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1 Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University,
P. O. Box 13185/768, Tehran, Iran

2 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marĳe 16, 11120, Beograd, Serbia
3 Faculty of Mathematics and Information Technology, Teacher Education, Dong Thap University,

Cao Lanch City, Dong Thap Province, Viet Nam
4 Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran

ABSTRACT. The notion of coupled fixed point was initiated in 2006 by Bhaskar and Lak-
shmikantham. On the other hand, Radenović and Kadelburg [S. Radenović, Z. Kadelburg,
Quasi-contractions on symmetric and cone symmetric spaces, Banach J. Math. Anal. 5 (1)
(2011) 38-50] defined cone metric type space and proved several fixed point theorems. In
this paper we introduce the concept of a coupled fixed point for a contractive condition in
cone metric type space and prove some coupled fixed point theorems.

KEYWORDS : Cone metric type space; Coupled fixed point; Cone metric space.
AMS Subject Classification: 47H10.

1. INTRODUCTION AND PRELIMINARIES

The symmetric space, as metric-like spaces lacking the triangle inequality was
introduced in 1931 by Wilson [31]. Recently, a new type of spaces which they
called metric type spaces are defined by Khamsi and Hussain [16] and Boriceanu
[6]. Also, Jovanović et al. [14], Rahimi and Soleimani Rad [24], Bota et al. [7],
Pavlović et al. [20], Singh et al. [28] and Hussain et al. [11] generalized some fixed
point theorems of metric spaces by considering metric type space.

On the other hand, the cone metric space was initiated in 2007 by Huang and
Zhang [12] and several fixed and common fixed point results in cone metric spaces
were introduced in [2, 3, 13, 22, 23, 25, 30] and the references contained therein.
In the sequel, analogously with definition of metric type space, Ćvetković et al.
[9] and Radenović and Kadelburg [21] defined cone metric type space and proved
several fixed and common fixed point theorems (See [17]).

∗This research was partially supported by the Central Tehran Branch of Islamic Azad University.
∗Corresponding author.
Email address : rahimi@iauctb.ac.ir (H. Rahimi), radens@beotel.rs (S. Radenović), gha.soleimani.sci@iauctb.ac.ir.
Article history : Received April 27, 2013 Accepted May 13, 2015.
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In 2006, Bhaskar and Lakshmikantham [5] introduced the concept of coupled
fixed point theorem in partially ordered metric spaces. Then, some other authors
generalized this concept and proved several common coupled fixed point and cou-
pled fixed point theorems in ordered metric and ordered cone metric spaces (See
[1, 4, 8, 15, 18, 19, 26, 27, 29] and the references contained therein).

In this paper we define the concept of coupled fixed point in a cone metric type
space and prove some coupled fixed point theorems. Our results generalize, extend
and unify several well known comparable results in the literature.

Let us start by defining some important definitions.

Definition 1.1. (See [31]). LetX be a nonempty set and the mappingD : X×X →
[0,∞) satisfies

(S1) D(x, y) = 0⇐⇒ x = y;

(S2) D(x, y) = D(y, x),

for all x, y ∈ X. ThenD is called a symmetric onX and (X,D) is called a symmetric
space.

Definition 1.2. (See [10, 12]). Let E be a real Banach space and P be a subset of
E. Then P is called a cone if and only if
(a) P is closed, non-empty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;
(c) if x ∈ P and −x ∈ P , then x = θ.

Given a cone P ⊂ E, we define a partial ordering � with respect to P by

x � y ⇐⇒ y − x ∈ P.
We shall write x ≺ y if x � y and x 6= y. Also, we write x � y if and only if
y−x ∈ intP (where intP is the interior of P ). The cone P is named normal if there
is a number K > 0 such that for all x, y ∈ E, we have

θ � x � y =⇒ ‖x‖ ≤ K‖y‖.
The least positive number satisfying the above is called the normal constant of P .

Definition 1.3. (See [12]). Let X be a nonempty set and the mapping d : X×X →
E satisfies
(d1) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.
Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Example 1.4. (See [12, 22]).
(i) Let E = R2, P = {(x, y) ∈ E|x, y ≥ 0} ⊂ R2, X = R and d : X ×X → E such
that d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone
metric space.
(ii) Let X = [0, 1], E = C2

R[0, 1] with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞, P = {f ∈
E|f ≥ 0} and d(x, y)(t) = |x − y|2t. Then (X, d) is a cone metric space with
non-normal solid cone.

Definition 1.5. (See [16]). Let X be a nonempty set, and K ≥ 1 be a real number.
Suppose the mapping Dm : X ×X → [0,∞) satisfies
(D1) Dm(x, y) = 0 if and only if x = y;
(D2) Dm(x, y) = Dm(y, x) for all x, y ∈ X;
(D3) Dm(x, z) ≤ K(Dm(x, y) +Dm(y, z)) for all x, y, z ∈ X.
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(X,Dm,K) is called metric type space. Obviously, for K = 1, metric type space is
a metric space.

Definition 1.6. (See [9, 21]). Let X be a nonempty set, K ≥ 1 be a real number
and E a real Banach space with cone P . Suppose that the mappingD : X×X → E
satisfies
(cd1) θ � D(x, y) for all x, y ∈ X and D(x, y) = θ if and only if x = y;
(cd2) D(x, y) = D(y, x) for all x, y ∈ X;
(cd3) D(x, z) � K(D(x, y) +D(y, z)) for all x, y, z ∈ X.
(X,D,K) is called cone metric type space. Obviously, for K = 1, cone metric type
space is a cone metric space.

Example 1.7. (See [9]). Let B = {ei|i = 1, · · · , n} be orthonormal basis of Rn with
inner product (., .) and p > 0. Define

Xp =
{
[x]|x : [0, 1]→ Rn,

∫ 1

0

|(x(t), ej)|pdt ∈ R, j = 1, 2, · · · , n
}
,

where [x] represents class of element x with respect to equivalence relation of
functions equal almost everywhere. Let E = Rn and

PB =
{
y ∈ Rn|(y, ei) ≥ 0, i = 1, 2, · · · , n

}
be a solid cone. Define d : Xp ×Xp → PB ⊂ Rn by

d(f, g) =

n∑
i=1

ei

∫ 1

0

|((f − g)(t), ei)|pdt, f, g ∈ Xp.

Then (Xp, d,K) is cone metric type space with K = 2p−1.

Similarly, we define convergence in cone metric type spaces.

Definition 1.8. (See [9, 21]). Let (X,D,K) be a cone metric type space, {xn} a
sequence in X and x ∈ X.
(i) {xn} converges to x if for every c ∈ E with θ � c there exist n0 ∈ N such that
d(xn, x)� c for all n > n0, and we write limn→∞ xn = x.
(ii) {xn} is called a Cauchy sequence if for every c ∈ E with θ � c there exist
n0 ∈ N such that d(xn, xm)� c for all m,n > n0.

Lemma 1.9. (See [9, 21]). Let (X,D,K) be a cone metric type space over ordered
real Banach spaceE. Then the following properties are often used, particularly when
dealing with cone metric type spaces in which the cone need not be normal.
(P1) If u � v and v � w, then u� w.
(P2) If θ � u� c for each c ∈ intP , then u = θ.
(P3) If u � λu where u ∈ P and 0 ≤ λ < 1, then u = θ.
(P4) Let xn → θ in E and θ � c. Then there exists positive integer n0 such that
xn � c for each n > n0.

2. MAIN RESULTS

At the first, we define the concept of the coupled fixed point in a cone metric type
space. Then, we prove some fixed point theorems as generalization of Sabetghadam
et al.’s works in [26] and Bhaskar and Lakshmikantham’s results in [5].

Definition 2.1. Let (X,D,K) be a cone metric type space with constant K ≥ 1.
An element (x, y) ∈ X × X is said to be a coupled fixed point of the mapping
F : X ×X → X if F (x, y) = x and F (y, x) = y.
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Note that if (x, y) is a coupled fixed point of F then (y, x) is coupled fixed point
of F too.

Theorem 2.2. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) � αD(x, x∗) + βD(y, y∗), (2.1)

where α, β are nonnegative constants with α + β < 1/K. Then F has a unique
coupled fixed point.

Proof. Let x0, y0 ∈ X and set

x1 = F (x0, y0), y1 = F (y0, x0), · · · , xn+1 = F (xn, yn), yn+1 = F (yn, xn).

From (2.1), we have

D(xn, xn+1) � αD(xn−1, xn) + βD(yn−1, yn), (2.2)

and
D(yn, yn+1) � αD(yn−1, yn) + βD(xn−1, xn). (2.3)

Let Dn = D(xn, xn+1) +D(yn, yn+1). From (2.2) and (2.3), we get

Dn � (α+ β)
(
D(xn−1, xn) +D(yn−1, yn)

)
= λDn−1,

where λ = α+ β < 1/K. Thus, for all n,

θ � Dn � λDn−1 � λ2Dn−2 � · · · � λnD0. (2.4)

If D0 = θ then (x0, y0) is a coupled fixed point of F . Now, let D0 > θ. If m > n, we
have

D(xn, xm) � K[D(xn, xn+1) +D(xn+1, xm)]

� KD(xn, xn+1) +K2[D(xn+1, xn+2) +D(xn+2, xm)]

� · · · � KD(xn, xn+1) +K2D(xn+1, xn+2) + · · ·
+Km−n−1D(xm−2, xm−1) +Km−nD(xm−1, xm), (2.5)

and similarly,

D(yn, ym) � KD(yn, yn+1) +K2D(yn+1, yn+2) + · · ·
+Km−n−1D(ym−2, ym−1) +Km−nD(ym−1, ym). (2.6)

Adding up (2.5) and (2.6) and using (2.4). Since λ < 1/K, we have

D(xn, xm) +D(yn, ym) � KDn +K2Dn+1 + · · ·+Km−nDm−1

� [Kλn +K2λn+1 + · · ·+Km−nλm−1]D0

� Kλn

1−Kλ
D0 → θ as n→∞.

Now, by (P1) and (P4), it follows that for every c ∈ intP there exist positive integer
N such that D(xn, xm) +D(yn, ym) � c for every m > n > N , so {xn} and {yn}
are Cauchy sequences in X. Since X is a complete cone metric type space, there
exist x′, y′ ∈ X such that xn → x′ and yn → y′ as n → ∞. Now, we prove that
F (x′, y′) = x′ and F (y′, x′) = y′. From (cd3) and (2.1), we have

D(F (x′, y′), x′) � K[D(F (x′, y′), xn+1) +D(xn+1, x
′)]

� KαD(x′, xn) +KβD(y′, yn) +KD(xn+1, x
′).
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Since xn → x′ and yn → y′, by using Lemma 1.9 we have D(F (x′, y′), x′) = θ; that
is, F (x′, y′) = x′. Similarly, we can get D(F (y′, x′), y′) = θ; that is, F (y′, x′) = y′.
Therefore, (x′, y′) is a coupled fixed point of F . Now, if (x′′, y′′) is another coupled
fixed point of F , then

D(x′, x′′) +D(y′, y′′) � λ
(
D(x′, x′′) +D(y′, y′′)

)
. (2.7)

Since λ = α+β < 1
K andK ≥ 1, (2.7) and (P2) imply thatD(x′, x′′)+D(y′, y′′) = θ.

Thus, (x′, y′) = (x′′, y′′). This completes the proof. �

Corollary 2.3. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) � γ

2
[D(x, x∗) +D(y, y∗)], (2.8)

where γ ∈ [0, 1
K ) is a constant. Then F has a unique coupled fixed point.

Proof. Corollary 2.3 follows from Theorem 2.2 by setting α = β = γ
2 . �

Theorem 2.4. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) � αD(F (x, y), x) + βD(F (x∗, y∗), x∗), (2.9)

where α, β are nonnegative constants with Kα + β < 1. Then F has a unique
coupled fixed point.

Proof. Let x0, y0 ∈ X and set

x1 = F (x0, y0), y1 = F (y0, x0), · · · , xn+1 = F (xn, yn), yn+1 = F (yn, xn).

From (2.9), we have

D(xn, xn+1) � αD(F (xn−1, yn−1), xn−1) + βD(F (xn, yn), xn)

= αD(xn, xn−1) + βD(xn+1, xn) (2.10)

and

D(yn, yn+1) � αD(F (yn−1, xn−1), yn−1) + βD(F (yn, xn), yn)

= αD(yn, yn−1) + βD(yn+1, yn). (2.11)

From (2.10) and (2.11), we have

D(xn, xn+1) � λD(xn−1, xn),

D(yn, yn+1) � λD(yn−1, yn),

where λ = α/(1 − β) < 1/K. By the analogous arguments as in Theorem 2.2 we
conclude that {xn} and {yn} are Cauchy sequences in X. Since X is a complete
cone metric type space, there exist x′, y′ ∈ X such that xn → x′ and yn → y′ as
n→∞. Now, we prove that F (x′, y′) = x′ and F (y′, x′) = y′. From (cd3) and (2.9),
we have

D(F (x′, y′), x′) � K[D(F (x′, y′), xn+1) +D(xn+1, x
′)]

� KαD(F (x′, y′), x′) +KβD(F (xn, yn), xn) +KD(xn+1, x
′).

Since xn → x′ and yn → y′, by using Lemma 1.9 we have D(F (x′, y′), x′) = θ; that
is, F (x′, y′) = x′. Similarly, we can get D(F (y′, x′), y′) = θ; that is, F (y′, x′) = y′.
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Therefore, (x′, y′) is a coupled fixed point of F . Now, if (x′′, y′′) is another coupled
fixed point of F , then

D(x′, x′′) � αD(F (x′, y′), x′) + βD(F (x′′, y′′), x′′).

Therefore, D(x′, x′′) = θ; that is x′ = x′′. Similarly, we have y′ = y′′. Thus
(x′, y′) = (x′′, y′′). This completes the proof. �

Corollary 2.5. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) � γ

2
[D(F (x, y), x) +D(F (x∗, y∗), x∗)], (2.12)

where γ ∈ [0, 2
K+1 ) is a constant. Then F has a unique coupled fixed point.

Proof. Similar to Corollary 2.3, Corollary 2.5 follows from Theorem 2.4 by setting
α = β = γ

2 . �

Theorem 2.6. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) � αD(F (x, y), x∗) + βD(F (x∗, y∗), x), (2.13)

where α, β are nonnegative constants with α + β < 2/(K(K + 1)). Then F has a
unique coupled fixed point.

Proof. Let x0, y0 ∈ X and set

x1 = F (x0, y0), y1 = F (y0, x0), · · · , xn+1 = F (xn, yn), yn+1 = F (yn, xn).

From (2.13), we have

D(xn, xn+1) � αD(F (xn−1, yn−1), xn) + βD(F (xn, yn), xn−1)

� Kβ[D(xn, xn−1) +D(xn+1, xn)] (2.14)

and

D(xn+1, xn) � αD(F (xn, yn), xn−1) + βD(F (xn−1, yn−1), xn)

� Kα[D(xn, xn−1) +D(xn+1, xn)]. (2.15)

Adding up (2.14) and (2.15), we have

D(xn, xn+1) � λD(xn−1, xn),

where λ = K(α+β)
2−K(α+β) <

1
K .

Similarly,

D(yn, yn+1) � λD(yn−1, yn),

where λ = K(α+β)
2−K(α+β) <

1
K . By the same arguments as in Theorem 2.2 we conclude

that {xn} and {yn} are Cauchy sequences in X. Since X is a complete cone metric
type space, there exist x′, y′ ∈ X such that xn → x′ and yn → y′ as n→∞. Now,
we prove that F (x′, y′) = x′ and F (y′, x′) = y′. From (cd3) and (2.13), we have

D(F (x′, y′), x′) � K[D(F (x′, y′), xn+1) +D(xn+1, x
′)]

� KαD(F (x′, y′), xn) +KβD(F (xn, yn), x
′) +KD(xn+1, x

′).

Since xn → x′ and yn → y′, by using Lemma 1.9 we have D(F (x′, y′), x′) = θ; that
is, F (x′, y′) = x′. Similarly, we can get D(F (y′, x′), y′) = θ; that is, F (y′, x′) = y′.
Therefore, (x′, y′) is a coupled fixed point of F . By the same arguments as in
Theorem 2.2 we conclude that (x′, y′) is unique. �
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Corollary 2.7. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) � γ

2
[D(F (x, y), x∗) +D(F (x∗, y∗), x)], (2.16)

where γ ∈ [0, 2/(K2 +K)) is a constant. Then F has a unique coupled fixed point.

Remark 2.8.
(i) The Theorems 2.2, 2.4 and 2.6 generalized some fixed point theorems of cone
metric spaces of Sabeghadam et al.’s works in [26] by considering cone metric type
spaces.
(ii) Choosing K = 1 from the Corollaries 2.3, 2.5 and 2.7 we get the Theorems 2.1,
2.2 and 2.4 from Bhaskar and Lakshmikantham’s results in a cone metric space.

Example 2.9. Let E = R, P = [0,∞), X = [0, 1] and D : X × X → [0,∞) be
defined by D(x, y) = |x − y|2. Then (X,D) is a cone metric type space, but it is
not a cone metric space since the triangle inequality is not satisfied. Starting with
Minkowski inequality, we get |x− z|2 ≤ 2(|x− y|2 + |y − z|2). Here K = 2.
Define the mapping F : X ×X → X by F (x, y) = (x+ y)/4. Therefore, F satisfies
the contractive condition (2.8) for γ = 1/4 ∈ [0, 1/K) with K = 2 ≥ 1; that is,

D(F (x, y), F (x∗, y∗)) � 1

8
[D(x, x∗) +D(y, y∗)].

According to Corollary 2.3, F has a unique coupled fixed point. (0, 0) is a unique
coupled fixed point of F

Remark 2.10. Similar to previous example, one can get many examples of other
coupled fixed point theorems in cone metric type spaces.

3. GENERAL APPROACH

We start with following Lemma.

Lemma 3.1. (1) Suppose that (X,D,K) is a cone metric type space with K ≥ 1.
Then, (X2, D1,K) is a cone metric type space with

D1((x, y), (u, v)) = D(x, u) +D(y, v). (3.1)

Further, (X,D,K) is complete if and only if (X2, D1,K).
(2) Mapping F : X2 → X has a coupled fixed point if and only if mapping TF : X2 →
X2 defined by TF (x, y) = (F (x, y), F (y, x)) has a fixed point in X2.

Proof. (1) Similar to cone metric version, one can check (cd1) and (cd2) conditions.
Thus, we only prove (cd3) condition for (X2, D1,K). Since (X,D,K) is a cone
metric type space, we have

D(x, u) � K(D(x, z) +D(z, u)) (3.2)

for all x, z, u ∈ X and

D(y, v) � K(D(y, w) +D(w, v)) (3.3)

for all y, v, w ∈ X. Adding up (3.2) and (3.3), we get

D1((x, y), (u, v)) = D(x, u) +D(y, v)

� K(D(x, z) +D(z, u)) +K(D(y, w) +D(w, v))

= K(D(x, z) +D(y, w)) +K(D(z, u) +D(w, v))

= K
[
D1((x, y), (z, w)) +D1((z, w), (u, v))

]
.
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Thus, (X2, D1,K) is a cone metric type space. The completeness proof is easy and
is left to the reader.
(2) Let (x, y) be a coupled fixed point of F . In this case, F (x, y) = x and F (y, x) = y.
Thus,

TF (x, y) = (F (x, y), F (y, x)) = (x, y).

Therefore, (x, y) ∈ X2 is a fixed point of TF . Conversely, suppose that (x, y) ∈ X2

is a fixed point of TF , then

TF (x, y) = (x, y).

Consequently, F (x, y) = x and F (y, x) = y. �

Now, we prove a general version of Theorem 2.2.

Theorem 3.2. Let (X,D,K) be a complete cone metric type space with constant
K ≥ 1 and P a solid cone. Suppose F : X × X → X satisfies the following
contractive condition for all x, y, x∗, y∗ ∈ X:

D(F (x, y), F (x∗, y∗)) +D(F (y, x), F (y∗, x∗)) � λ[D(x, x∗) +D(y, y∗)], (3.4)

where λ is a nonnegative constant with λ < 1/K. Then F has a unique coupled
fixed point.

Proof. According to (3.1) and Lemma 3.1(2), the contractive condition (3.4) for all
Y = (x, y), V = (u, v) ∈ X2 become

D1(TF (Y ), TF (V )) � λD1(Y, V ).

Since λ < 1/K, the proof further follows by ([14], Theorem 3.3). �

Remark 3.3. Now, we can get Theorem 2.2 such as the result of Theorem 3.2.
Also, one can prove some other theorems for general contractive version and get
Theorems 2.4 and 2.6.
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1. INTRODUCTION

The fundamental idea of wavelet packet analysis is to construct a library of
orthonormal bases for L2(R), which can be searched in real time for the best ex-
pansion with respect to a given application. Wavelet packets, due to their nice
characteristics have been widely applied to signal processing, coding theory, image
compression, fractal theory and solving integral equations and so on. Coifman et
al.[8] firstly introduced the notion of univariate wavelet packets. Chui and Li [7]
generalized the concept of orthogonal wavelet packets to the case of non-orthogonal
wavelet packets so that they can be applied to the spline wavelets and so on. Shen
[18] generalized the notion of univariate orthogonal wavelet packets to the case
of multivariate wavelet packets. Other notable generalizations are the p-wavelet
packets and p-wavelet frame packets on a half-line R+ [13, 14, 16], higher dimen-
sional wavelet packets with arbitrary dilation matrix [9], the orthogonal version of
vector-valued wavelet packets [6] and the M -band framelet packets [17].

On the other hand, multiwavelets are natural extension and generalization of
traditional wavelets. They have received considerable attention from the wavelet re-
search communities both in the theory as well as in applications. They can be seen
as vector valued-wavelets that satisfy conditions in which matrices are involved
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rather than scalars as in the wavelet case. Multiwavelets can own symmetry, or-
thogonality, short support and high order vanishing moments, however traditional
wavelets can not possess all these properties at the same time (see [4, 10]). Yang
and Cheng [20] generalized the concept of wavelet packets to the case of multi-
wavelet packets associated with a dilation factor a which were more flexible in
applications. Subsequently, Behera [1] extended the results of Yang and Cheng
to the multivariate multiwavelet packets associated with a dilation matrix A. He
proved lemmas on the so-called splitting trick and several theorems concerning the
Fourier transform of the multiwavelet packets and the construction of multiwavelet
packets to show that their translates form an orthonormal basis of L2

(
Rd
)
. Re-

cently, Sun and Li [19] have given the construction and properties of generalized
orthogonal multiwavelet packets based on the results discussed in [20].

As far as the characterization of multiwavelets is concerned, Calogero studied
the characterization of all multiwavelets associated with general expanding maps of
Rn in [5]. The Calogero’s work was extended by Bownik [2], taking into considera-
tion the dilation matrices which preserves the standard lattice Zn in terms of affine
systems. In the same year, another characterization of multiwavelets was given
by Rzeszotnik [12] for expanding dilations that preserves the lattice Zn. However,
Bownik [3] has presented a new approach to characterize all orthonormal multi-
wavelets by means of basic equations in the Fourier domain. This characterization
was obtained by using the results about shift invariant systems and quasi-affine
systems in [11].

The characterization of multiwavelet packets associated with the general dila-
tion matrixA has been given by Shah and Ahmad in [15] by following dual Gramian
approach of Bownik [2]. In the present paper, we study the characterization of mul-
tiwavelet packets associated with expansive dilation matrices in terms of the two
simple equations in the Fourier domain based on results on affine and quasi-affine
frames.

In order to make the paper self-contained, we state some basic preliminaries,
notations and definitions including the multiresoltion analysis associated with a
dilation matrix A and corresponding multiwavelet packets in Section 2. In Sec-
tion 3, we establish the characterization of multiwavelet packets associated with a
dilation matrix A based on results on affine and quasi-affine frames.

