, = 00 and limsup,,_, ., B, < 1. Define a sequence {y, } by
11 € C and
Yn+1 = QpYU + BrYn + ((]— - 5n)I - anA)Tnyna

Jor alln € N. Suppose the sequence {y,} converges strongly. Set Pu = lim,,_,cc Yn,
foreach u € C. Then, the following hold:
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(I) Pu does not depend on the initial point y; ;
(II) P is a nonexpansive mapping on C'.

Lemma 2.11. [16] Let X be a Banach space, f be a weak contraction with a function
U on X and T be a nonexpansive mapping on X. Then, the composite mapping T f
is a wealk contraction.

It is easy to see the following lemma.

Lemma 2.12. Let H be a real Hilbert space, f : H — H be a wealk contraction and
A be a strongly positive bounded linear operator with coefficient ¥ > 0. Then, for
0<y<”y

(A=yf)z = (A=f)y,x —y) = (7 =Nz —yl? forallz,y € C.
That is, A — ~ f is strongly monotone with coefficient 7 — ~.

Let A be a strongly positive bounded linear operator on H with coefficient 7 > 0.
Let 0 < v < 7 where v is some constant. First, we give our implicit iterative scheme
as follows: let {t,} be a sequence in (0, 1) such that ¢,, < ||A| 7}, for all » > 1 and
u € H. For each n > 1, define a mapping S;, : H — H by

Se, () =tpyu+ (I —t, A)Wyha, x € H.

It is easy to see that for each t,, € (0,1), n > 1, S;_ is a weak contraction on H.
Indeed, by Lemma 1.1,

15t (2) = S, W)l < tnyllu = ull + [|( = tn A)(Wnz — Way)|
< A=tz -yl
By Banach contraction principle, for each n € N, there exists a unique element
zn € H of S, such that

2n = tpyu+ (I — t, A)Wy 2y, foralln > 1. (2.3)

Theorem 2.1. Let H be a real Hilbert space and {T,}%2, be an infinite family
of nonexpansive mappings of H into itself which satisfies F := (\—, F(T,) # 0.
Let {z,} be defined by (2.3) and t,, € (0,1) such that lim,,_, t, = 0. Then {z,}
converges strongly to p € F which is the unique solution of the following variational
inequality:

(Ap — yu,p — z*) <0, forallz* € F. (2.4)
Proof. First, we show the uniqueness of the solution of the variational inequality

(2.4). In fact, if p,q are two distinct solutions of the variational inequality (2.4),
then

(Ap —~yu,p—q) <0 and (Ag—~yu,q—p) <0.

Adding up these two inequalities, we have
((Ap —yu) — (Ag —yu),p — q) < 0.

But the strong monotonicity of A — yu (Lemma 2.12) implies that p = q. We use
p € F' to denote the unique solution of variational inequality (2.4). Thus, for p € F’

Zn —p = to(yu— Ap) + (I — t, A)(Wyz, — p). 2.5)
From (2.5),

(yu = Ap, 2z, = p) + ((I = t, A)(Wn2n — p), 20 — D)

”Zn —p||2 tn
tn{yu — Ap, 2o — p) + (1 = t,7) [ 20 — pII>.

(2.6)

IA I
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Simplifying (2.6), we have

1

2 — plI? < WWU — Ap, 2, — D). 2.7)

Hence, {z,} is bounded, so are { AW, z,}. Therefore
lim ||z, — Wyz,|| = lm t,|yu — AWy 2| = 0. 2.8)
n—00 n—oo
Take a subsequence {z,, } of {z,} such that
limsup(yu — Ap, 2z, — p) = lim (yu — Ap, 2z, — D).
n— o0 k—o0

Since {z,, } is bounded in H, without loss of generality, we assume z,, — z € H.
It follows from (2.8) and Remark 2.3 that z € F(WW). So
limsup(yu — Ap, z, — p) = (yu — Ap,z —p) <0.
n—oo
From (2.7), lim,—~ 2n, = 2. Next, we prove z solves the variational inequality
(2.4). From (2.3),
—1
Az, —yu = t—([ —tnA)(zn — Whzn).

n

Thus, for g € F'
<Azn — YU, Zp — Q> = =L <(I - tnA)(Zn - ann>7 Zn — Q>

tn

T = W)z — (I = Wa)g, 20 — @)+
(2.9)

S <A(I - Wn)zna Zn — Q>7
since I — W,, is monotone (.e.,((I — Wy,)x — (I — Wy,)y,x —y) > 0 for z,y € H.
This is due to the nonexpansivity of W,,). Now, replacing z, in (2.9) with z,, and
letting k — co. Note that lim,,_, 2,, = 2z which implies
(Az —yu,z — q) <0.

That is, z € F' is a solution of the variational inequality (2.4) and hence z = p by
uniqueness. Since each cluster point of {z,} equals p, z, — p as n — oo. This
completes the proof. O

Theorem 2.2. Let H be a real Hilbert space, {1, }52, be an infinite family of nonex-
pansive mappings of H into itself which satisfies F := (\—, F(T,,) # 0 and A be a
strongly positive bounded linear operator on H with coefficienty > 0. Let 0 < v <7
where 7 is some constant. Let {z,} be defined by

zn =ty yf(zn) + (I — t, A)Wy 2y, foralln > 1, (2.10)

where f : H — H is a weak contraction with a function ¥, t, € (0,1) such that
lim,, o t, = 0. Then {z,} converges strongly to p € F which is the unique solution
of the following variational inequality:

((A=~f)p,p—x*) <0, forallz* € F. (2.11)
Proof. Define a sequence {u,} by
Up = tpyu + (I — t, A)Whu,, foralln > 1,

for any u € H. From Theorem 2.1, {u,,} converges strongly. Set Pu = lim;,_, o, wp,,
for each u € H. It follows from Lemma 2.10 that P is nonexpansive. Then Pf is a
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weak contraction by Lemma 2.11. From Lemma 2.8, there exists a unique element
z € H such that z = P(f(z)). Define a sequence {k,} by

kn=t,vf(z)+ (I —t, A)W,k,, forall n > 1. (2.12)
Then, by Theorem 2.1, lim,,_,o k, = P(f(2)) = z € F(W). Therefore
[2n = knll = ta[|f(2n) = F)I + (1 = t.9) [[Whnzn — Wiky||

< tay(1f(zn) = R+ 1f (k) = F(2N) + (1 = t27) |20 — Kal

< tnY(llzn = Enll = ¥(llzn = Eall) + 1k — 2[] = ¢ (([kn — 2]))
+(1 = a7z — Kall

< A=t = Mzn = knll + tayllkn — 2]

Which implies
Iz — knll < =——|lkn — 2|
=

So lim, 0 ||2n — kx|l = 0 and hence lim,_, ||z, — 2|| = 0. This complete the
proof. t

Secondly, we give an explicit iterative scheme: for any given x¢p € H, let the
sequence {z, } be generated by

Tnt1 = QYU+ Bpxy + (1 — Bu)I — an A)Wyay,, for all n > 0. (2.13)

Now, we prove the following strong convergence theorem concerning the iterative
scheme (2.13).

Theorem 2.3. Let H be a real Hilbert space, {T,,}52, be an infinite family of non-
expansive mappings of H into itself which satisfies F' := ﬂzo:l F(T,) #0, Abea
strongly positive bounded linear operator on H with coefficienty > 0 and ||A]| < 1.
Let 0 < v < 7 where v i some constant. Let {«,}, {fn} be two sequences in (0,1)
satisfying the following conditions:

(1) limy, 00 iy, = 05

(II) Zn 0 Qn = O0;

(II1) 0 < liminf, o0 By < limsup,, . Bn < 1.

Then, the sequence {x,} defined by (2.13) converges strongly to p € F which is the
unique solution of the following variational inequality (2.4).

Proof. Let Q = Pn=_  p(r,). SO

QI = A)z +u) = QU — Ay +yu)|| < [[(I - A)x + yu—

(I = Ay +u)|
(I = Az — (I = A)yl|
(L=l - yll,
for all z,y € H. Therefore Q = Pn>= . F(r,) is a contraction of H into itself.
By Banach contraction principle there exists a unique element p € H such that
p=Q(I - A)p+u) = Pa=_ r(r,)((I = A)p + ~yu) or equivalently

(Ap — yu,p — 2*) <0, for all z* € F.

INIA

n=1

From the condition (I), we may assume, without loss of generality, «, < (1 —
Bn)||A||~L. Since A is strongly positive bounded linear operator on H,

[A]l = sup{|(Az, z)| : # € H, ||z[| = 1}.

Observe
(A =B — anA)z, x) 1- ﬁn) — o (Az, 1)

(
L — Bn — an|| Al
0,

VIV I
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that is to say (1 — 3,)] — «, A is positive. It follows that

11 = Bn)l — oAl = sup{{((1 = Bn)] — anA)z,z) : 2 € H, ||z|| = 1}
=sup{l — S, — an<Ax7m> cx € H,|z|| =1}

S 1- /Bn - anﬁ~
Next, we prove {z,} is bounded. Indeed, for p € F

|21 —pll = [lan(yu — Ap) + Bn(@n — p) + (1 = Bn)I — anA)(Wyzy, — p)||
< (1= B = ) lom — ol + Bullzn — pll + anllyu — Ap
< (1 —aY)zn —pll + anllyu — Ap].
(2.14)
It follows from (2.14) that

yu — Ap
e — pll < max{llzo - pl., M”L

Hence {x,,} is bounded, so are {W,,z,}.
Define
Tpt1 = Bnxn + (L = Bn)yn, n > 0.
Observe from the definition of y,,,
Tni2—Bni1Tntl  Tnt1—Bnn

Ynt+1 — Yn = T—Bnt - 1—Bn
Oén+1’Yu+((1 Bry1) =1 A)Wni1Tn i1

_ ozn'yu+((1fﬁn)lfanA)ann
1_571
On 41

an
T T~ YU+ Whi1Zn 41

—Woxpy + a" AWz, — 1(’"“ AW, 1Ty i1

- lf"“ [7u—AWn+1xn+1] [AW Xy — YU

+Wn+1$n+1 Wn+1xn + Wn+1xn -W nTn.-

So

A

[Yn+1 = Ynll = lZns1 — zall < 2555 (Iyull + [ AW @041 )
+125- ([AWnza || + [[yul)
+||Wn+115n+1 Wi1znll + [Wag1zn — Wy, ||
—||znt1 — znll
5 (vl + [AW 1@
+125- (AW za || + [yull) + [Watr2n — Waan|-
(2.15)

IN

From (2.1), Since T; and U, ; are nonexpansive, we get

||Wn+1xn - ann” ||)\1T1Un+1,2'rn - )\lTlUn,2xn||

M| Ung1,2%0 — Up 220 |

M| A2 ToUnt1, 320 — AoToU, 32|

M2 || Uns1,3%n — Un sxn | (2.16)

)\1)\2 CIEaE /\nHUn+1,n+1xn - Un,n+1mnH
MH?:1 Ais

where M > 0is a constant such that ||Uy 41 nt12n — Upnt12n|] < M, foralln > 0.
Substituting (2.16) into (2.15), we have

ARVAN VAN VAN | I VAN |

_CQn41

[Yn+1 = Yull = Zns1 —2n < T Bt (HVUH + AWy g 120 41]))
155, (AWl + [yl + ML A
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which implies (noting that () and 0 < A\; < b < 1,forall¢ > 1)

Lmsup(||yn+1 = Ynll = [[2n+1 — znl]) < 0.
n—oo
Hence, by Lemma 1.3,
lim |y, — 2] = 0.
n—oo
Consequently
lim ||zp41 — 2| = lm (1 — By)l|yn — zn] = 0. (2.17)
n—oo n—oo
Note

lzn = Whznll < ||Tpy1 — 2ol + [ 2ne1 — W, ||

(2.18)
< ||l'n+1 - an + O‘n”'}/u - AWn$nH + 6n||Wn-rn - xn||7
which implies
— — AW,
1- Bn
It follows from (2.17) that
lim [|[Wyz, —2,| = 0. (2.19)
n—oo
By the same argument as in the proof of Theorem 2.1,
lim sup{yu — Ap, z,, — p) <0, (2.20)
n—oo
where p = P>~ r(7,)((I — A)p + yu). From (2.19),
lim sup(yu — Ap, Wz, —p) <0 (2.21)

n— oo

Finally, we prove z,, — p as n — oo. From (2.13),

o (yu = Ap) + Bu(@n —p) + (1 = Ba)I — anA) Wy, —p)|?
g lyu — Ap[l* + [|Bn(zn — p) + (1 = Bu)I — an A)(Wya, — p)|I?
+28p a0 (yu — Ap, x, — p)
+2a, (yu — Ap, (1 = Bn) — anA) (W, — p))
< (1= B — an@)[Wazn — pll + Bullzn — pl))* + i |lyu — Ap||?
+25no‘n<7u - Ap, Tp — p> + 2(1 - ﬂn)an<7u - Apa ann - p>
—204121<’)/U - Ap» A(ann - p)>a

lznt1 = pII?

which implies
[Zni1 —plI> < (1= an¥)?lzn — plI* + 2Bnon (yu — Ap, x,, — p)
+O‘$LH’YU - Ap||2 + 2(1 - ﬂn)an<7u - AP, Whxy, — p>
120,730 — plI* + 707 |20 — plI* + i lyu — Ap]?
+2Bnan{(yu — Ap, 2, — p) + 2(1 = Bn)an(yu — Ap, Wpz,, — p)
+2a; [|yu — Ap|||A(Wpz, —p)||
= [1 =207z — p”2 + O‘n{an(i2”mn _pH2
+yu = Apll? + 2|lyu — Apll[| AWz, — p)I)
+2ﬁn<7u — Ap,x, — p> + 2(1 - ﬁn)h/u — Ap, Wy, — p>}

Since {z,} and {W,,z,,} are bounded, we can take a constant M; > 0 such that
T lln = plI* + lvw — Apl|* + 2llyu — Apl[| AWnan — )l < M,
for alln > 0. So

IN

Znt1 — ol < [1 = 20|z — PII* + onén, (2.22)
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where

&n = 2Bn(yu — Ap, xn — p) +2(1 = Bn)(yu — Ap, Wypxy, — p) + an My

By (1), (2.20) and (2.21), we get limsup,,_,.. & < 0. Now, applying Lemma 1.5 to
(2.22) concludes x,, — p as n — oo. This completes the proof. O

Theorem 2.4. Let H be a real Hilbert space, {T,,}52, be an infinite family of nonex-
pansive mappings of H into itself which satisfies F := (', F(T,,) #0. f : H - H
be a wealk contraction with a function ¥, A be a strongly positive bounded linear
operator on H with coefficienty > 0 and || A|| < 1. Let 0 < v < 7 where vy is some
constant. Let {ay,}, {Bn} be two sequences in (0,1) satisfying the following condi-
tions:

(1) limy,— o0 vy = 0;

(I1) Y02 5o = 005

(II1) 0 < liminf, 00 By < limsup,, ., Bn < 1.

For any given zy € H, the sequence {x,} defined by

Tnt1 = QY f(n) + Bran + (1 — )] — @, A)Wyoay,, foralln > 1, (2.23)

converges strongly to p € F which is the unique solution of the following variational
inequality (2.11).

Proof. Define a sequence {u,} by
Unt1 = YU + Bptn + (1 = Bp)] — an A)Whuy, foralln > 1,

for any v € C. From Theorem 2.3, {u,} converges strongly. Set Pu = lim, oo U,
for each v € C'. By the same argument as in the proof of Theorem 2.2, there exists
z = P(f(z)). Define a sequence {k, } by

knt1 = anyf(2) + Bukn + (1 — Bu)I — ay A)Wyky,, foralln > 1. (2.24)
Then, by Theorem 2.3, lim,, o ky, = P(f(2)) = z € F(W). Therefore
[Znt1 = kns1ll = an¥llf(@n) = f(2)| + Bullzn — Eal|

+(1 = Bn — an¥) [Wazn — Wikn||
<y (1£a) — FE + 17050~ FGID + Bl — Kl
+(1 = Bn — an?)[zn — kal
< anY([on = knll = Y(llen = kall) + 1k — 21 = ¥ ([[kn — 2])))
+(1 = an)||zn — Eall
< (=@ =Mlzn = kall = any(flzn = Enl))
Frany([kn = 2l = ¥ ((lkn = 2[)))
< Men = kall = anydb(llzn = Ekall) + any(llkn =2l = D([[kn = 2[]))-

Set s, = |2n — knll, Y = anY(|lkn — 2|| — ¥(||kn — 2]|)) and 7, = a,7y. Since
Tn

lim —= = [k, — z|| — ¥([[kn — 2])) = 0
n—oo ’I",n
and
o0 o0
D_rn=D ey =00,
n=0 n=0
by Lemma 1.4, lim,, o |2, — &y || = 0. Hence lim,,_, o, ||, — 2|| = 0. This complete
the proof. O
Remark 2.13. Theorem 2.2 is a generalization of [21, Theorem 3.1].

