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A NOTE ON QUASI SPLIT NULL­POINT FEASIBILITY PROBLEMS

A. MOUDAFI∗

Aix Marseille Universite, CNRS, ENSAM,
Universite de Toulon, LSIS UMR 7296,

13397, Marseille, France

ABSTRACT. Inspired by the very recent work by M.­A. Noor and Kh.­I Noor [9] and given a
closed convex set­valued mapping C, we propose a split algorithm for solving the problem
of finding an element x∗ in C(x∗) such that its image, Ax∗, under a linear operator, A, is a
zero of a given maximal monotone operator T in Hilbert spaces setting. Then, we present a
strong convergence result and state some examples as applications.

KEYWORDS : Fixed­point; monotone operator; quasi split feasibility problem.
AMS Subject Classification: Primary, 49J53, 65K10; Secondary, 49M37, 90C25.

1. INTRODUCTION AND PRELIMINARIES

Throughout, H is a Hilbert space, ⟨·, ·⟩ denotes the inner product and ∥·∥ stands
for the corresponding norm. The split feasibility problem (SFP) has received much
attention due to its applications in image denoising, signal processing and image
reconstruction, with particular progress in intensity­modulated therapy. For a
complete and exhaustive study on algorithms for solving convex feasibility problem,
including comments about their applications and an excellent bibliography see, for
example [1] and for split convex feasibility problem see, for instance, the excellent
paper [5] and the references therein. Inspired by the idea developed in [9], our
interest in this paper is on the study of the convergence of an algorithm for solving
a Quasi Split Null­point Feasibility Problem, i.e., the case where the constrained
set, instead of being fixed, is a set­valued mapping. Besides being a more general
case, it also has many applications, see for example [2]) and is an extension of the
problem introduced in [9]. At this stage, we would like to emphasize that the result
in [9] is not correct. Indeed, clearly the constant θ defined by relation (16) in [9]
is greater than 1. As a consequence the application F defined by relation (12) in
[9] is not a contraction and thus the Banach fixed­point principle is not applicable.
Actually, since the operator A∗(I − PC)A is firmly nonexpansive, it is easily seen

∗Corresponding author.
Email address : abdellatif.moudafi@univ­amu.fr.
Article history : Received September 04, 2014, Accepted July 21, 2013.
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then that the best value of θ is in fact θ = 1 + µ which is still greater than 1.
Hence, we cannot apply again the Banach fixed­point principle. To overcome this
difficulty, one way (maybe the only one) is to consider the more general problem
(2.1) and assume that both the linear operator A and the set­valued mapping T
are strongly monotone operators. Note that by taking A = I, the identity mapping
and T = ∂ϕ, the subdifferential of a strongly convex proper lower semi­continuous
function, problem (2.1) reduces to minimizing the strongly convex function ϕ with
respect to the implicit convex set C(x). To be in a position to apply the fixed­
point Banach principle and by observing that the fixed­point reformulation of the
problem considered in [9] involves the projection operator over convex sets and that
the techniques are strongly based on its properties which do not depend on any
parameter in contrast to the resolvent and proximal mappings, we will consider a
quasi split null­point feasibility problem, propose a strong convergence result and
provide some applications. This will be done by taking advantage of the resolvent
techniques which depend on parameters that allow more flexibility. Moreover, an
appropriate choice amounts to weakened the assumptions on the data.
To begin with, let us recall that the split feasibility problem (SFP) is to find a point

x ∈ C such that Ax ∈ Q, (1.1)

where C is a closed convex subset of a Hilbert space H1, Q is a closed convex
subset of a Hilbert space H2, and A : H1 → H2 is a bounded linear operator.
Assuming that the (SFP) is consistent (i.e (1.1) has a solution), it is no hard to see
that x ∈ C solves (1.1) if and only if it solves to fixed­point equation

x = PC

(
I − γA∗(I − PQ)A

)
x, x ∈ C, (1.2)

where PC and PQ are the (orthogonal) projection onto C and Q, respectively, γ > 0
is any positive constant and A∗ denotes the adjoint of A.
To solve the (1.2), Byrne [4] proposed his CQ algorithm which generates a sequence
(xk) by

xk+1 = PC

(
I − γA∗(I − PQ)A

)
xk, k ∈ IN, (1.3)

where γ ∈ (0, 2/λ) with λ being the spectral radius of the operator A∗A.

2. MAIN RESULTS

In the sequel, we will focus our attention on the following implicit null­point
feasibility problem

find x∗ ∈ C(x∗) such that Ax∗ ∈ T−1(0), (2.1)

where A : H1 → H2 is a bounded linear operator, T : H1 → H1 a maximal
monotone operator and C : H1 → 2H1 be a set­valed map with closed convex
values.
It is easy to see, using the normal cone to C(x∗), that (2.1) is equivalent to the
following fixed­point formulation x∗ = PC(x∗)(x

∗ − γA∗(I − JT
λk
)Ax∗). To solve

(2.1), the latter suggests the use of the following algorithm:
Algorithm (QSFA): Initialization: Let λ0 > 0 and x0 ∈ H1 be arbitrary.
Iterative step:

xk+1 = PC(xk)(xk − γA∗(I − JT
λk
)Axk), k ∈ IN, (2.2)

where γ ∈]0, 2νkµ
2

L2
A

[ with LA being the spectral radius of the operator A∗A, νk and
µ will be defined in the sequel.
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Lemma 2.1. If T is strongly monotone with constant α, then (see for example [10])

∥JT
λ (x)− JT

λ (y)∥ ≤ 1

1 + αλ
∥x− y∥, ∀x, y.

A simple computation shows that its complement I − JT
λ (which is firmly nonexpan­

sive) is strongly monotone. More precisely, we have

⟨(I − JT
λ )x− (I − JT

λ )y, x− y⟩ ≥ αλ

1 + αλ
∥x− y∥2, ∀x, y.

We are now in a position to prove our convergence result.

Theorem 2.1. Given a bounded linear µ­strongly positive operator A : H1 → H2,
H1,H2 two Hilbert spaces, T : H2 → 2H2 is a α­strongly monotone set­valued
operator and C : H1 → 2H1 is a set­valued mapping with closed convex values and
assume that for every x, y, z we have

∥PC(x)z − PC(y)z∥ ≤ β∥x− y∥. (2.3)

Then any sequence (xk) generated by the algorithm (2.2) strongly converges to
the unique solution of (2.1), provided that

β ∈]0, 1[, LA

√
β(2− β) < νk < LA and γ ∈]0, 2νkµ

2

L2
A

[ with νk :=
αλk

1 + αλk
. (2.4)

Proof. Let x∗ be the solution to (2.2), then PC(x∗)(x
∗) = x∗, JT

λk
(Ax∗) = Ax∗. By

Lemma 2.1, we know that I − JT
λk

is nonexpansive and strongly monotone with
constant νk. Therefore, we successively have

⟨A∗(I − JT
λk
)Axk −A∗(I − JT

λk
)Ax∗, xk − x∗⟩

= ⟨(I − JT
λk
)Axk − (I − JT

λk
)Ax∗, Axk −Ax∗⟩

≥ νk∥Axk −Ax∗∥2 ≥ νkµ
2∥xk − x∗∥2.