2. NOTATIONS AND PRELIMINARIES

Throughout, this paper, we use the following notations. Let R and C be all
real and complex numbers, respectively. Z and Z+ denote all integers and all non-
negative integers, respectively. Zd and Rd denote the set of all d-tuples integers
and d-tuples of reals, respectively. Assume that we have a lattice Γ (Γ = PZd
for some non-degenerate d × d matrix P ) of Rd. Let A denotes a d × d dilation
matrix, whose determinant is a(a ∈ Z, a ≥ 2). A d × d matrix A is said to be a
dilation matrix for Rd if A(Zd) ⊂ Zd and all eigenvalues λ of A satisfy |λ| > 1. Let
a = |detA|, B = transpose of A and, if A is expanding, so is B. Let Γ∗ be the dual
lattice; that is,

Γ∗ =
{
γ′ ∈ Rd : ∀ γ ∈ Γ 〈γ, γ′〉 ∈ Z

}
= (P t)−1Zd.
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By taking the transpose of P−1AP we observe that B = At is a dilation preserving
the dual lattice: BΓ∗ ⊂ Γ∗ and let S = Γ∗ \BΓ∗.

We recall the notion of higher dimensional multiresolution analysis associated
with multiplicity L and orthogonal multiwavelets of L2(Rd).

Definition 2.1. A sequence {Vj : j ∈ Z} of closed subspaces of L2
(
Rd
)

is called
a multiresolution analysis (MRA) of L2

(
Rd
)

of multiplicity L associated with the
dilation matrix A if the following conditions are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z;

(ii)
⋃
j∈ZVj is dense in L2

(
Rd
)

and
⋂
j∈ZVj = {0};

(iii) f ∈ Vj if and only if f(A·) ∈ Vj+1 for all j ∈ Z;

(iv) there existL-functions ϕ` ∈ V0, such that the system of functions {ϕ`(x− k)}L`=1,k∈Zd,

forms an orthonormal basis for subspace V0.

The L-functions whose existence is asserted in (iv) are called scaling functions
of the given MRA. Given a multiresolution analysis {Vj}j∈Z, we define another
sequence {Wj}j∈Z of closed subspaces of L2

(
Rd
)

by Wj = Vj+1	Vj , j ∈ Z. These
subspaces inherit the scaling property of {Vj}, namely

f ∈Wj if and only if f(A·) ∈Wj+1. (2.1)

Further, they are mutually orthogonal, and we have the following orthogonal de-
compositions:

L2(Rd) =
⊕
j∈Z

Wj = V0 ⊕
(⊕
j≥0

Wj

)
. (2.2)

A set of functions {ψr` : 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1} in L2(Rd) is said to be a set of
basic multiwavelets associated with the MRA of multiplicity L if the collection{

ψr` (.− k) : 1 ≤ r ≤ a− 1, 1 ≤ ` ≤ L, k ∈ Zd
}

forms an orthonormal basis for W0. Now, in view of (2.1) and (2.2), it is clear that
if {ψr` : 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1} is a basic set of multiwavelets, then{

|detA|j/2ψr` (Aj .− k) : j ∈ Z, k ∈ Zd, 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1
}

forms an orthonormal basis for L2(Rd) (see [1, 4]).

For any n ∈ Z+, we define the basic multiwavelet packets ωn` ; 1 ≤ ` ≤ L
recursively as follows. We denote ω0

` = ϕ`, 1 ≤ ` ≤ L, the scaling functions and
ωr` = ψr` , r ∈ Z+, 1 ≤ ` ≤ L as the possible candidates for basic multiwavelets.
Then, define

ωs+ar` (x) =

L∑
j=1

∑
k∈Zd

hs`jk a
1/2 ωr` (Ax− k), 1 ≤ ` ≤ L, 0 ≤ s ≤ a− 1 (2.3)

where
(
hs`jk

)
is a unitary matrix (see [1]).
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Taking Fourier transform on both sides of (2.3), we obtain

(
ωs+ar`

)∧
(ξ) =

L∑
j=1

hs`j(B
−1ξ)

(
ωr`
)∧

(B−1ξ). (2.4)

Note that (2.3) defines ωn` for every non-negative integer n and every ` such that
1 ≤ ` ≤ L. The set of functions {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} as defined above are
called the basic multiwavelet packets corresponding to the MRA {Vj}j∈Z of L2(Rd)
of multiplicity L associated with matrix dilation A.

Definition 2.2. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets.
The collection

P =
{
|detA|j/2ωn` (A.− k) : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zd

}
is called the general multiwavelet packets associated with MRA {Vj : j ∈ Z} of
L2(Rd) of multiplicity L over matrix dilation A.

Corresponding to some orthonormal scaling vector Φ = ω0
` , the family of

multiwavelet packets ωn` defines a family of subspaces of L2(Rd) as follows:

Unj = span
{
|detA|j/2ωn` (Ajx− k) : k ∈ Zd, 1 ≤ ` ≤ L

}
; j ∈ Z, n ∈ Z+. (2.5)

Observe that

U0
j = Vj , U1

j = Wj =

a−1⊕
r=1

Urj , j ∈ Z

so that the orthogonal decomposition Vj+1 = Vj ⊕Wj , can be written as

U0
j+1 =

a−1⊕
r=0

Urj . (2.6)

A generalization of this result for other values of n = 1, 2, . . . can be written as

Unj+1 =

a−1⊕
r=0

Uan+r
j , j ∈ Z. (2.7)

The following proposition is proved in [1].

Proposition 2.3. If j ≥ 0, then

Wj =

a−1⊕
r=0

Urj =

a2−1⊕
r=a

Urj−1 = · · · =
at+1−1⊕
r=at

Urj−t =

aj+1−1⊕
r=aj

Ur0

where Unj is defined in (2.5). Using this decomposition, we get the multiwavelet
packets decomposition of subspaces Wj , j ≥ 0.

Let {ωn` : n ≥ 0, 1 ≤ ` ≤ L} be a family of functions in L2(Rd). Then, the affine
system generated by ωn` and associated with (A,Γ) is the collection
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F(ωn` ) =
{
ωn`,j,k : j ∈ Z, k ∈ Γ, 1 ≤ ` ≤ L, aj ≤ n < aj+1

}
, (2.8)

where ωn`,j,k(x) = DAjTk ω
n
` (x) = |detA|j/2ωn` (Ajx − k). The quasi-affine system

generated by ωn` is

Fq(ωn` ) =
{
ω̃n`,j,k : j ∈ Z, k ∈ Γ, 1 ≤ ` ≤ L, aj ≤ n < aj+1

}
, (2.9)

where

ω̃n`,j,k(x) =

 DAjTk ω
n
` (x) = |detA|j/2ωn` (Ajx− k), j ≥ 0, k ∈ Γ,

|detA|j/2TkDAjωn` (x) = |detA|jωn`
(
Aj(x− k)

)
, j < 0, k ∈ Γ,

where τyf(x) = f(x − y) is translation by a vector y ∈ Rd and DAjf(x) =

|detA|j/2f(Ax) is dilation by the matrix A. Since A is a dilation matrix, At = B
so there exist constants λ > 1 and c > 0 such that∣∣Bj

ξ
∣∣ > cλj |ξ|,

∣∣B−jξ∣∣ < 1/cλ−j |ξ| for j > 0. (2.10)

The following two lemma’s are proved in [2].

Lemma 2.4. Suppose b > 0, g ∈ L∞(Rd), supp g ⊂
{
ξ ∈ Rd : |ξ| > b

}
, and

supp g ⊂ Bj0Id + ξ0 for some ξ0 ∈ Rd and j0 ∈ Z, then

∑
j∈Z

∑
k∈Zd\{0}

|detA|i
∣∣∣g(Bjξ)g

(
Bj(ξ+k)

)∣∣∣ ≤ 2d|detA|j0M
(

(b+δ)/b
)
‖g‖2∞IΥ(ξ), a.e. ξ ∈ Rd

where δ = diam(Bj0Id),Υ =
⋃
j<J0

B−j(Bj0Id + ξ0) and Id = (−1/2, 1/2)d.

Lemma 2.5. Suppose F,G ∈ L2(Rd), and suppF, suppG are bounded. Then

∑
k∈Zd

F̂ (k)Ĝ(k) =

∫
Rd

∑
`∈Zd

F (ξ + `)

G(ξ) dξ.

Definition 2.6. Let H be a separable Hilbert space. A sequence {fk}∞k=1 in H is
called a frame if there exist constants A and B with 0 < A ≤ B <∞ such that

A
∥∥f∥∥2 ≤

∞∑
k=1

∣∣〈f, fα〉∣∣2 ≤ B∥∥f∥∥2
, for all f ∈ H. (2.11)

The largest constant A and the smallest constant B satisfying (2.11) are called the
upper and the lower frame bound, respectively. The sequence {fk}∞k=1 is called a
Bessel sequence in H if only the right-hand side inequality in (2.11) holds. The
sequence {fk}∞k=1 is called a tight frame for H if the upper frame bound A and the
lower frame bound B coincide. A frame is called Parseval frame or normalized tight
frame if A = B = 1 and in this case, every function f ∈ H can be written as

∞∑
k=1

∣∣〈f, fα〉∣∣2 =
∥∥f∥∥2

. (2.12)
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The following theorem gives us an elementary characterization of tight frames.

Theorem 2.7. Let {fk}∞k=1 be a sequence in a Hilbert space H such that

(i)
∞∑
k=1

|〈f, fk〉|2 = ‖f‖2, for all f ∈ H

(ii) ‖fk‖ ≥ 1, for k ∈ Z+.

Then, the sequence {fk}∞k=1 forms a Parseval’s frame for H.

We will also consider the set D as a dense subset of L2(Rd) defined by

D =
{
f ∈ L2(Rd) : f̂ ∈ L∞(Rd), supp f̂ for some compact K ⊂ Rd \ {0}

}
.

3. CHARACTERIZATION OF MULTIWAVELET PACKETS

In this section, we prove our main results concerning the characterization of mul-
tiwavelet packets associated with a dilation matrix A by means of the Fourier
transform. We begin this section with the lemma which gives necessary condition
for the system F(ωn` ) given by (2.8) to be a Bessel family.

Lemma 3.1. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets asso-
ciated with the scaling functions ϕ`. Then, for f ∈ D and m ∈ Z, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 <∞.
Moreover,

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ωn` (Bjξ)∣∣2, is locally integrable on Rd \ {0} (3.1)

if and only if

aj+1−1∑
n=aj

L∑
`=1

∑
j,k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 <∞ for all f ∈ D. (3.2)

Proof. Since ω̂n`,j,k(ξ) = |detA|−j/2ωn` (B−jξ)e−2πi〈k,B−jξ〉. Therefore, by applying
Parseval’s formula, we obtain

〈f, ωn`,j,k〉 = 〈f̂ , ω̂n`,j,k〉 = |detA|−j/2
∫
Rd

f̂(ξ) ω̂n`
(
B−jξ

)
e2πi〈k,B−jξ〉 dξ

= |detA|−j/2
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉|detA|j dξ

= |detA|j/2
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉 dξ. (3.3)
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With the help of (3.3), we can write the series as

I =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

|detA|j
∣∣∣∣∫

Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉 dξ

∣∣∣∣2 . (3.4)

For any fixed j ∈ Z, let F (ξ) ≡ f̂(Bj) ω̂n` (ξ); then by Lemma 2.5 when F = G, we
have

aj+1−1∑
n=aj

L∑
`=1

∑
k∈Zd

∣∣∣∣∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉dξ

∣∣∣∣2

=

aj+1−1∑
n=aj

L∑
`=1


∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ)

∑
k∈Zd

f̂
(
Bj(ξ + k)

)
ω̂n` (ξ + k)

 dξ

 .

Hence

I =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣∣f̂(Bjξ)∣∣∣2 ∣∣ω̂n` (ξ)
∣∣2 dξ +

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j

×
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ω̂n`
(
ξ + k

) dξ. (3.5)

Note that for any ` = 1, . . . , L and n ∈ Z+, we have

2
∣∣ω̂n` (ξ)ω̂n` (ξ + k)

∣∣ ≤ ∣∣ω̂n` (ξ)
∣∣2 +

∣∣ω̂n` (ξ + k)
∣∣2.

Therefore, the second sum is absolutely convergent in L1(Rd) and, thus absolutely
summable for a.e. ξ ∈ Rd even if we extend the summation over all j ∈ Z; i.e.,

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd\{0}

|detA|j
∣∣∣f̂(Bjξ) ω̂n` (ξ)

∣∣∣ ∣∣∣f̂(Bj(ξ + k)
)
ω̂n` (ξ + k)

∣∣∣ dξ

≤ 1

2

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd\{0}

|detA|j
[∣∣f̂(Bjξ)f̂(Bj(ξ + k)

)∣∣+
∣∣f̂(Bj(ξ − k)

)
f̂
(
Bjξ

)∣∣]

=

aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∣∣ω̂n` (ξ)
∣∣2∑

j∈Z

∑
k∈Zd\{0}

|detA|j
∣∣f̂(Bjξ)f̂(Bj(ξ + k)

)∣∣ dξ
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≤ C
aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∣∣ω̂n` (ξ)
∣∣2dξ <∞, (3.6)

where C is the constant appearing in Lemma 2.4 depending on the size and the
location of supp f̂ . Furthermore, the first sum appearing in (3.5) can be estimated
crudely by

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣f̂(Bjξ)∣∣2∣∣ω̂n` (ξ)
∣∣2dξ ≤ ‖f̂‖2∞ aj+1−1∑

n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣ω̂n` (ξ)
∣∣2dξ

=
|detA|m+1

|detA| − 1
‖f̂‖2∞‖ωn` ‖2. (3.7)

In order to prove the second part of the theorem, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j,k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 =

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z
|detA|j

∫
Rd

∣∣f̂(Bjξ)∣∣2∣∣ω̂n` (ξ)
∣∣2dξ

+

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z
|detA|j

∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ω̂n` (ξ + k)

 dξ,

where the second expression in this decomposition is always finite by (3.6). Thus,
the first implication follows from the fact that

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Zd

|detA|j
∫
Rd

∣∣f̂(Bjξ)∣∣2∣∣ω̂n` (ξ)
∣∣2dξ =

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Zd

∫
Rd

∣∣f̂(ξ)
∣∣2∣∣ω̂n` (B−jξ)∣∣2dξ

≤ ‖f̂‖2∞
∫

suppf̂

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Zd

∣∣ω̂n` (B−jξ)∣∣2dξ <∞,
where as the converse implication is simply the consequence of applying the above
to f̂ = χK for any compact K ⊂ Rd \ {0}, since we have equality (instead of
inequality) in the above formula.

Theorem 3.2. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} and {ω̃n` : n ∈ Z+, 1 ≤ ` ≤ L} be the
dual multiwavelet packets associated with the dilation matrix A. Then

lim
m→∞

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, f〉 =
∥∥f∥∥2

2
, for all f ∈ D (3.8)

if and only if
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lim
m→∞

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

ω̂n`
(
Bjξ

)
ˆ̃ωn`
(
Bjξ

)
= 1, weakly in L1(K), K ⊂ Rd \ {0}

(3.9)

ts(ξ) =

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

ˆ̃ωn`
(
Bjξ

)
ω̂n`
(
Bj(ξ + s)

)
= 0, a.e. ξ ∈ Rd, s ∈ S = Zd \BZd.

(3.10)

Proof. We first show that the series given by (3.8), (3.9) and (3.10) are all absolutely
convergent. Since

2
∣∣〈f, ωn`,j,k〉〈ω̃n`,j,k, f〉∣∣ ≤ ∣∣〈f, ωn`,j,k〉∣∣2 +

∣∣〈ω̃n`,j,k, f〉∣∣2.
Therefore, the series in (3.8) is summable by Lemma 3.1. Moreover, by the polar-
ization identity, condition (3.8) is equivalent to

〈f, g〉 = lim
m→∞

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 for all f, g ∈ D. (3.11)

Thus, for s ∈ Rd and ωn` ∈ L2(Rd), we have∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bj(ξ + s)
)∣∣2dξ =

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
−j≤m

|detA|−j
∣∣ω̂n` (ξ +Bjs

)∣∣2dξ
=
|detA|m+1

|detA| − 1

aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∣∣ω̂n` (ξ)
∣∣2 dξ <∞.

Therefore, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bj(ξ + s)
)∣∣2 <∞ for a.e. ξ. (3.12)

Using the above when s = 0 yields

2

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bjξ) ˆ̃ωn` (Bjξ)∣∣2 ≤ aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∣∣ω̂n` (Bjξ)∣∣2+
∣∣ ˆ̃ωn` (Bjξ)∣∣2 <∞, a.e. ξ.

Similarly, implementation of (3.12) when m = 0 implies

2

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

∣∣ ˆ̃ωn` (Bjξ)ω̂n` (Bj(ξ + s)
)∣∣2 ≤ aj+1−1∑

n=aj

L∑
`=1

∞∑
j=0

∣∣ ˆ̃ωn` (Bjξ)∣∣2+
∣∣ω̂n` (Bj(ξ + s)

)∣∣2 <∞.
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Next, we prove that (3.9) and (3.10) implies (3.8). To do so, let us suppose that
f, g ∈ D. Then, by equation (3.3), we have

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 = |detA|j
∫
Rd

f̂
(
Bjξ

)
ω̂n` (ξ) e2πi〈k,ξ〉dξ

∫
Rd

ĝ(Bjξ)ˆ̃ωn` (ξ)e−2πi〈k,ξ〉dξ.

For any fixed ` = 1, . . . , L and j ∈ Z, let

F (ξ) ≡ f̂(Bjξ)ωn` (ξ), G(ξ) ≡ ĝ(Bjξ) ω̃n` (ξ), n ∈ Z+.

Then, using the Lemma 2.5 and the above fact, we obtain

aj+1−1∑
n=aj

L∑
`=1

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 =

aj+1−1∑
n=aj

L∑
`=1

∫
Rd

∑
k∈Zd

f̂
(
Bj(ξ + k)

)
ωn` (ξ + k)


× ĝ(Bjξ)ˆ̃ωn` (ξ) dξ.

(3.13)

Hence

I = I(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, g〉 = I1 + I2 (3.14)

where

I1(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

f̂
(
Bjξ

)
ĝ(Bjξ) ω̂n` (ξ) ˆ̃ω

n

` (ξ) dξ

I2(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

ĝ(Bjξ) ˆ̃ω
n

` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ωn` (ξ + k)

 dξ

by splitting the sum (3.13) into terms corresponding to k = 0 and k 6= 0. Moreover,
we can interchange the summation and integration in I1 and I2, since for h ∈ D,
defined by ĥ = max(|f̂ |, |ĝ|), we have

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

∣∣∣ĥ(Bjξ)∣∣∣2 ∣∣ω̂n` (ξ)ˆ̃ωn` (ξ)
∣∣dξ <∞

and

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z
|detA|j

∫
Rd

∣∣∣ĥ(Bjξ) ˆ̃ωn` (ξ)
∣∣∣
 ∑
k∈Zd\{0}

∣∣∣ĥ(Bj(ξ + k)
)
ω̂n` (ξ + k)

∣∣∣
 dξ <∞.

(3.15)

Now, in order to estimate (3.15), we use (3.6), (3.7) and the fact that

2
∣∣ω̂n` (ξ)ˆ̃ωn` (ξ)

∣∣ ≤ ∣∣ω̂n` (ξ)
∣∣2+
∣∣ ˆ̃ωn` (ξ)

∣∣2 and 2
∣∣ ˆ̃ωn` (ξ)ω̂n` (ξ+k)

∣∣ ≤ ∣∣ ˆ̃ωn` (ξ)
∣∣2+
∣∣ω̂n` (ξ+k)

∣∣2.
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Therefore, we can manipulate the sums as

I2 =

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

|detA|j
∫
Rd

ĝ(Bjξ) ˆ̃ωn` (ξ)

 ∑
k∈Zd\{0}

f̂
(
Bj(ξ + k)

)
ω̂n` (ξ + k)

 dξ

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∫
Rd

ĝ(ξ) ˆ̃ωn`
(
B−jξ

) ∑
k∈Zd\{0}

f̂
(
ξ +Bjk

)
ω̂n` (B−jξ + k)

 dξ

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≤m

∫
Rd

ĝ(ξ) ˆ̃ωn`
(
B−jξ

)∑
r≥0

∑
s∈S

f̂
(
ξ +BjBrs

)
ω̂n` (B−jξ +Brs)dξ

=

∫
Rd

ĝ(ξ)

aj+1−1∑
n=aj

L∑
`=1

∑
s∈S

∑
r≥0

∑
j≤m

ω̂n`
(
Br(B−r−jξ)

)
f̂
(
ξ +Bj+rs

)
ω̂n`
(
Br(B−r−jξ + s)

)
dξ

=

∫
Rd

ĝ(ξ)

aj+1−1∑
n=aj

L∑
`=1

∑
s∈S

∑
r≥0

∑
p≤m+r

ˆ̃ωn`
(
Br(B−pξ

)
ω̂n` (Br(B−pξ + s)) f̂

(
ξ +Bps

)
dξ

=

∫
Rd

ĝ(ξ)

aj+1−1∑
n=aj

L∑
`=1

∑
s∈S

∑
r≥0

∑
p∈Z

ˆ̃ωn`
(
Br(B−pξ)

)
ω̂n`
(
Br(B−pξ + s)

)
f̂
(
ξ +Bps

)
dξ,

form sufficiently large so that ĝ(ξ)f̂(ξ+Bps) = 0 for all p ≥ m, s ∈ S, i.e., (suppf̂−
supp ĝ)∩BpS = ∅ for all p ≥ m. Now, if we take, b = sup

{
|ξ| : ξ ∈ (supp f̂ − supp ĝ)

}
;

then, by (2.10) any m ≥
[
logλ(b/c)

]
works. Therefore, for any f, g ∈ D and suffi-

ciently large m, we have

I(m) = I1(m) + I2(m),

where

I1(m) =

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−m

∫
Rd

f̂(ξ) ĝ(ξ) ω̂n` (Bjξ) ˆ̃ωn` (Bjξ) dξ

I2(m) =

∫
Rd

ĝ(ξ)
∑
p∈Z

∑
s∈S

f̂
(
ξ +Bps

)
ts
(
B−pξ

)
dξ. (3.16)

Here I1 follows by a simple change of variables, and I2 does not depend on m.
Equation (3.16), combined with assumptions (3.9) and (3.10) immediately implies

lim
m→∞

I(m) = lim
m→∞

I1(m) + I2(m) =
〈
f̂ , ĝ
〉

=
〈
f, g
〉
.

Conversely, we shall prove that (3.8) implies (3.10). For any fixed s0 ∈ S and q > 0,
we define

Ω(q) =
{
ξ ∈ Rd : |ξ| > q, |ξ + s0| > q

}
.

Now for any ξ0 ∈ Ω(q) and j ≥ 0, define
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f̂j(ξ) = |B
−j

Id|−1/2 arg ts0(ξ)χB−jId+ξ0(ξ) and ĝj(ξ) = |B
−j

Id|−1/2χB−jId+ξ0+s0(ξ),

where for the purpose of the proof, we define, for z ∈ C,

argz =

{
z/|z|, z 6= 0
1, z = 0.

By separating the term corresponding to p = 0 and s = s0 in equation (3.16) for
I2(m), f = fj , g = gj , from the rest, which we denote by R(j), we have

I2(m) =
1

|B−jId|

∫
B
−j
Id+ξ0

∣∣ts0(ξ)
∣∣ dξ+

∫
Rd

ĝj(ξ)
∑

p∈Z,s∈S
(p,s)6=(0,s0)

f̂j
(
ξ+Bps

)
ts
(
B−pξ

)
dξ.

(3.17)

Next, if |ĝj(ξ)f̂j(ξ+Bps)| 6= 0 for some ξ ∈ Rd, then (B−jId+ξ0)∩(B−jId+ξ0+s0−
Bps) 6= ∅, hence B−j(2Id)∩ (s0−BpS) 6= ∅ which means 2Id∩ (Bjs0−Bp+jS) 6= ∅.
Also, if p+ j ≥ 0, then Bjs0−Bp+jS ⊂ Zd, and since 2Id ∩Zd = {0} , s0 6∈ BpS for
p 6= 0, the only nonzero term happens for p = 0 and s = s0. Therefore, the other
nonzero terms can contribute only if p+ j < 0, so we can restrict the sum in (3.17)
to p < −j.