Remark 2.14. Theorem 2.4 is a generalization of [20, Theorem 3.2] and [21, The-
orem 3.2] with assumption ||A| < 1.
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OPTIMAL PRICING POLICY FOR MANUFACTURER AND RETAILER USING
ITEM PRESERVATION TECHNOLOGY FOR DETERIORATING ITEMS
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ABSTRACT. This paper optimizes the selling price, the replenishment cycle and lot size of
deteriorating seasonal items. The seasonal items become useless or completely deteriorated
after sale season. The production of manufacturer and stock of retailer are affected by dete-
rioration and assuming it is reduced by preservation technology investment. Manufacturer
and retailer both are invested on a preservation technology under revenue sharing. We
studied the effect of preservation technology on profit of manufacture as well as for retailer.
Retailer can change the strategy by reducing the selling price to generate the excess demand
for limited time duration. This paper aims to develop a continuous supply chain inventory
model by optimizing the selling price of seasonal items. We optimized the profit by reducing
price for stock dependent price sensitive demand and have shown that the profit function
is concave function of selling price. The model is simulated and illustrated with numerical
examples.

KEYWORDS : Inventory, stock and price dependent demand, optimal profit, deterioration,
replenishment cycle.
AMS Subject Classification: 90B05, 90B30, 90B50

1. INTRODUCTION

In the real life, deterioration of product is a common phenomenon and always
occur in the nature. There are many items in the nature that deteriorate signifi-
cantly such as fruits, vegetable, milks, meat fresh foods, perfumes, alcohols soft
drinks gasoline etc. Also demand of such items are just for a limited time hori-
zon such type of items known as seasonal items. Recently more and more items
become deteriorating nature and seasonal simultaneously because of the business
competition, instant and rapid change in the technology. Hence this will become
a very difficult problem to determine the inventory if the item is both deteriorating
and seasonal.

* Corresponding author.
Email address : arnw@rediffmail.com.
Article history : Received 2 July 2017 Accepted 1 February 2018.
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The preservation play a vital role for decreasing deterioration rate and for in-
creasing seasonal item’s life. Recently the effective use of preservation technology
become essential for manufacturers and retailers both, to improve the customer
service level, increase the business profit and reduce the economic losses. In the
last few years, market surveys indicated that the demand rate of most of the in-
ventory depends on the stock levels, and influenced by selling prices. In this paper
we studied the pricing strategy of deteriorating seasonal items, optimize lot size,
and replenishment cycle when deterioration rate is controlled by preservation tech-
nology investment. The decision variables of this model are the market demand,
the production rate, the ordering frequency. Ghare and Schrader [19], are the first
mathematician who developed an inventory model in which they considered deteri-
oration as exponential decreasing function, after then remarkable works have been
done on deteriorating inventory modeling. Liu and Lian [14], as well as Nandaku-
mar and Morton [20], studied deteriorating items which have fixed life time. Jain
and silver [13] as well as Kalpakam and Sapana [24], developed inventory models
for random life deteriorated items.

In the deteriorating inventory modeling deterioration plays a vital role. Raf-
fat, Wolfe and Eldin [7], developed an inventory model with constant demand rate
and finite replenishment rate for deteriorating items. Heng, Labban and Linn [12],
considering exponential decay in inventory model with constant demand and fi-
nite replenishment rate. The constant demand rate is a uniform deterministic
demand rate but in the real life demand rate is not always constant. Time vary-
ing demand in inventory modeling have been developed mostly considering either
linearly increasing/decreasing D(t) = («a + ~t), @ > 0, v # 0 or exponentially in-
creasing/decreasing D(t) = a.e®, a > 0, a # 0. Haiping and Wang [3 1], suggested
a model in which they considered time proportional demand and find optimum
order quantity for deteriorating items. Xu and Wang [11], presented a model in
which they consider linearly time varying demand for exponentially deteriorating
items. Giri and Chaudhuari [2], developed a model in which they consider de-
terioration rate demand rate and costs were assumed to variable of time. Jalan
and Chaudhuari [1] as well as Chakraborty, Giri and Chaudhuari [25], considered
deterioration rate as two parameter and three parameter weibull distribution with
instantaneous supply in their inventory models.

In analysis of market survey, it is observed that in the supermarket customers
attraction is based on a large pile of goods. Hence displaying each of items in large
quantities may be generate extra demand. But due to large quantity of items there
may be arise problem of spacing of each item and also requirement of large scale
investment. The situation become more critical when the displayed items is in na-
ture of deteriorating. Due to this reason research attracted on inventory modeling
in which demand consider as stock and price dependent. Sarkar, Mukherjee and
Balan [4] as well as Datta and Pal [26], developed an inventory model assuming
stock and selling price dependent demand for deteriorating items with and without
shortages. Kim [5], developed price dependent inventory model for considering con-
stant rate of deterioration with infinite rate of replenishment. Wee [10], studied the
joint pricing and replenishment policy for deteriorating inventory with price elastic
demand rate in the decline market for time dependent deterioration.

Samanta and Roy [9], developed a continuous production control inventory
model for deteriorating items with shortages. They consider deterioration rate is
very small, demand and production rate is constant. Ilkeong, Giri and Byung-
sung [16], developed an inventory model for amelioration/deteriorating items with
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time varying demand pattern finite planing horizon, taking into account the ef-
fects of inflation and time value of money. Ouyang, Wu, and Cheng [15], studied
an economical inventory model for deteriorating items with exponential decreasing
demand. In this model shortages are allowed assuming backlogging rate is a func-
tion of waiting time for the next period.

Uthayakumar and Parvathi [22], described an inventory model in which they
assumed demand is stock dependent and deterioration rate is nonlinear function
of time. They also assumed that the retailer adopts the trade credit policy offered
by supplier. Jain, Rathore and Sharma [17], presented an economical production
quantity model for deteriorating items in which they consider price and stock de-
pendent demand with considering shortages. Jain and Kumar [23], presented
an economical order quantity model in which he consider ramp type demand,
starting with and without two parameter weibull distribution deterioration rate
2(t) = apt’~! where a(0 < a << 1) is the scale parameter and (3 > 0) is the
shape parameter.

Cachon and Lariviere [8], developed supply chain coordination with revenue
sharing contracts model, in this revenue sharing contract, a retailer pays to sup-
plier a wholesale price for each unit that he purchased and also pays a percentage
of the revenue that generates retailer. Shukla and Khedlekar [6], presented time
and price dependent with varying holding cost inventory model for deteriorating
items in this model they considered the demand as a parametric dependent linear
function of time and price both. The coefficient of time parameter and coefficient of
price parameter are examined simultaneously and proved that time is dominating
variable over price in term of earning more profit. It is also proved that deterioration
of items in the inventory is one of the most sensitive parameter to look in to be-
sides many others. Khedlekar and Namdeo [27], developed an inventory model for
stock and price dependent demand with deterioration, but there is no explanation
about deteriorating rate of products. He, Wang and Lai [33], developed production
inventory model in which they consider deteriorating properties of products

Giri and Bardhan [3], presented an integrated single-manufacturer single re-
tailer supply chain model for deteriorating item. In this model demand function is
assumed to be the function of on hand stock and price furthermore manufacturer
and retailer are in an agreement of lot for lot policy.The proposed model is devel-
oped under the contract that the retailer offers the manufacturers a percentage of
revenue(s), he generates by selling a lot. Palani and Maragatham [21], proposed a
deterministic inventory model for exponential deteriorating items in which demand
rate and holding cost are quadratic and linear function of time. They also consider
that the deterioration is controlled by using preservation technology investment.

Yang, Wee, Chunge and Huang [18], developed a piecewise production inven-
tory model for a multi market deteriorating product with time varying and price
varying sensitive demand. He and Huange [32], studied a kind of deteriorating
products whose deterioration can be controlled by investing on the preservation
efforts. Study considers the seasonal and deterioration properties simultaneously,
Demand rate is assumed to be decreasing linear function of selling price and as-
suming resultant deterioration is decreasing exponential function of cost of preser-
vation technology investment per unit time.

Mishra [30], developed an integrated single-retailer and single-supplier inven-
tory model for deteriorating items under revenue sharing on preservation technol-
ogy investment in which he considered the demand rate is a non negative power
function of selling price and stock level,and production rate is constant. He also
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proposed the manufacturer offers to the retailers for a percentage of revenue shar-
ing on preservation technology investment. Numerical and graphical illustration is

given by him. Khedlekar, Namdeo and Nigwal [28], introduced disruption factor in
production inventory modeling considering with shortages and time proportional
demand, Khedlekar, Shukla and Namdeo [29], designed pricing strategies for de-

clining market demand of deteriorating item introducing item preservation technol-
ogy. In the previous study in this field, demand function as a price sensitive, stock
dependent and constant production rate is considered by researchers. This paper
presents a model in which demand rate as a exponential decreasing function of ¢
as well as price and stock dependent production rate taken as a linear function of
t and also considered preservation technology investment factor for deteriorating
items.

2. NOTATIONS AND ASSUMPTIONS

Following notation are used in this model.

¢ Purchase cost per unit for retailer and selling cost for manufacturer,
p Retail price per unit items,
Cs Compiling cost per lot for manufacturer,
Cp Production cost per unit items,
Cp The ordering cost per order of the retailer,
C,4 Deteriorating cost per cycle [Value of deteriorated products per unit],
K Cost coefficient of investment in the preservation technology,
C}, Unit inventory holding cost per unit time,
¢ Preservation technology cost for reducing deterioration rate in
order preserve the product
0 The deterioration rate,
p Consequent deterioration rate p = fe~"¢,

D(p,I(t)) Market Demand rate at time t; D(p,I(t)) = ae™* — Bp + ¢I(t) where

o demand sensitive parameter, 3 price sensitive parameter, and ¢ stock
sensitive parameter,

¢m Production rate which is linear function of ¢; we assume ¢,,, = ¢+ rt; where

r is the production sensitive parameter,

Production scale,

The subsidy proportion provided by manufacturer to the retailer for preser-

vation technology investment,

T The length of cycle time,

(@ Initial lot-size during a cycle of length T,

I,,(t) Inventory level at time ¢ for the manufacturer, 0 < ¢ < T,

I.(t) Inventory level at time ¢ for the retailer, 0 <t < T,

APgr Total profit per unit time for the retailer,

APy Total profit per unit time for the manufacturer,

NTP Average Total profit per unit time under integrated system,

N Q

The following assumption are made in this model:

e Market Demand of product is D(p, I(t)) at unit time ¢; we assumed de-
mand function D(p, I(t)) = ae~* — Bp+ ¢I(t), is nonnegative exponential
function of ¢ as well as price and stock level, where « is initial demand and
[ is price sensitive parameter, ¢ is stock sensitive parameter, and o > 0,
a=>0,6>0,¢=0,

e Holding cost and deterioration cost are constant,

e Production rate is linear increasing function ¢,, = q + rt,
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e Partly or wholly deteriorated products have no value and there is no holding
cost for them.

e The deterioration rate is controlled by preservation and products which are
fully preserved by preservation technology,

e Preservation technology investment is shared by manufacturer and retailer
for reducing the deterioration rate, and sharing rate is 6.

e The proportion of reduced deterioration rate, p = fe~"¢, is concave in-
creasing function of &,

e The deterioration cost due to deterioration and holding cost for both man-
ufacturer and retailer are same,

e The lead time is zero, and replenishment rate is finite, however the planning
horizon is finite.

e In the finite time horizon 7' it is considered that e~
taken as very small.

oT 5 e~ because a is

3. PROPOSED MODEL FOR RETAILER

According to the assumptions the retailer receives the stock initially from the
manufacturer, at time £, 0 < ¢ < 7. The rate of change in inventory level for
retailer is equal to demand rate and deterioration rate. Thus the following first
order nonlinear differential equation representing the inventory status at any time
t a0

dt

+ pI.(t) = =D(p,I.(t)), where 0<t<T.

= —(ae™" = Bp+ 6L.(t)) (3.1)
with boundary condition I,({) = Q,att =0and I, (t) =0,att =T
Now we derived the average profit function of retailer during a replenishment cycle
interval [0, T'.
The average profit for retailer can be formulated as
Average Profit = %[Sales Revenue-Purchase Cost-Ordering Cost-Inventory Holding
Cost-Deterioration Cost-Preservation Technology Investment Cost]

Equation (3.1) leads to
—aT
I.(t) = (1= elp+®)T—0) ( Bp  ae ) .
" ( ’ ) p+éd pto—a (3-2)

The initial order lot size for retailer at time ¢ = 0, where ¢t € [0, 7] is

L(0)=Q= (1 _ 6(0+¢)T) (pﬁJfQS _ p(f;ﬂa) (3.3)

The total sales revenue in replenishment cycle time [0, 7] can be formulated as

sn=p | " D, 1 (0)

(p+o)T —aT
SRTgbp(TJr L ¢ )(5” ac >

pto (p+9)) \p+o¢ p+to—a
le’
+ 5 (1= e T) - T (3.4)
Purchase cost of retailer is
PC.=cQ

—aT
PC, = ¢ (1 - elo+oT (579 __ac ) 3.5
C( ¢ ) p+é p+o—a (3.5
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The inventory holding cost I HC'r is

T
IHC, = h/
0
1 e(p+¢)T /Bp ae—aT )
IHCr=h|T + — — 3.6
" ( P+ o <p+@><p+¢ pto—a 5.6

Deterioration cost DC, in the interval of length [0, 7] is

T
DC, = Cyfe™ "¢ / I.(t)dt
0

(pto)T —aT
D&Cﬁe%@wl € )(ﬂp ac ) 3.7)

pto pto pto pto—a
Preservation technology investment cost PTIC, is
PTIC, = (1 —0)kET (3.8)
The ordering cost is given by
ocC, =0, (3.9)

Hence the average profit function for retailer per unit time is

AP, — ”ﬁ1—eﬂT%w%2—%cw—u—5mg

Ta
C < 1 e(p+¢)T> ( ﬁp ae_aT >
+2(T+ - -
T\ "hve o6 J\pto pto-a (510

_ S _ (pte)T o _oe )
71— ><p+¢ P —

where ( = (gbp —h— Cdﬂe’"g)

4. PROPOSED MODEL FOR MANUFACTURER

Manufacturer supply the quantity at rate g,, to the retailer. At time ¢, on hand
inventory of manufacturer is I(¢). Due to preservation technology the reduced
deterioration value is pl,,,(t). Thus the differential equation will be

dI(t)
dt

+ pLn(t) = ¢m ,where t, <t <T.

=q+rt 4.1)
with boundary condition I,,,(ts) =0, att =t,, and I,,(t) = Q, att =T
Now we derived the net profit function for the manufacturer during a replenishment
cycle of length [0, T7.
The net profit function for manufacturer can be formulated as

Average Profit= %[ Sales Revenue - Production Cost - Raw Material Ordering Cost
- Holding Cost - Deterioration Cost - Preservation Technology Investment Cost]

Equation (3.11) leads to

nlt) = (4= 5) (e#070) 4 2 (1= 1, (e 4.2

Sales income in the cycle [0, ] is

R, = C'Q
—aT
SR,, = c. (1 — e(”+¢)T) ( Bp _ e ) (4.3)

pto pto—a
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The production cost of product for manufacturer is

T
PC,, =C, / (g + rt)dt
t

s

PCyy = C,(T — t,) (q + g(T - ts)) (4.4)

Raw material ordering cost per lot for manufacturer is

RMOC = C; (4.5)

Preservation Technology Investment Cost is
PTIC = 0k€T (4.6)

The Deterioration cost product per production cycle for manufacturer is

T
DC,, = Cyfe™"¢ / L, (t)dt
t

s

(4N (o 4\ (ot _
DCm_M(/) p2>(T t8)+w<p p2)p(e Y

T2 2 ts
Fws ( - ) ~ w% (ef)(ts—T) + 1) 4.7)

where, w = Cy0e~ "
The holding cost of product per production cycle for manufacturer is

T
HC, =h / I (t)dt
t

s

q T q r\ 1 T
HC,, = (_) Tt +h<—> erlta=T) _ 1
p P ( ) p P p( )

7?2 ts
+ht ( = > — g (et 11) 4.8)

Hence the average profit function for manufacturer per time unit is given by,

_C (o) (B« N Gy Top
AP”’T'(]L e’ )<p+¢ p+¢—a> T tS)(‘”z(T ts))

T W & B W v s S L S 1
7J}(p pQ)(T te) p(p p2)<1 « t> p<2 y ) 49

where, 1) = (h + CdGefng)
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5. ToTAL PROFIT FUNCTION

In this article we have considered that the manufacturer and retailer both are
work together as a single unit and for reducing the deterioration rate of items they
both are invest on preservation technology with revenue sharing. To find total profit
of whole supply chain unit we formulate the total average profit function of whole
supply chain inventory system as,

NTP = AP, + AP,

C
NTP = (1—e-aT> —pt = 2T =) (a+ 5T —1)) - = > - e

pa
Ta
1 elp+o)T Bp ae™ T ) <q r >
- _ (L) (-,
T( p—i—(b P+¢)(P+¢ p+o—a v p p? ( ts)
_Y(a_r @)} _ " (T2 BN Ut (1t

p( ) - t) d)/)(? 2 P (1 « t)

where, ¢ = h + Cqfe™ "5) and ( = (gbp —h— C’,ﬂe’"f)

Proposition 5.1. There exist an unique optimal selling price p* for stock dependent
demand, net total profit function NTP(T', p) is maximum for fixed time horizon T' and
preservation cost £.