As a consequence, we obtain

∥(I − γA∗(I − JT
λk
)A)xk − x∗∥2

= ∥(xk − x∗)− γ(A∗(I − JT
λk
)Axk −A∗(I − JT

λk
)Ax∗)∥2

= ∥xk − x∗∥2 − 2γ⟨A∗(I − JT
λk
)Axk −A∗(I − JT

λk
)Ax∗, x− x∗⟩

+ γ2∥A∗(I − JT
λk
)Axk −A∗(I − JT

λk
)Ax∗∥2

≤ (1− 2νkµ
2γ + L2

Aγ
2)∥xk − x∗∥2.

Now, we have

∥xk+1 − x∗∥ = ∥PC(xk)(xk − γA∗(I − JT
λk
)Axk)− PC(xk)(x

∗ − γA∗(I − JT
λk
)Ax∗)∥

+ ∥PC(xk)(x
∗ − γA∗(I − JT

λk
)Ax∗)− PC(x∗)(x

∗ − γA∗(I − JT
λk
)Ax∗)∥

≤ β∥xk − x∗∥+ ∥(I − γA∗(I − S)A)xk − x∗∥

≤ (β +
√
1− 2νkµ2γ + L2

Aγ
2)∥xk − x∗∥,

λk and γk were chosen judiciously such that θ := β+
√
1− 2νkµ2γ + L2

Aγ
2 ∈]0, 1[.

The latter assures the strong convergence of (xk) to x∗ the unique solution of (2.1).

Remark 2.2. It is worth mentioning that we can develop the same analysis for the
following quasi fixed­point feasibility problem

find x∗ ∈ C(x∗) such that Ax∗ ∈ FixP, (2.5)

where P : H2 → H2 is a κ­contraction, by considering the following algorithm
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Algorithm:
Initialization: Let x0 ∈ H1 be arbitrary.
Iterative step:

xk+1 = PC(xk)(xk − γA∗(I − P )Axk), k ∈ IN. (2.6)

Following the same lines of the proof of the above Theorem, we obtain

Proposition 2.3. Given a bounded linear µ­strongly positive operator A : H1 → H2,
H1,H2 are two Hilbert spaces, P : H2 → 2H2 a κ­contraction and C : H1 → 2H1 a
set­valued mapping with closed convex values and assume that for every x, y, z we
have

∥PC(x)z − PC(y)z∥ ≤ β∥x− y∥.
Then any sequence (xk) generated by the algorithm (2.6) strongly converges to the
unique solution of (2.5), provided that

ν := 1−κ, β ∈]0, 1[, LA

√
β(2− β) < νµ2 < LA and |γ−νµ2| <

√
ν2µ4 − β(2− β)L2

A.

□

3. SPECIAL CASES

Now, let us consider the following special cases:

(i) Quasi Split minimization problem: Let ϕ : H1 → IR be a lower semicon­
tinuous convex function by setting T = ∂ϕ in (2.1), we obtain the following
Quasi Split Minimization Problem (QSMP):

find x∗ ∈ C(x∗) such that Ax∗ = argmimϕ (3.1)

and (2.2) reduces to

xk+1 = PC(xk)(xk − γA∗(I − proxλkϕ)Axk), k ∈ IN, (3.2)

where proxλkϕ(x) := argminy{ϕ(y)+ 1
2λ∥x−y∥

2} is the proximal mapping
of ϕ. The assumption of strong monotonicity of ∂ϕ is equivalent to the
strong convexity of ϕ.

(ii) Split Saddle­point problem: Let X,Y be two Hilbert spaces, a function
L : X×Y → IR∪{−∞,+∞} is convex­concave if it is convex in the variable
x and concave in the variable y. To such a function, Rockafellar associated
the operator TL, defined by

TL = ∂1L× ∂2(−L),

where ∂1 (resp. ∂2) stands for the subdifferential of L with respect to the
first (resp. the second) variable.
TL is a maximal monotone operator if and only if L is closed and proper
in Rockafellar sense (see, [10]). Moreover, it is well known that (x∗, y∗)
is a saddle­point of L, namely L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗), ∀(x, y) ∈
X×Y if and only if the following monotone variational inclusion holds true
(0, 0) ∈ TL(x

∗, y∗).
Now, if in the (2.1) we set H1 = X1 × Y1, H2 = X2 × Y2, T = TL with L
be a proper closed convex­concave function, then we obtain the following
Quasi Split Minimax Problem (QSMMP):

find (x∗, y∗) ∈ C(x∗, y∗); A(x∗, y∗) = argminmax(x,y)∈H1
L(x, y), (3.3)
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and (2.2) reduces to

(xk+1, yk+1) = PC(xk,yk)((xk, yk)− γA∗(I − proxλkL)A(xk, yk)), k ∈ IN, (3.4)

where proxλkL(x, y) := argminmax(u,v){L(u, v))+ 1
2λ∥x−u∥

2− 1
2λ∥y−v∥

2}.
The assumption of strong monotonicity of TL is equivalent to the strong
convexity of L with respect to the first variable and its strong concavity
with respect to the second one.

(iii) Quasi Split equilibrium problem: Having in mind the connection between
monotone operators and equilibrium functions, we may consider the fol­
lowing problem

AF (x) ∋ 0, (3.5)
with AF defined as follows v ∈ AF (x) ⇔ F (x, y) + ⟨v, x− y⟩ ≥ 0, ∀y ∈ D,
D is a closed convex set and F : D × D → IR belongs in the class of bi­
functions F verifying the following usual conditions:
(A1) F (x, x) = 0 for all x, y ∈ D;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ D;
(A3) lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y) for any x, y, z ∈ D;
(A4) for each x ∈ D, y −→ F (x, y) is convex and lower­semicontinuous.
It is well­known; see [7], that AF is maximal monotone and that the asso­
ciated resolvent operator Tλ : H −→ D is defined by

TF
λ (x) = {z ∈ D : F (z, y) +

1

λ
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ D}.

If in the (2.1) we take T = AF a monotone bifunction, then we obtain the
following Quasi Split Equilibrium Problem (QSEP):

find x∗ ∈ C(x∗) such that F (Ax∗, x) ≥ 0 for all x ∈ C(x∗), (3.6)

and (2.2) is nothing but

xk+1 = PC(xk)(xk − γA∗(I − TF
λk
)Axk), k ∈ IN. (3.7)

It is well known that in this case, the strong monotonicity of AF is equiva­
lent to

F (x, y) + F (y, x) ≤ α∥x− y∥2 for all x, y ∈ D.