Using the estimate

2
∣∣ts(ξ)∣∣ ≤ aj+1−1∑

n=aj

L∑
`=1

∑
m′≥0

∣∣ ˆ̃ωn` (Bm′ξ)∣∣2 +
∣∣ω̂n` (Bm′(ξ + s)

)∣∣2 ≤ T (ξ) + T (ξ + s),

where

T (ξ) ≡
aj+1−1∑
n=aj

L∑
`=1

∑
m′≥0

∣∣ ˆ̃ωn` (Bm′ξ)∣∣2 +
∣∣ω̂n` (Bm′ξ)∣∣2, is locally integrable on Rd.

Therefore, we have

|R(j)| ≤ 1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣T (ξ)dξ

+
1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣T (ξ + s)dξ

=
1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣T (ξ)dξ

+
1

2

∫
Rd

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bp(ξ − s))∣∣∣∣f̂j(Bpξ)∣∣T (ξ)dξ. (3.18)
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Using Lemma 2.4 with the assumptions that v > 0, where v = v(j) = inf
{
|ξ| : ξ ∈

B−jId + ξ0
}
, δ = δ(j) = diam(B−jId),Υ = Υ(j) =

⋃
p<−j B

−p(B−jId + ξ0) and
the fact that

∣∣f̂j(ξ)∣∣ =
∣∣ĝj(ξ − s0)

∣∣, we obtain∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣f̂j(Bp(ξ + s)
)∣∣ =

∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣ĝj(Bp(ξ + s)− s0

)∣∣
=
∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bpξ)∣∣∣∣ĝj(Bp(ξ + s−B−ps0)
)∣∣

≤
∑
p<−j

∑
k∈Zd\{0}

|detA|p
∣∣ĝj(Bpξ)∣∣∣∣ĝj(Bp(ξ + k)

)∣∣
≤ 2d|detA|jM

(
(v + δ)/v

)
‖ĝj‖2∞χΥ

(ξ)

= 2dM
(

(v + δ)/v
)
χ

Υ
(ξ), (3.19)

Similarly, we have∑
p<−j

∑
s∈S
|detA|p

∣∣ĝj(Bp(ξ − s))∣∣∣∣f̂j(Bp(ξ))∣∣ ≤ ∑
p<−j

∑
k∈Zd\{0}

|detA|p
∣∣f̂j(Bpξ)∣∣∣∣f̂j(Bp(ξ + k)

)∣∣
≤ 2d|detA|jM

(
(v′ + δ)/v′

)
‖f̂j‖2∞χΥ′ (ξ)

= 2dM
(

(v′ + δ)/v′
)
χ

Υ′ (ξ), (3.20)

by Lemma 2.4, assuming v′ > 0, where

v′ = v′(j) = inf
{
|ξ| : ξ ∈ B−jId+ξ0+s0

}
and Υ′ = Υ′(j) =

⋃
p<−j

B−p
(
B−jId+ξ0+s0

)
.

For any ε > 0, there exists r > 0, so that
∫
|ξ|>r T (ξ) dξ < ε. By (2.10), we can

find j0 > 0 so that δ(j) < q/2 and consequently v(j) > q/2, v′(j) > q/2 for j > j0.
Furthermore, by (2.10) we can choose j0 large enough so that for all j > j0, we
have

inf {|ξ| : ξ ∈ Υ(j)} = inf
{
|ξ| : ξ ∈

⋃
p>j

Bp(B−jId + ξ0)
}
> cλjq/2 > r, and

inf {|ξ| : ξ ∈ Υ′(j)} = inf
{
|ξ| : ξ ∈

⋃
p>j

Bp(B−jId + ξ0 + s0)
}
> cλjq/2 > r.

Substituting (3.19) and (3.20) into (3.18), we obtain

|R(j)| ≤ 2d−1M(2)

∫
Υ(j)

T (ξ)dξ+2d−1

∫
Υ′(j)

T (ξ)dξ ≤ 2dM(2)

∫
|ξ|>r

T (ξ)dξ < 2dM(2)ε

(3.21)

for j > j0 independent of the choice of ξ0 ∈ Ω(q). Since the supports of f̂j and ĝj
are disjoint I1(j) = 0; moreover (3.8) (and thus (3.11)) implies

0 = 〈fj , gj〉 = lim
m→∞

I(m) = lim
m→∞

I2(m) = I2.
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Since ε > 0, is arbitrary, therefore (3.17) and (3.21) yields

lim
j→∞

sup
ξ0∈Ω(q)

1

|B−jId|

∫
B−jId+ξ0

∣∣ts0(ξ)
∣∣ dξ = 0. (3.22)

Consider any ball B(r) with radius r > 0 such that B(r) ⊂ Ω(2q). Let Z =
{
B−jk :

B−j(Id + k) ∩ B(r) 6= ∅, k ∈ Zd
}
. If j is sufficiently large, then diam(B−jId) <

min(q, r), so
Z̃ =

⋃
ξ0∈Z

(B−jId + ξ0) ⊂ Ω(q) ∩B(2r).

Hence, ∫
B(r)

∣∣ts0(ξ)
∣∣ dξ ≤

∫
Z̃

∣∣ts0(ξ)
∣∣ dξ

≤
∑
ξ0∈Z

∫
B−jId+ξ0

∣∣ts0(ξ)
∣∣ dξ

≤
∑
ξ0∈Z

∣∣B−jId + ξ0
∣∣ε = |Z̃|ε = 2d|B(r)|ε

for sufficiently large j = j(ε) by (3.22). Since ε > 0, is arbitrary so
∫
B(r)
|ts0(ξ)| dξ =

0, for any ball B(r) ⊂ Ω(2q). Therefore,
∫

Ω(2q)
|ts0(ξ)| dξ = 0 and since q > 0 is

arbitrary
∫
Rd |ts0(ξ)| dξ = 0 which implies ts0(ξ) = 0 for a.e. ξ ∈ Rd, s0 ∈ S.

Finally, (3.8) implies that (3.9). Equation (3.9) follows easily from (3.10) and
(3.16) since any function h ∈ L∞(K) can be represented as h = f̂ ĝ for some
f, g ∈ D.

Theorem 3.3. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} and {ω̃n` : n ∈ Z+, 1 ≤ ` ≤ L} be the
dual multiwavelet packets associated with the dilation matrix A such that

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ω̂n` (Bjξ)∣∣2 and
aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ ˆ̃ωn` (Bjξ)∣∣2, (3.23)

are locally integrable on Rd \ {0}. Then

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

〈f, ωn`,j,k〉〈ω̃n`,j,k, f〉 =
∥∥f∥∥2

2
, for all f ∈ D (3.24)

if and only if

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

ω̂n`
(
Bjξ

)
ˆ̃ωn`
(
Bjξ

)
= 1 a.e. ξ ∈ Rd (3.25)

ts(ξ) ≡
aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

ˆ̃ωn`
(
Bjξ

)
ω̂n`
(
Bj(ξ + s)

)
= 0, a.e. ξ ∈ Rd, s ∈ Zd \BZd.

(3.26)
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Proof. By Lemma 3.1 and (3.23), the series in (3.24) is absolutely convergent. Also,
by (3.23), the series in (3.25) converges absolutely in L1

loc(Rd \ {0}) and, hence, is
absolutely convergent for a.e. ξ. Therefore, under the hypothesis, (3.23), (3.9) ⇔
(3.24) and (3.10)⇔ (3.25). Hence, the desired result follows from Theorem 3.2.

Theorem 3.4. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets as-
sociated with the scaling functions ϕ`. Then

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 =
∥∥f∥∥2

2
, for all f ∈ L2(Rd) (3.27)

if and only if
aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ωn` (Bjξ)∣∣2 = 1, a.e. ξ ∈ Rd (3.28)

ts(ξ) ≡
aj+1−1∑
n=aj

L∑
`=1

∞∑
j=0

ω̂n`
(
Bjξ

)
ω̂n`
(
Bj(ξ + s)

)
= 0, a.e. ξ ∈ Rd, s ∈ S = Zd \BZd.

(3.29)

In particular, the system F(ωn` ) given by (2.8) forms Parseval’s frame for L2(Rd) if
and only if (3.28), (3.29) hold and ‖ωn` ‖2 = 1, for n ∈ Z+, ` = 1, ..., L.

Proof. Using Lemma 3.1 and (3.27), we have

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ω̂n` (Bjξ)∣∣2 ∈ L1
loc(Rd \ {0}).

Therefore, we can apply Theorem 3.3 with ωn` = ω̃n` ∈ L2(Rd) to obtain (3.28) and
(3.29). Conversely, assume (3.28) and (3.29); then again by Theorem 3.3, we have

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

∣∣〈f, ωn`,j,k〉∣∣2 =
∥∥f∥∥2

2
, for all f ∈ D.

By Theorem 2.7, we have the above for all f ∈ L2(Rd). Furthermore, the system
F(ωn` ) forms Parseval’s frame for L2(Rd) if ‖ωn` ‖2 ≥ 1 for n ∈ Z+, ` = 1, . . . , L.
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PRODUCTION SYSTEM BASED ON NONLINEAR CONSERVATION LAW
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ABSTRACT. Dynamics of a production system having a large number of items can be rep­
resented through hyperbolic conservation law. Due to nonlinear dependence on the work in
progress, the resulting partial differential equation becomes nonlinear. Further, occurrence
of yield loss during the process makes it nonhomogeneous. In this paper, an optimal control
problem has been studied incorporating hyperbolic conservation law as a constraint. One
of the few ways to control the output of production system is by adjusting the influx in the
system. Moreover, yield loss can also be controlled in a time dependent manner. It is well
known that the solutions of nonlinear conservation laws may develop discontinuities known
as shock waves that forbid the use of classical variational techniques. This paper studies
sensitivity analysis with the presence of shocks. Adjoint technique has been implemented
to evaluate gradients of cost functionals.

KEYWORDS : Production System; Hyperbolic Conservation Laws; Optimal Control; Shocks;
Sensitivity.
AMS Subject Classification: 49K40, 35L67, 49J20

1. INTRODUCTION

State quantities such as density, velocity and energy, often give rise to nonlinear
conservation laws in various fields of science and technology. One such area is
production system. Armbruster et al. [1] have introduced a continuum model to
study the dynamics of a production system. It is shown that the part density of the
materials in a production system can be approximated by hyperbolic conservation
law. Further, it has been studied by several authors [2, ?, 10, 17, 18]. Taking
into account customer satisfaction, many important aspects such as velocity form,
yield loss are incorporated at macroscopic level.

The main objective behind any model of production network is to control the
system in such a way that it should satisfy the demand as closely as possible. Since
the demand is so stochastic over a given period of time, a manufacturing system
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needs to generate demand forecast quite frequently and functions accordingly. This
motivates us to study the optimal control problem arising in a production system.
However, it is well known that optimal control for hyperbolic conservation law is
a difficult topic due to its considerable analytical effort as well as computational
expense in practice. Only few attempts have been made to control hyperbolic
equations as they can not be treated straightway with the development of elliptic
and parabolic type equations.

One way is to control the production system by adjusting the inflow rate of
the materials. In this context, existence of optimal control has been shown by
Shang et al. [20] taking influx rate as a control variable. Further, it has been
studied numerically by La Marca et al. [14]. Considering a separate equation for
queue, optimal control problem with coupled system has been studied by Kirchner
et al. [12]. Moreover, for this problem existence of an optimal control has been
demonstrated by D’Apice et al. [8].

In order to perform numerical computations, we try to replace continuous opti­
mization problem by discrete approximation. Subsequently, we need to develop an
efficient algorithm to achieve discrete minimizer. In practice most efficient meth­
ods to approximate minimizers are gradient­based methods. The approach can be
summarized as follows: we first linearize the differential equation to obtain a de­
scent direction for the cost functional J . Then, we take the descent direction with
the discrete values obtained from numerical scheme. For the linearization step,
we consider a small variation of the conserved quantity with respect to the control
variables. One may refer [3, 11] for general linearization technique. However, the
procedure is justified only when the solution is smooth enough. For discontin­
uous solution, it is not justified due to the occurrence of singular terms on the
linearization over the shock location. To take into account shock location, sensi­
tivity analysis is necessary. The linearized system for the variation of the solution
must be complemented with some new equations for the sensitivity of the shock
position. Moreover, it is also necessary to perform the sensitivity analysis of the
optimal control problem for the numerical perspective. This will be evident from
the discussion in remaining sections.

In the present article, we study the sensitivity analysis of an optimal control
problem for production system incorporating yield loss. Sensitivity analysis has
been studied for many real life problems [16]. For Burgers equation, sensitivity
analysis has been performed by Castro et al. [5, 4]. For general conservation law
sensitivity analysis has been accomplished by Kowalewski et al. [13] and Ulbrich
[22]. Song [21] and Godlewski et al. [9] have extended the analysis for systems. Re­
cently, for scalar conservation law sensitivity analysis has been performed through
vanishing viscosity method [15].

In this paper, we perform the sensitivity analysis for a production system by
taking into account certain form of the yield loss. Further, we consider more general
form of the yield loss wherein another control variable is also considered. We have
carried out the analysis without the presence of shocks. In case of shocks, variation
of shock position will be given by ODE’s to complement the linearized equation. We
evaluate the gradient through adjoint calculus. We demonstrate via numerical
illustrations that the customer demand can be matched by controlling the influx
in the system. Apart from the theoretical investigations, numerical illustrations for
yield loss case of production system are new up to our knowledge.

The remaining part of the paper is organized as follows: In Section 2, we provide
some preliminaries to describe the model of production system along with the
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optimal control problem. Sensitivity analysis without the presence of shocks is
presented in Section 3. In Section 4, we take into account shocks in the solution
and perform sensitivity analysis with the state variable. Sensitivity analysis will
be carried out for cost functional in Section 5. We will end up with the numerical
results of the presented optimal control problem in Section 6. Concluding remarks
and further scopes of development have been pointed out in Section 7.

2. PRELIMINARIES

The nonlinear conservation law model of manufacturing system can be repre­
sented as follows:

∂tρ(x, t) + ∂xf(x, t, ρ) + yl(x, t, ρ) = 0, x ∈ (0, L), t > 0, (2.1)

where the flux function f(x, t, ρ) is given by

f(x, t, ρ) = min{µ(x, t), v(x, t)ρ(x, t)}.
Completion of the product within the supplier is represented by continuous vari­
able x. In (2.1), ρ(x, t) represents the density of goods at stage x and time t. Raw
materials entered into the suppliers are described by the parts at x = 0. The fin­
ished products are going out of the suppliers at x = L. The term µ(x, t) represents
maximal capacity of the suppliers. Yield loss phenomena is expressed as yl(x, t, ρ).
Influx and initial situation in the system are prescribed below.

Initial condition: ρ(x, 0) = ρ0(x), x ∈ [0, L]. (2.2)

Influx condition: f(0, t, ρ(0, t)) = λ(t), t > 0. (2.3)
Form of velocity function is given in [19] as follows: v(x, t) = v(W (t)), where
W (t) represents work in progress in supplier at time t. Mathematically, W (t) =∫ L

0
ρ(s, t)ds. Similar nonlocal velocity form is also considered in [6]. Now we intro­

duce an optimal control problem related to production system.
The profit of a manufacturing system can be affected significantly by two different

aspects. One is overproduction. Producing too much of items lead to high inventory
cost in the system. The other one is underproduction. Producing not sufficient
number of items lead to lost sales which result into backlog cost. It is quite evident
that to maximize the profit, a manufacturing system must be able to match the
demand of the customers as closely as possible. We consider cost functional J as

J(ρ, λ) :=
1

2

∫ T

0

[yd(t)− y(t)]2dt+
1

2

∫ T

0

|λ(t)|2dt. (2.4)

Here yd(t) represents the demand rate and y(t) = v(W (t))ρ(L, t) measures the
output of the system. The term λ(t) provides the influx rate in the system over
time T . The objective behind the choice of cost functional is to minimize the
amount of influx and mismatch between the outflux and demand of the customers.
We assume that the maximal capacity does not exceed the flux in the suppliers,
and maximum speed of the materials denoted by VM . Optimization problem will
be studied in the subsequent sections can be formulated as follows:

min J(ρ, λ) subject to the constraints
∂tρ(x, t) + ∂x(v(W (t))ρ(x, t)) + yl(x, t, ρ) = 0,

ρ(x, 0) = ρ0(x), x ∈ [0, L],

v(W (t))ρ(0, t) = λ(t), t ∈ (0, T ],

v(W (t)) = VM

1+
∫ L
0

ρ(s,t)ds
.

(2.5)
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3. Sensitivity analysis without shocks

In this section, we derive an expression for the sensitivity of the functional J
with respect to influx rate by considering certain form of yield loss. After that the
analysis will be carried out for general yield loss case involving another control
variable.

3.1. Control on Influx. We consider the yield loss form as yl(x, t, ρ) = −g(x, t)ρ(x, t),
where g(x, t) is a continuous function. The following theorem ensures the existence
of at least one minimizer for J given in (2.4).

Theorem 3.1. Let Uad = {f ∈ L2(0, T ) : f is non­negative almost everywhere}.
Assume that yd ∈ L2(0, T ). Then the infimum of the functional J is achieved, i.e.,
there exists λmin ∈ Uad such that J(λmin) = inf

λ∈Uad

J(ρ(λ), λ).

Proof of Theorem 3.1 can be carried out in the same manner as in Shang et
al. [20] by considering a minimizing sequence of J in Uad. Let us assume that
there exist a classical solution ρ(x, t) of (2.5) in (x, t) ∈ [0, L] × [0, T ]. Let δλ be
any possible variation of the influx rate λ. Then for ϵ > 0 sufficiently small, the
solution ρϵ(x, t) corresponding to the influx

λϵ(t) = λ(t) + ϵδλ(t)

is also a solution for (x, t) ∈ (0, L)× (0, T ) and ρϵ(x, t) can be written as

ρϵ = ρ+ ϵ(δρ) + o(ϵ),

where δρ is the solution of the linearized equation
∂tδρ+ ∂x

(
v(W )δρ− v(W )2

VM
ρ(x, t)

∫ L

0
δρ(s, t)ds

)
= g(x, t)δρ(x, t),

δρ(x, 0) = 0,

v(W )δρ(0, t) ≈ δλ(t).

(3.1)

In order to find the adjoint system for the problem (2.5), we seek for first order
necessary condition of (2.5). Thus, we introduce the Lagrangian function L(ρ, p, λ)
by considering p(x, t) as a multiplier:

L(ρ, p, λ) : =
1

2

∫ T

0

[yd(t)− y(t)]2dt+
1

2

∫ T

0

|λ(t)|2dt

+

∫ L

0

∫ T

0

[∂tρ(x, t) + ∂x(v(W (t))ρ)− g(x, t)ρ(x, t)]p(x, t)dtdx.

Taking into account the variation of Lagrangian L with respect to ρ and λ, we obtain
the following adjoint system:

∂tp+ ∂x(v(W )p) + g(x, t)p = v(W )2

VM

[
ρ(L, t)yd(t) −v(W )ρ(L, t)2

−
∫ L

0
p(s, t)ρx(s, t)ds

]
,

p(x, T ) = 0,

p(L, t) = yd(t)− v(W )ρ(L, t).

(3.2)
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Multiplying the linearized equation (3.1) by p(x, t) and integrating by parts, we get
the following:∫ L

0

∫ T

0

(
∂tp(x, t) + ∂x(v(W )p(x, t)) + g(x, t)p(x, t)

)
δρ dtdx+

∫ L

0

p(x, 0)δρ(x, 0)dx

−
∫ L

0

∫ T

0

v(W )2

VM
ρ(x, t)

∫ L

0

δρ(s, t)ds∂xp(x, t)dxdt−
∫ L

0

p(x, T )δρ(x, T )dx

−
∫ T

0

v(W )2

VM

[
p(0, t)ρ(0, t)− p(L, t)ρ(L, t)

] ∫ L

0

δρ(s, t)dsdt

−
∫ T

0

v(W )p(L, t)δρ(L, t)dt+

∫ T

0

p(0, t)v(W )δρ(0, t)dt = 0.

(3.3)

Making use of simple calculus it is not difficult to obtain the following:

−
∫ L

0

∫ T

0

v(W )2

VM
ρ(x, t)

∫ L

0

δρ(s, t)ds∂xp(x, t)dtdx

=

∫ L

0

∫ T

0

v(W )2

VM

[ ∫ L

0

∂xρ(s, t)p(s, t)ds
]
δρ(x, t)dtdx

+

∫ T

0

v(W )2

VM
[p(0, t)ρ(0, t)− p(L, t)ρ(L, t)]

∫ L

0

δρ(s, t)dsdt.

Let δJ be the Gateaux derivative of functional J at λ in the direction δλ.

δJ =

∫ T

0

v(W )2

VM

(
ρ(L, t)yd(t)− v(W )ρ(L, t)2

) ∫ L

0

δρ(s, t)dsdt

−
∫ T

0

(
v(W )2ρ(L, t)− v(W )yd(t)

)
δρ(L, t)dt+

∫ T

0

λ(t)δλ(t)dt.

Taking into account adjoint system (3.2) in (3.3) we can rewrite the variation of J
in the following way.

δJ =

∫ T

0

λ(t)δλdt−
∫ T

0

p(0, t)δλdt =

∫ T

0

(λ(t)− p(0, t))δλdt.

In order to evaluate δJ , we need to get the information from adjoint system. Adjoint
state p(x, t) can be computed from the prescribed influx λ(t), δλ(t), boundary
data p(L, t) and the terminal data p(x, T ). Therefore, the descent direction for the
functional J can be chosen as δλ = −d(t), where d(t) = (λ(t)− p(0, t)).

3.2. Control on yield loss. In order to achieve maximum profit, controlling the
yield loss is a crucial objective for any production system. Motivated by this, we
include time­dependent control variable u(t) in the yield loss term of continuum
model. Form of the yield loss will be considered as yl(x, t) = h(x, u(t), ρ(x, t)),
which is assumed to be continuous. In similar way as above, we consider small
perturbations δλ and δu for the influx λ(t) and control variable u(t) respectively.
This results in small variation on solution ρ(x, t). Let us denote the small variation
by δρ(x, t). In this subsection, we carry out the sensitivity analysis considering
ρ(x, t) as a classical solution. For discontinuous solution, sensitivity analysis will
be performed in the next section. We choose the cost functional as

J(ρ, λ, u) :=
1

2

∫ T

0

[yd(t)− y(t)]2dt+
1

2

∫ T

0

|u(t)|2dt.
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Again yd(t) and y(t) represent demand and outflux of the system respectively. The
first term in the objective functional measures the difference between demand and
outflux and the second term can be considered as regularization term.

The small variation δρ satisfies the following linearized problem
∂tδρ(x, t) + ∂x

(
v(W )δρ− v(W )2

VM
ρ(x, t)

∫ L

0
δρ(s, t)ds

)
+∂ρh(x, u(t), ρ(x, t))δρ+ ∂uh(x, u(t), ρ(x, t))δu(t) = 0,

δρ(x, 0) = 0,

v(W )δρ(0, t) ≈ δλ(t).

(3.4)

By considering usual notion of Lagrangian formulation, we derive the adjoint sys­
tem. Adjoint variable p(x, t) satisfies the following system:

−∂tp(x, t)− ∂x(v(W )p(x, t)) + ∂ρh(x, u(t), ρ(x, t))p(x, t)

− v(W )2

VM

∫ L

0
p(s, t)ρx(s, t)ds+

v(W )2

VM
(ρ(L, t)yd(t)− v(W )ρ(L, t)2) = 0,

p(x, T ) = 0,

p(L, t) = yd(t)− v(W )ρ(L, t).

(3.5)

The Gateaux derivative [15] of functional J , denoted by δJ at (u, λ) in the direction
(δu, δλ) can be derived as

δJ =

∫ T

0

v(W )2

VM

(
ρ(L, t)yd(t)− v(W )ρ(L, t)2

) ∫ L

0

δρ(s, t)dsdt

+

∫ T

0

(
v(W )2ρ(L, t)− v(W )yd(t)

)
δρ(L, t)dt+

∫ T

0

u(t)δu(t)dt.