Proof. The first order partial derivative of the net profit function is

ONTP(T,p) o 1 e<ﬂ+¢>T) Bp

(1—e ") —28p— %c (T +

op  Ta pto  pt+o )pto
—aT (p+o)T
ae 1 e
+¢< Pr_ )<T+— ) (5.1)
p+o pto—a p+o  pto
Where, ( = (qbp —h— Cdﬁe*%)
If p* is a optimal value p, then %;(T’m must be equal to zero
ie.
ONTP(T,p) 0
Op N
Solve for the optimal price p*
we have
o —aT elpto)T B(h+C40e~"%) pae” T
p*_Z(l’e ) - (T+p+¢ X )( oo T oren a) 5.2
284 1 eleto)T )
26T pt+o (T+ pt+o Pt )

for maximum value NTP(7', p) at point p = p*, we have

O*’NTP(T, ) _ ( 1 e<P+¢>T> 28p
—28T + (T + - <0 (5.3)
op? pto  pto )pt+o
e(P+d)T e(p+d)T
for5>0and(T+p+—¢— s )<0,because(T+p+¢ s ) O

Proposition 5.2. For fixed £, there exist an optimal solution (I'*.p*) that maximize
the net profit function NTP(T', p), and also it is unique.

Special case
When we consider demand function as a price sensitive only (i.e. ¢ = 0) then the
Equation (5.1) reduces to the following form
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6. ToTAaL PROFIT FUNCTION

Therefore, the total average profit function whole inventory supply chain system
is,

NTP = AP, + AP,,

pa C T
NTP_-—{I—E”U /%2—3§H¥¢J(q+§ﬂl%g>—47—44—55

(1) (350 o)

T
_Y(a_r ) _4) Tz_ﬁ) Yrts ( pte,-1)
p(ﬂ ) " O lbp<2 2 p? (et +1>

where, 1) = (h + Cyqbe~ ”5) and o = (h + Cyqfe~ ’75)

Proposition 6.1. There exist an unique optimal selling price p; at which the net total
profit function NTP (T', p) is maximum for fixed time horizon T' and preservation cost
£. where p} is a price of unit item for special case.

Proof. The first order partial derivative of the net profit function are

pT
e R IR B B )
dp Ta P p

Where, ( = — (h + C’dt%’”f)

If p] is a optimal value of p, then %Z)(T’p) must be equal to zero
ie.
ONTP(T,p)
dp B
Solve for the optimal price pj
we have
21— T) = (T+ 1 <2) B(h+ Cpe™)
* = 6.2
at point p = p}, NTP(Z, p) has maximum value if
O’*NTP(T
INTPIP) _ _opp < g 6.3
op?
for 5 > 0. O

Proposition 6.2. For fixed &, there exist an optimal solution (I'*.p}), that maximize
the net profit_function NTP(T', p), and also it is unique.

Theorem 6.1. If p is selling price of a product with stock dependent and price
sensitive demand and pj is a selling price of a product with price sensitive demand,
than for aT' > 0, p* is always less than equal to p7.

Proof. For this we will prove that p]-p* > 0
From the prepositions 1 and 3 we have

a0 -] o - 5

—98T {Zt(leaT) Ag( B " pae T >} -

pto pto—a
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a _ 25¢> 5 25¢
——(1—e9" Ag + Ayr—=——
or a( e ) —— P 1T +¢
B poe= T >
—2BTA + >0 6.4
o 2( +¢ pto—a ©4
since 7 = (h + Cygfe™"%) > 0, A1=(T+f— )<0
elp+)T
andA2:<T+m— e )<O, Val € R,
therefore, from (6.4) p7-p > 0.
Where, 7 = (h 4+ Cgfe™ %), A = (T—|— % — %)
o+ H)T
andA2=<T—|—m— P ) D

Corollary 6.3. Net total profit NT P(T,p) is a increasing function with respect to
selling price p, i.e.
if pI > p, then

NTP(T,p}) > NTP(T,p).

Example 6.4. In case of stock dependent and price sensitive demand the numerical
example are as follow; o = 65, 5 = 0.5, k = 0.5, £ = 0.1, h =0.09, § = 0.1, ¢ = 0.13,
a=001,7=05,¢=81r=05 C=10,C, =15 Cp, =2, C; =15, Cy =1.25,
then p = 18, T' = 1.47, Net Total Profit= 1072.18

Example 6.5. (for special case)

In case of only price sensitive demand the numerical example are as follow;
a=650=05£k=05¢=01h=00960=01¢=0,a=001,7n=054¢=8
r=05C=10C,, =15, Cy, =2, C; = 1.5, C4 = 1.25;then p = 93.39, T' = 1.47,
Net Total Profit= 1642.66

In view of above numerical examples case second is more profitable in place of
case first. In the second demand pattern manufacturer and retailer both are save
the bulk revenue which are required initial investment on spacing, preservation
investment and deterioration.

7. SENSITIVE ANALYSIS

If the initial demand increases, the consumed order quantity, net profit and sell-
ing price of item (figure 1) increases sharply, thou time span (figure 2) decreased
marginally. This reveals that initial demand boost the profit of manufacturer and
as well as of retailer. If the stock dependent parameter ¢ increases then time hori-
zon T’ reduces sharply (figure 3). This reveals that for highly stock dependent items
keep the time horizon less as possible, and accordingly orders frequently. Moreover
the net profit of manufacturer and retailer is sensitive on stock dependent param-
eter, for certain value of ¢ (0.01 to 0.025) the profit of both increases marginally,
but thereafter ¢ > 0.025, manufacturer’s profit is constant and retailer’s profit de-
creases sharply. Then, there exist an optimal value of ¢ that maximize the profit
function (see figure 5)

Since [ is a price sensitive parameter of demand function, and in this supply
chain model, retailer may decide their items price for maximizing the total profit.
On the basis of above statement for fixed 8 = 0.03, = 10, k = 0.5, £ =
h =0.09,0 =0.02, ¢ =0.13,a = 0.01, n =0.5,¢g = 8, r = 0.5, ¢c = 10, C,,, = 15,
Cp =2, C, = 1.5, Cq = 1.25, then at the value of decision variables are 7' = 0.795,
p = 38, NTP (Net total profit) = 320.10 (figure 4).
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Selling price of the item is highly sensitive on parameter 5. Therefor those
items which are highly price sensitive (for greater value of ) would be sustain
in market with fluctuating price (figure 6 ). However high selling price does not
guarantee to earn more profit (figure 4), for even business setup an optimal selling
price exists for this profit is optimal for manufacturer as well as retailer. As per
(figure 4) optimal selling price is p = 38 and for this sum of the manufacturer and
retailer profit 320.10 is optimal. On increasing the parameter 3, net profit NTP is
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also increases but after certain value of 8 = 0.03, NTP decreases.

Thus we have observed from (figure 6) selling price is linearly proportional to
the parameter 5 and there exists an optimal price for highest profit. The above
phenomenon follows for parameter ( also. Hence there exists an optimal value of
B that maximize the profit of manufacturer and retailer (figure 8). Above phenom-
enon is also applicable for time cycle, therefore there exists an optimal value of T'
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(see figure 7 ) that maximize, the net total profit

In this research study it is found that when the production rate is time de-
pendent linear function of ¢ then the deterioration factor is more effective on the
profit of manufacturer therefor if the deterioration rate is very low the profit of
manufacturer is proportionally large and if the deterioration rate is high the profit
of manufacturer is proportionally small i.e. the profit of manufacturer is inversely
proportional to deteriorating rate.

8. CONCLUSION

The paper contains an inventory supply chain model for deteriorating seasonal
items in which the deterioration rate can be controlled by investing on the preser-
vation technology. By analysis, we have observed that for price sensitive and stock
dependent demand pattern, deteriorating nature of products is more effective of
the profit of manufacturer, therefore production management must provide to the
retailer for a percentage of revenue sharing on preservation technology. We also
observe that price dependent demand is more profitable than price and stock de-
pendent demand. For a business setup we have found optimum time, price and
time cycle to obtain maximum profit. It is advised to retailer to order in small lot size
and small time cycle to obtain maximum profit, because the deterioration highly
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influence the model output. One can extend the model for multi supply chain and
also for multi products. Also one can formulate the model in fuzzy environment.
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ABSTRACT. We present a local convergence analysis of at least 2 + v/2 convergence order
two-step method in order to approximate a locally unique solution of nonlinear equation
in a Banach space setting. In the earlier study, [6, 15] the authors of these paper did
not discuss that studies. Furthermore, the order of convergence was shown using Taylor
series expansions and hypotheses up to the sixth order derivative or or even higher of the
function involved which restrict the applicability of the proposed scheme. However, only
first order derivative appears in the proposed scheme. In order to overcome this problem,
we proposed the hypotheses up to only first order derivative. In this way, we not only expand
the applicability of the methods but also propose convergence domain. Finally, we present
some numerical experiments where earlier studies cannot apply to solve nonlinear equations
but our study does not exhibit this type of problem/restriction.

KEYWORDS : Two-step method with memory; local convergence; convergence order.
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1. INTRODUCTION

There are several problems of pure and applied science which can be studied
in the unified frame work of the scalar or system of nonlinear equations. In this
paper, we are concerned with one of the most important and challenging task in
the field of numerical analysis, is to approximate the local unique solution z* of
the equation of the form

F(z)=0, (1.1)
where F' is a twice Fréchet differentiable function defined on a subset D of R with
values in R.

We can say that either lack or intractability of their analytic solutions often

forces researchers from the worldwide trying their best to resort to an iterative
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method. While, using these iterative methods researchers face the problems of
slow convergence, non-convergence, divergence, inefficiency or failure (for details
please see Traub [14] and Petkovic et al. [12]).

The convergence analysis of iterative methods is usually divided into two cat-
egories: semi-local and local convergence analysis. The semi-local convergence
matter is, based on the information around an initial point, to give criteria ensur-
ing the convergence of iteration procedures. A very important problem in the study
of iterative procedures is the convergence domain. Therefore, it is very important
to propose the radius of convergence of the iterative methods.

We study the local convergence analysis of two-step method with memory defined
foreachn =0, 12, ... by

Yo = 0 — (F'(20) + anF(2)) " Flan)
Tn+1 = Yn — (F(l'n) + (B - 2)F(yn))_1 (F(In) + BF(yn)) (F/(xn) + QQnF(xn))_l F(yn)a

(1.2)
where x_1, g are initial points, § € R, «,, = é%, n=20,1, 2
[, s F'] and [, -; F] denote divided differences of order one for functions F’ and F,

respectively. Method (1.2) was introduced in [6] as an alternative to the King-like
method

Yn = Tp — (F'(2,) + aF(xn))_l F(zy,)
Tns1 = Yo — (Fxn) + (B =2 F ()" (F(xn) + BF(yn)) (F' () + 20F ()" F(yn),

(1.3)
where a, 8 € R. Method (1.2) was shown to be of order 2 + /2 using hypotheses
up to the sixth derivative of function F' [6]. Method (1.3) is of order four [15] and

hypotheses up to the fourth derivative of the function. These hypotheses on the
derivatives of F' limit the applicability of method (1. 2) and method (1.3). As a

motivational example, define function F on R, D = [-1, 2] by
1
Fz) = 23 log(m2x?) + 2° sin <x) , x#0 .
0, z=0

Then, we have that

1 1
F'(z) = 22 — 2% cos <x) + 322 log(m%x?) + 52 sin <x> ,

F'(z) = —8s? (1> +22(5 + 3log(n?2%)) + 2(202% — 1) sin @)

and

F"(z) = é [(1 — 3622) cos (;) +x (22 + 6log(m?2?) + (6022 — 9) sin (;))] .

One can easily find that the function £/ (z) is unbounded on D at the point 2 = 0.
Hence, the results in [6, 15], cannot apply to show the convergence of method (1.2)
and method (1.3) or its special cases requiring hypotheses on the fifth derivative
of function F' or higher. Notice that, in-particular there is a plethora of iterative
methods for approximating solutions of nonlinear equations [1,

, ]. These results show that initial guess should be close to the
requlred root for the convergence of the corresponding methods and same thing is
also mentioned by the authors of papers [6, 15]. But, how close initial guess should
be required for the convergence of the corresponding method? These local results



BALL CONVERGENCE FOR 51

give no information on the radius of the convergence ball for the corresponding
method. The same technique can be used on other methods.

In the present study we expand the applicability of method (1.2) and method
(1.3) using only hypotheses up to the second order derivative of function F. We
also proposed the computable radii of convergence and error bounds based on the
Lipschitz constants. We further present the range of initial guesses z( that tell
us how close the initial guess should be required for granted convergence of the
method (1.2) and method (1.3). This problem was not addressed in [6, 15]. The
advantages of our approach are similar to the ones already mentioned for method
(1.2) and method (1.3).

Definition 1.1. (Error Equation, Asymptotic Error Constant, Order of Conver-
gence)

Let us consider a sequence {z,} converging to a root £ of f(z) = 0. Let e, =
x, —& be the error at n'” iteration. If constants p > 1, ¢ # 0 exist in such a way that
ent+1 = cel + O(ePT!) known as the error equation then p and n = |c| are said to
be the order of convergence and the asymptotic error constant, respectively. From
lent1]

this definition the asymptotic error constant is found to be = |¢| = lim e
n—voo |eh]

. en+1
However, some researchers call ¢ = lim >
n—oo €

asymptotic error constant instead

of |¢].

Definition 1.2. (Asymptotic Order of Convergence)
With the help of above definition 1.1, we can define the asymptotic order of
convergence as follows:

lim |6n+1/77"

n—soo ‘e?,”

p:

But, the main drawback of calculating 77 according to the above formula is that
it involves the exact root ¢ and there are many real situations in which the exact
root is not known in advance. To over come this problem, we can use (Z,,+1 — Zp,)
instead of (e,+1) in the above formula to calculate 7.

2. LOCAL CONVERGENCE: ONE DIMENSIONAL CASE

In this section, we shall define some scalar functions and parameters in order
to present the local convergence of method (1.2) that follows.
Let Lo >0, L >0, M > 1and 8 € R be given constants. Let us also assume

some functions p, hy, p1 and h,, defined on the interval [O, L%)) by

0= (Bt g )

LM
t)y=|(L — |7
pl() ( 0+1_L0t> )

hp(t) = p(t) — 1, and hy, (t) = p1(t) — 1. We have h,(0) = hy,, (0) = -1 < 0
and h,(t) — +o0, hy, (t) — 40 ast — L;Ol Then, by the intermediate value

theorem functions h,, and h,, have zeros in the interval (O, LLO) Further, let 7,
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and rp, respectively be the smallest such zeros. Then, we have that
py <Tp, P(rp) =pi(rp,) =1
0<p@) <1,
0<pi(t) <1
and
0 <p(t) <pi(t) foreacht € [0,ry,).
Moreover, define functions g, hi, ¢ and h, in the interval [0, r,,, ) by
Lt M? )
1 t) = 1+ )
1) = 30 Loty ( L—pi(t)
hl(t) = gl(t) -1

q(t) = %t + 18 —2|Mgi(t)

and
ha(t) = a(t) — 1.

We get that h1(0) = he(0) = —1 < 0 and hq(t) — 400, hy(t) — +ooast — 7p,.
Then, it follows from the intermediate value theorem that functions h; and h, have
zeros in the interval (0, 7,,). Denote by 7 and rg, respectively the smallest such
zeros. Furthermore, define functions g2 and hs on the interval [0, r,) by

_ M?(1+[Blg: (1))
gQ(t) = (1 + (1 _ q(t)) (1 —p1(t))> gl(t)

and
hg = g2 (t) — 1.
Then, we get hy(0) = —1 and hy(t) — 400 as t — r; . Denote by 7> the smallest

zero of function hy on the interval (0, 74). Finally, define
r = min{ry, 72, }. (2.2)

Then, we have that for each ¢ € [0, 1)

0<p(t) <1, 2.3)
0<p(t) <1, (2.4)
0 < p(t) < pi(t), (2.5)
0<q(t) <1, (2.6)
0<q(t)<1 2.7)
and
0 < ga(t) < 1. 2.8)

Let U(v, p) and U(v, p) stand, respectively for the open and closed balls in S with
center v € S and radius p > 0. Next, we present the local convergence analysis of
method (1.2) using the preceding notations.