(iv) A special form of the implicit set:
In many applications (see for example [2]) the set­valued mapping has
the form C(x) = K + ψ(x), where K is a fixed closed subset in H1 and
ψ : H1 → H1 is a single­valued mapping. In this case, assumption on C
is satisfied provided the mapping ψ is Lipschitz continuous. Indeed, it is
not hard (using the relation below) to show that, if ψ is κ­Lipschitz then
assumption (2.3) satisfies with β = 2κ. Using the well known relation

x = PK+v(u) ⇔ x− v = PK(u− v),

Algorithm can be rewritten in the simpler form

xk+1 = ψ(xk) + PK(xk − ψ(xk)− γkA
∗(I − JT

λk
)Axk), k ∈ IN. (3.8)

Conclusion: Only the existence of solutions to a quasi split feasibility problem
has been considered in [9] and the result is more than questionable. Also, only
some algorithms are mentioned! To the best of our knowledge, nothing has been
done concerning the construction of solutions in this case. Inspired by this work
and to overcome the difficulties that arise in applying the Banach principle, we
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proposed a quasi feasibility null­point problem and study the convergence of a
related algorithm. Applications to some applied nonlinear analysis problems are
also provided. The techniques used in solving our problem are strongly based
on the resolvent mapping which depends on a parameter. The latter allows more
flexibility and an appropriate choice amounts to assume mild assumptions on the
data (see Theorem 2.1).

Acknowledgment: I would like also to thank the anonymous referees for their
careful reading which permitted me to improve the first version of this paper.
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ON A GENERAL CLASS OF MULTI­VALUED STRICTLY

PSEUDOCONTRACTIVE MAPPINGS

C.E.CHIDUME1,∗, M.E.OKPALA2

1,2Mathematics Institute, African University of Science and Technology,
Abuja

ABSTRACT. In this paper, a general class of multi­valued strictly pseudocontractive map­
pings, which properly includes the class of multi­valued k−strictly pseudocontractive map­
pings, is introduced. Furthermore, it is proved that if T belongs to this class of mappings
and the set of fixed points of T is nonempty, a Krasnoselskii­type sequence is constructed
and proved to be an approximate fixed point sequence of T . Finally, convergence of the
sequence to a fixed point of T is proved under appropriate additional conditions.

KEYWORDS : Iterative Approximation, Multi­valued Maps, Strictly Pseudocontractive Map­
pings.
AMS 2010 Mathematics Subject Classification:47H04, 47H09, 47H10

1. INTRODUCTION

Let E be a metric space endowed with a metric d and K be a nonempty closed,
convex subset of E. Let CB(K) denote the collection of closed and bounded sub­
sets of K and T : K → CB(K) be a multi­valued mapping.
In recent years, the study of fixed point theory for multi­valued nonlinear map­
pings T has attracted, and continues to attract, the interest of several well known
mathematicians. Interest in this type of mappings is, perhaps, due to its many
real world applications, for example, in Game Theory and Market Economy and in
Non­Smooth Differential Equations (see e.g., Chidume et al. [7] for details).

The applications of fixed point theory for multi­valued mappings on the problem
of differential equations (DEs) with discontinuous right­hand sides gave birth to
the existence theory of differential inclusions (DIs). Most recent results for game
theory showed that equilibrium points of games correspond to fixed points of some
multi­valued mappings, under appropriate conditions. A model example of such
an application, the Nash equilibrium theorem, (see e.g Nash [21, 22]) showed that

∗Corresponding author .
Email address : cchidume@aust.edu.ng ( C.E. Chidume).
Article history : Received August 08, 2014 Accepted September 29, 2014.
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the existence of equilibria for non­cooperative static games is a direct consequence
of fixed point theorems of Brouwer [2] or Kakutani[15].

From the point of view of social recognition, game theory is, perhaps, the most
successful area of application of fixed point theory of multi­valued mappings. How­
ever, it has been remarked that the applications of this theory to equilibrium are
mostly static: they enhance understanding conditions under which equilibrium
may be achieved but do not indicate how to construct a process starting from a
nonequilibrium point and convergent to an equilibrium solution. This is part of the
problem that is being addressed by iterative methods for fixed point of multi­valued
mappings. It is worth mentioning, at this juncture also, that iterative methods for
approximating fixed points of nonexpansive mappings constitute the central tools
used in signal processing and image reconstruction (see, e.g., Byrne[5]).

For early results involving fixed points of multi­valued mapping, (see, for exam­
ple, Brouwer [2], Kakutani [15], Nash [21, 22], Geanakoplos [14], Downing and Kirk
[10]). For details on the applications of this type of mappings in Nonsmooth Differ­
ential Equations, one may consult, for example, Chang [6], Chidume [7], Deimling
[9], Erbe and Krawcewicz [11], Frigon [12], Nadler [20], Ofoedu and Zegeye [23],
Reich et al. [25, 26, 27] and the references therein.

Fixed point problems involving a multi­valued mapping T can be reformulated
as a zero problem for a multi­valued mapping A, namely;

Find 0 ∈ Ax, where A = I − T

and I is the identity mapping of K.

Many problems in applications can be modeled in the form of 0 ∈ Ax, where,
for example. A : H → 2H is a monotone operator, that is ⟨u − v, x − y⟩ ≥ 0
for all u ∈ Ax, v ∈ Ay, x, y ∈ H. Typical examples include the equilibrum state
of evolution equations and critical points of some functionals defined on Hilbert
spaces. For example, let f : H → (−∞,∞] be a proper, lower semicontinuous and
convex function. It is known (see e.g., Rockafellar [29], Minty [19]) that the multi­
valued mapping T := ∂f , the subdifferential of f , is maximal monotone, where for
each w ∈ H,

w ∈ ∂f(x) ⇔ f(y)− f(x) ≥ ⟨y − x,w⟩, ∀y ∈ H,

⇔ x ∈ Argmin(f − ⟨., w⟩).

In this case, a solution of the inclusion 0 ∈ ∂f(x), if any, is a critical point of f ,
which is precisely a minimizer of f .

The proximal point algorithm introduced by Martinet [18], and studied exten­
sively by Rockafeller [28], which has also been studied by a host of other authors,
is connected with the iterative algorithm for solutions of 0 ∈ Ax where A is a max­
imal monotone operator on a Hilbert space.
In studying the equation Au = 0, Browder [4], introduced an operator T given by
T := I − A, where I is the identity mapping on H. He called such an operator a
pseudocontractive mapping. It is easily seen that the solutions of Ax = 0 when A
is monotone are precisely the fixed points of pseudocontractive mapping T . Every
nonexpansive mapping is pseudocontractive and continuous but a pseudocontrac­
tive mapping is not neccesarily continuous. Thus the study of iterative methods
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for fixed points of pseudcontractive mappings requires some continuity conditions
(e.g., Lipschitz condition).
While pseudocontractive mappings are generally not continuous, a subclass of
pseudocontractive mappings, the strictly pseudocontractive mappings, inherits Lip­
schitz property from their definitions. The study of fixed point theory for strictly
pseudocontractive mappings helps in the study of fixed point theory for nonexpan­
sive mappings and for Lipschitz pseudocontractive mappings. Consequently, the
study by several authors of iterative methods for fixed point of multi­valued strictly
pseudocontractive mappings has motivated our study of a more general class of
multi­valued strictly pseudocontractive mappings which certainly includes the im­
portant class of multi­valued nonexpansive maps.

In this paper, we extend the notion of single­valued strictly pseudo­contractive
mappings, defined by Browder and Petryshyn [3] on Hilbert spaces, and the no­
tion of multi­valued stricly pseudocontractive mappings (see e.g., [7], [23] ), to
a general class of multi­valued strictly pseudocontractive mappings. This class
is shown to properly contain the class of multi­valued strictly pseudocontractive
mappings introduced by Chidume et al [7] which itself contains the important
class of multi­valued nonexpansive mappings and consequently properly contains
the class of single­valued strictly pseudo­contractive maps introduced by Browder
and Petryshyn [3].