From the linearized equation (3.4) multiplying by adjoint variable p(x, t), we obtain∫ L

0

∫ T

0

(
− ∂tp(x, t)− ∂x

(
v(W )p(x, t)

)
+ ∂ρh(x, u, ρ)p(x, t)

)
δρ(x, t) dtdx

−
∫ L

0

p(x, 0)δρ(x, 0)dx−
∫ L

0

∫ T

0

v(W )2

VM

[ ∫ L

0

∂xρ(s, t)p(s, t)ds
]
δρ(x, t)dtdx

+

∫ L

0

p(x, T )δρ(x, T )dx+

∫ L

0

∫ T

0

(
∂uh(x, u, ρ)δu

)
p(x, t)dtdx

+

∫ T

0

v(W )p(L, t)δρ(L, t)dt−
∫ T

0

p(0, t)v(W )δρ(0, t)dt = 0.

(3.6)

With the help of (3.5) and (3.6), variation δJ can be reduced to

δJ =

∫ T

0

− p(0, t)δλ(t)dt+

∫ T

0

u(t)δu(t)dt

+

∫ L

0

∫ T

0

(∂uh(x, u, ρ)δu(t))p(x, t)dtdx.

Above expression for δJ provides a descent directions for functional J . Descent
direction for control variable u can be chosen as δu(t) = −d1(t), where d1(t) is
having the following expression d1(t) = −u(t)−

∫ L

0
∂ρh(x, u, ρ)p(x, t)dx. Similarly,

we can choose the descent direction for influx as δλ(t) = −d2(t), where d2(t) =
p(0, t). Information about adjoint variable p(x, t) can be obtained by solving the
system (3.5). Once we have computed adjoint state, we immediately get the descent
directions.
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4. Sensitivity of the state in presence shocks

The hyperbolic conservation laws may develop singularities in finite time even
for the smooth input data. Therefore in practical applications, we need to consider
optimal control problems in which the solutions have discontinuities. We shall
study the optimal control problem of production system, described in the previous
subsection in the presence of shocks. We focus on the analysis of conservation
laws with a finite number of noninteracting shocks. In order to develop efficient
numerical methods for the optimal control problems in the presence of shocks, we
need to investigate the sensitivity of the states in production system with respect
to the input data and control variable along with the infinitesimal translation of
shock positions.

The conservation laws model is to be studied as in (2.5) with the yield loss and
cost functional described in Section 3.2. We assume that ρ(x, t) is a weak solution
of conservation law model with discontinuities along Γj for j = 1, 2, ..., S, where
Γj = {(ϕj(t), t) : t ∈ [t0j , T ]}. The solution ρ(x, t) is defined in strong sense outside
∪jΓj . The Rankine­Hugoniot condition on Γj can be given as following:

ϕ
′

j(t)[ρ(., t)]x=ϕj(t) = [v(W (t))ρ(., t)]x=ϕj(t).

The notation [f ]xd
= f(x+d ) − f(x−d ) denotes the jump at xd of any piecewise

continuous function f with a discontinuity at x = xd. We need to analyze the
sensitivity of (ρ, ϕj , u) with respect to the variation of δλ, δϕj and δu.

We recall that the linearized equation (3.4) must be interpreted in a weak sense.
It is reasonable to choose the solution of the linearized equation (3.4) of the following
form:

δρ = δρr +
S∑

j=1

qjχΓj ,

where δρr is the regular part and the other one is singular part at the shock
locations. We observe that the regular part δρr satisfies the following linearized
system in an analytical sense outside ∪jΓj

∂
∂tδρr +

∂
∂x

(
v(W )δρr − v(W )2

VM
ρ(x, t)

∫ L

0
δρr(s, t)ds

)
+ ∂

∂ρh(x, u(t), ρ(x, t))δρr +
∂
∂uh(x, u(t), ρ(x, t))δu = 0,

δρr(x, 0) = 0,

v(W )δρr(0, t) ≈ δλ(t).

(4.1)

In order to analyze the singular part, we again get back to the linearized system
(3.4). Weak formulation of the linearized system (3.4) can be expressed in the
following way by considering ψ(x, t) as a test function having compact support∫ L

0

∫ T

0

δρ(∂tψ + v(W )∂xψ)dtdx−
∫ L

0

∫ T

0

ψ(x, t)
(
∂ρh(x, u(t), ρ)δρ

+ ∂uh(x, u(t), ρ)δu
)
dtdx+

∫ L

0

∫ T

0

v(W )2

VM

(∫ L

0

ψ(s, t)ρx(s, t)ds
)
δρdtdx

+

∫ L

0

ψ(x, 0)δρ(x, 0)dx−
∫ L

0

ψ(x, T )δρ(x, T )dx

+

∫ T

0

[ψ(0, t)v(W )δρ(0, t)− ψ(L, t)v(W )δρ(L, t)]dt = 0.

(4.2)



34 T. SARKAR/JNAO : VOL. 6, NO. 1, (2015), 27­39

Let Dc denotes the region D \ ∪jΓj , where D represents the complete domain
[0, L]× [0, T ]. Using Green’s theorem and integration by parts in (4.2), we obtain∫

Dc

(
− ∂tδρ− ∂x

(
v(W )δρ− v(W )2

VM
ρ(x, t)

∫ L

0

δρ(s, t)ds
))
ψ(x, t)dtdx

−
∫ L

0

∫ T

0

ψ(x, t)
(
∂ρh(x, u(t), ρ)δρ+ ∂uh(x, u(t), ρ)δu

)
dtdx

+
S∑

j=1

∫ T

t0j

[
ϕ̇jδρ− v(W )δρ− v(W )2

VM
ρ

∫ L

0

δρ(s, t)ds
]
x=ϕj(t)

ψ|x=ϕj(t) = 0.

(4.3)

We would like to consider the form of δρ in the weak form of linearized equation
(3.4). It is not difficult to derive the following expression∫

D

S∑
j=1

qjχΓj

(
∂tψ + ∂x

(
v(W )δρ− v(W )2

VM
ρ(x, t)

∫ L

0

δρ(s, t)ds
)

− ∂ρh(x, u(t), ρ)ψ
)
dxdt = qj(t)|t=t0j

ψ(x, t)|x=ϕj(t)

+

S∑
j=1

∫ T

t0j

(
− dqj

dt
− ∂

∂ρ
h(x, u(t), ρ(x, t))|x=ϕj(t)qj

)
ψ|x=ϕj(t).

We observe that for j = 1, 2, ..., S, qj(t) are considered as the solutions of the
following ODE’s

dqj
dt = − ∂

∂ρh(x, u(t), ρ(x, t))|x=ϕj(t)qj +
∑S

j=1

∫ T

t0j

[
ϕ̇jδρr − v(W )δρr

− v(W )2

VM
ρ(x, t)

∫ L

0
δρr(s, t)ds

]
x=ϕj(t)

,

qj(t
0
j ) = 0.

(4.4)

Remark 4.1. In practice the solution of PDE (4.1) should be computed first, for
instance with the method of characteristics in Dc as it is interpreted in strong
sense. Then we solve the ordinary differential equations to obtain qj ’s. It requires
the values of δρr which will be available from the previous step.

Remark 4.2. If the discontinuities occur after certain time T0 then the lineariza­
tion can be done separately for t ∈ [0, T0) and t ∈ [T0, T ]. For t ∈ [0, T0), the
linearization can be carried out as described in Section 3 since the solution is reg­
ular. After that the linearization can be done as presented above. The intermediate
condition can be obtained from weak formulation of the linearized PDE by choosing
appropriate test function.

5. Sensitivity of J in presence shocks

In this section, we study sensitivity of the functional J with respect to the vari­
ations of influx λ(t) and control u(t). It helps us to evaluate the gradient of cost
functional and identify descent directions of the control variables. Furthermore,
we describe the solution procedure of the presented optimal control problem in a
concise way.

We again make use of adjoint calculus to remove the dependent variables from
the variation of cost functional. The variation of cost functional J , denoted by δJ ,
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with respect to the perturbations of (u, λ) can be derived as following

δJ =

∫ T

0

v(W )2

VM

(
ρ(L, t)yd(t)− v(W )ρ(L, t)2

) ∫ L

0

δρ(s, t)dsdt

+

∫ T

0

(
v(W )2ρ(L, t)− v(W )yd(t)

)
δρ(L, t)dt+

∫ T

0

u(t)δudt,

(5.1)

where the pair (δρ, δu) solves the linearized equation (3.4).
Incorporating the results of Section 4, the complete system of first variation (3.4)

can be rewritten as

∂
∂tδρr +

∂
∂x

(
v(W )δρr − v(W )2

VM
ρ(x, t)

∫ L

0
δρr(s, t)ds

)
+ ∂

∂ρh(x, u(t), ρ(x, t))δρr +
∂
∂uh(x, u(t), ρ(x, t))δu = 0,

dqj
dt = − ∂

∂ρh(x, u(t), ρ(x, t))|x=ϕj(t)qj +
∑S

j=1

∫ T

t0j

[
ϕ̇jδρr − v(W )δρr

−v(W )2

VM
ρ(x, t)

∫ L

0
δρr(s, t)ds

]∣∣
x=ϕj(t)

,

δρr(x, 0) = 0,

v(W )δρr(0, t) ≈ δλ(t),

qj(t
0
j ) = 0.

(5.2)

We consider adjoint state variables p(x, t) and θ(t) = (θ1(t), θ2(t), ..., θS(t)) for δρr
and q(t) = (q1(t), q2(t), ..., qS(t)) respectively. Multiplying equations of δρr and q
with adjoint variables p and θ respectively and performing integration by parts we
have

0 =

∫ T

0

∫ L

0

p(x, t)
(
∂tδρr + ∂x

(
v(W )δρr −

v(W )2

VM
ρ(x, t)

∫ L

0

δρr(s, t)ds
)

+ ∂ρh(x, u(t), ρ(x, t))δρr +
∂

∂u
h(x, u(t), ρ(x, t))δu

)
dxdt

+

S∑
j=1

∫ T

t0j

θj

(dqj
dt

+ ∂ρh(x, u, ρ)qj −
[
ϕ̇jδρr − v(W )δρr

− v(W )2

VM
ρ(x, t)

∫ L

0

δρr(s, t)ds
]∣∣

x=ϕj(t)

)

=

∫ T

0

∫ L

0

∂uh(x, u(t), ρ)p(x, t)δudxdt+

∫ L

0

[p(x, T )ρ(x, T )− p(x, 0)ρ(x, 0)]dx

+

S∑
j=1

∫ T

t0j

qj

(
− dθj

dt
+ ∂ρh(x, u(t), ρ(x, t))|x=ϕj(t)θj

)
dt+ θjqj |Tt0j

+
S∑

j=1

∫ T

t0j

−θj
[
ϕ̇jδρr − v(W )δρr −

v(W )2

VM
ρ

∫ L

0

δρr(s, t)ds
]∣∣

x=ϕj(t)

+

∫ T

0

[p(L, t)v(W )δρr(L, t)− p(0, t)v(W )δρr(0, t)]dt

+

∫ T

0

∫ L

0

δρr

(
− ∂tp− ∂x(v(W )p) + ∂ρh(x, u, ρ)p(x, t)

)
dxdt
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−
∫ T

0

∫ L

0

v(W )2

VM

[ ∫ L

0

p(s, t)ρx(s, t)ds
]
δρr(x, t)dxdt+

S∑
j=1

∫ T

t0j

[
ϕ̇j(t)p(x, t)

δρr − p(x, t)v(W )δρr − p(x, t)
v(W )2

VM
ρ(x, t)

∫ L

0

δρr(s, t)dx
]
|x=ϕj(t).

In the process of removing dependent variables, we obtain the following system of
adjoint variables

dθj
dt = ∂

∂ρh(x, u(t), ρ(x, t))|x=ϕj(t)θj(t),

θj(T ) = 0,

−∂tp− ∂x(v(W )p) + ∂ρh(x, u, ρ)p(x, t) +
v(W )2

VM

[
ρ(L, t)yd(t)

−ρ(L, t)2v(W )−
∫ L

0
p(s, t)ρx(s, t)ds

]
= 0,

p(x, T ) = 0,

p(L, t) = yd(t)− v(W )ρ(L, t),

p−(ϕj(t), t) = p+(ϕj(t), t) = θj(t).

(5.3)

Taking into account (5.3), variation δJ in (5.1) can be written as

δJ =

∫ T

0

∫ L

0

∂uh(x, u(t), ρ)p(x, t)δudxdt+

∫ T

0

−p(0, t)δλdt+
∫ T

0

u(t)δudt.

The above expression provides the information about the gradient of cost functional
with respect to the decision variables u and λ. We can choose the descent directions
as follows:

δu = −u(t)−
∫ L

0

∂ρh(x, u, ρ)p(x, t)dx,

δλ = p(0, t),

where p(x, t) can be obtained from (5.3).

6. Numerical Illustrations

In this section, we describe the numerical approach which is applied for an
optimal control problem considering yield loss. Numerical results presented here
can be considered as generalization of [14] for yield loss case. To start the process
we require input values of control variable influx λ(t) from respectable admissible
set. The amount of yield loss is considered as 20 percent of density. As described
in previous sections, we obtain first variation and subsequently a system with
associated adjoint variable as constraints. We discretize the hyperbolic PDE’s of
density and adjoint variable respectively with the input values of λ. The density
will be evaluated forward in time while adjoint variable is computed backward in
time. We minimize the mismatch between outflux and demand over a time period
t = 10. Then, we can evaluate the descent direction for λ as δλ. We update the
control variable influx λ as λnew = λold + cδλ so that λnew belong to admissible
set, where c ∈ (0, 1). We proceed in this way until the gradient of cost functionals
becomes sufficiently small.
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Figure 1. Demand, influx, outflux as a function of time with yield loss

We minimize the mismatch between outflux and demand over a time period
t = 10. Then we can evaluate the descent direction for λ as δλ. We update the
control variable influx λ as λnew = λold + cδλ so that λnew belong to admissible
set, where c ∈ (0, 1). We proceed in this way until the gradient of cost functionals
becomes sufficiently small.

Motivated by discontinuous nature of demand, for first experiment we have
considered a demand function with a steep decrease at time t = 5. We start with
constant influx λ = 3, initial density 1 and vmax = 4. Influx, outflux and demand
are presented in Figure 1 as a function of time.
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Figure 2. Influx, outflux with discontinuous demand
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Figure 3. Influx, outflux with periodic demand

For second experiment, we have taken a demand function with a jump at time
t = 5. Starting parameters except influx λ = 2, are remain same as of first case.
Influx and outflux are displayed with discontinuous demand in Figure 2.

We consider a demand function with periodic nature. Demand rate and vmax is
taken as sinπt + 1 and 5 respectively. Influx, outflux and demand are presented
in Figure 3. The above figures demonstrate that we are able to generate outflux
which can match the demand quite closely. It is also observed that initially there
are mismatch between outflux and demand but as time progresses it has reduced
significantly. Further, it is noticed that discontinuous demand leads to oscillation
in influx of the system. Incorporating yield loss the presented results are quite
satisfactory. In order to control the yield loss, improved optimization techniques are
desirable. So we realize that several theoretical as well as numerical investigations
are still to be done in this direction.

7. Conclusion

We have studied sensitivity analysis for an optimal control problem of produc­
tion system. Special attention is given when the solution has discontinuities. By
considering singular part at the shock locations, the analysis has been carried out
in presence of shocks. Linearized equation is complemented by the equation of
shock positions. We have discussed how to identify descent directions to find the
minimizer of the optimal control problem. Numerical results are presented for yield
loss case considering influx as a control variable. The presented results are new
to the author knowledge. This also open several new possibilities in the area of
optimal control for partial differential equation based production system models.
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double projection method designed for solving variational inequalities. The double projec­
tion per iteration enable to obtain convergent under monotonicity and Lipschitz continuity
while other single projection methods, for example the projected gradient method requires
strong monotonicity. The subgradient extragradient method [5] is a modification of the ex­
tragradient in which the second projection onto the feasible set is replaced by a projection
onto a specific constructible half­space which is actually one of the subgradient half­spaces.
Still, this algorithm requires Lipschitz continuity. In this work we introduce a self­adaptive
subgradient extragradient method by adopting Armĳo­like searches which enables to obtain
convergent under the assumption of pseudo­monotonicity and continuity.
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1. INTRODUCTION

In this paper, we are concerned with the Variational Inequality Problem (VIP) in
the Euclidean space Rn. Let C ⊆ Rn be a non­empty, closed and convex set and
let F : Rn → Rn. The VIP consists in finding a point x∗ ∈ C, such that

⟨F(x∗), x− x∗⟩ ≥ 0, for all x ∈ C. (1.1)

Korpelevich [18] and Antipin [1] proposed an algorithm for solving the VIP, known
as the Extragradient Method, see also Facchinei and Pang [11, Chapter 12]. In
each iteration in order to get the next iterate xk+1, two orthogonal projections onto
C are calculated, according to the following iterative step. Given the current iterate
xk, calculate

yk = PC(x
k − τF(xk)), (1.2)

xk+1 = PC(x
k − τF(yk)), (1.3)
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where τ is some positive number and PC denotes the Euclidean nearest point pro­
jection onto C. Although convergence was proved in [18] under the assumptions
of Lipschitz continuity and pseudo­monotonicity, there is still the need to calculate
two projections onto the closed convex set C which might seriously affect the effi­
ciency of the algorithm. Censor et al. [5] (see also [6, 7]) presented the Subgradient
Extragradient Method (SEM), in which the second projection (1.3) onto C is re­
placed by a projection onto a specific constructible half­space which is actually one
of the subgradient half­spaces. In order to prove convergence the authors assume
that F is monotone on C, Lipschitz continuous on Rn, and the Lipschitz constant
L is known, so τ ∈ (0, 1/L).

In this paper we present a new modification of the SEM for solving the VIP (1.1)
when the mapping F is assumed to be only continuous instead of Lipschitz. Using
an Armĳo­Goldstein­type rule ([2]) the step size τ is updated and convergence of the
algorithm is then guaranteed under the assumptions of pseudo­monotonicity and
continuity ofF . Other step size adaptations are also presented and the convergence
proof can be obtain by following similar arguments. Our convergence theorem relies
on the work of Khobotov [17] and Solodov and Tseng [23].

The paper is organized as follows. In Section 2 we present some preliminaries
and definitions that will be needed in the sequel. Later, in Section 3 the new
algorithm is presented and its convergence is analyzed. Finally, in Section 4 we
illustrate the algorithm performance.

2. PRELIMINARIES

In this section we present some useful definitions and results that will be needed
for our convergence theorem.

Definition 2.1. Let C ⊂ Rn be a non­empty, closed and convex set and F : Rn →
Rn.

(i) The mapping F is called pseudo-monotone if for any x, y ∈ Rn it holds

⟨F(y), x− y⟩ ≥ 0 ⇒ ⟨F(x), x− y⟩ ≥ 0. (2.1)

Observe that by substituting y = x∗ in (2.1) we get

⟨F(x), x− x∗⟩ ≥ 0 for all x ∈ C and for all x∗ ∈ SOL(C,F) (2.2)

where SOL(C,F) is the solution set of (1.1).
(ii) The mapping F is called Lipschitz continuous on Rn if for any x, y ∈

Rn there exists an L ≥ 0 such that

∥F(x)−F(y)∥ ≤ L∥x− y∥. (2.3)

(iii) A sequence
{
xk
}∞
k=0
⊂ Rn is called Fejer-monotone with respect to C if

for every u ∈ C

∥xk+1 − u∥ ≤ ∥xk − u∥ for all k ≥ 0. (2.4)

The following lemma is due to Gafni and Bertsekas [12] and it is central in our
convergence theorem. This can also be found in Toint [24] or more recently, for
example in [14] and [8].

Lemma 2.2. Let C ⊂ Rn be a non­empty, closed and convex set. For every x ∈ C,
z ∈ Rn and α > 0, the function

h(α) =
∥PC (x+ αz)− x∥

α
(2.5)

is monotonically non­increasing.
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For each point x ∈ Rn, there exists a unique nearest point in C, denoted by
PC(x); that is,

∥x− PC (x)∥ ≤ ∥x− y∥ for all y ∈ C. (2.6)

The mapping PC : Rn → C is called the metric projection of Rn onto C. It is well
known that PC is a non­expansive mapping of Rn onto C, i.e.,

∥PC (x)− PC (y)∥ ≤ ∥x− y∥ for all x, y ∈ Rn. (2.7)

The metric projection PC is characterized [13, Section 3] by the following two prop­
erties:

PC(x) ∈ C (2.8)

and
⟨x− PC (x) , PC (x)− y⟩ ≥ 0 for all x ∈ Rn, y ∈ C, (2.9)

and if C is a hyperplane, then (2.9) becomes an equality. It follows that

∥x− y∥2 ≥ ∥x− PC (x)∥2 + ∥y − PC (x)∥2 for all x ∈ Rn, y ∈ C. (2.10)

The next definition of a fixed point set of a mapping T and (2.9) give an equivalent
formulation for the VIP.

Definition 2.3. Let T : Rn → Rn be a given mapping. The fixed point set of
T is defined as

Fix (T ) := {x ∈ Rn | T (x) = x}. (2.11)

A well­known relation between the solution set of the VIP (1.1), SOL(C,F), and
the fixed point set of the operator PC(I − λF) is: for any λ ≥ 0;

SOL(C,F) = Fix (PC(I − λF)) , (2.12)

see e.g., Eaves [9]. By converting this relation into an iterative method for solving
the VIP (1.1) we can get the well­known projected gradient method. Next we show
how by using similar techniques we can recover the extragradient method ((1.2)–
(1.3)).

Lemma 2.4. Let C ⊂ Rn be non­empty, closed and convex. Let F : C → Rn be
Lipschitz continuous with constant L > 0. For any λ ∈ (0, 1/L), we get

SOL(C,F) = Fix (PC(I − λF(PC(I − λF)))) . (2.13)

Proof. (i) Let x ∈ SOL(C,F). Applying (2.12) twice, we get

PC(x− λF(PC(x− λF(x)))) = PC(x− λF(x)) = x (2.14)

which implies that x ∈ Fix (PC(I − λF(PC(I − λF)))).
(ii) On the other hand, let x ∈ Fix (PC(I − λF(PC(I − λF)))). Denote by

y := PC(x − λF(x)), we get x = PC(x − λF(y)). We now show that x = y. In­
deed, following the non­expansiveness of the metric projection PC and the Lipschitz
continuity of F

∥x− y∥ = ∥PC(x− λF(y))− PC(x− λF(x))∥
≤ ∥(x− λF(y))− (x− λF(x))∥ = λ ∥F(x)−F(y)∥

≤ λ

L
∥x− y∥ . (2.15)

following the assumption on λ we get that x = y, meaning that x = y = PC(x −
λF(x)), i.e., x ∈ Sol(F , C). �
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Notation 2.5. Any closed and convex set C ⊂ Rn can be represented as

C = {x ∈ Rn | c(x) ≤ 0} , (2.16)

where c : Rn → R is an appropriate convex function. Take, for example, c(x) =
dist(x,C), where dist is the distance function; see, e.g., [15, Chapter B, Subsection
1.3(c)].

We denote the subdifferential set of c at a point x by

∂c(x) := {ξ ∈ Rn | c(y) ≥ c(x) + ⟨ξ, y − x⟩ for all y ∈ Rn}. (2.17)

For z ∈ Rn, take any ξ ∈ ∂c(z) and define

T (z) := {w ∈ Rn | c(z) + ⟨ξ, w − z⟩ ≤ 0} . (2.18)

This is a half­space the bounding hyperplane of which separates the set C from the
point z if ξ ̸= 0; otherwise T (z) = Rn; see, e.g., [3, Lemma 7.3].

3. THE ALGORITHM

Our new modification of the subgradient extragradient algorithm without the
Lipschitz assumption is given next.