Theorem 2.1. Let us consider F' : D C R — R be a twice differentiable function.
Let us also assume [-,- ; F] : D* — L(R) to be a divided difference of order one for
Sunction F. Suppose that there exist x* € D and Ly > 0 such that for each xz € D

F(z*) =0, F'(z*)#0 (2.9)
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and

|F(z*)~" (F'(x) = F'(z*))| < Loz — x| (2.10)
Moreover, suppose that there exist L > 0, M > 1 and 8 € S such that for each
x, yGU(m*, L%]) NnD

’F'(m*)_l (F’(;U)—F’(y))’ < L|z —y|, 2.11)
|F'(a*)" ' F'(2)]] < M, (2.12)

and
U (z*, r) C D, (2.13)

where the radius of convergence r is defined by (2.2). Then, the sequence {z,}
generated by method (1.2) for x_1, zo € U(z*, r) — {z*} with x_1 # z¢ is well
defined, remains in U (z*, r) for eachn = 0,1,2, ... and converges to x*. Moreover,
the following estimates hold

lyn — 2| < g1(P)|xpn — 2| < |zp — ™| <71 (2.14)

and
[@ns1 — 2°| < ga(r)|en — 2*| < |z, — 27, (2.15)

where the “g” functions are defined by previously. Furthermore, for T € {r, L%)
the limit point x* is the only solution of equation F(z) = 0 in U(z*, r).

Proof. We shall show estimates (2.14) and (2.15) hold with the help of mathematical
induction. First, we must show «g # 0. We can write
F'(xo)—F'(z_1)
To—T_1
9 F(z0)—F(z_1)
Tom®-1 (2.16)

1
F'(x_1+60(xg —x_1))do
:,lfol (-1 402 — 1)) , for zg # z_1.
2 [y Fl(m—1 + 0(zo — x_1))df

Using (2.2) and (2.10) we have that

apg = —

Fl(z*)~! 1 F(@ +0(z0 — 2_1))d0 — F'() || < 22 (ja_y — 2*] + |20 — 27])
e J|<3

< Lor < 1.
2.17)
Then, by (2.17) and the Banach Lemma on invertible functions [4, 13], we get that
fol F'(x_1 4 0(xg —x_1))df # 0 and
1 -1 1
Flx_1+0(xp — x4 d9) F'(z*)] <
([ Faso ) e P e
1
< .
—1— Lor
(2.18)
In view of (2.11), (2.16) and (2.18), we have that
L |Jy P P G+ 0o — 1))
|0‘0‘ =35 ’
2 ‘fol F(z*) YF'(z_1 + 0(z0 — x,l))de‘ 2.19)
L L
<

1
_ < .
2(1—%(‘I,1—x*|+|1’0—(£*|)) - 2(17L0T)
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We must show F'(x0) + oo F(z9) # 0. We can write by (2.9) that
1
F(zg = F(zg) — F(z*) = / F'(z* + 0(xo — %)) (z0 — 27)d0. (2.20)
0

Notice that |x* +0(z¢—2*) —2*| = 0|zg—2*| < r. Thatis z*+6(zo—2*) € U(z*, 7).
Then by (2.12) and (2.20), we get that

|F'(2*) 7 F (o) | < Mg — 2*|. (2.21)
Using (2.2), (2.3), (2.4), (2.19) and (2.21), we get in turn

|F'(a*) 1 (F' (o) — F' (%) — ao F (w0))|
< |F'(a*) 71 (F' (wo) — F'(¢"))| + |ao| |[F'(2™) " F(x0)|
LM|xq — z*| (2.22)
2 (1 - %(\m,l —x*| + |zo — x*|))
<p(r) <p(r) <L

< Lo|lzo — ™| +

It follows from (2.22) that

1
< —F (2.23)

[(F/(20) + a0 Fla) ™ F'()| < s

and vy is well defined by the first sub step of method (1.2) for n = 0. As in (2.22)
and (2.23), we obtain that

’ =1 ) % 1
‘(F (z0) + 200 F (z0)) ~ F'(2")| < =) (2.24)
and
/ =1ty 1
|F' (o) F'(2%)| < T Lo (2.25)

Using the first sub step of method (1.2) for n = 0, (2.2), (2.6), (2.9), (2.11), (2.21)
and (2.23), we get in turn that

lyo —2™| = }xo — F'(w0) " F(wo) + F'(20) " F(x0) — (F' (o) + o F(wo)) ™" F(xO)‘

< |zo — 2" = F'(w0) " F(x0)| + laol |(F'(z0) + agF(w0)) " Flzo)?|

L|zg — z*|? lco| M2 |zg — 2% |2
~ 2(1 — Lolzog —z*|) 1 —p(Jzo — z*|)
L|zg — x*|? LM?|xy — x*|?

< T
20— Lofzo — =) * 2 (1= B(Jo_1 —a| + a0 —a°])) (1 — pllwo — 2°)
< gi1(r)|mo — x| < |xzo — ™| <1,
(2.26)
which shows (2.14) for n = 0 and yg € U(z*, r). Notice that (2.21) holds for yq
replacing xg, since yo € U(z*, r). We must shows F(xo) + (8 — 2)F(yo) # 0.
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Using (2.2), (2.3), (2.7), (2.8), (2.9) and (2.21) (for yg = x¢), we get in turn that
for zo # x*

| (w0 — 2™)F' (") 1) [F(wo — F(z¥) = F'(z")(zo — ") + (B — 2)F (y0)]|

< fwo — a7 [[F/(2") 7 (F(wo) = F(2™) = F'(a") (w0 — 27))| + |8 — 2| [F'(z") "' F(yo)|]

* | — L * *
< fao o7 (Gl = a7+ 15~ 2Mlyn — 27 )

L . .
< Do — "] + M8 — 2lg1 (Jo — 2°))

=q(Jzg — 2¥]) < q(r) < 1.
(2.27)
Hence, we get from (2.27) that

1
F(zo)+ (B—2)F(y)) | <
‘( ( 0) ( ) (yO)) |x0—x*\(1—q(|x0—x*|))
and x; is well defined by the second sub step of method (1.2) for n = 0. Then, in
view of (2.2), (2.3), (2.8), (2.21)(for ¢ = yp and zg = z¢), (2.23), (2.26) and (2.28),
we obtain in turn that
|21 — 2" < |yo — "] + '(F(xo) +(B—2)F(y)) " F'(z")
x [[F"(2*) 71 F (o) + |BIF" (2*) ™ F(yo)]
< |(P(20) + 2007 (o)™ F' ()| 1P (@) F (ao)]
(1 M? (1 +|Blg1(|zo — 2*])) o — 2] >|y0_x*|
w0 — 2*|(1 = q(|zo — 2*[))(1 = pr(lzo — 2*]))
< ga(|zo — &™|)|wo — 27| < ga(r)|zo — 27|

<l|zg—z*| <,

(2.28)

(2.29)

<

which shows (2.15) and z; € U(z*, r). By simply replacing xo, yo, 20 by Tm.,
Ym, 2m Iin the preceding estimates we arrive at (2.17)-(2.19). Then, from the

estimates |Zy,4+1 — ¥ < |z, — 2% < 7, we conclude that lim z3 =2z" and
m—>00

Tmi1 € U(x*, 7). Finally, to show the uniqueness part, let y* € U(z*,T) be such
that F(y*) = 0. Set Q = fol F’ (z* + 0(y* — x*)) df. Then, using (2.12), we get that

1
L
P (Q - F'(a*))| < Lo/ Pl —y*ldh = 2T < 1. (2.30)
0
Hence, Q' € L(Y, X). Then, in view of the identity F'(y*) — F(z*) = Q(y* — z*),
we conclude that z* = y*. O
Remark 2.1. (a) In view of (2.9) and the estimate
|F'(@*) " (@) = [F'(a) " (F'(2) = F'(2%)) + 1|
< 14 |[F(@) T (F (@) - F(a))

< 14 Lolzg — ¥

condition (2.11) can be dropped and M can be replaced by
M= M(t) =1+ Lot
or M =2, since t € [0, L%)
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(b)

~

(c

d

The results obtained here can be used for operators F' satisfying the au-
tonomous differential equation [4, 5] of the form

where P is a known continuous operator. Since F’(z*) = P(F(z*)) =
P(0), we can apply the results without actually knowing the solution x*.
Let as an example F(x) = e* + 2. Then, we can choose P(z) =z — 2.

The radius 74 = ﬁ was shown by us in [4, 5] to be the convergence
radius for Newton’s method under conditions (2.9) - (2.11). Radius r4 is at
least as large as the convergence ball given by Rheinboldt [13] and Traub
[14]
2
T —
"7 3L,
Notice that for Lg < L1,
TR <TA4.
Moreover,
T 1 L
£, as 2o
TA 3 L1

Hence, r4 is at most three times larger than rz. In the numerical exam-
ples, we compare r to r} = ﬁ > r4 and rr. Notice that [, satisfies
‘F’(a:o)_l(F’(x) — F’(y))‘ < Ly|z — y| for each z, y € D. Then, we have
that L < L since U (x*, L%)) NnDcD

It is worth noticing that method (1.2) is not changing if we use the con-
ditions of Theorem 2.1 instead of the stronger conditions given in [6, 1.

Moreover, for the error bounds in practice we can use the computational
order of convergence (COC) [8]

lnlxn+2_$*‘
|xn+1_$*‘ _ 1.2
PNERErTE foreachn =0,1,2,... (2.31)
gl
‘fn_zﬂ

é'_

" ln
or the approximate computational order of convergence (ACOC) [8]

I [Znt2—Tni1]
I [Zrt1—2n]

, foreachn=1,2,... (2.32)

Inlznt1=2n]
|In_mn—1|

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates higher than the first Fréchet derivative.
Notice also that the computation of £* does not involve the solution x*.
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Remark 2.2. In order to obtain the corresponding results for method (1.3), simply
replace functions p;, g; and gs by p1, g1 and go defined by

P1(t) = (Lo + |a|M)t,

hp, (t) = pr(t) — 1

N L la| M2
ailt) = <2(1 — Lot) "1 —P1(f)> b
ha(t) = ga(t) — 1

at) = 221+ M|5 — 203, (1),

’ = a®)1-pi(0))
hg(t) = gg(t) —1,
respectively and follow the proof of Theorem 2.1 with these changes. Let us consider
that 7, , 71, 74 and 72 be the smallest zeros of the functions hy, (t), hi(t), hy(t) and
ha(t), respectively. Notice that we have

1
Lo + \a|M
Theorem 2.2. Under the hypotheses of Theorem 2. 1, the conclusions hold for method
(1.3) replacing method (1.2) and functions p;, g1 and g» replacing functions p1, g1
and gs.

T :min{ﬁ, 772} <rg= =Ty < Tyq.

3. NUMERICAL EXAMPLE AND APPLICATIONS

This section is fully devoted to verify the validity and effectiveness of our the-
oretical results which we have proposed earlier. In this regard, we will consider
some numerical examples in order to demonstrate the convergence behavior of the
scheme proposed in [6, 15]. We will also check the applicability of our study where
earlier study did not work.

Now, we employ the three special cases of method (1.2) for 3 = 0, § = % and
B = 1 are denoted by (M), (Ms) and (M3), respectively. In addition, we also
consider three special cases of method (1.3) for 5 =0, 8 = % and § = 1 are called
by (My) and (Ms), (Mg), respectively to check the effectiveness and validity of the
theoretical results.

For every iterative method, we require an initial approximation z close to the
required root which gives the guarantee for convergence of the corresponding iter-
ative method. In this regard, first of all, we shall calculate the values of 74, rr, 75,
Tp,» T1, Tq» T2 and r which are defined in the section 2, to find the convergence do-
main. We displayed all theses values in the Tables 1 and 4 which are corrected up
to 5 significant digits. However, we have the values of these constants up to several
number of significant digits. Then, we will also verify the theoretical convergence
behavior of these methods on the basis of computational order of convergence and

€n41
en

In the Tables 3 and 6, we presented the number of iteration indexes (n), approxi-
mated zeros (z,,), residual error of the corresponding function (|F'(z,,)|), errors |e,|
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e
(where e, = x,, — %), |2t | and the asymptotic error constant 7 = lim n;l
en n—oo | €n
Moreover, we will also present the computational order of convergence which is cal-
culated by using the above formulas proposed by Sanchez et al. in [8]. We calculate

the computational order of convergence, asymptotic error constant and other con-
stants up to several number of significant digits (minimum 1000 significant digits)
to minimize the round off error.

As we mentioned in the above paragraph that we calculate the values of all the
constants and functional residuals up to several number of significant digits but
due to the limited paper space, we display the values of x,, up to 15 significant digits.
In addition, the values of other constants namely, £(COC) up to 5 significant digits
en

2
Cn—1

and the values

and 7 are up to 10 significant digits. Moreover, the residual

error in the function (| F(z,,)|) and the error |e,, | are display up to 2 significant digits
with exponent power which are mentioned in the following Tables corresponding to
the test function. However, minimum 1000 significant digits are available with us
for every value.

During the current numerical experiments with programming language Mathe-
matica (Version 9), all computations have been done with multiple precision arith-
metic, which minimize round-off errors.

Further, we use a,, = f%%, n =0, 1, 2, ... in the method (1.2). and
a = agp in method (1.3). '

Example 3.1. Let X =Y =R, D = U(0, 1). Define F on D by
F(z)=e"—1. (3.1)
Then the derivative is given by
F'(z) =€".
Notice that z* =0, Lo =e—1, L= M = 6710 and L; = e. We obtain different

radius of convergence, COC (£) and n in the following Table 1.

TaABLE 1. (Different radius of convergence for different cases of method (1.2))

B TA TR Tp Tp, 1 Tq T9 r

M; 0.38269 0.24525 0.22932 0.16234 0.10455 0.050831 0.027969 0.027969
My 0.38269 0.24525 0.22932 0.16234 0.10455 0.061390 0.029590 0.029590
Ms 0.38269 0.24525 0.22932 0.16234 0.10455 0.077519 0.031207 0.031207

TaBLE 2. (Different radius of convergence for different cases of method (1.3))

B ™ TR Tp, 71 Tq T2 T
My 0.38269 0.24525 0.38269 0.20602 0.083769 0.044751 0.044751
Ms 0.38269 0.24525 0.38269 0.20602 0.10341 0.047606 0.047606
Ms 0.38269 0.24525 0.38269 0.20602 0.135464 0.050500 0.050500
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TABLE 3. (Convergence behavior of methods on example (3.

59

Methods; n Tn |f(zn)] len| p E;E'il n
I. guesses

My; 1 —1.34790139256212e(—10) 1.3e(—10)* 1.3e(—10) 3.975878133e(—5) 8.631045304e(—84)
zo =0.026; 2 6.17956797140613¢(—52)  6.2¢(—52) 6.2¢(—52) 4.9997 3.093237159¢(—18)
z_1 =0.025 3 —1.25157843463683e(—258) 1.3e(—258) 1.3e(—258) 5.0000 8.631045304e(—84)

Mo; 1 —2.37361265176050e(—10) 2.4e(—10) 2.4e(—10) 4.754928001e(—5) 7.666765294e(—82)
zo = 0.028; 2 1.04644581262418¢(—50)  1.0e(—50) 1.0e(—50) 4.9996 7.587924013e(—18)
z_1 =0.027 3 —1.74281474660902¢(—252) 1.7e(—252) 1.7e(—252) 5.0000 7.666765294e(—82)

Mo; 1 —3.34959078958091e(—10) 3.3e(—10) 3.3e(—10) 5.301820294e(—5) 1.176621971e(—80)
zo = 0.030; 2 5.85633985970618¢e(—50)  5.9¢(—50) 5.9e(—50) 4.9996 1.310170843e(—17)
z_1 =0.029 3 —9.56750866152990e(—249) 9.6e(—249) 9.6e(—249) 5.0000 1.176621971e(—80)

My; 1 —1.83720876618666¢(—4)  1.8¢(—4)  1.8¢(—4) 5.364665184¢(—3) 4.037825064e(—23)
o =0.043 2 2.90723404620118¢(—21) 2.9¢(—21) 2.9e(—21) 4.9861 2.551796045¢(—6)
z—1 =0.042 3 —2.88447967644456e(—105) 2.9e(—105) 2.9e(—105) 5.0000 4.037825064¢e(—23)

Ms; 1 —2.53964035862797e(—4) e(—) e(-) 5.659552194e(—3) 2.038091513e(—22)
o =0.046 2 1.46742588925498¢(—20)  1.5e(—20) 1.5e(—20) 4.9838 3.527502228¢e(—6)
x_1 =0.045 3 —9.45036076907927¢(—102) 9.5¢(—102) 9.5¢(—102) 5.0000 2.038091513¢(—22)

Me; 1 —3.43233270545234e(—4)  3.4e(—4)  3.4e(—4) 5.937295070e(—3)  9.190077267¢(—22)
20 =0.049 2 6.61685563211979¢(—20)  6.6e(—20) 6.6e(—20) 4.9811 4.767537798e(—6)
z—1 =0.048 3 —1.76167503404114(—98) 1.8¢(—98) 1.8e(—98) 5.0000 9.190077267e(—22)

@ 1.3¢(—10) denotes 1.3 x 10(-19 and

b 4.6e(+1) denotes 4.6 x 10(+1),

Example 3.2. Returning back to the motivation example at the introduction on
this paper, we have L = Ly = L1 = 96.662907, M = 1.0631 and our required zero
isx* = % We obtain different radius of convergence, COC (p) and 7 in the following

Table 4.