Part of the novelty of this paper is that for the general class of maps considered
here, convergence theorems for Krasnoselskii­type sequence, which is known to be
superior to the Mann­type and Ishikawa­type sequences, are still applicable. In
particular, the Krasnoselskii­type iteration sequence {xn} constructed is proved to
be an approximate fixed point sequence of T and then, under appropriate additional
conditions, convergence to a fixed point is established.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we will adopt the following:

(i) xn → x : {xn} converges strongly to x.
(ii) H: a Hilbert Space with an induced norm ∥.∥.
(iii) F (T ) := {x ∈ K : x ∈ Tx}.
(iv) 2H is the power set of H.
(v) CB(K), is the family of nonempty, closed and bounded subsets of K

We recall some definitions and facts that are needed in our study.

Definition 2.1. Let (X; d) be a metric space and K a nonempty subset of X. The
Hausdorf metric on CB(X) is given by

D(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(X).

To simplify notation, we shall denote (D(A,B))2 by D2(A,B) for all A,B ∈ CB(X).

Browder and Petryshin [3] introduced this class of single­valued mappings.
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Definition 2.2. Let K be a nonempty subset of a Hilbert space H. A map T : K →
H is called strictly pseudo­contractive if there exists k ∈ [0, 1) such that

∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(x− Tx)− (y − Ty)∥2, ∀x, y ∈ K. (2.1)

Definition 2.3. (Chidume et al. [7]) Let H be a real Hilbert space and let D be
a nonempty, open and convex subset of H. Let T : D → CB(D) be a mapping.
Then, T is called a multi­valued k−strictly pseudocontractive mapping if there exists
k ∈ (0, 1) such that for all x, y ∈ D(T ), we have

D2(Tx, Ty) ≤ ∥x− y∥2 + k∥(x− u)− (y − v)∥2, (2.2)

for all u ∈ Tx, v ∈ Ty.

Remark 2.4. If k = 1, in definition (2.3), the mapping T is called pseudocontractive
and if k = 0, it is called nonexpansive. Notice also that the mapping becomes
nonexpansive if x ∈ Tx ∀x ∈ D.

Definition (2.3) is an extension of the definition of single­valued pseudo­contractive
mappings to multi­valued maps.

Definition 2.5. A multi­valued mapping T : K ⊆ H → CB(H) is called Lips­
chitzian if there exists L > 0 such that

D(Tx, Ty) ≤ L∥x− y∥, (2.3)

for each x, y ∈ K. If L < 1 in inequality (2.3), the mapping T is called a contraction
and if L = 1, it is nonexpansive.

Several authors have studied the problem of approximating fixed points of multi­
valued nonexpansive mappings (see, e.g., [1], [8], [16, 17], [24], [30], [32], and the
references therein), and of their generalizations (see, e.g., [8], [13]).

Definition 2.6. A map T : K → CB(K) is said to be hemicompact if, for any
sequence {xn} such that lim

n→∞
d(xn, Txn) = 0, there exists a subsequence, say,

{xnk
} of {xn} such that xnk

→ p ∈ K.

Note that if K is compact, then every multi­valued mapping T : K → CB(K) is
hemicompact.

Definition 2.7. Let H be a real Hilbert space and let T be a multi­valued mapping.
The multi­valued mapping I − T is said to be strongly demiclosed at 0 (see, e.g.,
[13]) if for any sequence {xn} ⊆ D(T ) such that xn → p and d(xn, Txn) converges
strongly to 0, then d(p, Tp) = 0.

The projection mapping PK onto a nonempty, closed and convex subset of H
has the following characterization:

Lemma 2.8. Let H be a Hilbert space, K ⊂ H be nonempty, closed and convex,
z ∈ H and x ∈ K. Then x = PKz if and only if

⟨z − x,w − x⟩ ≤ 0 ∀w ∈ K.
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The following lemma will also be used in the sequel.

Lemma 2.9. ([34]) Let {an} be a sequence of nonnegative real numbers satisfying
the following relation:

an+1 ≤ an + σn, n ≥ 0,

such that
∞∑

n=1
σn < ∞. Then, lim an exists. If, in addition, {an} has a subsequence

that converges to 0, then an converges to 0 as n → ∞.

3. MAIN RESULTS

We first prove the following preliminary results.

Lemma 3.1. Let E be a normed linear space , B1, B2 ∈ CB(E) and x0, y0 ∈ E
arbitrary. The following hold;

(a) D(B1, B2) = D(x0 +B1, x0 +B2).
(b) D(B1, B2) = D(−B1,−B2).
(c) D(x0 +B1, y0 +B2) ≤ ∥x0 − y0∥+D(B1, B2).
(d) D({x0}, B1) = sup

b1∈B1

∥x0 − b1∥.

(e) D({x0}, B1) = D(0, x0 −B1).

Proof. (a) By definition, we have

D(x0 +B1, x0 +B2) = max
{

sup
b1∈B1

d(x0 + b1, x0 +B2); sup
b2∈B2

d(x0 + b2, x0 +B2)
}

= max{ sup
b1∈B1

d(b1, B2); sup
b2∈B2

d(b2;B1)}

= D(B1, B2).

(b) We have

D(−B1,−B2) = max{ sup
−b1∈−B1

d(−b1;−B2); sup
−b2∈−B2

d(−b2;−B1)}

= max{ sup
b1∈B1

d(b1;B2); sup
b2∈B2

d(b2;B1)}

= D(B1, B2).

(c) It is known that for any set B ⊆ E, x, y ∈ E arbitrary, the inequality

d(x,B) ≤ ∥x− y∥+ d(y,B)

holds. Using this inequality we have

d(x0 + b1, y0 +B2) ≤ ∥(x0 + b1)− (y0 + b1∥+ d(y0 + b1, y0 +B2)

= ∥x0 − y0∥+ d(b1, B2),

and similarly
d(y0 + b2, x0 +B1) ≤ ∥x0 − y0∥+ d(b2, B1).

Therefore, taking sup over B1 and B2 respectively, we have

sup
b1∈B1

d(x0 + b1, y0 +B2) ≤ ∥x0 − y0∥+ sup
b1∈B1

d(b1, B2),

and
sup

b2∈B2

d(y0 + b2, x0 +B1) ≤ ∥x0 − y0∥+ sup
b2∈B2

d(b2, B1).

Thus D(x0 +B1, y0 +B2) ≤ ∥x0 − y0∥+D(B1, B2).
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(d) It is obvious that d(x0;B1) = sup
x0∈{x0}

d(x0, B1). On the otherhand, for any

b1 ∈ B1, we have
d(b1; {x0}) = ∥b1 − x0∥ ≥ d(x0;B1).

Taking sup over B1 we have

sup
b1∈B1

d(b1, {x0}) ≥ d(x0, B1),

and therefore

D({x0}, B1) := max{ sup
b1∈B1

d(b1; {x0}); sup
x0∈{x0}

d(x0;B1)} = sup
b1∈B1

d(b1, {x0}).