Algorithm 3.1. The self­adaptive subgradient extragradient algorithm

Step 0: Select a starting point x0 ∈ Rn. Choose α−1 ∈ (0,∞), ε ∈ (0, 1), and
β ∈ (0, 1).

Step 1: Given the current iterate xk, choose αk to be the largest

α ∈ {αk−1, αk−1β, αk−1β
2, . . .} (3.1)

satisfying

α
⟨
xk − yk,F(xk)−F(yk)

⟩
≤ (1− ε)

∥∥xk − yk
∥∥2 (3.2)

where
yk = PC(x

k − αF(xk)). (3.3)
Step 2: If xk = yk then stop. Otherwise, denote ak :=

(
xk − αkF(xk)

)
− yk and

construct the set Tk as follows

Tk :=

{
{w ∈ Rn |

⟨
ak, w − yk

⟩
≤ 0},

Rn
if ak ̸= 0,
if ak = 0.

(3.4)

Calculate the next iterate

xk+1 = PTk
(xk − αkF(yk)), (3.5)

set k ← (k + 1) and return to Step 1.

Remark 3.2. 1. Observe that (3.2) can be viewed as a local approximation of the
Lipschitz constant L, and then we get α < 1/L. Indeed, if

Lk =

⟨
xk − yk,F(xk)−F(yk)

⟩
∥xk − yk∥2

(3.6)

then α ≤ (1− ε)/Lk.
2. There exists many other techniques for the choice of αk in Step 1, for example

Khobotov [17]

αk = min

{
αk−1, β

∥∥xk − yk
∥∥

∥F(xk)−F(yk)∥

}
, (3.7)
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and Marcotte [20]

αk = min

{
αk−1

2
,

∥∥xk − yk
∥∥

√
2 ∥F(xk)−F(yk)∥

}
. (3.8)

It looks like any of the above choices (and other e.g., [25]) might work as well.

Remark 3.3. Observe that if c is lower semi­continuous and Gâteaux differentiable
at yk, then {

(
xk − τF (xk)

)
− yk} = ∂c(yk) = {∇c(yk)}; otherwise

(
xk − τF (xk)

)
−

yk ∈ ∂c(yk). See [3, Facts 7.2] and [10] for more details.

For the convergence of the algorithm, the following assumptions are needed.

Condition 3.4. The set SOL(C,F) is non­empty.

Condition 3.5. The mapping F is pseudo­monotone on C, that is (2.2).

Condition 3.6. The mapping F is continuous on Rn.

Remark 3.7. Censor et al. [5] (see also [6, 7]) introduced an extension of Korpele­
vich’s extragradient method which is the Subgradient Extragradient Method (SEM).
The general idea of the SEM is close to that in Algorithm 3.1 in which, given the
current iterate xk, the next iterate xk+1 is calculated as the projection onto the con­
structible set Tk (3.4). But while the convergence of the SEM is guaranteed under
strong assumptions as monotonicity, Lipschitz continuity on Rn and the knowing the
Lipschitz constant, Algorithm 3.1 requires only pseudo­monotonicity and continuity.
This advantage is not only theoretical but also plays a central role in practice when
the information regarding the Lipschitz constant in missing or when the mapping is
only continues mappings; see Section 4 for numerical experiments. In addition, other
step size adaptations ((3.2) in Step 1) can be chosen, for example Khobotov’s [17] or
Marcotte’s [20].

3.1. Convergence of the self­adaptive subgradient extragradient algorithm.
For the convergence we first show that Step 2 is valid.

Lemma 3.8. If for some k ≥ 0, xk = yk in Algorithm 3.1, then xk, yk ∈ SOL(C,F).

Proof. Assume that xk = yk; then xk = PC(x
k − αkF(xk)), so xk ∈ C. By the

variational characterization of the projection with respect to C (2.9), we have⟨
w − xk, (xk − αkF(xk))− xk

⟩
≤ 0, for all w ∈ C, (3.9)

which implies that

αk

⟨
w − xk,F(xk)

⟩
≥ 0, for all w ∈ C. (3.10)

Since αk > 0, we have that xk ∈ SOL(C,F). �

From now on we assume that the algorithm generates infinite sequences {xk}∞k=0

and {yk}∞k=0. Next we prove that αk is well defined.

Lemma 3.9. For all k ≥ 0, there exists ᾱ > 0 such that for all α ∈ (0, ᾱ] (3.2) holds.
Hence αk is well defined.

Proof. By Condition 3.6, F is continuous on Rn. Since the metric projection is also
continuous on Rn, we obtain

lim
α→0

PC(x
k − αF(xk)) = PC(x

k). (3.11)

We now examine the two cases, xk ∈ C and xk /∈ C.
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(i) If xk ∈ C, then xk = PC(x
k). By the continuity of F and (3.11), we get that

for sufficiently small α ∈ (0, 1],∥∥F(xk)
∥∥∥∥F(xk)−F

(
PC(x

k − αF(xk))
)∥∥ ≤ (1− ε)

∥∥xk − PC(x
k −F(xk))

∥∥2 .
(3.12)

Now, let α ∈ (0, 1] be sufficiently small. By the Cauchy­Schwarz inequality, the
non­expansivness of the metric projection and Lemma 2.2 we get

α
⟨
xk − yk,F(xk)−F(yk)

⟩
= α

⟨
PC(x

k)− PC(x
k − αF(xk)),F(xk)−F(yk)

⟩
≤ α

∥∥PC(x
k)− PC(x

k − αF(xk))
∥∥ ∥∥F(xk)−F(yk)

∥∥
≤ α2

∥∥F(xk)
∥∥∥∥F(xk)−F

(
yk)
)∥∥

≤ α2(1− ε)
∥∥xk − PC(x

k −F(xk))
∥∥2

≤ (1− ε)
∥∥xk − yk

∥∥2 , (3.13)

so (3.2) is valid.

(ii) If xk /∈ C, then

lim
α→0

α
⟨
xk − yk,F(xk)−F(yk)

⟩
= 0 (3.14)

while
lim
α→0

(1− ε)
∥∥xk − yk

∥∥2 = (1− ε)
∥∥xk − PC(x

k)
∥∥2 > 0, (3.15)

implying the claim. �

The next Lemma is central for the convergence theorem.

Lemma 3.10. Let {xk}∞k=0, {yk}∞k=0 be any two sequences generated by Algorithm
3.1. Assume that Conditions 3.4­­3.6 hold, and let x∗ ∈ SOL(C,F). Then for every
k ≥ 0

∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ∥∥xk − yk
∥∥2(1− α2

k

∥∥F(xk)−F(yk)
∥∥2

∥xk − yk∥2

)
. (3.16)

Proof. Let x∗ ∈ SOL(C,F). Since yk ∈ C, we have by Condition 3.5⟨
F(yk), yk − x∗⟩ ≥ 0 for all k ≥ 0, (3.17)

which implies that ⟨
F(yk), xk+1 − x∗⟩ ≥ ⟨F(yk), xk+1 − yk

⟩
. (3.18)

By the definition of Tk, we have⟨
xk+1 − yk,

(
xk − αkF(xk)

)
− yk

⟩
≤ 0 for all k ≥ 0, (3.19)

then⟨
xk+1 − yk, (xk − αkF(yk))− yk

⟩
=
⟨
xk+1 − yk, xk − αkF(xk)− yk

⟩
+ αk

⟨
xk+1 − yk,F(xk)−F(yk)

⟩
≤ αk

⟨
xk+1 − yk,F(xk)−F(yk)

⟩
. (3.20)
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Now by letting zk = xk − αkF(yk) for simplicity, we obtain∥∥xk+1 − x∗∥∥2 =
∥∥PTk

(zk)− x∗∥∥2
=
∥∥zk − x∗∥∥2 + ∥∥zk − PTk

(zk)
∥∥2 + 2

⟨
PTk

(zk)− zk, zk − x∗⟩ .
(3.21)

Since

2
∥∥zk − PTk

(zk)
∥∥2 + 2

⟨
PTk

(zk)− zk, zk − x∗⟩
= 2

⟨
zk − PTk

(zk), x∗ − PTk
(zk)

⟩
≤ 0 for all k ≥ 0, (3.22)

we get for all k ≥ 0∥∥zk − PTk
(zk)

∥∥2 + 2
⟨
PTk

(zk)− zk, zk − x∗⟩ ≤ − ∥∥zk − PTk
(zk)

∥∥2 . (3.23)

So,∥∥xk+1 − x∗∥∥2 ≤ ∥∥zk − x∗∥∥2 − ∥∥zk − PTk
(zk)

∥∥2
=
∥∥(xk − αkF(yk))− x∗∥∥2 − ∥∥(xk − αkF(yk))− xk+1

∥∥2
=
∥∥xk − x∗∥∥2 − ∥∥xk − xk+1

∥∥2 + 2αk

⟨
x∗ − xk+1,F(yk)

⟩
≤
∥∥xk − x∗∥∥2 − ∥∥xk − xk+1

∥∥2 + 2αk

⟨
yk − xk+1,F(yk)

⟩
, (3.24)

where the last inequality follows from (3.18).
So ∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ∥∥xk − xk+1

∥∥2 + 2αk

⟨
yk − xk+1,F(yk)

⟩
=
∥∥xk − x∗∥∥2 − (⟨xk − yk + yk − xk+1, xk − yk + yk − xk+1

⟩)
+ 2αk

⟨
yk − xk+1,F(yk)

⟩
=
∥∥xk − x∗∥∥2 − ∥∥xk − yk

∥∥2 − ∥∥yk − xk+1
∥∥2

+ 2
⟨
xk+1 − yk, xk − αkF(yk)− yk

⟩
. (3.25)

By (3.20) ∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ∥∥xk − yk
∥∥2 − ∥∥yk − xk+1

∥∥2
+ 2αk

⟨
xk+1 − yk,F(xk)−F(yk)

⟩
. (3.26)

Using Cauchy–Schwarz inequality, we have

2αk

⟨
xk+1 − yk,F(xk)−F(yk)

⟩
≤ 2αk

∥∥xk+1 − yk
∥∥∥∥F(xk)−F(yk)

∥∥ , (3.27)

in addition

0 ≤
(∥∥xk+1 − yk

∥∥− αk

∥∥F(xk)−F(yk)
∥∥)2

=
∥∥xk+1 − yk

∥∥2 − 2αk

∥∥xk+1 − yk
∥∥ ∥∥F(xk)−F(yk)

∥∥+ α2
k

∥∥F(xk)−F(yk)
∥∥2 ,

(3.28)
so

2αk

∥∥xk+1 − yk
∥∥∥∥F(xk)−F(yk)

∥∥ ≤ ∥∥xk+1 − yk
∥∥2 + α2

k

∥∥F(xk)−F(yk)
∥∥2 .

Combining the above inequalities yields∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ∥∥xk − yk
∥∥2 − ∥∥yk − xk+1

∥∥2
+
∥∥xk+1 − yk

∥∥2 + α2
k

∥∥F(xk)−F(yk)
∥∥2

=
∥∥xk − x∗∥∥2 − ∥∥xk − yk

∥∥2 + α2
k

∥∥F(xk)−F(yk)
∥∥2 . (3.29)
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Since xk ̸= yk, we obtain∥∥xk+1 − x∗∥∥2 ≤ ∥∥xk − x∗∥∥2 − ∥∥xk − yk
∥∥2(1− α2

k

∥∥F(xk)−F(yk)
∥∥2

∥xk − yk∥2

)
(3.30)

and the desired result is obtained. �

We are now ready to present the convergence theorem of Algorithm 3.1. The
outline of the proof is similar to [23, theorem 3.2].

Theorem 3.11. Let {xk}∞k=0 and {yk}∞k=0 be any two sequences generated by Algo­
rithm 3.1. Assume that Conditions 3.4­­3.6 hold, then both sequences converge to
the same point x̂ ∈ SOL(C,F).

Proof. Let x̄ ∈ SOL(C,F). According to Remark 3.2, we get from (3.30)∥∥xk+1 − x̄
∥∥2 ≤ ∥∥xk − x̄

∥∥2 for all k ≥ 0 (3.31)

and
∥∥xk − yk

∥∥→ 0. Observe that (3.31) states that{xk}∞k=0 is Fejér­monotone with
respect to SOL(C,F). So following [4, Theorem 5.11] it is sufficient to find a cluster
point of {xk}∞k=0 in SOL(C,F) and obtain the desired result. According to (3.2) the
sequence {αk}∞k=−1 is non­increasing and therefore limk→∞ αk = α̂. Now, we
consider the following two cases: (i) α̂ > 0 and (ii) α̂ = 0.

(i) If α̂ > 0, by (3.31) the sequence {xk}∞k=0 is bounded, therefore there exists a
subsequence {xkj}∞j=0 of {xk}∞k=0 such that

lim
j→∞

xkj = x̂, (3.32)

since
∥∥xk − yk

∥∥→ 0 we also have

lim
j→∞

ykj = x̂. (3.33)

By the continuity of F (Condition 3.6) and of the metric projection

x̂ = lim
j→∞

ykj = lim
j→∞

PC(x
kj − αkjF(xkj )) = PC(x̂− α̂F(x̂)). (3.34)

Following similar arguments as in the proof of Lemma 3.8 it follows that x̂ ∈
SOL(C,F) and the result follows from [4, Theorem 5.11].

(ii) If α̂ = 0, we argue by contradiction by supposing that every cluster point of
the sequence {yk}∞k=0 is not in SOL(C,F). Since α̂ = 0, there exists a subsequence
of indices {kl}∞l=0 of {k}∞k=−1 such that {αi}i∈{kl}∞

l=0
is monotonically decreasing.

Taking the limit as i → ∞ (passing to a subsequence if needed), we get that
limi→∞ yi = ỹ /∈ SOL(C,F).

Since ỹ /∈ SOL(C,F), then yi /∈ SOL(C,F) for all sufficiently large i ∈ {kl}∞l=0.
Thus for these i and α > 0 we have by (2.12) yi ̸= PC(y

i − αF(yi)) and moreover
since {k}∞k=−1 is infinite, yi ̸= xi (we did not stop at Step 2).

From the continuity ofF and Lemma 3.9, we get for all of these i with limi→∞ αi =
0, that the right hand side of (3.2) goes to a positive limit while the left hand side
goes to zero. Therefore inequality (3.2) holds for all sufficiently small α > 0, in
particular, it holds for α = αi−1 for all i ∈ {kl}∞l=0 sufficiently large. But since αi is
chosen as the largest element in {αi−1, αi−1β, αi−1β

2, . . .} we get a contradiction
to our hypothesis on {kl}∞l=0, that is αi < αi−1 for all i ∈ {kl}∞l=0.

Thus, there exists at least one cluster point of {yk}∞k=0 and also of {xk}∞k=0,
say x̃, that belongs to SOL(C,F) and again the desired result follows [4, Theorem
5.11]. �
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4. NUMERICAL EXPERIMENTS

In this section we present several numerical examples to illustrate the perfor­
mance of our algorithm. We choose the test problems from [19] (see also [25]). All
computations were performed using MATLAB R2012a on an Intel Core i5­2348M
2.67GHz running 64­bit Windows. The cpu time is measured in seconds using
the intrinsic MATLAB function cputime. The projection onto the feasible set C is
performed using CVX version 1.22. The numerical results are presented in Table
4, we choose the termination criteria as

∥∥xk − yk
∥∥ ≤ δ for small δ > 0.

Example 4.1. We take F(x) = Mx + q with the matrix M randomly generated as
suggested in [16], M = AAT + B + D; where every entry of the n­square matrix
A and of the n­skew­symmetric matrix B is uniformly generated from (−5, 5), and
every diagonal entry of the n diagonal matrix D is uniformly generated from (0, 0.3),
with every entry of q uniformly generated from (500, 0). The feasible set is

C := {x ∈ Rn
+ |

n∑
i=1

xi = n}.

Example 4.2. Kojima­Shindo Nonlinear Complementarity Problem (NCP), see e.g.,
[22]. With n = 4, the feasible set is

C := {x ∈ R4
+ | x1 + x2 + x3 + x4 = 4}

and F is given as follows.

F(x1, x2, x3, x4) :=


3x2

1 + 2x1x2 + 2x2
2 + x3 + 3x4 − 6

2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2
3x2

1 + x1x2 + 2x2
2 + 2x3 + 9x4 − 9

x2
1 + 3x2

2 + 2x3 + 3x4 − 3

 .

Example 4.3. Here the feasible set C = R5 and F is given as F = (f1, f2, f3, f4, f5)
where for all i = 1, . . . , 5

fi = 2 (xi − i+ 2) exp

(
5∑

i=1

(xi − i+ 2)
2

)
. (4.1)

(1.2)–(1.3) Algorithm 3.1
Example x0 parameters dim iter. time iter. time

4.1 110 τ = 0.4
∥M∥ , α−1 = 0.9, ε = 0.2, β = 0.5 10 70 6.7 77 3.1

120 20 80 10.6 76 5.9
140 40 161 28 170 16
170 70 247 307 266 163

4.2 14 α−1 = 0.7, ε = 0.2, β = 0.5, τ = 0.01 4 ­ ­ 53 4.5
( 12 ,

1
2 , 2, 1) 4 ­ ­ 62 6

4.3 15 α−1 = 0.7, ε = 0.3, β = 0.5, τ = 0.01 5 ­ ­ 53 2.5
05 5 ­ ­ 62 2.1

We use the notation 1n and 0n for the unit and the zero vectors in Rn. In
Example 4.1 we generate a random data which depend on the dimension. As can
be seen Korpelevich method ((1.2)–(1.3)) preforms bad compared to Algorithm 3.1
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and a reasonable explanation is the fact that two projections onto C are calculated
in each iteration while in Algorithm 3.1 the second projection is easily computed.

In Example 4.2 the Lipschitz constant is unknown, so one needs to guess it; but
if L is very large then τ is very small and that makes the method very inefficient.
So, in our experiments we stop the algorithm as we did not reached the termination
criteria in a reasonable time and similarly in Example 4.3.

Acknowledgments. We thank the anonymous referees for their thorough re­
view and highly appreciate the comments and suggestions, which significantly
contributed to improving the quality of this paper.
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ABSTRACT. The aim of this paper is to present some fixed point theorems for generalized
contractions by altering distance functions in a complete cone metric spaces endowed with
a partial order. We also generalize fixed point theorems of J. Harjani, K. Sadarangani [J.
Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and
applications to ordinary differential equations, Nonlinear Analysis 72 (2010) 1188­1197]
from metric spaces to cone metric spaces.
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1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space. A nonempty convex closed subset P ⊂ E is called
a cone in E if it satisfies:

(i) P is closed, nonempty and P ̸= {0},
(ii) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply that ax+ by ∈ P,
(iii) x ∈ P and −x ∈ P imply that x = 0.

The space E can be partially ordered by the cone P ⊂ E; that is, x ≤ y if and only
if y− x ∈ P . Also we write x≪ y if y− x ∈ P o, where P o denotes the interior of P .
A cone P is called normal if there exists a constant K > 0 such that 0 ≤ x ≤ y
implies ∥x∥ ≤ K∥y∥.
In the sequel we always suppose that E is a real Banach space, P is a cone in E
with nonempty interior i.e. P o ̸= ∅ and ≤ is the partial ordering with respect to P .

Definition 1.1. ([1]) Let X be a nonempty set. Assume that the mapping
d : X ×X → E satisfies

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 iff x = y
(ii) d(x, y) = d(y, x) for all x, y ∈ X

∗Corresponding author.
Email address : masadi.azu@gmail.com, masadi@iauz.ac.ir (Mehdi Asadi) and hsoleimani54@gmail.com(Hossein Soleimani).
Article history : Received April 20, 2012. Accepted May 13, 2014.
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(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 1.2. Let (X, d) be a cone metric space, x ∈ X and {xn} a sequence in
X. Then

(i) {xn} is said to be convergent to x ∈ X whenever for every c ∈ E with 0 ≪ c
there is N such that for all n > N , d(xn, x) ≪ c, that is, limn→∞ xn = x.

(ii) {xn} is called a Cauchy sequence in X whenever for every c ∈ E with 0 ≪ c
there is N such that for all n,m > N , d(xn, xm) ≪ c.

(iii) (X, d) is a complete cone metric space if every Cauchy sequence is conver­
gent.

The following remark will be useful in the sequel.

Remark 1.3. ([2])
(1) If u ≤ v and v ≪ w, then u≪ w.
(2) If 0 ≤ u≪ c for each c ∈ P o, then u = 0.
(3) If a ≤ b+ c for each c ∈ P o then a ≤ b.
(4) If 0 ≤ x ≤ y, and 0 ≤ a, then 0 ≤ ax ≤ ay.
(5) If 0 ≤ xn ≤ yn for each n ∈ N, and limn→∞ xn = x, limn→∞ yn = y, then

0 ≤ x ≤ y.
(6) If 0 ≤ d(xn, x) ≤ bn and bn → 0, then d(xn, x) ≪ c where xn, x are,

respectively, a sequence and a given point in X.
(7) If E is a real Banach space with a cone P and if a ≤ λa where a ∈ P and

0 < λ < 1, then a = 0.
(8) If c ∈ P o, 0 ≤ an and an → 0, then there exists N such that for all n > N

we have an ≪ c.

The altering distance functions were introduced by Khan et al. in [3] and now
we define this functions on a cone. If P := R+ then we have the definition 1.1 in
[4].

Definition 1.4. An altering distance function is a function ψ : P → P which satisfies

(a) ψ is continuous and nondecreasing.
(b) ψ(x) = 0 if and only if x = 0.

Definition 1.5. If (X,⊑) is a partially ordered set and f : X → X, we say that f
is monotone nondecreasing if x, y ∈ X, x ⊑ y ⇒ fx ⊑ fy.

Definition 1.6. The cone P is called regular if every increasing sequence which is
bounded from above is convergent. That is, if {xn} is a sequence such that x1 ≤
x2 ≤ · · · ≤ y for some y ∈ E, then there is x ∈ E such that limn→∞ ∥xn − x∥ = 0.
Equivalently the cone P is regular if and only if every decreasing sequence which is
bounded from below is convergent. It has been mentioned that every regular cone is
normal [5].

Definition 1.7. P is called minihedral cone if sup{x, y} exists for all x, y ∈ E, and
strongly minihedral if every subset of E which is bounded above has a supremum
[6]. So if cone P is strongly minihedral then, every subset of P has infimum.

For more details and some examples about definition 1.7 and some applications
on cone metric spaces refer to [7, 8].

The purpose of this paper is to present some fixed point theorems for generalized
contractions involving altering distance functions that generalize the theorems of
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the paper [4] by Harjani and Sadarangani in the context of ordered cone metric
spaces with arbitrary cones.

Existence of fixed point in partially ordered sets has been considered recently in
[9]­[16].

2. MAIN RESULTS

Let (X,⊑) be a partially ordered set and suppose there exists a cone metric d in
X. We define (ID) property as follows,
for all x, y ∈ X if there exists z ∈ X such that, x ⊑ y ⊑ z then d(x, y) and d(y, z)

are comparable.

Theorem 2.1. Let (X,⊑) be a partially ordered set and suppose there exists a cone
metric d in X such that (X, d) is a complete cone metric space which the (ID) property
holds and if there exists a bounded decreasing sequence in P , then it converges to
an element in P . Let f : X → X be a continuous and nondecreasing mapping such
that

ψ(d(fx, fy)) ≤ ψ(d(x, y))− φ(d(x, y)), for x ⊑ y, (2.1)
where ψ and φ are altering distance functions. If there exists x0 ∈ X with

x0 ⊑ fx0 then f has a fixed point. Further if fixed points of f are comparable, then
f has a unique fixed point.