TABLE 4. (Different radius of convergence for different cases of method (1.2))

*
BT "R "p "1

1

T'q

T2

r

M; 0.0068968 0.0068968 0.0050668 0.0038436 0.0029697 0.0021535 0.0014647 0.0014647
My 0.0068968 0.0068968 0.0050668 0.0038436 0.0029697 0.0024379 0.0015136 0.0015136
Ms 0.0068968 0.0068968 0.0050668 0.0038436 0.0029697 0.0028015 0.0015571 0.0015571

4. CONCLUSION

Most of time, whenever a researcher from the worldwide proposed a new or mod-
ified variant of Newton’s method or Newton like method. He/she mentioned that
initial guess should be very close to the required root for the granted convergence




60 IOANNIS K. ARGYROS, RAMANDEEP BEHL AND S.S. MOTSA/JNAO : VOL. 8, NO. 1, (2017), 49-61

TABLE 5. (Different radius of convergence for different cases of method (1.3))

153 Tpy 71 Tq T9 T
M, 0.0068968 0.0068968 0.0094475 0.0063886 0.0039803 0.0026772 0.0026772
Ms 0.0068968 0.0068968 0.0094467 0.0063881 0.0045987 0.0027843 0.0027843

Mg 0.0068968 0.0068968 0.0094471 0.0063883 0.0054826 0.0028832 0.0028832

T4 TR

TABLE 6. (Convergence behavior of methods on example (3.2))

Methods: 7 @n |f (@)l len] p o
I. guesses
My; 1 0.318309886198535 3.5e(—12) 1.5e(—11) 5.072535235e(—2) 6.722422756e(—34)
xo = 0.3167 2 0.318309886183791 1.7e(—44) 7.le(—44) 4.0205 6.793257776e(—7)
z_1 =0.3165 3 0.318309886183791 7.6e(—182) 3.2e(—181) 4.2498 6.722422756e(—34)
Mo; 1 0.318309886203752 4.7e(—12) 2.0e(—11) 5.590350794e(—2) 1.922758031e(—33)
xo = 0.3166 2 0.318309886183791 6.0e(—40) 2.5e(—42) 4.0206 8.657309044e(—7)
z_1 =0.3164 3 0.318309886183791 1.7e(—179) 7.2e(—179) 4.2499 1.922758031e(—33)
Ms3; 1 0.318309886202808 4.5e(—12) 1.9¢(—11) 5.325860168e(—2) 4.777713914e(—33)
xo = 0.3166 2 0.318309886183791 4.9e(—44) 2.1e(—43) 4.0179 8.413251931e(—7)
z—1 =0.3165 3 0.318309886183791 7.4e(—180) 3.2e(—179) 4.2501 1.634940044e(—33)
My; 1 0.318309886264393 1.9¢(—11) 1.8e(—11) 1.292984230 3.498998586
xzo = 0.3155 2 0.318309886183791 3.5e(—40) 1.5e(—40) 3.9427 3.498998654
x_1 =0.3154 3 0.318309886183791 3.9¢(—160) 1.7e(—159) 4.0000 3.498998586
Ms; 1 0.318309886285849 2.4e(—11) 1.0e(—10) 1.423451314 3.736693556
xzo = 0.3154 2 0.318309886183791 9.5e(—41) 4.le(—41) 3.9438 3.736693644
x—1 =0.3153 3 0.318309886183791 2.4e(—158) 1.0e(—157) 4.0000 3.736693556
Me; 1 0.318309886278453 2.le(—11) 9.5e(—11) 1.423451314 3.736693556
zo = 0.31563 2 0.318309886183791 6.8¢(—41) 2.9¢(—40) 3.9438 3.736693644
z_1 =0.3152 3 0.318309886183791 6.0e(—159) 2.6e(—158) 4.0000 3.736693556

of proposed scheme. But, they do not talk about the range or interval of the re-
quired root which give the grantee for the convergence of the proposed method.
Therefore, we propose the computable radius of convergence and error bound by
using Lipschitz conditions in this paper. Further, we also reduce the hypotheses
from sixth order derivative of the involved function to only first order derivative. It
is worth noticing that method (1.2) and method (1.3) are not changing if we use the
conditions of Theorem 2.1 instead of the stronger conditions proposed by them.
Moreover, to obtain the error bounds in practice and order of convergence, we can
use the computational order of convergence which is defined in numerical section
3. Therefore,we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates higher than the first order derivative.

Finally, on accounts of the results obtained in section 3, it can be concluded that
the proposed study not only expand the applicability but also given the computable
radius of convergence and error bound of the scheme given by the authors of [6, 15],
to solve nonlinear equations.
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1. INTRODUCTION

Let > p» denote the class of meromorphic functions of the form

flz)=2"P+ Z anip2 TP, (1.1)
k=0

which are analytic and p-valently in the punctured unit disk U* = {2 :2 € C: 0 < |z| <
1} =U—0.

If f(z) and g(z) are analytic in U, we say that f(z) is subordinate to g(z), written f < g
or f(z) < g(z), if there exists a Schwarz function w(z), which (by definition) is analytic in ¢/
such that f(z) = g(w(z)).

A function f(z) € 3 is said to be p-valent meromorphic starlike of order a(0 < o < p) if it
satisfies

Re{ - Z;:;i;)} >a, (z€U) (1.2)

and the class of such functions is defined by M S*(«).
Furthermore, a function f(z) € > » is said to be p-valently meromorphic convex functions
of order a(0 < a < p) if it satisfies

2f"(2)
f'(z)

Re{—(1+ )} >a, (zeU) (1.3)
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and the class of such functions is defined by M K ().
Let f(z) € 3_, and g(z) € MS™(a). Then f(z) € MC(a, f) if and only if
z2f'(2)
- 1.4
Re{ ) }>8, ew, (1.4)

where 0 < a < pand 0 < 8 < p. Such functions are called close-to-convex functions of
order 3 and type « in U, (see for details ,[[4], [9]].

Further, a function f(z) € ) » is called p-valently meromorphic strongly starlike of order
v(0 < v < p) and type a(0 < v < p) in U if it satisfies

2f'(2) ™
‘arg(— f(Z) - Oé)‘ < 5’}/7 (Z € u), (15)
and denoted by M S™* (7, «).
If f(z) € >_, satisfies
2f'(2) T
jarg(~(1+ 55 — )| < 57 (),

for some v(0 < v < p) and (0 < a < p), then f is called p-valently meromorphic
strongly convex of order v and type « in U/ and denoted by MC(v,a). We note that the
classes mentioned above are the familiar classes which have been studied by many authors
(see for example,([3],[6],[91,[10]).

For a function f(z) € 3_, given by (1), we define a linear operator D" by

D°f(z) = f(2)

D'f(z) =2 P(Z""f(2) =2+ > (2p+k+ Dag 2"
k=0
and

D"f(2) = D(D" " f(2)) =z "(z"" D" f(2))

=zP+ Z(Qp +k41)"aps,2" 7. (n eN) (1.6)
k=0
Using the relation (6), it is easy to verify that

2D"f(2)) = D" f(2) = (p+ 1)D" f(2). (1.7)

Also, we note that D" f(z) of another form of function studied by Liu and Srivastava

[7] ,Srivastava and Patel [13] who introduce several inclusion relationships by using various

subclasses of meromorphic p-valent function. A special cases of linear operator D" forp = 1

studied by Uralegaddi and Somanatha [14], Aouf and Hossen.[1], and got interesting results
by using the operator D".

For n € N, let MC;L“(a,ﬂ,’y,A, B) be the class of functions f(z) .
condition:

» satisfying the

P Dn+1 2 /
g2
Drtig(z)
for some g(z) € Sy (o, A, B), where

—7’<g5 (0<~v<p,0<d<pzel), (1.8)

n+1 ’
1 2(D""g(z)) 1—|—Az} (1.9)

gt A, B :{ : - <
(e ) g p+ a( Drtlg(z) @) 14 Bz
0<a<p-1<B<A<I1z€UUandg € ) and the functions f belonging
to this class is called strongly close-to-convex function. In this study and by using the

technique of Cho[2],we find some argument properties of functions belonging to » » Which
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include inclusion relationship and we obtain some interesting results for the functions class
MC’;""1 (o, 8,7, A, B) which we have defined here by the operator D".

To establish our main results, we shall need the following lemmas.

Lemma 1.1 [5] Let h(z) be convex univalent in &/ with h(0) = 1 and Re{ech(z) + n}
> 0(g,n € C). If p(z) is analytic in U with p(0) = 1, then

zp'(z) 2 (2
p(z)+r(z)+77 <h(z) (z€U),

implies p(z) < h(z) (z € U).

Lemma 1.2 [3]: Let h(z) be convex univalent in U/ and w(z) be analytic in U with
Re{w(z) > 0. If p(z) is analytic in &/ with p(0) = h(0) ,then

P(2) +w(2)2p'(2) - Z(2) < h(z) (= €U),

implies p(z) < h(z) (z €U).

Lemma 1.3[9]: Let p(z) be analytic in U with p(0) = 1 and p(z) # 0 in Y. If there exists
two points z1, z2 in U such that

™ T
- 5041 =argp(z1) < argp(z) < argp(z2) = 5052 (1.10)
for some a1, az(aq, a2 > 0) and for all 2(|z| < |21| = |22|), then we have
zp'(z1) ;o1 ta
p(z1) 2
and ,
2p(z) _ator (1.11)
p(22) 2
where m > :.\lj and
. ™ 2 — Q1
=tan —(——). 1.12
c=1itan 4(a1+a2 ( )

2. MAIN RESULTS

We first derive the following with use of Lemma 1.1.

Proposition 2.1. Let h(z) be convex univalent in ¢/ with h(0) = 1 and Re{h(z)} > 0.
If a function f(z) € >_ satisfies the following condition:

1 2D f(2)

_p+ a( D”+1f(z) - Oé) < h(z)7
then
IR E02010) N
U Dy~ <A
0<a<pzel)
Proof. Let

1, 2(D"f(2))
RS WEC i (€
pta DrHf(z)
Then p(z) is analytic function in I/ with p(0) = 1. By using (1.7), we obtain
Dn+lf(z)
D f(z)

—a). 2.1)

pt+l4+a+(p+a)piz)=— 2.2)
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Differentiating Logarithmically with resprct to z and multiplying by z, we get
ple) + ¥/ (2) _ 1 DY)
ptltat(pta)pp(z) pta’ DHf(z)
Now, by using Lemma 1.1,we obtain
12D f(2)
“p+al D)

Q).

—a) < h(z),

deduce that p(z) < h(z).
Setting h(z) = 142 (—1< B < A < 1), in Lemma 2.1, we obtain

Corollary 2.1: Forn € N and p € {1,2,...}, we have

Syt (e, A, B) C Sy (a, A, B).
Proposition 2.2: Let h(z) be convex univalent in ¢/ with h(0) = 1 and Re{h(z)} > 0. If
f(2) € 3_, satisfies

1 2D f(2)

_p+Oé( Dn+1f(2) —oz)<h(z),
then
1 2(D" e f(2))
,p o DL, () —a) < h(z),
O0<a<pzel)
where B
Tof(z) = e;)p / 1 f(bdt (0> 0) 2.3)
0
Proof. From (2.3), we have
2(D" Mo f(2)) = (0 — p)(D"" f(2)) — (D" f(2)). (2.4)
Let

_ 1 (D))
p(Z) - 7p +a D”‘Hf(z) - CM),
p(z) is analytic function in U/ with p(0) = 1. Then from (2.4), we get

D" f(2)
0 =—0—-—p)————~. 2.5
+a+(p+a)p(z) =—(0 —p) Dl £ (o) (2.5)
By differentiating (2.5) logarthmically with respect to z and multiplying by z,we have
zp'(2) _ 1 2D ()

Pt et praw) ~ pral DEif)

Thus, by Lemma 1.1, we get

__ L D)
pt+a’ Dnilf(2)

Taking h(z) = ng (-1 < B < A <1), in Proposition 2.2, we obtain

— ) < h(z).

Corollary 2.2: If f(2) € Sy (a, A, B), then Iy f(2) € Sy (a, A, B). Hence on Applying
Proposition 2.2, we prove the following theorem

Theorem 2.1: Let f(z) € >° and (0 < 61,62 < p,0 <a <p). If

(D" f(2)

™
Drigs) )2

™
—5(5 < arg(— B

for some g(z) € Syt (a, A, B), then
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AD"(2)’ n
TDigl) ) <P

where 1 and $2(0 < 1, B2 < p) are the solution of the equations:

—g[ﬁ < arg(—

- (B1+B82)(1—|c|) cos Tty
+ 2 tan~t { : } B
= M7 2(PEICIA §p 4 14a) (1+]el)+(B1+52) (1—|el) sin 5 11 G 2.6)
b1 B—_1,
and
2 -1 (B1+B2)(1—|c|) cos Tty
=t { pi } B+4_1
0y = Bz + x A 2(%WHM)(IHc\)+(ﬁ1+62)<17|c\)singtl a @.7)
B2 B=_1,
is gi P «)(1-B
where c is given by (1.12) and t; = % sin™!( (P+Ck)(1—ff;)ﬁ((p+1-£a)(1_32) ).
Proof. Let
1 2(D"f(2)
== - 2.8)
PE) == U g Y
It follows from (1.7) that
(0 +7)(p(2) =D g(2) = D" f(2) = (p+ 1)D" f(2). 2.9)

Differentiating both sides of (2.9), and multiplying by z, we deduce that

(p+7)2p' (2)D"g(2) + [(p +7)p(2) = 7]2(D"g(2))' = (D" f(2)) = (p+ 1)=(D" f(2)) -

(2.10
Since g(z) € Sy (a, A, B), by applying Corollary 2.1, we find that g(z) € S} (a, A, B).
Thus, by using (1.7) and put ¢(z) = fﬁ(% — ), we immediately have
n+1
9(z)
pta)giz)tatpt+l=———". (2.11)
e e
Therefore, by (2.10) and (2.11), we obtain
1, z2(D"f(2)) 2p' (2
L emtaey R
p+a Drtlg(z) p+a)g(z) +a+p+1
Making use the result of Silverman and Silvia [10] ,we obtain
1-AB A—-B
lg(z) — 17B2|<17B2 (zeU;B#-1) (2.12)
and
Re{q(2)} > — (zeU;B=-1) (2.13)

It follows from (2.12) and (2.13) that

)
(p+a)g(z) +p+a+l=re=.
Now, if B # —1, we have

(p+a)(1—4) (p+a)(1+4)
W)\ 4 1 W) T4 1. —
T_5 +a+p+l<r< 1B +a+p+1, t1 < ¢ <ty
and if B = —1, we have
1-A
%+a+p+l<r<oo, l<g<,

1

Applying Lemma 1.2 with w = ~ Fa)a() Trtatl

p(0) =1 and Re{p(z)} > 0inU.

, we note that p(z) is analytic with
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Hence by Lemma 1.3 for 21,22 € U, such that the condition (1.10) is satisfied ,then we
obtain (1.11) under the restriction (1.12). On other hand, if B # —1 , we readily get

z1p(z1)
p+a)g(z) +p+a+l

(B1 + B2)msin Z(1 — ¢)
2r 4 (B1 + B2)mecos T (1 — ¢)

(61 + B2)(1 — |c]) cos T t1 .