(e)

D({x0}, B1) := max{ sup
b1∈B1

d(b1, {x0}), d(x0, B1)}

= max{ sup
b1∈B1

∥x0 − b1∥), inf
b1∈B1

∥x0 − b1∥}

= max{ sup
b1∈B1

d(0, x0 −B1), d(0, x0 −B1)}

= D({0}, x0 −B1).

□

We now introduce the following class of generalized k− strictly pseudocontractive
multi­valued mappings.

Definition 3.2. Let H be a real Hilbert space and let K be a nonempty subset of
H. Let T : K → CB(K) be a multi­valued mapping. Then T is called generalized
k−strictly pseudocontractive multi­valued mapping if there exists k ∈ (0, 1)
such that for all x, y ∈ D(T ), we have

D2(Tx, Ty) ≤ ∥x− y∥2 + kD2(Ax,Ay), A := I − T, (3.1)

and I is the identity operator on K.

Remark 3.3. Definition (3.2) seems to be a more natural generalization of the
single­valued definition (2.2) given by Browder and Petryshin [3] than the definition
(2.3) given by Chidume et al. [7].

Proposition 3.4. Let T : K → CB(K) be a multi­valued k−strictly pseudocon­
tractive mapping, then T is a generalized k−strictly pseudocontractive multi­valued
mapping.

Proof. Given that T is a multi­valued k−strictly pseudocontractive mapping, we
have

D2(Tx, Ty) ≤ ∥x− y∥2 + k inf
(u,v)∈(Tx,Ty)

∥(x− u)− (y − v)∥2. (3.2)

We now show that inequality (3.2) implies inequality (3.1).

D(x− Tx, y − Ty) : = max
{

sup
u∈Tx

d(x− u; y − Ty); sup
v∈Ty

d(y − v;x− Tx)
}

≥ sup
u∈Tx

d(x− u; y − Ty)

≥ d(x− u0; y − Ty), u0 ∈ Tx.



RUNNING TITLE 13

Now, given ϵ > 0, there exist vϵ ∈ Ty such that

d(x− u0; y − Ty) ≥ ∥(x− u0)− (y − vϵ)∥ − ϵ

≥ inf
(u,v)∈(Tx,Ty)

∥(x− u)− (y − v)∥ − ϵ.

Thus, for arbitrary ϵ > 0, we have

inf
(u,v)∈(Tx,Ty)

∥(x− u)− (y − v)∥ ≤ D(x− Tx, y − Ty) + ϵ,

and therefore, since ϵ > 0 is arbitrary, we have:

inf
(u,v)∈(Tx,Ty)

∥(x− u)− (y − v)∥ ≤ D(x− Tx, y − Ty). (3.3)

We therefore obtain from (3.2) and (3.3) that:

D2(Tx, Ty) ≤ ∥x− y∥2 + kD2(x− Tx, y − Ty).

□
Thus, every multi­valued k−strictly pseudocontractive mapping is also a gener­

alized k−strictly pseudocontractive multi­valued mapping.

We now give an example to show that this inclusion is proper.

For the example, we shall need the following lemma which is trivially proved.

Lemma 3.5. Let a, b be real numbers such that 0 ≤ a ≤ 4b. Then,

(a− b)2 ≤ b2 +
1

2
a2. (3.4)

Example 3.6. Let H be a real Hilbert space. Define a mapping

T : H → CB(H) by

Tx :=

{
B(−x, ∥x∥), ∥x∥ > 0

0, x = 0,

where
B(−x, ∥x∥) = {u ∈ H : ∥u+ x∥ ≤ ∥x∥}.

Then, for distinct nonzero x and y, we have the following identities which follow
from the definition of T :

x− Tx = B(2x, ∥x∥),
y − Ty = B(2y, ∥y∥),

Tx = {w ∈ H : ∥w + x∥ ≤ ∥x∥},
Ty \ Tx = {z ∈ H : ∥z + y∥ ≤ ∥y∥, ∥z + x∥ > ∥x∥}.

We now establish the following equation:

D(Tx, Ty) = ∥x− y∥+
∣∣∣∥y∥ − ∥x∥

∣∣∣. (3.5)

First, we consider the case ∥y∥ ≥ ∥x∥. We proceed as follows:
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Claim 1: ∀z ∈ Ty \ Tx, d(z, Tx) = ∥z − P(Tx)z∥, where

P(Tx)z := −x+
∥x∥

∥x+ z∥

(
z + x

)
. (3.6)

Proof of Claim 1. Let w ∈ Tx. Then, ∥w + x∥ ≤ ∥x∥. Furthermore,

⟨z − P(Tx)z, w − P(Tx)z⟩ =
⟨
z + x− ∥x∥

∥x+ z∥
(z + x), w + x− ∥x∥

∥x+ z∥
(z + x)

⟩
=

∥x+ z∥ − ∥x∥
∥x+ z∥

(
⟨z + x,w + x⟩ − ∥x∥

∥x+ z∥

⟨
z + x, z + x

⟩)
=

∥x+ z∥ − ∥x∥
∥x+ z∥

(
⟨z + x,w + x⟩ − ∥x∥∥z + x∥

)
≤ ∥x+ z∥ − ∥x∥

∥x+ z∥

(
∥z + x∥∥w + x∥ − ∥x∥∥z + x∥

)
≤ (∥x+ z∥ − ∥x∥)

(
∥x∥ − ∥x∥

)
= 0.

Thus, it follows that,
⟨z − P(Tx)z, w − P(Tx)z⟩ ≤ 0,

and applying Lemma(2.8), the claim is proved. Also note that P(Tx)z is unique for
each z since H is a real Hilbert space. Now, set

z0 := −x+
(
1 +

∥y∥
∥x− y∥

)
(x− y). (3.7)

Clearly z0 ∈ Ty \ Tx since

∥z0 + y∥ =
∥∥∥ ∥y∥
∥x− y∥

(x− y)
∥∥∥ = ∥y∥

and,

∥z0 + x∥ =
(
1 +

∥y∥
∥x− y∥

)
∥x− y∥ = ∥x− y∥+ ∥y∥

≥ ∥x− y∥+ ∥x∥
> ∥x∥.

Moreover, from equation (3.6),

P(Tx)z0 = −x+
∥x∥

∥x+ z0∥

(
z0 + x

)
= −x+

∥x∥
∥x− y∥+ ∥y∥

[∥x− y∥+ ∥y∥
∥x− y∥

(x− y)
]

= −x+
∥x∥

∥x− y∥

(
x− y

)
. (3.8)

Therefore , using (3.8) and (3.7) we obtain that

d(z0, Tx) = ∥z0 − P(Tx)z0∥ = ∥x− y∥+ ∥y∥ − ∥x∥, (3.9)

establishing Claim 1.

Claim 2: d(z0, Tx) = sup
v∈Ty

d(v, Tx).
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Proof of Claim 2. Let z ∈ Ty \ Tx be arbitrary. We have,

∥z + y∥ ≤ ∥y∥, ∥z + x∥ > ∥x∥,
and so, using equation (3.9),

∥z − P(Tx)z∥ =
∥∥∥z + x− ∥x∥

∥x+ z∥

(
z + x

)∥∥∥
= ∥z + x∥

(
1− ∥x∥

∥x+ z∥

)
= ∥x+ z∥ − ∥x∥
≤ ∥x− y∥+ ∥z + y∥ − ∥x∥
≤ ∥x− y∥+ ∥y∥ − ∥x∥
= ∥z0 − P(Tx)z0∥.