Proof. If x0 = fx0 then the proof is finished. Suppose that x0 ̸= fx0. Since
x0 ⊑ fx0 and f is a nondecreasing function, so

x0 ⊑ fx0 ⊑ f2x0 ⊑ f3x0 ⊑ · · · .
Put xn+1 := fxn = fnx0 and an := d(xn+1, xn). Then for n ≥ 1 we have

ψ(d(xn+1, xn)) = ψ(d(fxn, fxn−1)) ≤ ψ(d(xn, xn−1))− φ(d(xn, xn−1)),

therefore
0 ≤ ψ(an) ≤ ψ(an−1)− φ(an−1) ≤ ψ(an−1). (2.2)

Since xn ⊑ xn+1 ⊑ xn+2 by the (ID) property we have

an ≤ an+1 (2.3)

or
an+1 ≤ an. (2.4)

If (2.3) holds, since ψ is nondecreasing by (2.2) we have

0 ≤ ψ(an) ≤ ψ(an−1)− φ(an−1) ≤ ψ(an)− φ(an−1) ≤ ψ(an). (2.5)

This implies that φ(an−1) = 0 and so an−1 = 0 for n ≥ 1 hence

xn = xn−1 = fxn−1

for n ≥ 1 are fixed points of f . If (2.4) holds, since ψ and φ are nondecreasing by
relation (2.2) and induction we have

φ(an+1) ≤ φ(an) ≤ ψ(an) ≤ ψ(an−1)− φ(an−1)

≤ ψ(an−1)− φ(an)

≤ ψ(an−2)− φ(an−2)− φ(an)

≤ ψ(an−2)− 2φ(an) ≤ · · ·
≤ ψ(a0)− nφ(an),

so
0 ≤ φ(an) ≤

1

n+ 1
ψ(a0) (2.6)
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for all n. By Remark 1.3­5 and since limn→∞ an exists by (2.4), so

0 ≤ φ(an) ≤
1

n+ 1
ψ(a0) ⇒ 0 ≤ φ( lim

n→∞
an) ≤ lim

n→∞

1

n+ 1
ψ(a0) = 0,

thus φ(limn→∞ an) ∈ P ∩ −P and we obtain φ(limn→∞ an) = 0 and since φ is
altering distance function, hence limn→∞ an = 0 so

lim
n→∞

d(xn+1, xn) = 0. (2.7)

Now, we will show that {xn} is a Cauchy sequence. Suppose that {xn} is not a
Cauchy sequence. Then, there exists c ≫ 0 for which we can find subsequences
{xmk

} and {xnk
} of {xn} with nk > mk > k such that

d(xnk
, xmk

) ≥ c. (2.8)

Further, corresponding to mk we can choose nk in such a way that it is the
smallest integer with nk > mk and satisfying (2.8). Then

d(xnk−1, xmk
) ≪ c. (2.9)

Using (2.8), (2.9) and the triangular inequality, we have

c ≤ d(xnk
, xmk

)

≤ d(xnk
, xnk−1) + d(xnk−1, xmk

)

≪ d(xnk
, xnk−1) + c.

Letting k → ∞ and using (2.7)

lim
k→∞

d(xnk
, xmk

) = c. (2.10)

Again, the triangular inequality gives us

d(xnk
, xmk

) ≤ d(xnk
, xnk−1) + d(xnk−1, xmk−1) + d(xmk−1, xmk

),

d(xnk−1, xmk−1) ≤ d(xnk−1, xnk
) + d(xnk

, xmk
) + d(xmk

, xmk−1),

Letting k → ∞ in the above two inequalities and using (2.7) and (2.10), we have

lim
k→∞

d(xnk−1, xmk−1) = c. (2.11)

As nk > mk and xnk
and xmk

are comparable (in fact, xmk−1 ⊑ xnk−1, setting
x := xnk−1 and y := xmk−1 in (2.1), we obtain

ψ(d(xnk
, xmk

)) ≤ ψ(d(xnk−1, xmk−1))− φ(d(xnk−1, xmk−1)).

Letting k → ∞ and taking into account (2.10) and (2.11), we have

ψ(c) ≤ ψ(c)− φ(c).

As ψ is an altering distance function, the last inequality gives us φ(c) = 0 and,
consequently, c = 0 which is a contradiction. This implies that the sequence {xn}
is Cauchy and since (X, d) is complete, thus there exists x∗ ∈ X such that xn → x∗

and on the other hand f is continuous and xn+1 = fxn so we obtain x∗ = fx∗.
For uniqueness let x, y ∈ X be fixed points and x is comparable to y. Hence

fx = x is comparable to fy = y and

ψ(d(x, y)) = ψ(d(fx, fy)) ≤ ψ(d(x, y))− φ(d(x, y)).

The last inequality gives us φ(d(x, y)) = 0 and by altering distance functions prop­
erties this implies d(x, y) = 0 therefore x = y.

�
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Example 2.1. Let E = (C1([0, 1],R+), ∥.∥), with ∥f∥ = ∥f∥∞ + ∥f ′∥∞, X =
{f, g, h} ⊆ E, and

⊑= {(f, f), (g, g), (h, h), (g, h), (h, f), (g, f)}
where f(t) = 0, g(t) = et = 2h(t), for all t ∈ [0, 1], so ⊑ is a partial order on X.
Define d : X ×X → E by d(f, g) = f + g and f ̸= g and d(f, f) = 0. It is easy to
see that every Cauchy sequence on X is convergent, i.e., (X, d) is a complete cone
metric space, and if we put P = {f ∈ E : f(t) ≥ 0}, then P is a non­normal cone
while is not minihedral by [7]. Further, let T : X → X be Tf = f, Tg = h, Th = f ,
ψ(f) = f and φ(f) = f

2 , for all f ∈ P . We notice that g ⊑ Tg, ID property and all
conditions of Theorem 2.1 hold. Therefore T has a unique fixed point, i.e., Tf = f.

Example 2.2. With hypothesis of Example 2.1, define X = {f, g, h, k} ⊆ E, and

⊑= {(f, f), (g, g), (h, h), (k, k), (g, h), (h, f), (g, f)}
where f(t) = 0, g(t) = et = 2h(t) = 3k(t), for all t ∈ [0, 1], so ⊑ is a partial order on
X. Let T : X → X be Tf = f, Tg = h, Th = f, Tk = k, ψ(f) = f and φ(f) = f

2 , for
all f ∈ P . Therefore T have two fixed points, i.e., Tf = f and Tk = k, where f and
k aren’t comparable.

In the next theorem, we replace the (ID) property by strongly minihedrallity of
the cone.

Theorem 2.2. Let (X,⊑) be a partially ordered set and suppose that there exists a
cone metric d in X with strongly minihedral cone P, such that (X, d) is a complete
cone metric space. Let f : X → X be a continuous and nondecreasing mapping such
that

ψ(d(fx, fy)) ≤ ψ(d(x, y))− φ(d(x, y)),

for x ⊑ y, where ψ and φ are altering distance functions. If there exists x0 ∈ X with
x0 ⊑ fx0 then f has a fixed point.

Proof. By the proof of the Theorem 2.1 the sequence {ψ(an)} has infimum. Put
b = infn ψ(an). So there exists {ψ(ank

)}k such that ψ(ank
) → b as k → ∞. Now by

(2.2)
0 ≤ ψ(ank

) ≤ ψ(ank−1)− φ(ank−1) ≤ ψ(ank−1), (2.12)
letting k → ∞

b ≤ b− φ( lim
k→∞

ank−1) ≤ b,

this implies that φ(limk→∞ ank−1) ∈ P
∩
−P so φ(limk→∞ ank−1) = 0. �

In the next corollary, we replace the (ID) property and strongly minihedrality of
the cone by regularity.

Corollary 2.3. Let (X,⊑) be a partially ordered set and suppose that there exists
a cone metric d in X with regular cone P such that (X, d) is a complete cone metric
space. Let f : X → X be a continuous and nondecreasing mapping such that

ψ(d(fx, fy)) ≤ ψ(d(x, y))− φ(d(x, y)),

for x ⊑ y, where ψ and φ are altering distance functions. If there exists x0 ∈ X with
x0 ⊑ fx0 then f has a fixed point.

Proof. By proofing of the Theorem 2.1 and relation (2.2) the sequence {ψ(an)} is
decreasing and bounded below and P is regular cone so

φ( lim
n→∞

an) = 0.

Now similar as the proof of the previous theorem the proof is completed. �
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In the sequel, we prove that Theorems 2.1, 2.2 and corollary 2.3 are still valid
where f is not necessarily continuous, but the following hypothesis holds in X,
‘‘if {xn} is a nondecreasing sequence in X such that xn → x then xn ⊑ x for all
n ∈ N".

Theorem 2.3. Let (X,⊑) be a partially ordered set and suppose that there exists
a cone metric d in X such that (X, d) is a complete cone metric space which the (ID)
property holds. Let f : X → X be a nondecreasing mapping such that

ψ(d(fx, fy)) ≤ ψ(d(x, y))− φ(d(x, y)),

for x ⊑ y, where ψ and φ are altering distance functions. If there exists x0 ∈ X with
x0 ⊑ fx0 and X satisfies in following condition
if {xn} is a nondecreasing sequence in X such that xn → x then xn ⊑ x for all
n ∈ N, then f has a fixed point.

Proof. Following the proof of Theorem 2.1 it is enough to prove that fx∗ = x∗.
Since {xn} ⊂ X is a nondecreasing sequence and xn → x∗ as n → ∞. Now by
hypothesis we conclude that xn ⊑ x∗ for all n ∈ N and for all c≫ 0 there exists N
such that d(xn, x∗) ≪ c and

ψ(d(xn+1, fx
∗)) = ψ(d(fxn, fx

∗)) ≤ ψ(d(xn, x
∗))− φ(d(xn, x

∗)) ≤ ψ(c),

for all n ≥ N. Since ψ and φ are altering distance function if n→ ∞ we have,

0 ≤ ψ( lim
n→∞

d(xn+1, fx
∗)) ≤ ψ(c),

for all c ≫ 0. Thus 0 ≤ ψ(limn→∞ d(xn+1, fx
∗)) ≤ ψ( c

m ), for all c ≫ 0 and every
m ∈ N, hence

ψ( lim
n→∞

d(xn+1, fx
∗)) = 0

so
lim

n→∞
d(xn+1, fx

∗) = 0.

Let c ∈ E and c≫ 0 so there exists N such that d(xn+1, fx
∗) ≪ c for every n ≥ N.

Thus for some N we have

d(x∗, fx∗) ≤ d(x∗, xn+1) + d(xn+1, fx
∗) ≪ c,

for every n ≥ N. This implies that 0 ≤ d(x∗, fx∗) ≪ c for all c ≫ 0. Then
d(x∗, fx∗) = 0 and consequently x∗ = fx∗. �

In what follows, we give a sufficient condition for the uniqueness of the fixed
point in Theorem 2.2 and corollary 2.3. This condition is:

‘‘for x, y ∈ X there exists z ∈ X which is comparable to x and y.” (2.13)

Theorem 2.4. Adding condition (2.13) to the hypothesis of Theorem 2.2 (resp. corol­
lary 2.3) we obtain uniqueness of the fixed point of f .

Proof. Let x, y ∈ X are fixed points. We distinguish two cases:
Case 1. If x is comparable to y then fx = x is comparable to fy = y and

ψ(d(x, y)) = ψ(d(fx, fy)) ≤ ψ(d(x, y))− φ(d(x, y)).

The last inequality gives us φ(d(x, y)) = 0 and by altering distance functions prop­
erties this implies d(x, y) = 0 therefore x = y.
Case 2. If x is not comparable to y then there exists z ∈ X comparable to x and y.
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Monotonicity of f implies that fnz is comparable to fnx = x and to fny = y, for
n = 0, 1, 2, · · · . Moreover,

ψ(d(x, fnz)) = ψ(d(fnx, fnz))

≤ ψ(d(fn−1x, fn−1z))− φ(d(fn−1x, fn−1z))

= ψ(d(x, fn−1z))− φ(x, fn−1z)) ≤ ψ(d(x, fn−1z)). (2.14)

according to regularity or strongly minihedrality of the cone P , there exists b ∈
E such that ψ(d(x, fnz)) → b as n → ∞. Now by (2.14) and altering distance
functions properties ψ and φ we have

ψ(d(x, fnz)) ≤ ψ(d(x, fn−1z))− φ(d(x, fn−1z)) ≤ ψ(d(x, fn−1z)),

letting n→ ∞
b ≤ b− φ( lim

n→∞
d(x, fn−1z)) ≤ b,

this implies that
φ( lim

n→∞
d(x, fn−1z)) ∈ P ∩ −P

so φ(limn→∞ d(x, fn−1z)) = 0 thus limn→∞ d(x, fn−1z) = 0. And similarly d(y, fnz) →
0. Let c≫ 0 and c ∈ E, so there existsN such that d(x, fnz) ≪ c and d(y, fnz) ≪ c
for all n ≥ N. Now by triangle inequality

d(x, y) ≤ d(x, fnz) + d(fnz, y) ≪ 2c,

for all n ≥ N. Namely 0 ≤ d(x, y) ≪ c for all c≫ 0. Then d(x, y) = 0 so x = y. �

Our Theorems 2.1, 2.2 with non­normal cone and Corollary 2.3 with normal
cone generalize Theorems 2.1, 2.2 [4] and also Theorem 2.4 extend Theorem 2.3 [4]
to cone metric version.

ACKNOWLEDGMENTS

The authors express their deep gratitude to the referee for his/her valuable
comments and suggestions. The authors would like to thank Professor S. Mansour
Vaezpour for his helpful advise which led them to present this paper. This research
has been supported by the Zanjan Branch, Islamic Azad University, Zanjan, Iran.
The first author would like to thank this support.

References

[1] Long­Guang, Z. Xian, Cone metric spaces and fixed point theorems of contractive mapping, J. Math.
Anal. Appl. 322(2007), 1468–1476.

[2] Z. Kadelburg, M. Pavlovic, S. Radenovic, Common fixed point theorems for ordered contractions and
quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 2010, in press.

[3] M.S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points,
Bull. Austral. Math. Soc. 30(1)(1984), 1–9.

[4] J. Harjani, K. Sadarangani, Generalized contractions in partially ordered metric spaces and appli­
cations to ordinary differential equations, Nonlinear Anal. 72(2010), 1188–1197.

[5] Sh. Rezapour, R. Hamlbarani, Some notes on the paper cone metric spaces and fixed point theorems
of contractive mappings, J. Math. Anal. Appl. 345(2008), 719–724.

[6] K. Deimling, Nonlinear Functional Analysis, Springer­Verlage, 1985.
[7] M. Asadi, H. Soleimani, S. M. Vaezpour, An Order on Subsets of Cone Metric Spaces and Fixed

Points of Set­Valued Contractions, Fixed Point Theory Appl. Article ID 723203, (2009) .
[8] M. Asadi, H. Soleimani, S. M. Vaezpour, Rhoades B. E.,On T­Stability of Picard Iteration in Cone

Metric Spaces, Fixed Point Theory Appl. Article ID 751090, (2009).
[9] B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. 47(2001), 2683–2693.



60 M. ASADI AND H. SOLEIMANI/JNAO : VOL.6, NO.1, (2015), 53­60

[10] P. N. Dhutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed
Point Theory Appl. Article ID 406368 (2008).

[11] R. P. Agarwal, M. A. El­Gebeily, D. O’Regan, Generalized contractions in partially ordered metric
spaces, Appl. Anal. 87(2008), 109–116.

[12] Dz. Burgic, S. Kalabusic, M.R.S. Kulenovic, Global attractivity results for mixed monotone map­
pings in partially ordered complete metric spaces, Fixed Point Theory Appl. Article ID 762478,
(2009).

[13] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces
and applications, Nonlinear Anal. 65(2006), 1379–1393.

[14] J. Harjani, K. Sadarangani, Fixed point theorems for weakly contractive mappings in partially
ordered sets, Nonlinear Anal. 71(2009), 3403–3410.

[15] D. O’Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces,
J. Math. Anal. Appl. 341(2008), 1241–1252.

[16] L. Ciric, N. Cakid, M. Rajovic, J.S. Uma, Monotone generalized nonlinear contractions in partially
ordered metric spaces, Fixed Point Theory Appl. Article ID 131294, (2008) .



Journal of Nonlinear Analysis and Optimization
Vol. 6, No. 1, (2015), 61­69
ISSN : 1906­9685
http://www.math.sci.nu.ac.th

THE SPLIT EQUALITY FIXED POINT PROBLEM FOR DEMI­CONTRACTIVE

MAPPINGS

C. E. CHIDUME ∗, P. NDAMBOMVE AND A. U. BELLO

Mathematics Institute, African University of Science and Technology,
Abuja, Nigeria

ABSTRACT. Motivated by the recent work of Moudafi (Inverse Problems, 26 (2010), 587­
600) and inspired by Xu (Inverse Problems, 22 (2006), 2021­2034), Censor and Segal (J.
Convex Anal. 16 (2009), 587­600) , and Yang (Inverse Problems, 20 (2004), 1261­1266),
we investigate a Krasnoselskii­type iterative algorithm for solving the split equality fixed
point problem recently introduced by Moudafi and Al­Shemas (Transactions on Mathematical
Programming and Applications, Vol. 1, No. 2 (2013), 1­11). Weak and strong convergence
theorems are proved for the class of demi­contractive mappings in Hilbert spaces. Our
theorems extend and complement some recent results of Moudafi and a host of other recent
important results.

KEYWORDS :Split equality fixed point problem, Uniform Continuity, Demicontractive map­
pings, iterative scheme, Fixed point.
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1. INTRODUCTION

The split feasibility problem arises in many areas of application such as phase
retrieval, medical image reconstruction, image restoration, computer temography
and radiation therapy treatment planning (see e.g., Byrne [1], Censor et al.[2],
Censor et al. [3], and Censor and Elfving [4]). It takes the following form: Let
C and Q be two nonempty closed convex subsets of real Hilbert spaces H1 and
H2, respectively, A : H1 → H2 be a bounded linear operator. The split feasibility
problem (SFP) is formulated as follows:

Find x∗ ∈ C such that Ax∗ ∈ Q. (1.1)

The SFP was first introduced in 1994 by Censor and Elfving [4] in finite­dimensional
Hilbert spaces for modelling inverse problems arising from phase retrieval and med­
ical image reconstruction.
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Assuming that the SFP (1.1) has a solution, one can easily show that x∗ ∈ C solves
SFP if and only if it solves the fixed point equation

x∗ = PC(I − γA∗(I − PQ)A)x∗,

where PC and PQ are the metric projections from H1 onto C and from H2 onto Q,
respectively, where γ is a positive constant and A∗ denotes the adjoint of A.

A popular algorithm used in approximating the solution of the SFP (1.1) is the
CQ­algorithm of Byrne [1]:

xn+1 = PC(I − γA∗(I − PQ)A)xn,

for each n ≥ 1, where γ ∈ (0, 2
λ ) with λ being the spectral radius of the operator

A∗A.
Based on the work of Censor and Segal [5], Moudafi [10] proposed the following
scheme which does not involve the metric projections PC and PQ:

xn+1 = (1− αn)
(
xn + γA∗(T − I)Axn

)
+ αnU

(
xn + γA∗(T − I)Axn

)
, n ∈ N,

for approximating a solution of the split feasibility fixed point problem (1.1) and
obtained a weak convergence results when U and T are demi­contractive.

Very recently, Moudafi and Al­Shemas [9] introduced the following split equality
fixed point problem as a generalization of the split feasibility problem (1.1):

Find x ∈ C := F (U) and y ∈ Q := F (T ) such that Ax = By, (1.2)
where A : H1 → H3 and B : H2 → H3 are two bounded linear operators,
U : H1 → H1, T : H2 → H2, F (U) and F (T ) denote the fixed point sets of
U and T , respectively. Note that problem (1.2) reduces to problem (1.1) if H2 = H3

and B = I (where I is the identity map on H2) in (1.2).

In order to approximate a solution of problem (1.2), Moudafi and Al­Shemas [9]
introduced the following iterative scheme: xn+1 = U(xn − γnA

∗(Axn −Byn));

yn+1 = T (yn + γnB
∗(Axn −Byn)), ∀n ≥ 1,

(1.3)

where U : H1 → H1, T : H2 → H2 are two firmly quasi­nonexpansive mappings,
A : H1 → H3, B : H2 → H3 are two bounded linear operators, A∗ and B∗ are
the adjoints of A and B, respectively, {γn} ⊂ (ϵ, 2

λA∗A+λB∗B
− ϵ), λA∗A and λB∗B

denote the spectral radii of A∗A and B∗B, respectively. Using the iterative scheme
(1.3), Moudafi obtained a weak convergence result for problem (1.2).

Yuan­Fang et al. [15] introduced the following algorithm for solving problem (1.2):
∀x1 ∈ H1, ∀y1 ∈ H2;
xn+1 = (1− αn)xn + αnU(xn − γnA

∗(Axn −Byn));

yn+1 = (1− αn)yn + αnT (yn + γnB
∗(Axn −Byn)), ∀n ≥ 1,

(1.4)

where U : H1 → H1, T : H2 → H2 are two firmly quasi­nonexpansive mappings,
A : H1 → H3, B : H2 → H3 are two bounded linear operators, A∗ and B∗ are the
adjoints of A and B, respectively, {γn} ⊂ (ϵ, 2

λA∗A+λB∗B
− ϵ) (for ϵ small enough),
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where λA∗A and λB∗B denote the spectral radii of A∗A and B∗B, respectively and
{αn} ⊂ [α, 1] (for some α > 0). Under some conditions, the authors obtained strong
and weak convergence results.

Motivated by the work of Moudafi [8], Moudafi and Al­Shemas [9], Moudafi [10]
and Yuan­Fang et al. [15], we define the following iterative algorithm to solve the
split equality fixed point problem (1.2) in the case that U and T are demi­contractive.



∀x1 ∈ H1, ∀y1 ∈ H2;

xn+1 = (1− α)
(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
;

yn+1 = (1− α)
(
yn + γB∗(Axn −Byn)

)
+ αT

(
yn + γB∗(Axn −Byn)

)
, ∀n ≥ 1,

(1.5)
where U : H1 → H1, T : H2 → H2 are two demi­contractive mappings. The
important class of demi­contractive mappings properly includes the class of firmly
quasi­nonexpansive mappings studied by Moudafi and Al­Shemas [9]. Under suit­
able conditions, we prove weak and strong convergence theorems of the iterative
scheme (1.5) to a solution of the split equality problem in real Hilbert spaces. Our
theorems extend and complement the results of Censor and Segal [5], Maruster
et al. [7], Moudafi and Al­Shemas [9], Moudafi [10], [11], Xu [13], Yang [14], Yuan­
Fang et al. [15], and a host of other results.

2. PRELIMINARIES AND NOTATIONS

We recall some definitions and lemmas which will be needed in the proof of our
main theorems.
In the sequel, we denote strong and weak convergence by “ −→’’ and “ ⇀’’, respec­
tively, the fixed point set of a mapping T by F (T ) and the solution set of problem
(1.2) by Ω, namely,

Ω := {(x∗, y∗) ∈ F (U)× F (T ) : Ax∗ = By∗}.

Definition 2.1. Let H be a real Hilbert space.

(1) Let T : H → H be a mapping. Then, (I − T ) is said to be demi­closed at
zero if for any sequence {xn} ⊂ H with xn ⇀ x∗, and xn − Txn −→ 0, we
have x∗ = Tx∗.

(2) A mapping T : H → H is said to be semi­compact if for any bounded
sequence {xn} ⊂ H with xn − Txn −→ 0, there exists a subsequence
{xnj} ⊂ {xn} such that {xnj} converges strongly to some x∗ ∈ H.

Definition 2.2. Let H be a real Hilbert space.

(1) A mapping T : H → H is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ ∀ (x, y) ∈ H ×H. (2.1)

(2) A mapping T : H → H is said to be quasi­nonexpansive if F (T ) ̸= ∅ and

∥Tx− x∗∥ ≤ ∥x− x∗∥ ∀x∗ ∈ F (T ), x ∈ H. (2.2)



64 S. TEMIR/JNAO : VOL. 6, NO. 1, (2015), 61­69

(3) A mapping T : H → H is said to be firmly quasi­nonexpansive if F (T ) ̸= ∅
and

∥Tx− x∗∥2 ≤ ∥x− x∗∥2 − ∥x− Tx∥2 ∀x∗ ∈ F (T ), x ∈ H. (2.3)

(4) Let D be a nonempty subset of H. A map T : D → D is said to be k­strictly
pseudo­contractive if there exists a constant k ∈ (0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2 ∀x, y ∈ D.