B+ B2 m(rei%)—l)

arg(=(p(=1) + ¢ ) = —%51 +arg(1— it

S %ﬁﬂl — tan_l(

)

_r .
—B1 —tan” " ( - ) = —-d1,
2 2 L p+a+ 1)1+l + (B + F2)(1 — le))sin St 2
and
arg(_(p(z )+ zop’ (22) )) > iﬁ —tan_l( (B1+B2)(1—|c|) cos Tt1 ) —
2T pra)q(z2)+ptatl// = 72 P2 2 U 4t b 1) (14 e])+(B1+B2) (1—|e]) sin F by
= 2.
Also, if B = —1, we readily get
/
z1p' (1) -7
arg(— z1) + <
and
arg(— (p(z2) + b (22) DER
BRIt a)g(z) tptar1 T 2

There are contradiction with a assumption. This completes the proof of Theorem 2.1

Corollary 2.3:
MOy (a, 8,7, A, B) € MCy (e, B,7, A, B).
Setting n = 0,1 = 62 = ¢ in Theorem 2.1, we get:
Corollary 2.4: Let f(z) € > . If

2(z7P(2PTL )Y
Y
2P (2Pt (2)) 2
for some g(z) € S}, then
where 8(0 < 8 < p) is the solution of equation:
2 1 Bcos Tty
2 tan~" { 2 } B#1
5= B+ % tan GETTA) |1 ot pom 50 4
3 B=—1,

(p+a)(1-B) )
(p+a)(1-AB)+(p+1+a)(1-B2)/*

-1
and t; = 2 sin™'(

Theorem 2.2: Let f(z) € >° and (0 < 61,02 < 1,0 <y < 1).If

_ Dn+1 /
7’”61 < arg(—(% —v) < 252,
for some g(z) € Sy (a, A, B), then
-7 2(D™ o f(2))’ T
-5 A< arg(_(W:g(z) =) < 5h,

where [ is defined by (2.3), and 1, 32, are the solutions of

- (B1+B2)(1—]c|) cos L ta
+ 2 tan~ { 5 L s
h T 2<%+9+a)(1+‘0\)+(ﬁ1+ﬁ2)(1*|8\)sin%tz #

/61 B = _17

(2.14)
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- (B1+B2)(1—|c|) cos T ta
+ 2 tan 1{ 2 } B4 _1
=y P 2(CEDCID o+ o)1+l +(B1+62) (1—lel) sin F 2 7 2.15)
/62 B = _17
is gi inT +a)(1—B
here ¢ is given by (1.12) and t2 = 2 sin ™ (i 450 (77 g 57))
Proof. Let

1 z(D" e f(2))
_p+a( D lg(s) 7)-
Since g(z) € Spt! (o, A, B), and by using Corollary 2.2, we obtain log(z) € Sp'(a, 8,7, A, B).
By using (2.5), we get

p(z) =

[(p+7)(p(2) = NID" M og(2) = (6 — p)(D" T f(2)) — 0D o f (=)
and simplifying, we obtain

P n+1 P ’
(0129 () + [0+ ol + 20+ a(z) + 0 +a] = (0 - p) LT
where
L1 (D)
1) =~ Oy )
Therefore,

n+1 !’ /
L EDUYEY @
p+a Dnritlg(z) (p+a)e(z) +a+0
Applying a similar method as in the proof of Theorem 2.1 we get the required result and
the proof is complete.
Setting §1 = 62 = ¢ in Theorem 2.2, we obtain

Corollary 2.5: Let f(2) € 37 and0 <~y <p,0<d<1.If

(D" f(2) ™
larg(f Drtlg(z) 7)‘ < 56
for some g(z) € Sy (a, A, B), then
2(D" o (f)(2))' ™
’arg(—W - ’Y)‘ < 55,

where Iy is given by (2.5), and 5(0 < 8 < 1) is the solution of the equation

9 1 Bcos Sty
+ 2 tan { > } B# -1
B P (%wﬂow sin 1o 7

B B=-1

)=

Corollary 2.6: If f(z) € MC}'(v,6,a, A, B), then Ip(f) € MCpt'(v,6,a, A, B).
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ABSTRACT. In this paper, we propose a new hybrid extragradient algorithm for solving a
variational inequality problem over the solution set of an equilibrium problem in Euclidean
space. By using fixed point and hybrid plane cutting techniques, we show that this problem
can be solved by an explicit extragradient method. Under certain conditions on parameters,
the convergence of the iteration sequences generated by the algorithm are obtained.
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1. INTRODUCTION AND MOTIVATION

Let R™ be a n-dimentional Euclidean space with an inner product (-,-) and
the associated norm || - ||. Let C be a nonempty closed convex subset in R" and
G : ¢ — R™ be an operator, and f : C' x C — R be a bifunction satisfying
f(z,x) = 0 for every x € C. We consider the following variational inequality
problem over the solution set of the equilibrium problem (shortly VIEP(C, f, G)):

Find z* € Sf such that (G(z*),y —z*) > 0 Vy € Sy, (1.1)

where Sy = {u € C : f(u,y) > 0, Vy € C}, i.e., Sy is the solution set of the
following equilibrium problems (EP(C, f) for short):

Find u € C such that f(u,y) > 0Vy € C. (1.2)

As usual, we call problem (1.1) the upper problem and (1.2) the lower one.
Problem (1.1) can be consider as a special case of mathematical programs with
equilibrium constraints. Sources for such problems can be found in [11, s 1.
Bilevel variational inequalities were considered in [1], Moudafi in [16] and Yao et al

* .
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Article history : Received 25 Septemper 2014. Accepted 26 January 2018.
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in [22] suggested the use of the proximal point method for monotone bilevel equilib-
rium problems, which contain monotone variational inequalites as a special case.
Recently, Ding in [6] used the auxiliary problem principle to monotone bilevel equi-
librium problems. In those papers, the lower problem is required to be monotone.
In this case the subproblems to be solved are monotone.

It should be noticed that the solution set .S + of the lower problem (1.2) is convex
whenever f is pseudomonotone on C. However, the main difficulty is that, even the
constrained set Sy is convex, it is not given explicitly as in a standard mathematical
programming problem, and therefore the available methods of convex optimization
and variational inequality cannot be applied directly to problem (1.1).

In our recent paper [4] we proposed penalty and gap function methods for solving
bilevel equilibrium problems which contains (1.1) as a special case. Under a certain
strictly V-pseudomonotonicity, it has been proved that any stationary point of
the gap function over C is a solution of the penalized problem. This assumption
is satisfied for strict monotonicity case, but it may fail to hold for problem (1.1)
when the lower equilibrium problem is pseudomonotone. The reason is that the
sum of a strongly monotone and a pseudomonotone bifunction, in general, is not
pseudomonotone, even not strongly monotone.

In this paper, we continue our work in [4] by further extend the hybrid extragradient-
viscosity methods introduced by Maingé in [13] for solving bilevel problem (1.1)
when the lower problem is pseudomonotone with respect to its solution set equi-
librium problems rather than monotone variational inequalities as in [13], the later
pseudomonotonicity is somewhat general than pseudomonotone. We show that the
sequence of iterates generated by the proposed algorithm converges to the unique
solution of the bilevel problem (1.1).

The paper is organized as follows. The next section contains some preliminaries
on the Euclidean projection and equilibrium problems. The third section is de-
voted to presentation of the algorithm and its convergence. In the last section, we
describe a special case of minimizing the Euclidean norm over the solution set of
an equilibrium problem, where the bifunction is pseudomonotone with respect to
its solution set. The latter problem arises from the Tikhonov regularization method
for pseudomonotone equilibrium problems [8].

2. PRELIMINARIES

Throughout the paper, by Po we denote the projection operator on C' with the
norm |||, that is

Po(x) e O o = Pe(o)] < [ly —z| vy € C.

The following well known results on the projection operator onto a closed convex
set will be used in the sequel.

Lemma 2.1. Suppose that C' is a nonempty closed convex set in R™. Then
(i) Pc(x) is singleton and well defined for every x;
(i) m = Po(z) ifand only if (x — m,y — w) < 0,Vy € C;
(@) || Po(z) = Pe)|I” < |z = yl* = [ Po(@) — 2 +y — Pe(y)|?, Yo,y € C.

We recall some well known definitions on monotonicity (see e.g., [2, 7, 9, 17, 21])

Definition 2.2. A bifunction ¢ : C' x C' — R is said to be
(a) strongly monotone on C' with modulus S > 0, if

o(2,9) + ¢y, ) < —Bllz — y|?* Yo,y € C;
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(b) monotone on C if
e(z,y) + ¢y, ) <0V, y € C;
(c) pseudomonotone on C' if
o(z,y) > 0= ¢(y,z) <0Vz,y € C;
(d) pseudomonotone on C' with respect to z* if
p(z*,y) 2 0= p(y,2") <0Vy € C.

We say that ¢ is pseudomonotone on C' with respect to a set S if it is pseudomono-
tone on C' with respect to every point z* € S.

From the definitions it follows that (a) = (b) = (¢) = (d) Vz* € C.
When o(z,y) = (¢(x),y — =), where ¢ : C — R™ is an operator then the
definition (@) becomes:

(p(x) = ¢(y), 2 —y) = Blla —y|* Yo,y € C

i.e., ¢ is B-strongly monotone on C. Similarly, if ¢ satisfies (b) ((¢), (d) resp) on C
then ¢ becomes monotone, (pseudomonotone, pseudomonotone with respect to z*
resp) on C.

In the sequel, we need the following blanket assumptions

(A1) f(.,y) is continuous on {2 for every y € C;

(A2) f(x,.) is convex on {2 for every z € (|

(A3) f is pseudomonotone on C with respect to the solution set Sy of

EP(C, f);

(A4) G is L-Lipschitz and /-strongly monotone on C;

(B1) h(.) is §-strongly convex, continuously differentiable on §2;

(B2) {\} is a positive sequence such that > -, A = 00 and >,y A7 < 0.

Lemma 2.3. Suppose Problem EP(C, f) has a solution. Then under Assumptions
(A1), (A2) and (A3) the solution set S is closed, convex and

fl@*,y) >0Vy e Cifand only if f(y,z*) < 0Vy € C.

The proof of this lemma when f is pseudomonotone on C' can be found, for
instance, in [9, 17]. When f is pseudomonotone with respect to the solution set of
EP(C, f), it can be done by the same way. So we omit it.

The following lemmas are well-known from the auxiliary problem principle for
equilibrium problems.

Lemma 2.4. ([14]) Suppose that h is a continuously differentiable and strongly
convex function on C' with modulus § > 0. Then under Assumptions (Al) and (A2),
a point x* € C'is a solution of EP(C, f) if and only if it is a solution to the equilibrium
problem:

Findz* € C: f(z*,y) + h(y) — h(z*) = (Vh(z"),y —2*) > 0Vy € C. (AEP)

The function
D(z,y) == h(y) — h(z) = (Vh(z),y — z)

is called Bregman function. Such a function was used to define a generalized
projection, called D-projection, which was used to develop algorithms for particular
problems, see e.g., [3]. An important case is h(z) := L|z||2. In this case D-

2
projection becomes the Euclidean one.
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Lemma 2.5. ([14]) Under Assumptions (Al), (A2), a point z* € C is a solution of
Problem (AEP) if and only if

2" = argmin{f(a",y) + h(y) — h(z") — (Vh(z"),y —a"): y€ C}.  (CP)

Note that, since f(z,.) is convex and h is strongly convex, Problem (CP) is a
strongly convex program.

For each z € C, by 02 f(#, 2) we denote the subgradient of the convex function
f(z,.) at z, ie.,

02f(2,2) =={w € R : f(z,y) = f(z,2) + (w,y — 2), Vy € C}

= {’LU eR": f(z7y) > <w7y_ Z>7 vy € 0}7
and we define the halfspace H, as
H,={zeR": (w,x —2) <0} 2.1

where w € 02 f(z, z). Note that when f(x,y) = (F(x),y—z), this halfspace becomes
the one introduced in [21]. The following lemma says that the hyperplane does not
cut off any solution of problem EP(C, f).

Lemma 2.6. ([5]) Under Assumptions (A2) and (A3), one has Sy C H, for every
zeC.

Lemma 2.7. ([5]) Under Assumptions (A1) and (A2), if {zk} C C'is a sequence such
that {z*} converges to z and the sequence {w"*} with w* € 0, f(2*, 2*) converges to
W, thenw € Oy f(Z, 2).

The following lemma is in [21] (see also [5]).
Lemma 2.8. ([21], [5]) Suppose that z € C and u = Ponp_ (). Then
u = Ponp,(Z), whereZ = Py_(x).

Lemma 2.9. (Lemma 3.1[12]) Let {ak} be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence {ay, } of {ay} such
that

ar; < ag;+1 forallj >0
Also consider the sequence of integers {o (k) }x>x, defined by
o(k) =max{j <k|a; <aji1}
Then {o(k)}x>k, is a nondecreasing sequence verifying
klinooa(k) =00

and, for all k > kg, the following two estimates hold:
Go(k) < Qo (k)+1 2.2)

a < Qg (k)+1 2.3)
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3. AN HYBRID EXTRAGRADIENT ALGORITHM FOR VIEP(C, F, G)

Algorithm 1. Pick 2° € C and choose two parameters 1 € (0,1), p > 0.
At each iteration k = 0, 1, ... having z* do the following steps:
Step 1. Solve the strongly convex program

min { /(") + = [h(0) — h(a*) = (Vht)y—ah)] s ye €} CP@Y

to obtain its unique solution yk.

If y’C = z*, take u* = 2* and go to Step 3. Otherwise, do Step 2.

Step 2. (Armijo linesearch rule) Find my, as the smallest positive integer number
m satisfying

= (1 =gzt +my*
(W, o — ) > STh(y*) = h(a*) = (Vh(z"),y* - a¥) (3.1)
with wh™ € 9y f (2K 2Fm).
Step 3. Set 1, 1= n™*, 2F 1= Mk Wk = WPk Take
Cp:={z €C: (" z—2F) <0}, u = Pg, (2"). (3.2)
Step 4. x**1 = Po(u* — M\G(u")) and go to Step 1 with k is replaced by k + 1.

Remark 3.1. (i) If yk = z* then z* is a solution to EP(C, .
(i) w* # 0 Vk, indeed, at the begining of Step 2, 2 # y*. By the Armijo
linesearch rule and §-strong convexity of h, we have

(Wt o =) = < [) = hat) = (That)o = ab)] >

0
> —la® —y*|* > 0.
p
Now we are going to analyze the validity and convergence of the algorithm. Some
parts in our proofs are based on the proof scheme in [13].

Lemma 3.2. Under Assumptions (Al), (A2), (A3), and (A4), the linesearch rule
(3.1) is well-defined in the sense that, at each iteration k, there exists an integer
number m > 0 satisfying the inequality in (3.1) for every w*™ € Oy f (2™, 2Fm),
then for every solution =* of EP(C, f), one has

« . _ Mo 2, g k|4
a1 — a2 < fla* - |2 — [t — 2| - ¥ o
) 9
= 20 (uF =2, Guh) + AFI|G ()| k.

where 7% = Py, (zF).
Proof. First we prove that there exists a positive integer m( such that
w2k — ) > = [h(yF) = h(e) = (Th(ah), y* = 2]
p
Vwk,mo c a2f(zk,m07 Zk',mo).
Indeed, suppose by contradiction that, for every positive integer m and z*™ =
(1 —n™)z* + n™y* there exists wh™ € 9y f(2%™, 2%™) such that

km .k 1

(b k= ) < [BF) = hGh) — (Th(h), g = b)),
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Since z¥™ — ¥ as m — oo, by Theorem 24.5 in [20], the sequence {w"™}°_,
is bounded. Thus we may assume that w*™ — @ for some w. Taking the limit
as m —> oo, from z¥™ — 2% and w*™ — W, by Lemma 2.7, it follows that
w € Oz f (x*, 2%) and

(w, 2% —y*) < = |h(y*) — h(zF) — (Vh(xk),yk — M. (3.4)

=

Since w € Oy f (x*, 2*), we have
Fa® y*) > fah,a®) + (0,y" —2*) = (w,y* — "),
Combining with (3.4) yields
P 0) 4 [16) = hia®) = (Vhat). o = 4)] > 0.
which contradicts to the fact that
P 0) 1) = ") = (VA" o = ah)] <.

Thus, the linesearch is well defined.
Now we prove (3.3). For simplicity of notation, let d* := x* — y*, Hy, := H_x.
Since u* = Ponp, (2%) and 2* € S, by Lemma 2.6, z* € C' N Hy,, we have

”uk o kaQ < <$* _ :fk,uk o jk>

which together with
lut =2t |? = [|2* = 2 + Jut - 2*|* + 2(u* — 2", 2" —2¥)
implies
e e e e el (3.5)
Replacing
7 = P, (a%) = 2k — <“’k|’|ff; T Ay

into (3.5) we obtain

(wh 2k — 2F)  (wF 2k — 2
[[w*]? [[w]|*

lu —2*||* < [la® =2 ||* = [Ju* — 2" —2(w*, 2* —2*)

Substituting 2* = z* + 7,d* into the last inequality we get

Nk <wk7 dk> ) 2 _ 277k <wk7 dk>
[k [[wk |2

luf = 2*|* < fla® — | = u* — 2¥||* + (

k gk k gk
* - 77k<w X > 2 277k<w ,d > k _k *
= fla* — 2|2 — flut — 2|12 - ( ) - (wh, 2 — 2)
[[w*| [k |2 ’
In addition, by the Armijo linesearch rule, using the §-strong convexity of h we
have

1 )
(wh,ah =34 > h¥) = h(ah) = (ThGH), g = b)) > Tk = o2
Note that z* € Hj we can write
. . - o 2
o =2 < ot =P =t = 2P = () et =t B

We have
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lz*+ = 2*||* = || Po(u® = MG(u?)) = Po(a)|? < [[u* — 2" — MG (uh))|?
= [l — 2t |* = 22X (ut — 2, G(uh)) + AZG (M),
which together with (3.6) implies

* * — ’7k5 2 k k4
25 — 2% ||* < [la¥ — a*|® — |ju* — 2¥|* - [z — ]|
Al @7
— 2\ (u” — 2, G(uF)) + NG (") |)? VE
as desired.
O

Lemma 3.3. The sequences {z*}, {u*} generated by the Algorithm 1, are bounded
under Assumptions (A1), (A2), (A3), and (A4).

Proof. We have

JeH — 2% = [ Po(u — MG(uh)) — Pola®)| < [l — MG ) — 27
< b = MG (H)) — (@ — MG + MGl
2 A A
= - P —a) - P2 [(556 - D - (556~ D]
+lEE)]
<(- LQ%W ey +L2%Tk iG],

(3.8)
where T}, = [|(&G — Duf — (&G — Da*|.
Since G is L-Lipschitz and §-strongly monotone, we have

1 = | D5 (00F) — G) — ( — )|

= G - G| = 225 (G(b) - Gla"), b — %) + u — o2
? k 2 52 k 2 k 2
< St =P = 25k — o2+ ut - 2|
B «
= (1—ﬁ>||u’f—m >
Hence 13 < — B2 )lu* — 2*||. Then combining with (3.8) we get
T 1 g g
k+l—*<1—A£2 1_B72 k. A G (2
|z z*[| < ( k B( 72 Dllu® =27+ X[ G2)]

L2
=(1- Ak?“y)ll’u’c — 2|+ [ G

= (1 —w)llu® —a*| + %(%HG(%*)II)

Where,’y:l—\/:and’yk—/\kﬁve(() 1).