For z ∈ (Ty ∩ Tx), we have d(z, Tx) = 0. Thus, we obtain that,

d(z, Tx) ≤ ∥z0 − P(Tx)z0∥ ∀z ∈ Ty.

Using the fact that z0 ∈ Ty, we obtain

sup
v∈Ty

d(v, Tx) = ∥z0 − P(Tx)z0∥ = ∥x− y∥+ ∥y∥ − ∥x∥.

Thus, Claim 2 is established.

We now consider the case ∥x∥ ≥ ∥y∥.
For ∥x∥ ≥ ∥y∥, we have by interchanging the roles of x and y,

sup
u∈Tx

d(u, Ty) = ∥x− y∥+ ∥x∥ − ∥y∥.

Therefore,

max
{

sup
y∈Ty

d(y, Tx), sup
x∈Tx

d(x, Ty)
}
= ∥x− y∥+

∣∣∣∥y∥ − ∥x∥
∣∣∣. (3.10)

For x = y, Tx = Ty, and D(Tx, Ty) = 0. Moreover, for x = 0, y ̸= 0, a straightfor­
ward computation gives

D(0, T y) = 2∥y∥ = ∥0− y∥+
∣∣∣0− ∥y∥

∣∣∣.
Thus, the identity (3.5) is fully satisfied for arbitrary x, y ∈ H.

Following a similar procedure, we obtain

D(x− Tx, y − Ty) = 2∥x− y∥+
∣∣∣∥y∥ − ∥x∥

∣∣∣ ∀x, y ∈ H. (3.11)

We set

a := D(x− Tx, y − Ty).

b := ∥x− y∥.
Then, using equations (3.11) and (3.5), we obtain that,

a− b = D(Tx, Ty).

Clearly, by equation (3.11),

a = 2∥x− y∥+
∣∣∣∥y∥ − ∥x∥

∣∣∣ ≤ 4∥x− y∥ = 4b.

Therefore, by Lemma (3.5),
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D2(Tx, Ty) ≤ ∥x− y∥2 + 1

2

(
D(x− Tx, y − Ty)

)2

∀x, y ∈ H.

Therefore, T is a generalized k−strictly pseudocontractive multi­valued mapping
with k = 1

2 .

We now show that T is not a multi­valued k−strictly pseudocontractive mapping
in the sense of definition (2.3).
We establish this by contradiction. So, assume that there exists k ∈ [0, 1) such
that inequlity (2.2) holds. Choose x ∈ H \ {0}. Set y = 2x, u = v = 0 ∈ (Tx ∩ Ty).
Then,

∥x− y|| = ∥x∥,

D(Tx, Ty) = ∥x− y∥+
∣∣∣∥y∥ − ∥x∥

∣∣∣ = 2∥x∥,
and

∥(x− u)− (y − v)∥ = ∥x− y∥ = ∥x∥.
Thus,

4∥x∥2 = D2(Tx, Ty) ≤ ∥x− y∥2 + k∥(x− u)− (y − v)∥2 ≤ 2∥x∥2.

This is a contradiction to x ∈ H \ {0}. Therefore, T is not a multi­valued k−strictly
pseudocontractive mapping for any k ∈ (0, 1).

To prove our main theorem, we first prove the following important propositions.

Proposition 3.7. Let K be a nonempty subset of a real Hilbert space H and T :
K → CB(K) be a generalized k−strictly pseudocontractive multi­valued mapping.
Then T is Lipschitzian.

Proof. Let x, y ∈ D(T ). Then,

D2(Tx, Ty) ≤ ∥x− y∥2 + kD2(x− Tx, y − Ty)

≤ ∥x− y∥2 + k
(
∥x− y∥+D(Tx, Ty)

)2

,by Lemma (3.1), (c), (b).

≤
(
∥x− y∥+

√
k∥x− y∥+

√
kD(Tx, Ty)

)2

.

Thus,

D(Tx, Ty) ≤ (1 +
√
k)∥x− y∥+

√
kD(Tx, Ty),

and hence,

D(Tx, Ty) ≤ 1 +
√
k

1−
√
k

∥∥∥x− y
∥∥∥,

as proposed. □

Remark 3.8. Propostion (3.7) is an improvement of Proposition 8 of [7] because it
does not assume that Tx is weakly closed for each x ∈ K.

Proposition 3.9. Let K be a nonempty and closed subset of a real Hilbert space H
and let T : K → CB(K) be a generalized k−strictly pseudocontractive multi­valued
mapping. Then, (I − T ) is strongly demiclosed at zero.
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Proof. Let {xn} be a sequence in K such that xn → x and d(xn, Txn) → 0. For
each n ∈ N, take yn ∈ Txn such that ∥xn − yn∥ ≤ d(xn, Txn) +

1
n .

Then,

d(x, Tx) ≤ ∥x− xn∥+ ∥xn − yn∥+ d(yn, Tx)

≤ ∥x− xn∥+ d(xn, Txn) +
1

n
+D(Txn, Tx)

≤ ∥x− xn∥+ d(xn, Txn) +
1

n
+

1 +
√
k

1−
√
k

∥∥∥xn − x
∥∥∥.

Thus, taking limits on both sides as n → ∞, we have d(x, Tx) = 0. Since Tx is
closed, x ∈ Tx. □

Now, using lemma (3.1)(d), we have that

D({xn}, Txn) = sup
yn∈Txn

∥xn − yn∥.

Thus, for any given sequence {xn} ⊆ K, the set

Un :=
{
yn ∈ Txn : D2({xn}, Txn) ≤ ∥xn − yn∥2 +

1

n2

}
,

is nonempty.

We now prove the following theorem.

Theorem 3.1. Let K be a nonempty, closed, convex subset of a real Hilbert space
H. Let T : K → CB(K) be a generalized k−strictly pseudocontractive multi­valued
mapping such that F (T ) ̸= ∅. Assume Tp = {p} ∀p ∈ F (T ). Define a sequence
{xn} by x0 ∈ K,

xn+1 = (1− λ)xn + λyn (3.12)

where yn ∈ Un and λ ∈ (0, 1− k). Then, d(xn, Txn) → 0 as n → ∞.

Proof. Let p ∈ F (T ). Then, using Lemma(3.1), (d) and (e), we have

∥xn+1 − p∥2 = ∥(1− λ)(xn − p) + λ(yn − p)∥2

= (1− λ)∥xn − p∥2 + λ∥yn − p∥2 − λ(1− λ)∥xn − yn∥2

≤ (1− λ)∥xn − p∥2 + λD2(Txn, Tp)− λ(1− λ)∥xn − yn∥2

≤ (1− λ)∥xn − p∥2 + λ
(
∥xn − p∥2 + kD2(xn − Txn, 0)

)
− λ(1− λ)∥xn − yn∥2

= (1− λ)∥xn − p∥2 + λ∥xn − p∥2 + λkD2({xn}, Txn)− λ(1− λ)∥xn − yn∥2

≤ (1− λ)∥xn − p∥2 + λ∥xn − p∥2 + λk
(
∥xn − yn∥2 +

1

n2

)
− λ(1− λ)∥xn − yn∥2.