(5) T : D → D is said to be demi­contractive if F (T ) ̸= ∅ and there exists a
constant k ∈ (0, 1) such that

∥Tx− x∗∥2 ≤ ∥x− x∗∥2 + k∥x− Tx∥2 ∀x ∈ D, x∗ ∈ F (T ).

Remark 2.3. The following inclusions are obvious.

Firmly quasi­nonexpansive ⊂ Quasi­nonexpansive ⊂ Demi­contractive.

We give examples to show that the above inclusions are proper.

Example 2.4. Let H = l2; D := {x ∈ l2 : ∥x∥2 ≤ 1} and T : D → D be
defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ). Then, T has a unique fixed
point, zero. Clearly, T is a quasi­nonexpansive mapping which is not firmly quasi­
nonexpansive.
In fact, we have:

∥Tx− 0∥ = ∥x− 0∥, (∗)
so T is quasi­nonexpansive, and for every x ̸= 0, suppose

∥Tx− 0∥2 ≤ ∥x− 0∥2 − ∥x− Tx∥2.
Then, using (∗), we obtain that x = 0, which is a contradiction. Therefore, T is not
firmly quasi­nonexpansive.

Example 2.5. Let H = l2 and T : l2 → l2 be defined by T (x1, x2, x3, · · · ) =
−5

2 (x1, x2, x3, · · · ), for arbitrary (x1, x2, x3, · · · ) ∈ l2. Then, F (T ) = {0}, and T is a
demi­contractive mapping which is not quasi­nonexpansive.
Indeed, for each x ∈ l2, we have

∥Tx− 0∥2 =
25

4

∥∥∥x− 0
∥∥∥2,

which implies that T is not quasi­nonexpansive. We also have that

∥x− Tx∥2 =

∥∥∥∥x−
(
− 5

2
x
)∥∥∥∥2 =

49

4

∥∥∥x− 0
∥∥∥2,

so that
∥x− 0∥2 =

4

49

∥∥∥x− Tx
∥∥∥2. (∗∗)

Thus, using (∗∗), we have:

∥Tx− 0∥2 = ∥x− 0∥2 + 21

4

∥∥∥x− 0
∥∥∥2 = ∥x− 0∥2 + 3

7

∥∥∥x− Tx
∥∥∥2.

Hence, T is a demi­contractive mapping with constant k = 3
7 ∈ (0, 1).

Lemma 2.6. (Opial’s Lemma [12]) Let H be a real Hilbert space and {µn} be a
sequence in H such that there exists a nonempty set W ⊂ H satisfying the following
conditions:
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(i) For every µ ∈ W, limn→∞ ∥µn − µ∥ exists;
(ii) Any weak­cluster point of the sequence {µn} belongs to W .

Then, there exists w∗ ∈ W such that {µn} converges weakly to w∗.

Lemma 2.7. (see e.g., Chidume, [6]) Let H be a real Hilbert space and λ ∈ [0, 1].
Then, for any x, y, z ∈ H,

∥λx+ (1− λ)y − z∥2 = λ∥x− z∥2 + (1− λ)∥y − z∥2 − λ(1− λ)∥x− y∥2.

3. MAIN RESULTS

To approximate a solution of the split equality fixed point problem (1.2), we make
the following assumptions:
(A1) H1, H2 and H3 are real Hilbert spaces, A : H1 → H3 and B : H2 → H3

are bounded linear operators.
(A2) U : H1 → H1, T : H2 → H2 are demi­contractive mappings with constants

k1 and k2, respectively.
(A3) I − U and I − T are demi­closed at zero, and U and T are uniformly

continuous.
For arbitrary x1 ∈ H1 and y1 ∈ H2 define an iterative algorithm by


xn+1 = (1− α)

(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
;

yn+1 = (1− α)
(
yn + γB∗(Axn −Byn)

)
+ αT

(
yn + γB∗(Axn −Byn)

)
, ∀n ≥ 1,

(3.1)
where α ∈ (0, 1− k) and γ ∈

(
0, 2

(λA∗A+λB∗B)

)
, where λA∗A and λB∗B denote the

spectral radii of A∗A and B∗B, respectively and k = max{k1, k2}.

We now prove the following theorem.

Theorem 3.1. Suppose assumptions (A1)− (A3) hold.
If Ω := {(x∗, y∗) ∈ F (U) × F (T ) : Ax∗ = By∗} ̸= ∅, then the sequence {(xn, yn)}
generated by (3.1) converges weakly to a solution of problem (1.2).

Proof. Let (x∗, y∗) ∈ Ω. Using lemma 2.7 and assumption A2, we have∥∥∥xn+1 − x∗
∥∥∥2 =

∥∥∥(1− α)
(
xn − γA∗(Axn −Byn)

)
+ αU

(
xn − γA∗(Axn −Byn)

)
− x∗

∥∥∥2
= (1− α)

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2 + α

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− x∗

∥∥∥2
− α(1− α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
≤ (1− α)

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2 + α

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2

+ αk1

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
=

∥∥∥xn − γA∗(Axn −Byn)− x∗
∥∥∥2
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− α(1− k1 − α)
∥∥∥xn − γA∗(Axn −Byn)− U

(
xn − γA∗(Axn −Byn)

)∥∥∥2
≤

∥∥∥xn − x∗
∥∥∥2 − 2γ⟨Axn −Byn, Axn −Ax∗⟩+ γ2λA∗A

∥∥∥Axn −Byn

∥∥∥2
− α(1− k1 − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2.
Similary, we have that∥∥∥yn+1 − y∗

∥∥∥2 ≤
∥∥∥yn − y∗

∥∥∥2 + 2γ⟨Axn −Byn, Byn −By∗⟩+ γ2λB∗B

∥∥∥Axn −Byn

∥∥∥2
− α(1− k2 − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
Adding the above two inequalities and using k = max{k1, k2} and the fact that
Ax∗ = By∗, we have that

∥∥∥xn+1 − x∗
∥∥∥2 + ∥∥∥yn+1 − y∗

∥∥∥2 ≤
∥∥∥xn − x∗

∥∥∥2 + ∥∥∥yn − y∗
∥∥∥2 + γ2(λA∗A + λB∗B)

∥∥∥Axn −Byn

∥∥∥2
− 2γ

∥∥∥Axn −Byn

∥∥∥2
− α(1− k − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− k − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
That is,

∥∥∥xn+1 − x∗
∥∥∥2 + ∥∥∥yn+1 − y∗

∥∥∥2 ≤
∥∥∥xn − x∗

∥∥∥2 + ∥∥∥yn − y∗
∥∥∥2 − γ

(
2− γ(λA∗A + λB∗B)

)∥∥∥Axn −Byn

∥∥∥2
− α(1− k − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− k − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
Now set Ωn(x

∗, y∗) =
∥∥∥xn − x∗

∥∥∥2 + ∥∥∥yn − y∗
∥∥∥2. Then, it follows that

Ωn+1(x
∗, y∗) ≤ Ωn(x

∗, y∗)− γ
(
2− γ(λA∗A + λB∗B)

)∥∥∥Axn −Byn

∥∥∥2
− α(1− k − α)

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥2
− α(1− k − α)

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥2.
(3.2)

Since α ∈
(
0, 1− k

)
and γ ∈

(
0, 2

(λA∗A+λB∗B)

)
,

we have 2− γ(λA∗A + λB∗B) > 0 and 1− k − α > 0. It follows that

Ωn+1(x
∗, y∗) ≤ Ωn(x

∗, y∗).
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So, the sequence {Ωn(x
∗, y∗)} is non­increasing and bounded below, therefore, it

converges. On the other hand, it follows from inequality (3.2) and the convergence
of the sequence {Ωn(x

∗, y∗)} that

lim
n→∞

∥∥∥Axn −Byn

∥∥∥ = 0, (3.3)

lim
n→∞

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥ = 0, (3.4)

and

lim
n→∞

∥∥∥yn + γB∗(Axn −Byn)− T
(
yn + γB∗(Axn −Byn)

)∥∥∥ = 0. (3.5)

Furthermore, since {Ωn(x
∗, y∗)} converges, we have that {xn} and {yn} are bounded.

Let x∗∗ and y∗∗ be the weak­cluster points of the sequences {xn} and {yn}, respec­
tively. Then, there exists a subsequence of {(xn, yn)} (without loss of generality,
still denoted by {(xn, yn)}) such that xn ⇀ x∗∗ and yn ⇀ y∗∗. Next, we show that
Ux∗∗ = x∗∗ and Ty∗∗ = y∗∗. Since U is uniformly continuous, it follows from (3.3)
that

lim
n→∞

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− Uxn

∥∥∥ = 0. (3.6)

Similarly, we have that

lim
n→∞

∥∥∥T(yn + γB∗(Axn −Byn)
)
− Tyn

∥∥∥ = 0. (3.7)

We now show that limn→∞

∥∥∥Uxn − xn

∥∥∥ = 0. Using (3.4) and (3.6), we have∥∥∥Uxn − xn

∥∥∥ ≤
∥∥∥xn − γA∗(Axn −Byn)− U

(
xn − γA∗(Axn −Byn)

)∥∥∥
+

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− Uxn

∥∥∥
+

∥∥∥xn − γA∗(Axn −Byn)− xn

∥∥∥
≤

∥∥∥xn − γA∗(Axn −Byn)− U
(
xn − γA∗(Axn −Byn)

)∥∥∥
+

∥∥∥U(
xn − γA∗(Axn −Byn)

)
− Uxn

∥∥∥
+ γ

∥∥∥A∗
∥∥∥∥∥∥Axn −Byn

∥∥∥ −→ 0 as n → ∞.

This implies that

lim
n→∞

∥∥∥Uxn − xn

∥∥∥ = 0. (3.8)

Similarly, we have that

lim
n→∞

∥∥∥Tyn − yn

∥∥∥ = 0. (3.9)

Now, since xn ⇀ x∗∗, I − U is demi­closed at zero, and limn→∞

∥∥∥Uxn − xn

∥∥∥ = 0,
we have that Ux∗∗ = x∗∗, which shows that x∗∗ ∈ F (U). Similarly, we have that
y∗∗ ∈ F (T ). Since A and B are bounded linear operators, and {xn} and {yn}
converge weakly to x∗∗ and y∗∗, respectively, we have that for arbitrary f ∈ H∗

3 ,

f(Axn) = (f ◦A)(xn) −→ (f ◦A)(x∗∗) = f(Ax∗∗).

Similarly,
f(Byn) = (f ◦B)(yn) −→ (f ◦B)(y∗∗) = f(By∗∗).
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These convergences imply that

Axn −Byn ⇀ Ax∗∗ −By∗∗,

which, in turn, implies that∥∥∥Ax∗∗ −By∗∗
∥∥∥ ≤ lim inf

n→∞

∥∥∥Axn −Byn

∥∥∥ = 0,

so that Ax∗∗ = By∗∗. Hence, we have (x∗∗, y∗∗) ∈ Ω.
Summing up, we have proved that:

(1) for each (x∗, y∗) ∈ Ω, limn→∞

(∥∥∥xn − x∗
∥∥∥2 + ∥∥∥yn − y∗

∥∥∥2) exists;
(2) each weak cluster point of the sequence {(xn, yn)} belongs to Ω.

Taking H = H1 × H2 with the norm
∥∥∥(x, y)∥∥∥ =

(∥∥∥x∥∥∥2 + ∥∥∥y∥∥∥2) 1
2

, W = Ω, µn =

(xn, yn), and µ = (x∗, y∗) in lemma 2.6, we have that there exists (x̄, ȳ) ∈ Ω such
that xn ⇀ x̄ and yn ⇀ ȳ. Hence, the sequence {(xn, yn)} generated by the iterative
scheme (3.1) converges weakly to a solution of problem (1.2) in Ω. This completes
the proof. �

We now prove the following strong convergence theorem.

Theorem 3.2. Suppose assumptions (A1) − (A3) hold and let {xn} and {yn} be
as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T are semi­compact, then, the
sequence {(xn, yn)} generated by (3.1) converges strongly to a solution of problem
(1.2) in Ω.

Proof. Since U and T are semi­compact, {xn} and {yn} are bounded (by theorem
3.1), and limn→∞

∥∥∥(I − U)xn

∥∥∥ = 0, limn→∞

∥∥∥(I − T )yn

∥∥∥ = 0, there exist (without
loss of generality) subsequences {xnj} ⊂ {xn} and {ynj} ⊂ {yn} such that {xnj}
and {ynj} converge strongly to some points x∗ and y∗, respectively. It follows from
the demi­closedness of I − U and I − T that x∗ ∈ F (U) and y∗ ∈ F (T ).
Thus, ∥∥∥Ax∗ −By∗

∥∥∥ = lim
j→∞

∥∥∥Axnj −Bynj

∥∥∥ = 0.

This implies that Ax∗ = By∗. Hence, (x∗, y∗) ∈ Ω. On the other hand, since

Ωn(x, y) =
∥∥∥xn−x

∥∥∥2+∥∥∥yn−y
∥∥∥2 for any (x, y) ∈ Ω, we know that limj→∞ Ωnj (x

∗, y∗) =

0. From theorem 3.1, we have limn→∞ Ωn(x
∗, y∗) exists, therefore limn→∞ Ωn(x

∗, y∗) =
0. So, as in the proof of theorem 3.1, the iterative scheme converges strongly to a
solution of problem (1.2) in Ω. The proof is complete. �
Corollary 3.1. Suppose assumptions (A1) − (A3) hold and let {xn} and {yn} be
as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T have convex and compact
domain D, then, the sequence {(xn, yn)} generated by (3.1) converges strongly to a
solution of problem (1.2) in Ω.

Proof. Since every map T : D ⊂ H → D, with D compact, is semi­compact, the
proof follows from theorem 3.2. �
Corollary 3.2. Suppose assumptions (A1) and (A3) hold and let {xn} and {yn} be
as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T are quasi­nonexpansive and
semi­compact, then, the sequence {(xn, yn)} generated by (3.1) converges strongly
to a solution of problem (1.2) in Ω.
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Corollary 3.3. Suppose assumptions (A1) and (A3) hold and let {xn} and {yn}
be as in theorem 3.1. If Ω ̸= ∅, and the mappings U and T are firmly quasi­
nonexpansive and semi­compact, then, the sequence {(xn, yn)} generated by (3.1)
converges strongly to a solution of problem (1.2) in Ω.

Remark 3.4. Our theorems 3.1 and 3.2 extend and complement the results of
Moudafi et al. [9], Moudafi [10], and Yuan­Fang et al. [15].

Remark 3.5. The recursion formula considered in this paper is of Krasnoselskii­
type which, in general, converges as fast as a geometric progression.
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ABSTRACT. The idea of difference sequence spaces was first introduced by Kizmaz in 1981
and the idea of triple sequences was first introduced by Sahiner et.al. 2007. In this article we
introduce the notion of triple sequence spaces c30(∆), c3(∆), and l3∞(∆) using the difference
operator ∆. We study some of their algebraic and topological properties and prove some
inclusion results.
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1. Introduction and Preliminaries

A triple sequence (real or complex) can be defined as a function x : N×N×N −→
R(C), where N, R and C denote the set of natural numbers, real numbers and com­
plex numbers respectively. The different types of notions of triple sequences was
introduced and investigated at the initial stage by Sahiner, et. al. [1, 2] and Dutta,
et. al. [3] and others..

The notion of difference sequence spaces (for single sequences) was introduced
by Kizmaz [6] as follows:

Z(∆) = {(xn) ∈ w : (∆xn) ∈ Z}, for Z = c, c0, l∞, the spaces of convergent,
null and bounded sequences, respectively, where ∆xn = xn − xn+1 for all n ∈ N .
Later on it was further investigated by Tripathy [4] and many others. Tripathy and
Sarma[5] introduced difference double sequence spaces as follows:
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Chandra das).
Article history : Received June 13, 2014 Accepted September 3, 2014.



72 DEBNATH, SARMA, DAS/JNAO : VOL. 6, NO. 1, (2015), 71­79

Z(∆) = {(xmn) ∈ w : (∆xmn) ∈ Z}, for Z = c2, c20, l
2
∞, the spaces of convergent,

null and bounded double sequences respectively, where ∆xmn = xmn − xmn+1 −
xm+1n + xm+1n+1 for all m,n ∈ N.

Definition 1.1 [1]: A triple sequence (xlmn) is said to be convergent to L in
Pringsheim′s sense if for every ϵ > 0, there exists N(ϵ) ∈ N such that

|xlmn − L| < ϵ whenever l ≥ N, m ≥ N, n ≥ N and we write liml,m,n−→∞xlmn =
L.

Note: A triple sequence is convergent in Pringsheim′s sense may not be bounded
[2].

Definition 1.2 [1]: A triple sequence (xlmn) is said to be Cauchy sequence if for
every ϵ > 0, there exists N(ϵ) ∈ N such that

|xlmn − xpqr| < ϵ whenever l ≥ p ≥ N, m ≥ q ≥ N, n ≥ r ≥ N .

Definition 1.3 [1]: A triple sequence (xlmn) is said to be bounded if there exists
M > 0, such that |xlmn| < M for all l,m, n ∈ N .

Definition 1.4 [3]: A triple sequence (xlmn) is said to be converge regularly if it
is convergent in Pringsheim′s sense and in addition the following limits holds:

limn−→∞xlmn = Llm (l,m ∈ N)

limm−→∞xlmn = Lln (l, n ∈ N)

liml−→∞xlmn = Lmn (m,n ∈ N)

Let w3 denote the set of all triple sequence of real numbers. We can define the
class of triple sequences as follows:

c30 = {x = (xlmn) ∈ w3 : (xlmn) is convergent to zero in Pringsheim′s sense }

c3 = {x = (xlmn) ∈ w3 : (xlmn) is convergent in Pringsheim ′s sense }

l3∞ = {x = (xlmn) ∈ w3 : (xlmn) is bounded in Pringsheim′s sense }

c3R = {x = (xlmn) ∈ w3 : (xlmn) is regularly convergent }

c3B = {x = (xlmn) ∈ w3 : (xlmn) is convergent in Pringsheim ′s sense and
bounded }

These classes are all linear spaces.

It is obvious that c30 ⊂ c3 ; c3R ⊂ c3B ⊂ l3∞ and the inclusion is strict.
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Theorem 1.1: The spaces c30, c3, l3∞, c3R and c3B are complete normed linear
spaces with the normed.

∥x∥ = supl,m,n|xlmn| < ∞

Proof: simple.

Example 1.1 [1]: Let xlmn =


mn, l = 3
nl, m = 5
lm, n = 7
8, otherwise

Then (xlmn) → 8 in Pringsheim′s sense but not bounded as well as not regularly
convergent.

Example 1.2: Let xlmn = 1, for all l,m, n ∈ N . Then (xlmn) is convergent in
Pringsheim′s sense, bounded and regularly convergent.

Definition 1.5[3]: A triple sequence space E is said to be solid if (αlmnxlmn) ∈ E
whenever (xlmn) ∈ E and for all sequences (αlmn) of scalars with |αlmn| ≤ 1, for
all l,m, n ∈ N.

Definition 1.6 [3]: A triple sequence space E is said to be monotone if it contains
the canonical pre­images of all its step spaces.

Remark 1.1 [3]: A sequence space is solid implies that it is monotone.

Definition 1.7 [3]: A triple sequence space E is said to be convergence free if
(ylmn) ∈ E , whenever (xlmn) ∈ E and xlmn = 0 implies ylmn = 0.

Definition 1.8 [3]: A triple sequence space E is said to be symmetric if (xlmn) ∈
E implies (xπ(l)π(m)π(n)) ∈ E, where π is a permutation of N × N × N.

Now we introduced the difference triple sequence spaces as follows:

c30(∆)={(xlmn) ∈ w3 : (∆xlmn) is regularly null }

c3(∆)={(xlmn) ∈ w3 : (∆xlmn) is convergent in Pringsheim’s sense }

c3R(∆)={(xlmn) ∈ w3 : (∆xlmn) is regularly convergent }

l3∞(∆)={(xlmn) ∈ w3 : (∆xlmn) is bounded }

c3B(∆)={(xlmn) ∈ w3 : (∆xlmn) is convergent in Pringsheim’s sense and bounded
}

Where ∆xlmn = xlmn − xlmn+1 − xlm+1n + xlm+1n+1 − xl+1mn + xl+1mn+1 +
xl+1m+1n − xl+1m+1n+1
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2. MAIN RESULTS

Theorem 2.1: The classes of sequences c30(∆), c3(∆), c3R(∆), l3∞(∆), c3B(∆)
are linear spaces.

Proof: Obvious.

Theorem 2.2: The classes of sequences c30(∆), c3(∆), c3R(∆), l3∞(∆), c3B(∆)
are complete normed linear spaces with the norm

∥x∥ = supl|xl11|+ supm|x1m1|+ supn|x11n|+ supl,m,n|∆xlmn| < ∞

Proof: Let (xi) be a Cauchy sequence in l3∞(∆), where xi = (xi
lmn) ∈ l3∞(∆) for

each i ∈ N .
Then we have,
∥xi−xj∥ = supl|xi

l11−xj
l11|+supm|xi

1m1−xj
1m1|+supn|xi

11n−xj
11n|+supl,m,n|∆xi

lmn−
∆xj

lmn| → 0

as i, j → ∞

Therefore, |xi
lmn − xj

lmn| → 0, for i, j → ∞ and each l,m, n ∈ N

Hence (xi
lmn)=(x

1
lmn, x

2
lmn, x

3
lmn, ... ... ... ... ... ...) is a Cauchy sequence in R (Real

numbers).

Whence by the completeness of R, it converges to xlmn say, i.e., there exists

lim xi
lmn = xlmn for each l,m, n ∈ N

Further for each ϵ > 0, there exists N = N(ϵ), such that for all i, j ≥ N, and for
all l,m, n ∈ N

|xi
l11 − xj

l11| < ϵ, |xi
1m1 − xj

1m1| < ϵ, |xi
11n − xj

11n| < ϵ

|∆xi
lmn − ∆xj

lmn| = |(xi
l+1m+1n+1 − xj

l+1m+1n+1) − (xi
l+1m+1n − xj

l+1m+1n) −
(xi

l+1mn+1 − xj
l+1mn+1)+ (xi

l+1mn − xj
l+1mn)− (xi

lm+1n+1 − xj
lm+1n+1)+ (xi

lm+1n −
xj
lm+1n) + (xi

lmn+1 − xj
lmn+1)− (xi

lmn − xj
lmn)| < ϵ

and

limj |xi
l11 − xj

l11| = |xi
l11 − xl11| ≤ ϵ ,

limj |xi
1m1 − xj

1m1| = |xi
1m1 − x1m1| ≤ ϵ ,

limj |xi
11n − xj

11n| = |xi
11n − x11n| ≤ ϵ ,

Now

limj |∆xi
lmn −∆xj

lmn|
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= |(xi
l+1m+1n+1−xj

l+1m+1n+1)−(xi
l+1m+1n−xj

l+1m+1n)−(xi
l+1mn+1−xj

l+1mn+1)+

(xi
l+1mn−xj

l+1mn)−(xi
lm+1n+1−xj

lm+1n+1)+(xi
lm+1n−xj

lm+1n)+(xi
lmn+1−xj

lmn+1)−
(xi

lmn − xj
lmn)|

= |(xi
l+1m+1n+1−xl+1m+1n+1)−(xi

l+1m+1n−xl+1m+1n)−(xi
l+1mn+1−xl+1mn+1)+

(xi
l+1mn−xl+1mn)−(xi

lm+1n+1−xlm+1n+1)+(xi
lm+1n−xlm+1n)+(xi

lmn+1−xlmn+1)−
(xi

lmn − xlmn)| ≤ ϵ
for all i ≥ N

Since ϵ is not dependent on l,m, n

supl,m,n |(xi
l+1m+1n+1 − xl+1m+1n+1) − (xi

l+1m+1n − xl+1m+1n) − (xi
l+1mn+1 −

xl+1mn+1) + (xi
l+1mn − xl+1mn) − (xi

lm+1n+1 − xlm+1n+1) + (xi
lm+1n − xlm+1n) +

(xi
lmn+1 − xlmn+1)− (xi

lmn − xlmn)| ≤ ϵ,

Consequently we have, ∥xi
lmn − xlmn∥ ≤ 4ϵ, for all i ≥ N

Hence we obtain xi
lmn → xlmn as i → ∞ in l3∞(∆)

Now we have to show that (xlmn) ∈ l3∞(∆)

|xlmn − xl+1m+1n+1| = |xlmn − xN
lmn + xN

lmn − xN
l+1m+1n+1 + xN

l+1m+1n+1 −
xl+1m+1n+1|

≤ |xN
lmn − xl+1m+1n+1|+ ∥xN

lmn − xlmn∥ = O(1)

This implies x = (xlmn) ∈ l3∞(∆) , (Since l3∞(∆) is a linear space.)