By induction we get

l# 4t — || < max{]la* — a*|l, 225 |1 F (@)} < .. < max{]|a® — 2], 5 | F ()]}
Hence {2"} is bounded, which, from (3.6), implies that {u*} is bounded too. ]
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Lemma 3.4. There exists a subsequence {z*'} C {2*} converges to some € C
such that {y*},{z¥}, {w*'} are bounded.

Proqf. First, we show that there exists M > 0 such that ||z*: — y*:
1 large enough.
Indeed, from the d-strong convexity of the function

Fri() = pf (") + hly) — h(z*) = (Vh@*), . — a*)

< M for all

we have
(s(ah) = (). b =) = e~y
which implies

(s(z™), b —yM) > (s(y™), a® —y*) + dfla" —y*

Since y* = argmin{fx,(y) : y € C}, we have 0 € dfy, (y*") + Nc(y*') which, by
necessary and sufficient optimality condition for convex programming,is equiva-
lent to (s(y*),y — y*) > 0 Vy € C, in particular, (s(y*), 2% — y*) > 0. Thus
(s(zke), ok — ki) > §||z% — y*i||2, which implies

2, Vs(a®) € Ofi, (a™), Ys(y™) € Of, (y*)

2

||xki - ykl |7 vs(xki) € aflﬁ (‘rkb) (39)

1 ks
< —=|[s(z™)
1)
Since zFi — 7 by Theorem 24.5 in [20] there exists an integer number iy > 0,
large enough such that

Do f(x™, 2% C o f(Z,Z) + B[0;1], Vi > ig (3.10)

where B[0; 1] denotes the closed unit ball of R™.

In addition, s(z*) € Of, (z") = pdaf(z*i,2%) Vi and the set dof(Z,7) is
bounded, we deduce from (3.9) and (3.10) that {||z* — ¢*i||} is bounded. So
that, combining with Lemma 3.3 we get the boundedness of {y*:}. By definition of
2R 2k = (1—ny,)x" +ny,y* it implies that {z*'} is also bounded. Without loss of
generality we may assume that 2k converges to some z. Since whki € 0y f (zki ) zk’)
by again Theorem 24.5 in [20] we get the boundedness of the subsequence {w":}.
g

Lemma 3.5. If the subsequence {z"} C {x*} converges to some Z and

ly®e — zFi)|4( 771@;. 2 —0 as i — o0 (3.11)
[Jw™e]|
thenz € Sy.
Proof. We will consider two distinct cases:
Case 1. Infu%ﬁu > 0. Then by (3.11), one has lim; _, [|[y** — 2| = 0, thus

yki —» Zand 2F — 7.
From definition of 4* we have
F(a,y) + L[h(y) — h(z*) — (Vh(ah),y — ab)]
> fa™.y™) + ;[h(yk") — h(a®) — (Vh(z"),y" —a™)], vy e C
by the continuity of i, Vh, we get in the limit as ¢ — oo that

(@) + éwy) — h(®@) — (Vh(E),y —T)] >0, Yy € C

this fact shows that € Sy.
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Case 2. Lim”%i_” = 0. By the linesearch rule and 7-strong convexity of h we
have
(ke a¥ =) > Z[h(y") — hat) — (Th(ah), g — k)
>l — g
p

Thus [|y* — 2% || < /2[lw*]].

From the boundedness of {w*:} and (3.11) it follows 7;,, —> 0, so that
2P = (1—m,)x% +mp,y¥ — 7 as i — co. Without loss of generality, we suppose
that w* — w € 0 f(Z,7) and y*¥# — y as i — oo.

We have

F(@*,y) + S[h(y) — h(z™) — (Vh(z™),y — a*i)]

> f(z™,y™) + %[h(y’“) — h(a®) = (Vh(z"),y" —a™)], vy e C

letting ¢ — oo, we obtain in the limit that
F(@.y) + L[h(y) - h(@) — (Vh(z),y - )
_o L _ N
> f(z,9) + ;[h(y) —h(z) = (Vh(z),5 — )] Yy € C.
In the other hand, by the linesearch rule (3.1), for m;, —1 there exists whiome =1 ¢
32f(zk"””’% —1 Zkime, ~1) such that

M =) < 2 [ M) - (ThE). M —at)] a2

<U}mki_1

Letting i — 0o and combining with %™k =1 — 7 wkime =1 s 4 € 9y f(Z,7)
we obtain in the limit from (3.12) that

(0.7 =5) < < [1(3) ~ (@) = (Vh(2). 5~ 7).
Note that w € 9f(Z,y), it follows from the last inequality that,
£@.9) + = [1(@) = (@) = (Vh(2). 5~ 3)] > 0.
Hence 1
F(@.9) + 5 [(y) = hi@) = (Vh().y = )] 20, vy € €,

which shows that z € S;. O
Now we are in a position to prove the convergence of the proposed algorithm.

Theorem 3.6. Suppose that the solution set Sy of EP(C, f) is nonempty and that the
function h(.), the sequence {\;} satisfying the conditions (B1), (B2) respectively.
Then under Assumptions (A1), (A2), (A3), and (A4), the sequence {z*} generated
by Algorithm 1 converges to the unique solution z* of VIEP(C, f, G).

Proof. By Lemma 3.2 we have

|2*+E — ¥ |2 — flab — 2|2 + (p|7|7wk||) 2% — ¥t < —2X (uF — 2%, G(ub))

2G| V.
(3.13)
From the boundedness of {u*} and {G(u*)} it implies that, there exist positive
numbers A, B such that

[((u* — 2", G(u"))| < A, |G(u®)|* < B Vk.
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By setting a, = ||z¥ — 2*||?, and combining with the last inequalities, (3.13)
becomes
5 N2
ap4+1 — ap + <p|7\71kvk|\) 2% — y*||* < 20 A+ A2B. (3.14)

We will consider two distinct cases:
Case 1. There exists kq such that {a} is decreasing when k > k.
Then there exists limy_, o, ar = a, taking the limit on both sides of (3.14) we get

) 2
lim (Lk) 2% — y*||4 = 0. (3.15)
k—oo \ pl|wk |

In addition,
2"+ — || = || Po(uf = MG(u?)) = Po(u)]|

< |lu® = MG (b)) —uF| (3.16)
= \||G(u?)|| — 0 as k — .

From the boundedness of {u*} it implies that, there exists {u*i} C {u*} and
uf — 4 € C such that liminf(u* — 2%, G(z*)) = lim; __, . (u¥" — 2%, G(z*)).
Combining this fact with (3.15) and (3.16) we obtain

110 \2
"1 — 7 and (7%1“ ) ||9ck"'+1 — yki+1\|4 — 0asi —> oo.
pllwkit]

By Lemma 3.5 we get 4 € Sy. Thus
lliriglof(uk —z*, F(z%)) = ignoo@ki —z*,G(z%)) = (u — z*,G(z*)) > 0.
Since F' is $-strongly monotone, one has
(w® —z*, G(uP)) = (¥ — 2%, G(u”) — G(2*)) + (u* — 2", G(u"))

> Bllu® — o) + (u* —a*, Gu")).
Taking the limit as kK — co and remember that a = lim ||u* — z*||? we get

lénjgwk —z*, G(uF)) > Ba. (3.17)
If @ > 0, then by choosing € = % Ba, from (3.17) it implies that, there exists

ko > 0 such that
(u* —z*, G(u*)) > %ﬁa, Vk > ko.
From (3.13) we get
apy1 — ax < —AgBa+ \iB, Yk >k

and thus summing up from kg to k we have

k k
h1 —ak, < — Y NjBa+BY A

J=ko J=ko
combining this fact with > p- ; Ay = co and Y -, A7 < oo we obtain
lim inf a;, = —oo, which is a contradiction.
Thus we must have a = 0. i.e., limy_, ||z — 2*| = 0.

Case 2. There exists a subsequence {ag, }i>0 C {ax k>0 such that ay, < ak,+1
for all ¢ > 0. In this situation, we consider the sequence of indices {o(k)} defined
as in Lemma 2.9. It follows that a, ()11 — @) = 0, which by (3.14) amounts to

( No (k)0

2
_ oW o(k) _ ,0(k)4 2
ot ) e =y OIS 200 A+ 20 B.
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Therefore
( Mo (k) 4] ) || o(k) _ o’(k)H4:0
koo \pllwe ¥

From the boundedness of {x"(k)}, without loss of generality we may assume
that °(¥) — 7. By Lemma 3.5 we get 7 € S;.
In addition, u°*) = Penm, g, (7)) = Pc,, (zo®)).
Then combining with Lemma 2.6 we have
Jue® — z|| < [|z°®) — Z|| — 0 as k — oo
so that limj,__,o u’®) = 7
By ( 3.13) we get

o Mo (k 0 2 o o
2o () (W™ — 2%, G(uT™)) < ag (k) — Aoy 41 (m) 270 — o4
+ /\g(k)HG(UU(k))HQ <XB
which implies

Ao
T(k)B. (3.18)

<uo(k) _ x*,G(u"(’“)» <
Since G is 8-strongly monotone, we have
Bllu® —a*|* < (™ — 2, G(u"™) - G(z"))
= (™ — 27, G M) — () — 2, G "))

which combining with (3.18) we get

;[)\UQ(k)B (ue® —z*,G(z"))]

[

so that
lim [Ju® — 2% < —(w'® — 2%, G(z*)) <0
k—s o0
which amounts to

lim [Ju®® —2*|| = 0. (3.19)

k—s o0
In addition,

278 — @ = [[Po(u”® = Xy G(u”M)) = Pu”®))
< /\U(k)”G(u"(k))H —0ask — o0

which together with (3.19), one has limy_, 2B+ = 2* which means that

limg 00 Ao (k)+1 = 0.
By (2.3) in Lemma 2.9 we have

0<ar <agpryr1 —> 0ask — oo
Thus {z*} converges to z*. O
4. APPLICATION TO MINIMIZING THE EUCLIDEAN NORM WITH PSEUDOMOMOTONE
EQUILIBRIUM CONSTRAINTS
In this section, we consider the problem:
min{ |z — 29||* : € Sy}, MNEP(C, f)

where 29 € (' is given (plays the role of a guess-solution of EP(C, f)) and S is the
solution set of problem EP(C), f). This problem arises in the Tikhonov regularization
method for pseudomonotone equilibrium problems, see, e.g., [8]. In this case, by
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choosing G(z) = x — a9, the problem MNEP(C, f) becomes to the one in the form
of VIEP(C, f, ).

It is well known that, under Assumptions (A1), (A2) and (A3), the solution set
St of EP(C, f) is a closed convex set. As we have mentioned that the main diffi-
culty in problem MNEP(C), f) is that its feasible domain Sy, although is convex, it
is not given explicitly as in a standard mathematical programming problem. In the
sequel, we always suppose that Assumptions (A1), (A2), and (A3) are satisfied. The
algorithm for this case takes the form.

Algorithm 2. Take 7! := 29 € C and choose parameters p > 0, 7, € (0, 1).
At each iteration k = 1,2, .. having 2* do the following steps:
Step 1. Solve the strongly convex program

min { f(a*,y) + % [h(y) ~ h(a*) — (Vh()y 25| - ye ) OP@h)

to obtain its unique solution y*. If z¥ = y*, take u* := 2* and go to Step 4.
Step 2. Find my, as the smallest positive integer number m such that

Zk,m — (1 _ nm)xk + nmyk .
(wk’m,xk _ yk> > %[h(yk) _ h(mk) _ <Vh(a?k), yk _ xk>} (4.1)
with wh™ € Oy f(2Fm, 2Fm),

k k k,m

Set ny 1= 0™k, 2K = ZRme b = wkm,
Step 3. Take u” := Pg, (z*), where

Cp:={xecC:(w"z—2" <0} 4.2)
Step 4.
2R = Apxd 4+ (1 — M\p)uF 4.3)
Repeat iteration k£ with k is replaced by k + 1.
Similar to Theorem 3.1, we have the following theorem

Theorem 4.1. Under Assumptions (Al) (A2), (A3), and (B1), (B2), the sequence
{x’“} generated by Algorithm 2 converges to the unique solution x* of MNEP(C, f).

Conclusion. We have proposed an explicit hybrid extragradient algorithm for
solving the variational inequality problems with equilibrium problems constraint,
where the bifunction is pseudomonotone with respect to its solution set. The
convergence of the algorithm is obtained, and a special case of this problem is con-
sidered.
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ABSTRACT. In the present paper, we contribute to the development of soft set theory by
introducing soft contractive-like operators and soft Picard-Mann hybrid iterative sequences.
We then show that the soft Picard-Mann hybrid iterative sequences converges strongly to
the unique soft fixed point for the class of soft contractive-like operators. Our results are
generalization and improvement of several results on iterative schemes in literature.
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1. INTRODUCTION

Mathematical tools have been used in the study of behaviour of different parts
of systems and their subsystems. This behaviour are either usually certain or
uncertain in nature. In 1999, Molodtsov [16] introduced a new concept called
soft set as a mathematical tool for dealing with uncertainties arising in problems
in different areas of mathematical sciences. Chief among them are problems in
computer science, economics, engineering, medical sciences, and physics. He
argued that soft set provides better tool for handling uncertainty than fuzzy set
because of its non-restrictive parametrization and is easily applicable to real life
problems.

The concept of soft topology on soft set was initiated by Cagman et al. in [6]
and some important properties of soft topological spaces were considered. In 2012,
Das and Samanta [7] introduced the concept of real soft set and soft real number
and explained their properties. In 2013, Das and Samanta [8] also introduced the
concept of soft metric using the notion in [7], they hence proved that each soft
metric space is a toplological space. Wardowski [22], introduced a new notion of
soft element of a soft set and establish its natural relation with soft operations and
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soft objects in soft topological spaces. They defined in a different way than in the
literature, a soft mapping transforming a soft set into a soft set and provided basic
properties of such mappings using the notion of soft element. They obtained the
natural first fixed point results in the soft set theory using the new approach to
soft mappings. Abbas et al. [1] in 2015, initiated their notion of soft contraction
mapping based on the theory of soft elements of soft metric spaces and proved in-
teresting results on fixed point of such mappings including soft Banach contraction
principle.

Fixed point iterative sequences are designed to be applied in solving equations
arising in physical formulation but there is no systematic study of numerical as-
pects of these iterative sequences. The reader can see [3, 4, 21] and other literature
for contributions to research on numerical iterative schemes for approximating
fixed points. Here, we shall employ the concepts of [2] and [22] and prove soft fixed
point results for soft Picard-Mann hybrid iterative sequences using a soft norm
version of contractive-like operators. Numerical examples will also be presented to
back up our results.

We will now consider some of these schemes as they are relevant to this work.
Let (X,d) be a metric space and 7' : X — X be a self map of X. Assume that
Fr = {p € X : T, = p} is the set of fixed points of T". For zy € X, the sequence
{x,}22 | defined by

Tny1 =Tx,, n2>0, (1.1)

is called the Picard iterative scheme [21].
Let (E,||.]|) be a real normed linear space and 7' : E — FE a self map of E. For
zo € E, the sequence {z,}2,

Tpt1 = (1 —ap)zn + @ Txy,n >0, (1.2)

where {a,}72 is a real sequence in [0,1] such that ) - a, = oo is called the
Mann iterative scheme [15].

If o, = 1 in (1.2), we have the Picard iterative scheme (1.1).

Rhoades [18, 20] perhaps for the first time used computer programs to compare
the rate of convergence Mann and Ishikawa iterative procedures. He illustrated
the difference in the rate of convergence for increasing and decreasing functions
through examples.

These various results are worth emulating. In 2013, Khan [1 1], gave a different
perspective to iteration procedure, he introduced the following Picard-Mann hybrid
iterative scheme for a single nonexpansive mapping 7'. For any initial point zg € E
the sequence {z,,}22 , is defined by

Tn+1 = Tyn
Yn = (1—an)zy+ ayTa,,n >0, (1.3)

where {a, }22 , is a real sequence in [0,1].