= ∥xn − p∥2 + λk

n2
− λ(1− λ− k)∥xn − yn∥2.

Thus,

∥xn+1 − p∥2 ≤ ∥xn − p∥2 + λk

n2
− λ(1− λ− k)∥xn − yn∥2. (3.13)
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By Lemma (2.9), the sequence
{
∥xn − p∥

}
has a limit and therefore, {xn} is

bounded. Moreover, we have from inequality (3.13) that

λ(1− λ− k)∥xn − yn∥2 ≤ ∥xn − p∥2 + λk

n2
− ∥xn+1 − p∥2,

and then,

λ(1− λ− k)

m∑
n=1

∥xn − yn∥2 ≤
m∑

n=1

∥xn − p∥2 +
m∑

n=1

λk

n2
−

m∑
n=1

∥xn+1 − p∥2

= ∥x1 − p∥2 +
m∑

n=1

λk

n2
− ∥xm+1 − p∥2

≤ ∥x1 − p∥2 +
m∑

n=1

λk

n2.

This implies that

λ(1− λ− k)
∞∑

n=1

∥xn − yn∥2 ≤ ∥x1 − p∥2 +
∞∑

n=1

λk
1

n2
< ∞,

and therefore lim
n→∞

∥xn − yn∥ = 0. Since d(xn, Txn) ≤ ∥xn − yn∥, it follows that

lim
n→∞

d(xn, Txn) = 0. □

Corollary 3.10. Let K be a nonmepty, closed and convex subset of a real Hilbert
space H , and let T : K → CB(K) be a generalized k−strictly pseudocontractive
multi­valued mapping, with F (T ) ̸= ∅ and assume Tp = {p} for each p ∈ F (T ).
Suppose that T is hemicompact. Then, the sequence {xn} defined by equation (3.12)
converges strongly to a fixed point of T .

Proof. By Theorem (3.1), we have lim
n→∞

d(xn, Txn) = 0. Since T is hemicompact, let

{xnk
} be a subsequence of {xn} such that xnk

→ q as n → ∞ and let ynk
∈ Txnk

such that
∥xnk

− ynk
∥ ≤ d(xnk

, Txnk
) + 1

k .. Then

d(q, T q) ≤ ∥q − xnk
∥+ ∥xnk

− ynk
∥+ d(ynk

, T q)

≤ ∥q − xnk
∥+ d(xnk

, Txnk
) +

1

k
+D(Txnk

, T q)

≤ ∥q − xnk
∥+ d(xnk

, Txnk
) +

1

k
+

1 +
√
k

1−
√
k

∥∥∥xnk
− q

∥∥∥.
Thus, taking limits on the righthand side as k → ∞, we have d(q, T q) = 0. Since
Tq is closed, q ∈ Tq. Moreover, xnk

→ q as n → ∞ gives ∥xnk
− q∥ → 0 as n → ∞.

Thus, using inequality (3.13) and Lemma (2.9), lim
n→∞

∥xn − q∥ = 0. Therefore {xn}
converges strongly to a fixed point q of T as claimed. □

Remark 3.11. Observe that we did not assume that Tx is proximinal for each
x ∈ K neither did we require any continuity assumption on T nor any compactness
assumption on K. Consequenctly, Corollary(3.10) is a significant improvement on
Corollary13 of [7]
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Corollary 3.12. Let K be a nonmepty, compact and convex subset of a real Hilbert
space H , and let T : K → CB(K) be a generalized k−strictly pseudocontractive
multi­valued mapping, with F (T ) ̸= ∅ and assume Tp = {p} for each p ∈ F (T ).
Then, the sequence {xn} defined by equation (3.12) converges strongly to a fixed
point of T .

Proof. Since K is compact, every map T : K → CB(K) is hemicompact. Thus, by
Corollary 3.10, we have that {xn} converges strongly to some p ∈ F (T ).

□

Remark 3.13. Our theorem and corollaries improve convergence theorems for
multi­valued nonexpansive mappings in [1], [7], [16, 17],[24, 30, 32], in the fol­
lowing sense:

(i) The class of mappings considered in this paper contains the class of multi­
valued k− strictly pseudocontractive mappings as special case, which itself
properly contain the class of multi­valued nonexpansive maps.

(ii) The algorithm here is Krasnoselkii type, which is known to have a geometric
order of convergence, and the theorem is proved for the much larger class
of generalized multi­valued strict pseudocontractive mappings.

(iii) Inequality (3.1) of definition (3.2) is a more natural generalisation of the
single­valued psudo­contractive mappings as given by inequality(2.1).

(iv) The condition that Tx be weakly closed for each x ∈ K imposed in [7] is
dispensed with here.

We conclude, by saying that the condition T (p) = {p} for all p ∈ F (P ) , which
is imposed in our theorem and corollaries is not crucial. Certainly our example
(3.6) satisfies the condition since T0 = {0} is the unique fixed point of T . However,
some work in the litrature shows that this condition can be replaced with another
condition which does not assume that the multi­valued mapping is single­valued
on the nonempty fixed point set. Deatails of this can be found, for example, in [31],
[33].
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18. B. Martinet, ‘‘Régularisation dı́néquations variationnelles par approximations successives’’, Revue
Francaise dinformatique et de Recherche operationelle, vol. 4 (1970), pp. 154159.

19. G. J. Minty ‘‘Monotone (nonlinear) operators in Hilbert space’’, Duke Mathematical Journal, vol. 29
(1962), pp. 341346.

20. S. B. Nadler Jr., ‘‘Multi­valued contraction mappings’’, Pacific Journal of Mathematics, vol.
30(1969), pp. 475 488.

21. J. F. Nash, ‘‘Equilibrium points in n­person games’’, Proceedings of the National Academy of Sciences
of the United States of America, vol 36 no. 1 (1950), pp. 48­49.

22. J. F. Nash, ‘‘Non­coperative games, Annals of Mathematics’’, Second series vol 54(1951), pp.
286­295.

23. E .U. Ofoedu and H. Zegeye, ‘‘Iterative algorithm for multi­valued pseudocontractive mappings in
Banach spaces’’, J. Math. Anal. Appl., vol 372 (2010) pp. 68­76.

24. B. Panyanak, ‘‘Mann and Ishikawa iterative processes for multi­valued mappings in Banach
spaces’’, Computers& Mathematics with Applications, vol. 54 no. 6(2007), pp. 872877.

25. S. Reich and A. J. Zaslavski, ‘‘Convergence of iterates of nonexpansive set­valued mappings in Set
Valued Mappings with Applications in Nonlinear Analysis’’, Mathematical Analysis and Applications,
Taylor and Francis, London, UK vol. 4(2002), pp. 411420.

26. S. Reich and A. J. Zaslavski, ‘‘Generic existence of fixed points for set­valued mappings’’, Set­Valued
Analysis, vol. 10 no. 4(2002), pp. 287296.

27. S. Reich and A. J. Zaslavski, ‘‘Two results on fixed points of set­valued nonexpansive mappings’’,
Revue Roumaine de Math´ematiques Pures et Appliqu´ees, vol. 51, no. 1(2006), pp. 8994.