Hence l3∞(∆) is complete.

Similarly the others.

Theorem 2.3:

(i) c30(∆) ⊂ c3(∆) and the inclusion is strict. .

(ii) c3R(∆) ⊂ c3(∆) and the inclusion is strict.

Proof: The inclusion being strict follows from the following example:

Example 2.1: For theorem (i)we consider the sequence (xlmn) defined by

(xlmn)= −lmn, for all l,m, n ∈ N

Then (∆xlmn) ∈ c3, but (∆xlmn) /∈ c30

Hence the inclusion is strict.

Example 2.2: For theorem (ii) we consider the sequence defined by
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xlmn =

{
(−1)nlmn, for l = 1,m = 1, 2, 3 for all n ∈ N
1, otherwise

Clearly (∆xlmn) ∈ c3, but the sequence (∆xlmn) /∈ c3R

Hence the inclusion c3R(∆) ⊂ c3(∆), is strict.

Theorem 2.4: The classes of sequences c30(∆), c3(∆), c3R(∆), l3∞(∆) and c3B(∆)
are not solid in general.

Proof: This is clear from the following examples:

Example 2.3: We consider the sequence (xlmn) defined by

(xlmn)= 2, for all l,m, n ∈ N

Clearly the difference triple sequence (∆xlmn) ∈ c30, c3, c3R and c3B

Consider the sequence of scalars defined by

αlmn = (−1)l+m+n, for all l,m, n ∈ N

Then the sequence (αlmnxlmn) takes the following form

αlmnxlmn = 2.(−1)l+m+n, for all l,m, n ∈ N

Clearly (∆αlmnxlmn) /∈ c30, c3, c3R and c3B

Hence c30(∆), c3(∆), c3R(∆) and c3B(∆) are not solid.

Example 2.4: We consider the sequence (xlmn) defined by

(xlmn)= lmn, for all l,m, n ∈ N

Clearly the sequence (∆xlmn) ∈ l3∞

Consider the sequence of scalars defined by

αlmn = (−1)m+n, for all l,m, n ∈ N

Then the sequence (αlmnxlmn) takes the following form

αlmnxlmn = (−1)m+nlmn, for all l,m, n ∈ N

Clearly, (∆αlmnxlmn) /∈ l3∞ ,

Hence l3∞(∆) are not solid.

Theorem 2.5: The spaces c30(∆), c3(∆), c3R(∆), l3∞(∆) and c3B(∆) are not
symmetric in general.
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Proof: The proof is clear from the following examples:

Example 2.5: Consider the sequence (xlmn) defined by

(xlmn)= m, for all l,m, n ∈ N

Clear the sequence (∆xlmn) ∈ c30, c3, c3R and c3B

Now Consider a rearrange sequence (ylmn) of (xlmn) defined by

ylmn=

 m+ 1 , for m = l, n is even
m− 1 , for m = l + 1, n is even
m , otherwise

Clearly (∆ylmn) /∈ c30, c3, c3R and c3B

Hence c30(∆), c3(∆), c3R(∆) and c3B(∆) are not symmetric.

Example 2.6: Consider the sequence (xlmn) defined by

(xlmn)= lmn, for all l,m, n ∈ N

Clear the sequence (∆xlmn) ∈ l3∞

Now Consider a rearrange sequence (ylmn) of (xlmn) defined by

ylmn=

 m+ 1 , for m = l, n is even
m− 1 , for m = l + 1, n is even
m , otherwise

Then the sequence (∆ylmn) /∈ l3∞

Hence l3∞(∆) are not symmetric.

Theorem 2.6: The classes of sequences c30(∆), c3(∆), c3R(∆), l3∞(∆) and c3B(∆)
are not convergence free in general.

Proof: We provide an example to prove the result.

Example 2.7: Consider the sequence defined by

xlmn =

{
0, if n = 1, for all l,m ∈ N
−2, otherwise

Clearly the triple sequence (∆xlmn) ∈ c30, c3, c3R, l3∞ and c3B

Let the sequence (ylmn) be defined by

ylmn =

{
0, if n is odd, for all l,m ∈ N
lmn, otherwise

Clearly (∆ylmn) /∈ c30, c3, c3R, l3∞ and c3B,
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Hence c30(∆), c3(∆), c3R(∆), l3∞(∆) and c3B(∆), are not convergence free.

Theorem 2.7: The classes of sequences c30(∆), c3(∆), c3R(∆), l3∞(∆) and c3B(∆)
are all sequence algebra.

Proof: It is obvious.

Conclusion: We have introduced the notions of null, convergent and bounded
triple sequence spaces based on the difference operator ∆ and have investigated its
different properties, which are the generalizations of null, convergent and bounded
triple sequence spaces. Further generalizations may be possible based on the dif­
ference operator ∆m.
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ON THE SYMMETRIC VECTOR QUASI­EQUILIBRIUM PROBLEM VIA

NONLINEAR SCALARIZATION METHOD
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ABSTRACT. The aim of this paper, among other things, is, using a nonlinear scalarization
function and its properties, to study an existence theorem for a solution of SVQEP in the
setting of real topological vector space. One can consider this note as a new version of the
reference [5] by replacing a nonlinear scalarization function by a linear functional.

KEYWORDS : Symmetric vector quasi­equilibrium problem; Properly quasi­convex; Acyclic
map; Admissible set

1. INTRODUCTION

Let X and Y be real Hausdorff topological vector spaces (for short, t.v.s.), C and
D be nonempty subsets of X and Y , respectively. Let Z be a real Hausdorff t.v.s.
with its topological dual space Z∗. The pairing between Z and Z∗ is denoted by
⟨., .⟩. Let P ⫋ Z be a convex cone with intP ̸= ∅, where intP denotes the interior
of P . Let S : C ×D −→ 2C and T : C ×D −→ 2D be set­valued mappings and let
f , g : C ×D −→ Z be two vector­valued functions.

In 2003, Fu [8] introduced the symmetric vector quasi­equilibrium problem
(for short, SVQEP) that consists in finding (x̄, ȳ) ∈ C × D such that x̄ ∈ S(x̄, ȳ),
ȳ ∈ T (x̄, ȳ) and

f(x, ȳ)− f(x̄, ȳ) ̸∈ −intP, ∀x ∈ S(x̄, ȳ),

g(x̄, y)− g(x̄, ȳ) ̸∈ −intP, ∀y ∈ T (x̄, ȳ).

The SVQEP is a generalization of the (scalar) symmetric quasi­equilibrium prob­
lem (for short, SQEP) posed by Noor and Oettli [10] which this problem is a gener­
alization of the equilibrium problem that, at the first, proposed by Blum and Oettli
[3]. The equilibrium problem contains as special cases, for instance, optimization
problems, problems of Nash equilibria, variational inequalities, and complemen­
tarity problems (see [3]).
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The aim of this paper, among other things, is, using a nonlinear scalarization
function and its properties, to study an existence theorem for a solution of SVQEP
in the setting real of t.v.s. This method for obtaining a solution of SVQEP is different
from that which is used by Fu in [8]. Fu?s method is based on the notion of weak
minimal points and well­known Kakutani­Fan­ Glicksberg Fixed point theorem in
locally convex Hausdorff space. Also our method enables us extends some results
in [4, 8, 10, 11].

2. DEFINITIONS AND PRELIMINARIES

In the rest of this section we recall some definitions and preliminaries results
which we need in the sequel.

In this paper, all topological spaces are assumed to be Hausdorff. As mentioned
before, let P ⫋ Z be a convex cone with intP ̸= ∅. We can define a vector ordering
in Z by setting

x ⪯ y ⇔ y − x ∈ P,

and a weak ordering by setting

x ≺ y ⇔ y − x ∈ intP.

We will denote usual ordering on real numbers by ≤.

It is clear that P ∩ ­intP = ∅, since P + intP ⊆ intP and P ̸= Z (this fact will be
used in Lemma 3.1).

Let E be a t.v.s. and C : E −→ 2E a multi­valued map and for all x ∈ E, C(x)
is a solid cone (that is, intC(x) is non empty). Let e : E −→ E be a map with
e(x) ∈ C(x) for x ∈ E. The non linear scalarization function ξ : E × E −→ R is
defined as follows:

ξ(x, y) = inf{r ∈ R : y ∈ re(x)− C(x)}.

Definition 2.1 [8]. Let B be a nonempty subset of Z. Element b ∈ B is called a
weak minimal point of B if B ∩ (b− int P ) = ∅. The set of all weak minimal points
of B will be denoted by min wB.

Lemma 2.1 [7]. Let B be a nonempty compact subset of Z. Then

(i) minwB ̸= ∅,
(ii) B ⊂ minwB + (int P ∪ {0}).

In the following definition (i)­(iv) is due to Ferro [7] and (v) to Tanaka [12].

Definition 2.2. Let (Z,P ) be an ordered topological vector space, and let C be a
nonempty convex subset of a vector space X. Let a vector mapping f : C −→ Z be
given.

(i) f is called convex if for every x, y ∈ C and t ∈ [0, 1], one has
f(tx+ (1− t)y) ⪯ tf(x) + (1− t)f(y).

(ii) f is called properly quasi­convex if for every x, y ∈ C and t ∈ [0, 1],
one has either f(tx+ (1− t)y) ⪯ f(x) or f(tx+ (1− t)y) ⪯ f(y).

(iii) f is called P­l.s.c. if, for all z ∈ Z, the set L(z) = {x ∈ C : z ⊀ f(x)}
is closed in C.
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(iv) f is called P­u.s.c. if, for all z ∈ Z, the set U(z) = {x ∈ C : f(x) ⊀ z}
is closed in C.

(v) f is called natural quasi­convex if for every x, y ∈ C and t ∈ [0, 1],
there exists µ ∈ [0, 1] such that f(tx+ (1− t)y) ⪯ µf(x) + (1− µ)f(y)

Also, the function f is said to be natural quasi­concave(respectively, concave,
properly quasi­concave) if −f is natural quasi­convex( respectively, convex, prop­
erly quasi­convex).

Remark 2.1. Every convex or properly quasi­convex function is natural quasi­
convex function (see Lemma 2.1 [14]). A vector mapping may be convex and not
properly quasi­convex, and conversely (see [7]). Consequently, the class of natural
quasi­convex functions is strictly larger than both the class of convex functions and
the class of properly quasi­convex functions. It is easily seen that properly quasi­
convexity and quasi­convexity are equivalent to each other in the scalar case, i.e.,
Z = R and P = [0,∞).

Definition 2.3. Let X and Y be two topological spaces. A set­valued mapping
T : X −→ 2Y is called:

(i) upper semi­continuous (u.s.c.) at x ∈ X if for each open set V containing
T (x), there is an open set U containing x such that for each t ∈ U , T (t) ⊆
V ; T is said to be u.s.c. on X if it is u.s.c. at all x ∈ X.

(ii) lower semi­continuous (l.s.c.) at x ∈ X if for each open set V with
T (x)∩V ̸= ∅, there is an open set U containing x such that for each t ∈ U ,
T (t) ∩ V ̸= ∅; T is said to be l.s.c. on X if it is l.s.c. at all x ∈ X.

(iii) continuous on X if it is at the same time u.s.c. and l.s.c. on X.

(iv) closed if the graph Gr(T ) of T , i.e., {(x, y) : x ∈ X, y ∈ T (x)}, is a closed
set in X × Y .

(v) compact if the closure of range T , i.e., T (X), is compact, where T (X) =
∪x∈XT (x).

Remark 2.2 [13]. T is l.s.c. at x ∈ X if and only if for any y ∈ T (x), and any net
{xα}, xα −→ x, there is a net {yα} such that yα ∈ T (xα) and yα −→ y.

Definition 2.4. Let X be a topological space, Y be a t.v.s. A function f : X −→ Y
is said to be demicontinuous if

f−1(M) = {x ∈ X : f(x) ∈ M}
is closed in X for each closed half space M ⊂ Y .

Lemma 2.2 [14]. Let X be a topological space, Z a t.v.s. and f : X −→ Z be a
demicontinuous function, then for any x∗ ∈ Z∗, the composite function x∗ ◦ f is
continuous, where Z∗ is the topological dual space of Z.

Definition 2.5 [11]. A nonempty topological space is acyclic if all of its reduced
Cech homology groups over rationals vanish. Note that any convex or star­shape
subset of a topological vector space is contractible, and that any contractible space
is acyclic. A map T : X −→ 2Y is said to be acyclic if it is u.s.c. with compact
acyclic values .
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Definition 2.6 [11]. A nonempty subset X of a t.v.s. E is said to be admissible
provided that, for every compact subset K of X and every neighborhood V of the
origin 0 of E, there exists a continuous map h : K −→ X such that x− h(x) ∈ V ,
for all x ∈ K and h(K) is contained in a finite dimensional subspace L of E. Note
that every nonempty convex subset of a locally convex t.v.s. is admissible (see [9]).
Other examples of admissible t.v.s. are lp and Lp(0, 1) for 0 < p < 1, the space
S(0, 1) of equivalent class of measurable functions on [0, 1], the Hardy spaces Hp

for 0 < p < 1 and certain Orlicz spaces. Ultrabarrelled t.v.s. are also admissible.

We need the following theorem in the sequel.

Theorem 2.1 [11]. Let C and D be admissible convex subsets of t.v.s. X and Y ,
respectively. Let S : C×D −→ 2C and T : C×D −→ 2D be compact acyclic maps,
and f, g : C ×D −→ R l.s.c. functions such that (i) The functions

F (x, y) = min{f(ξ, y) : ξ ∈ S(x, y)},

G(x, y) = min{g(x, η) : η ∈ T (x, y)}
are u.s.c. on C ×D, and

(ii) For each (x, y) ∈ C ×D, the sets

A(x, y) = {ξ ∈ S(x, y) : f(ξ, y) = F (x, y)},

B(x, y) = {η ∈ T (x, y) : g(x, η) = G(x, y)}

are acyclic.

Then there exists an (x, y) ∈ C ×D such that

x ∈ S(x, y), f(x, y) ≥ f(x, y), for all x ∈ S(x, y),

y ∈ T (x, y), g(x, y) ≥ g(x, y), for all y ∈ T (x, y).

3. MAIN RESULTS

Throughout this section, let X,Y be real Hausdorff t.v.s., C and D be non empty,
admissible convex subsets of X and Y, respectively. Let Z be a real Hausdorff t.v.s.
with topological dual space Z∗ and P ⫋ Z a convex cone with int P ̸= ∅.

The following Lemma is essential tool for our main results. In the following we
establish some important properties of the non linear scalarization function which
generalize Propositions 2.3 and 2.4 in [4] from locally convex spaces to topological
vector spaces which its proof left to the reader.

Lemma 3.1. Let Z be a t.v.s. and P be a convex cone. Let e ∈ intP Then the
following assertions, for each r ∈ R and y ∈ z are satisfied.

(i) ξe(y) = inf{r ∈ R : y ∈ re− P = min{r ∈ R : y ∈ re− P};
(ii) ξe(y) ≤ r ⇔ y ∈ re− P
(iii) ξe(y) < r ⇔ y ∈ re− intP
(iv) If y1 ⪯ y2, then ξe(y1) ≤ ξe(y2);
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(v) The function y −→ ξe(y) is continuous, positively homogeneous and sub
additive on Z;

(vi) The function y −→ ξe(y) is bounded on some neighborhood of zero.

Now, we are ready to prove existence theorems that extends the main result in
[6], Theorems 1,2 and 3 in [8], and also is a generalization of the Theorem 1.1.
Theorem 3.1. Assume that

(i) S : C ×D −→ 2C and T : C ×D −→ 2D are continuous and compact;
and for each (x, y) ∈ C ×D, S(x, y), T (x, y) are nonempty, closed
convex subsets;

(ii) f, g : C ×D → Z are demicontinuous;
(iii) For any fixed y ∈ D, f(x, y) is natural quasi­convex in x; for any

fixed x ∈ C, g(x, y) is natural quasi­convex in y.

Then SVQEP has a solution.

Proof. By (ii) and Lemma 3.1 through theorem 2.2 in [6], the composite functions
ξeof and ξeog are l.s.c. We claim that the real­valued continuous functions ξeof
and ξeog satisfy in conditions (i) and (ii) of Theorem 2.1. Indeed, condition (i) follows
from Theorem 1 in [1, p. 122].

Now for condition (ii), we must show that for any fixed (x, y) ∈ C × D the set
A(x, y) is convex, where

A(x, y) = {u ∈ S(x, y) : ξe ◦ f(u, y) = F (x, y)}
F (x, y) = min{ξe ◦ f(u, y) : u ∈ S(x, y)}.

To this end, let t ∈]0, 1[ and u1, u2 ∈ A(x, y). By the definition of A(x, y), u1, u2 ∈
A(x, y) and convexity of the set S(x, y), we get (1 − t)u1 + tu2 ∈ S(x, y) and
F (x, y) = ξe ◦ f(u1, y) = ξe ◦ f(u2, y). Hence by (iii) there exists µ ∈]0, 1[ such that

F (x, y) ≤ ξe ◦ f((1− t)u1 + tu2, y)

≤ (1− µ)ξe ◦ f(u1, y) + µξe ◦ f(u2, y)

= (1− µ)F (x, y) + µF (x, y)

= F (x, y).

In the above, the first inequality holds by the definition of F (x, y) and (1 − t)u1 +
tu2 ∈ S(x, y), but the second inequality holds by natural quasi­convexity of the
function f in the first argument (assumption (iii)) and to preserve ordering on Z by
ξe (see, Lemma 3.1 (iv,v)). Then, (1− t)u1 + tu2 ∈ A(x, y). Similarly ξe ◦ g satisfies
in conditions (i) and (ii) of Theorem 2.1. Now, by virtue of Theorem 2.1, there exists
(x, y) ∈ C ×D such that

x ∈ S(x, y), ξe ◦ f(x, y) ≥ ξe ◦ f(x, y), ∀x ∈ S(x, y),

y ∈ T (x, y), ξe ◦ g(x, y) ≥ ξe ◦ g(x, y), ∀y ∈ T (x, y).

Then by Lemma 3.1 (v),

x ∈ S(x, y), ξe(f(x, y)− f(x, y)) ≥ ξe(f(x, y))− ξe(f(x, y)) ≥ 0, ∀x ∈ S(x, y),

y ∈ T (x, y), ξe(g(x, y)− g(x, y)) ≥ ξe(g(x, y))− ξe(g(x, y)) ≥ 0, ∀y ∈ T (x, y).

Consequently, it follows from Lemma 3.1 (iii) and the relations (1) and (2) that

x ∈ S(x, y), f(x, y)− f(x, y) ̸∈ −intP, ∀x ∈ S(x, y)
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and

y ∈ T (x, y), g(x, y)− g(x, y) ̸∈ −intP, ∀y ∈ T (x, y),

and so (x, y) is a solution of the SVQEP. This completes the proof. □

The following corollary is one of the applications Theorem 3.1. which extends
the existence Theorem 3.1 in [14] from locally convex topological vector spaces to
topological vector space.

Corollary 3.1. Let C and D be nonempty compact admissible convex sets, and
let the vector­valued function f : C ×D −→ Z satisfy the following conditions

(i) The function f is demicontinuous;
(ii) For any fixed y ∈ D, f(x, y) is natural quasi­convex in x; for any fixed x ∈ C,

f(x, y) is natural quasi­concave in y.

Then the vector­valued function f has at least one P ­weak saddle point, that is,
there exists (x̄, ȳ) ∈ C ×D such that

f(x̄, ȳ)− f(x, ȳ) ̸∈ int P ∀x ∈ C

f(x̄, y)− f(x̄, ȳ) ̸∈ int P ∀x ∈ D.

Proof. It is enough in Theorem 3.1, we define the set­valued mappings S :
C × D −→ 2C and T : C × D −→ 2D as S(x, y) = C, T (x, y) = D, and also the
vector­valued function g on C ×D as g(x, y) = −f(x, y). □

By using Theorem 2.1 and Lemma 3.1 we can state the following theorem which
is another version of Theorem 3.1 without continuity condition of the maps.

Theorem 3.2. Let S : C × D −→ 2C and T : C × D −→ 2D be compact acyclic
maps. Suppose that f, g : C ×D −→ Z and ξe ∈ S−int P,P , be such that

(i) The composite functions ξe ◦ f , ξe ◦ g are l.s.c.,

(ii) The functions

F (x, y) = min{ξe(f(ξ, y)) : ξ ∈ S(x, y)},
G(x, y) = min{ξe(g(x, η)) : η ∈ T (x, y)}

are u.s.c. on C ×D,

(iii) For each (x, y) ∈ C ×D, the sets

A(x, y) = {u ∈ S(x, y) : ξe(f(u, y)) = F (x, y)},
B(x, y) = {η ∈ T (x, y) : ξe(g(x, η)) = G(x, y)}

are acyclic.

Then SVQEP has a solution.

Remark 3.1. Let us briefly discuss assumptions (i),(iii) and convexity C ×D. The
lower semicontinuity of ξe ◦ f and ξe ◦ g : C × D −→ Z is ensured whenever f
and g are P­l.s.c. This follows from Lemma 2.4 in [2]. We can omit compactness
condition of the sets C and D in Theorem 1 in [10], by using Himmelberg’s Fixed
point theorem [11] instead of Berge’s maximum Theorem in its proof. Then by
using this form of the Theorem 1 in [10] and the property of ξe ∈ S−int P,P , we
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can omit condition (iii) in Theorem 3.2, if C and D be nonempty convex subsets of
real locally convex Hausdorff spaces X and Y , respectively, and S, T be u.s.c. and
compact maps with nonempty closed convex values. At last convexity of C ×D is
not essential. In fact, C ×D can be any subset of X × Y which is homomorphic to
an admissible convex subset in t.v.s. X1 × Y1 (see discussion after Theorem 1 in
[11]).

The following examples show that Theorem 3.2 is sharper than Theorem 3.1.

Example 3.1. Let C = [−1, 1], D = [0, 1]. Define T : C ×D −→ 2D by
T (x, y) = [0, 1], S : C ×D −→ 2C by

S(x, y) =

{
{0} if x ̸= 0

[0, 1] if x = 0,

and f, g : C ×D −→ R by

g(x, y) = x+ y, f(x, y) =

{
0 if x ∈ {−1

n : n ∈ N} ∪ {0}
1 otherwise .

The maps S and T are acyclic. The function f is not quasi­convex but l.s.c. and
the function g is convex and continuous such that

F (x, y) = min{f(ξ, y) : ξ ∈ S(x, y)} = 0, for all (x, y) ∈ C ×D,

G(x, y) = min{g(x, η) = x+ η : η ∈ T (x, y)} = x, for all (x, y) ∈ C ×D
are continuous and convex. It is clear that,

A(x, y) = {ξ ∈ S(x, y) : f(ξ, y) = F (x, y)} = {0}, for all (x, y) ∈ C ×D
B(x, y) = {η ∈ T (x, y) : g(x, η) = G(x, y)} = {0}, for all (x, y) ∈ C ×D are

acyclic (sets) for every (x, y) ∈ C×D. Therefore, SVQEP has a solution by Theorem
3.2. But the example does not satisfy in the conditions of Theorem 3.1.

Acknowledgment. The author would like to thank of Islamic Azad University,
Kermanshah Branch, Kermanshah, Iran, for partial supporting of this research.
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