He showed that the hybrid scheme (Picard-Mann scheme (1.3)) converges faster
than all of Picard (1.1), Mann (1.2) and Ishikawa [13] iterative schemes in the
sense of Berinde [5] for contractions. He also proved strong convergence and weak
convergence theorems with the help of his iterative process (1.3)for the class of
nonexpansive mappings in general Banach spaces and applied it to obtain results
in uniformly convex Banach spaces. Motivated by the work of Khan [1 1], we prove
strong convergence of Picard-Mann iterative scheme for a general class of operators
in a real normed space.
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Osilike [17] proved several stability results which are generalizations and ex-
tensions of most of the results of Rhoades [19] using the following contractive
definition: for each x,y € X, there exist a € [0,1) and L > 0 such that

d(Tz,Ty) < ad(x,y) + Ld(x, Tx). (1.4

In 2003, Imoru and Olatinwo [12] proved some stability results using the following
general contractive definition : for each z,y € X, there exist § € [0,1) and a
monotone increasing function ¢ : R* — R* with (0) = 0 such that

d(Tx, Ty) < dd(z,y) + p(d(z, Tx)). (1.5)

Definition 1.1. [16] Let U be an universe and E be a set of parameters. Let P(U)
denote the power set of U and A be a non-empty subset of E. A pair (F), A) is called
a soft set over U, where F' is a mapping given by F' : A — P(U). In other words,
a soft set over U is a parametrized family of subsets of the universe U. For € € A,
F(€) may be consider as the set of e-approximate element of the soft set (F, A).

Definition 1.2. [10] For two soft sets (F, A) and (G, B) over a common universe
U, we say that (F, A) is a soft subset of (G, B) if
i ACB
(i) forall e € A, F(e) C G(e). We write (F, A)C(G, B). (F, A) is said to be a
soft superset of (G, B), if (G, B) is a soft subset of (F, A). We denote it by
(F, A)3(G, B).
Definition 1.3. [9] Two soft sets (F, A) and (G, B) over a common universe U are

said to be equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of
(F, A).

Definition 1.4. [9] The complement of a soft set (F, A) is denoted by (F, A)¢ =
(F°,A), where F° : A — P(U) is a mapping given by F°(a) = U — F(a), for all
a e A.

Definition 1.5. [14] A soft set (F, F) over U is said to be an absolute soft set de-
noted by U if Ve € E, F(e) = U.

Definition 1.6. [14] A soft set (F, E) over U is said to be a null soft set denoted by
¢ if e € B.F(e) = 0.

Definition 1.7. [7] Let X be a non-empty set and E be a non-empty parameter
set. Then a function € : ¥ — X is said to be a soft element of X. A soft element ¢
of X is said to belongs to a soft set A of X, which is denoted by €€ A, if e(e) < A(e)
, Ve € E. Thus for a soft set A of X with respect to the index set E, we have
Ae) = €(e),e€A,e € E.

It is to be noted that every singleton soft set (a soft set (F, E) for which F'(e) is
a singleton set, Ve € E) can be identified with a soft element by simply identifying
the singleton set with the element that it contains Ve € F.

Definition 1.8. [7] Let R be the set of real numbers and B(R) the collection of
all non-empty bounded subsets of R and A taken as a set of parameters. Then a
mapping F' : A — B(R) is called a soft real set. It is denoted by (F, A). If specifically
(F,A) is a singleton soft set, then after identifying (F, A) with the corresponding
soft element, it will be called a soft real number. We use notations 7, 3,  to
denote soft real numbers whereas 7, 5, ¢ will denote a particular type of soft real
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numbers such that 7(\) = r, VA € A. For instance, 0 is the soft real number where

0(\) =0,V € A.
Definition 1.9. [3] Let U be a universe, A be a non-empty subset of parameters
and U an absolute soft set, i.e F(¢) = U forall e € A, where (F, A) = U. Let SP(U)
be any nonempty set of soft elements of a soft set (F, A) and R(A)* be a set of all
soft real sets. A mapping d : SP(U) x SP(U) — R(A)* is said to be a soft metric
on the soft set U if d satisfies the following axioms:
(M1). d(z,7)>0,V%, 5 € U.
(M2). d(i,§) =0 < &=7.
(M3). d(z,9) = d(§,%),Vi,5 € U.
(M4). d(z,9)<d(&,2) + d(%,7),Y%,3,% € U.

The soft set U endowed with the soft metric d is called a soft metric space and
is denoted by (U,d, A) or (U,d). (M1),(M2),(M3) and (M4) are said to be soft

metric axioms.

Definition 1.10. [3] Let {Z,, } be a sequence of soft elements in a soft metric space
(U, d). The sequence {&, } is said to be convergent in (U, d) if there is a soft element
i € U such that d(Z,,%) — 0 as n — oco. This means for every é¢>0 chosen arbi-
trarily, there exists a natural number N = N (€), such that 0<d(Z,,, ¥)<¢é whenever
n > N. We denote this by

lim z, =z.

n—oo
Proposition 1.11. [3] The limit of a sequence {Z,} in a soft metric space (U, d), if it
exists is unique.
Definition 1.12. [3] A sequence {i,} of soft point in a soft metric space (U, d) is

said to be a Cauchy sequence in (U, d) if for each é>0, there exists an m € N such
that d(&;,z,)<¢€ for all i, j > m. Thatis d(Z;,2;) — 0 as i,j — oc.

Proposition 1.13. [3] Every convergent sequence {Z,} in a soft metric space (U, d)
is a Cauchy sequence.

Definition 1.14. [3] A soft metric space (U ,d) is called complete if every Cauchy

sequence in it converges to some soft point of U.

Definition 1.15. [9] Let V be a vector or linear space over a field K and A a set of
parameters. A soft set (F, A) where F': A — P(V) is called a soft vector or linear
space over V. It is denoted by V.

Definition 1.16. [9] Let V be a vector or linear space over a field K and A a set of
parameters. Let G be a soft set over V. Now G is said to be a soft vector space or

a soft linear space of V over K if G()\) is vector or linear subspace of V for every
re A

Definition 1.17. [9] Let N be the absolute soft Linear Space, i.e. N(\) = N for
every A\ € Aand SE( N ) be any nonempty set of soft elements of absolute soft Linear
Space and R(A)* be a set of all soft real sets. Then a mapping ||.|| : SE(N) — R(A)*
is said to be a soft norm on the soft vector space N if |.| satisfies the following
conditions: For all #,7 € N,

N1. [|Z]| > 0,

N2. ||Z]| =0 <= =0,

N3. ||az|| = |&|||Z| for every soft scalar &,
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Na. [l@+ gl <[z ] + [I7]]-

The soft vector space N with the soft norm ||.|| on it is called a soft normed linear
space and denoted by (N, ||.||, A) or (IV,||.]|). A complete soft normed linear space
is a soft Banach space.

Theorem 1.18. [1] Let (N, ||.||, A) be a soft Banach space with a finite set A. Sup-
pose the soft mapping T’ : N — N satisfies:

IT(@) —T@)| < allz—gl,
Jorallz,j € SP(N) where0 < a < 1. Then T has a unique _fixed point.

Theorem 1.19. [2] Let (ﬁ ,d, A) be complete soft metric space with a finite set A.
Suppose the soft mapping f : U — U satisfies

d(f (%), f(9)) < cd(Z,9),

Jorall z, 7 € SP(U) where 0<¢<1. then f has a unique fixed point, that is, there
exists a unique soft point & such that f () = Z.

Theorem 1.20. [2] Let (U ,d, A) be complete soft metric space with a finite set A,
suppose the soft mapping f : U — U satisfies

d(f(@), f(9)) < cld(z, () + d(F, £(7))]
Sorall #,§ € SP(U) where ﬁééi; then f has a unique fixed point.

Definition 1.21. [9] Let (N, .||, A) be a soft normed linear space and 7>0 be soft
real numbers. Then B(%,7), B(Z,7) and S(Z, 7) are called soft open ball, soft closed
ball and soft sphere respectively, where

(@ B(z,7) = {§eN : | — §l| <7} C SE(N),

) B(#7) = {§EN : | — §1 27} C SE(N),

© 8(2,7) = {§EN : |& — §|=F)} ¢ SE(N).

Definition 1.22. [9] A sequence of soft element {Z,,} in a soft normed linear space
(N, |||, A) converges to a soft element & if ||Z,, — Z|| — 0 as n — oc. This means for
every ¢>0 chosen arbitrarily, there exists a natural number N = N(¢), such that
0<||Z,, — &||<¢é whenever n > N. i.e n > N implies %, EB(&, €). i is said to be the
limit of the sequence {Z, } as n — co.

Example 1.23. [9] Let’s consider the set R of all real number endowed with the
usual norm ||.|| and (R, ||.||, A) a soft normed space generated by the crisp norm |. ||
where A is a non-empty set of parameters. Let (Y, A) C R such that Y (\) = (0, 1]
in a real line, YA € A. Let’s choose a sequence {Z,} of soft element of (Y, A)
where Z,()\) = 2,Vn € N,\ € A. Then there is a number & € (Y, A) such that
%, — Z in (Y,].||, A). However, the sequence {§,} of soft element of (Y, A) where
Jn(A) = 3,Vn € N, X € A s convergent in (Y, .||, A) and converges to 1.

Proposition 1.24. [9] The limit of a sequence {Z,} in a soft normed linear space, if
it exists is unique.

Definition 1.25. [9] A sequence {jn} of a soft element in a soft normed linear
space (N, ||.|) is said to be bounded if the set {||Z, — Zn| : n,m € N} of real

numbers is bounded. i.e. if there exists M >0 such that

|Zn — Zm|| <M ¥n,m € N.
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Definition 1.26. [9] A sequence {xn} of soft element in a soft normed linear space
(N, |||, A) is said to be a Cauchy sequence in N if for every é>0, there exists an
m € N such that ||Z; — Z;||<¢€ for all 4, > m. Thatis ||Z; — Z;|| — 0 as 4,j — oco.

Proposition 1.27. [9] Every convergent sequence {,,} in a soft normed linear space
is Cauchy and every Cauchy sequence is bounded.

Definition 1.28. [9] A soft subset (Y, A) with Y/ (\)#0, VA € A in a soft normed
linear space (NV||.||, A) is said to be bounded if there exists a soft real number &
such that ||Z||<k, VZE(Y,A).

Definition 1.29. [9] A soft normed linear space (N, |||, 4) is called complete if
every Cauchy sequence in it converges to a soft element of V.

Definition 1.30. [9] Let (N, |.||, A) be a soft normed linear space. Then

O Ifz, - 2andy, -y, then Ty, +yp = T+ Y

(11)Ifxn%1and)\ %)\ then \ xn%)\x

(iii) If {Z,,} and {j,} are Cauchy sequences in N and {),} is a Cauchy sequence
of soft scalars, then {Z, + §,} and {Z, + \,} are also Cauchy sequences in N.

Definition 1.31. Let (N,].|[, A) be a soft complete normed linear space with a
finite set A. Suppose the soft mapping f : N — N satisfies

IT(@) = T@) < blllE = T@)] + 17 — T(@)]]

for all #,§ € SP(N) where Oigi%. then T has a unique fixed soft point. This is
called soft Kannan contractive mapping.

Definition 1.32. Let (N,].||, A) be a soft complete normed linear space with a
finite set A. Suppose the soft mapping T : N — N satisfies

IT(z) =T < el =T@I + g —T@)]]

for all Z,7 € SP(N) where Oiéi%. then T has a unique fixed soft point. This is
called soft Chaterjea contractive mapping.

Proposition 1.33. Let (N,|.||,A) be a soft complete normed linear space with a
finite set A . Suppose the soft mapping f : N — N satisfies:

(521)-|IT(2) = T(9)ll < allz - gl|,

(52,). |IT(2) = T(y)l| <bll|& = T(@)|| + l|lg = T(@)Il]. .

(5Zs). | T(x) - T@) < efllz = T@ + 1§ — T@)]], for all ,§ € SP(N) where
0<a<l, Oégi% and ()ééi%. Then T has a unique fixed soft point if at least one of
the conditions above is true. This is called soft Zamfirescu contractive mapping. It is
the soft space version of the contractive mapping of Zamfirescu [2.3] in literature.

We will now show that every soft Zamfirescu operator T’ satisﬁes the inequalities:
IT(@) = TG < dl|Z - gll + 26|z — T(7)|, where § = maz{a

’17b’ 1-¢

Consider (SZ):

IT(2) = T@)| < allz -yl

Consider (575):
IT(z) =T (@) bl = 7@l + Nl = T(@)]I]

bl =T @) +lly — &+ 2 —T(@) + T() - T(@)ll

20|17 — T(@)| +bl|& — gl +bl|T'(Z) — T(§)]

IAN A IA
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N I
< —la-gl+ - 7@
Consider (SZ3):
ITG) =@ < el - T@] + 15 - T@)]
< dlle - T@) +T(@) ~ TG + 17— 5+ 7 — T@))
< 22z - @) + 2 - gl + AT@ - T
< TlE gl e - T

Denote 6 = maz{a, 1%, -}, By (5Z1). (SZ2) and (SZ3). we get

IT(@) = T@) < 617 — gl +26/|7 — T(@)]],
where 0<8<1. If L = 26, we obtain:
IT(@) - T(@)Il < 6|z - gll + Lllz — T(z)]-
Suppose 5(t) = Lt, we get
IT(@) = T@)I| < ollz — gl + ¢z — T(@)]),
where ¢ : R(A)* — R(A)* is a monotone increasing function with $(0) = 0. This

ends the proof.

We now consider some iterative schemes in a soft normed linear space.

Let (N, |.]|, A) be a soft normed linear space with A, a finite set and f : N — N a
soft self mapping of N. Define Fp = {(jéN : T§ = ¢} to be the set of fixed point of
T. For #yEN, the sequence {Z,}52, defined by

Fnp1 =Ty, (1.6)

né() is called the soft Picard iterative scheme.
For ZgEN, the sequence {7, }32 , defined by

jz'n+1 = (]- - dn)i'n + 5[an%77,7 (1.7)

n>0, where {&, }22_, is a soft real sequence in [0, 1] is called the soft Mann iterative
scheme.
For Zo€N, the sequence {Z,}2, defined by

i.’l’H’l = Tgn7
Un = (1= 0an)Tn + anTy, (1.8)

n>0, where {&, }22, is a soft real sequence in [0, 1] is called the soft Picard-Mann
hybrid iterative scheme.
We shall need the following lemma in proving our result.

Lemma 1.34. [5] Let 6 be a real number satisfying 0 < 0 < 1 and {€,}52, a
sequence of positive numbers such that lim,,_, €, = 0, then for any sequence
of positive numbers {u,}52, satisfying un+1 < du, + €,, n=0,1,2,..., we have
liMy, ooty = 0.
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2. MAIN RESULTS

Theorem 2.1. Let (N, ||.||, A) be a soft normed linear space with a finite set A and
T:N — N bea soft self mapping satisfying the soft contractive-like condition

1Tz — Ty < dllz - gll + (& — Tzl), (2.1)

for each &,5 € SP (N ), 0<6 < 1 and ¢ is a monotone increasing function with
@(0) = 0. For arbitrary #oEN, let {,}°, be the soft Picard-Mann hybrid iterative
scheme defined by (1.8), where {&,, }°, is a soft real sequence in [0, 1]. Then

(i) T defined by (2.1) has a unique soft fixed point §;

(i) the saft Picard-Mann hybrid iterative scheme (1.8) converges strongly to ¢ of T'.

Proof. We shall first show that T has a unique fixed point.
Suppose §1, G2 Fp such that §; #qg

1Tq — Tzl

ollgr — @oll + ¢(lld — T )
dllg1 — 2|l + ¢(0)

8)ld1 — 2.

g1 — G2l

ININ A

Thus, (1 —0)||g1 — || < 0, which implies ||G; — Ga| < 0.
That is, g1 = ¢». Thus, T has a unique fixed point q.

Next, we prove that lim,,_,., Z, = ¢. That is, we show that the soft Picard-Mann
hybrid iterative sequence converges strongly to g of 7'.

[Zn1 —qll = [T9n — T4l

< Ollgn — all + &l - Tall)

< 0ll5n —dll

< O[(1 — @)@ — Gl + @nl T2, — dll]

< O[(1 = an)llEn — gl + 06| En — gll]

< O = an(T = 0)]||&n — qll-
Hence, lim;, o |7 - gl = 0.
Since, §[1 — &, (1 — )] = 0 as n — oo. Therefore {Z, }°°, converges strongly to a
soft fixed point q. O

Theorem 2.2. Let (N, ||.||, A) be a soft normed linear space with a finite set, A and
T : N — N be a soft self mapping satisfying the soft contractive-like condition

IT% — T3 < bl|F - gll + (& — T&|), (2.2)

foreach z,7 € SP(N), 0<6 < 1. For arbitrary Zo€N, let {#,}°°, be the soft Mann
iterative scheme defined by (1.7), where {a,,}5°, is a soft real sequence in [6, ﬂ.
Then

(1) T defined by (2.2) has a unique soft fixed point g;

(i1) the soft Mann iterative scheme (1.7) converges strongly to ¢ of T'.

Proof. The proof is similar to that of Theorem 2.1. U

Theorem 2.2 leads to the following corollary:
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Corollary 2.3. Let (N, ||.|, A) be a soft normed linear space with a finite set A and
T : N — N be a soft self mapping satisfying the soft contractive-likke condition

1Tz — Tg|l < él|z - gll + (& — T, (2.3)

Joreach #,§ € SP(N),0<é < 1. For arbitrary #oEN, let {Z,}°2, be the soft Picard
iterative scheme defined by (1.6). Then

(i) T defined by (2.3) has a unique soft fixed point §;

(it) the soft Picard iterative scheme (1.6) converges strongly to G of T'.
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