28. R. T. Rockafellar, ‘‘Monotone operators and the proximal point algorithm’’, SIAM Journal on Control
and Optimization, vol. 14 no. 5(1976), pp. 877898.

29. R. T. Rockafellar, ‘‘On the maximality of sums of nonlinear monotone operators’’, it Transactions
of the American Mathematical Society, vol. 149 (1970), pp. 7588.

30. K. P. R. Sastry and G. V. R. Babu, ‘‘Convergence of Ishikawa iterates for a multi­valued mapping
with a fixed point’’, Czechoslovak Mathematical Journal, vol. 55, no. 4(2005), pp. 817826.

31. N. Shahzad and H. Zegeye, ‘‘On Mann and Ishikawa iteration schemes for multi­valued maps
in Banach spaces’’, Nonlinear Analysis. Theory, Methods & Applications, vol. 71 no. 3­4(2009), pp.
838844.

32. Y. Song and H. Wang, ‘‘Erratum to; Mann and Ishikawa iterative‘ processes for multi­valued
mappings in Banach Spaces’’[Comput. Math. Appl. 54 (2007), 872877]Computers & Mathematics
With Applications , vol. 55(2008), pp. 29993002.

33. Y. Song and Y. J. Cho, ‘‘Some notes on Ishikawa iteration for multi­valued mappings’’, Bulletin of
the Korean Mathematical Society, vol. 48 no. 3(2011), pp. 575584.

34. K. K. Tan and H. K. Xu, ‘‘Approximating Fixed Points of Nonexpansive mappings by the Ishikawa
Iteration Process’’, J. Math. Anal. Appl. 178 no. 2(1993), 301­308.



Journal of Nonlinear Analysis and Optimization
Vol. 5, No. 2, (2014), 21­35
ISSN : 1906­9685 
http://www.math.sci.nu.ac.th

NON­STANDARD LAGRANGIANS WITH DIFFERENTIALS OPERATORS

RAMI AHMAD EL­NABULSI∗,1 AND HAMIDREZA REZAZADEH2

1College of Mathematics and Information Science, Neĳiang Normal University, Neĳiang, Sichuan
641112, China.

2School of Mathematics, Iran University of Science and Technology, Narmak, 16844 Tehran,Iran

ABSTRACT. Nonlinear dynamics from fractional variational approach characterized by non­
standard Lagrangians holding singular Weinstein and higher­order extended Euler­Poisson
derivative operators are presented in this work. Many results that can enrich the theory of
analytical mechanics are obtained and discussed.
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1. INTRODUCTION

Fractional calculus of variations (FCV) is a new branch of applied mathematics which has
many successful applications in physics and engineering [1] ­ [22]. Different formulations
of FCV were introduced in literature depending on the nature of the problem under study.
In fact, the FCV starts with the work of Riewe in 1996 where he formulated the problem of
the calculus of variations by replacing the standard derivatives operators by a fractional one
and derived the respective fractional Euler­Lagrange equations [23, 24]. The main result of
Riewe’s fractional approach is that non­conservative forces can be computed directly from
potentials represented by fractional derivatives. It is noteworthy that the method developed
by Riewe was applied to several systems by Dreisigmeyer and Young [25, 26] and by Rabei,
Alhalholy and Taani [27] who also showed the limitations of the method caused by the
complexity of fractional calculus. More importantly these authors also demonstrated that
the resulting equations are casual and that the procedure to convert these equations into
casual ones is not well­defined. In other words, past and future become linked through the
fractional Euler­Lagrange equation which results on a broken causality, i.e. violation of the
causality principle. Some advances in this approach are done in [28], nevertheless much
work is required to settle the problem. Despite the fact that fractional causal dynamical
equations may be derived from the least action principle, some of the resulting fractional
functions are unclear, their physical meaning is still obscure and their physical validity is
not obvious [29]. In all cases, the fractional approach derived by Riewe may represent a
powerful tool to understand many hidden properties of complex dynamical systems, like
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Hamiltonian chaos for example [30, 31]. The literature dealing with the FCV is immense;
nevertheless much remains to be done. For a good introduction of the topic, we refer the
reader to [32, 33].
One more successful form is known by the Fractional ActionLike Variational Approach
(FALVA) introduced by the author in 2005 [8, 9]. Although in general, FCV and FALVA
are under strong research studies, much remains to be done at both classical and quantum
levels. The main purpose of this work is to extend FALVA for the case of non­standard
Lagrangians (NSL) with singular derivatives operators (SDO) introduced by Weinstein, Euler
and Poisson [34]. In fact, some basic equations of mathematical physics are obtained from
NSL with SDO for dissipative dynamical systems and besides, it was observed that they
can be applied successfully to a broad range of classical and quantum problems [35]­[39].
These NLS may increase the number of the initial data required to fix the classical trajectory
and generate dynamical equations that go beyond the standard CityplaceNewton’s law. In
a more recent work [40], we derived a large numbers of NSL which were disregarded in the
literature and which result on a number of familiar dynamical equations of motion. One
chief observation is that the same equation of motion of a certain dynamical equation may
be derived from dissimilar Lagrangians functionals. In reality, the significance of NSL was
recognized in dissipative dynamical systems [36, 37]. Some nice examples are the Lienard
type nonlinear oscillator [41, 42] and the 2nd order Riccati equation [43]. Some related
interesting results are found in [44]­[47].
The paper is organized as follows: the basic formalism is constructed in Sec. 2 and examples
are illustrated in Sec. 3; conclusions and perspectives are given in Sec. 4.

2. BASIC FORMALISM

We start by introducing the new extended FALVA formalism with NSL and SDO:
Definition 2.1: Consider a smooth manifold M and let L be an admissible smooth Lagrangian
function L : R × TM −→ R on R × Rd × Cd, d ≥ 1 defined on the tangent bundle TM. The
extended FALVA with NSL and SDO on the set of paths q(τ),0 ≤ τ ≤ t between two given
points A = Q(a) and B = Q(b), is defined as for any piecewise smooth differentiable path
Q : [a, b] −→ M,

S[Q] =
1

Γ(α)

∫ b

a

L
(
τ,Q(q(τ)), Q̇(q(τ), q̇(τ)), Q̈(q(τ), q̇(τ), q̈(τ))

)
(t− τ)α−1 dτ, (2.1)

with Q(q(τ)) = q(τ) + β
∫ q(τ)

τ−t
dτand

Q̇(q(τ), q̇(τ)) = q̇(τ) +
β

τ − t
q(τ), (2.2)

Q̈(q(τ), q̇(τ), q̈(τ)) = q̈(τ) +
β

τ − t
q̇(τ)− β

(τ − t)2
q(τ), (2.3)

being respectively the Weinstein and the extended Euler­Poisson [34] singular derivative oper­
ator1. Here q̇(τ) = dq(τ)/dτ ,q̈(τ) = d2q(τ)

/
dτ2, αis a real or a complex number and β ∈ R;

τ is the intrinsic time, t is the observer time with t ̸= τ .

Theorem 2.1: If q(·) are solutions of equation (2.1), then Q(·)satisfies the following Euler­
Lagrange equation:

{
1 + ln(τ − t)β

} ∂L

∂Q
−
{

1

(t− τ)α−1 +
α− 1

t− τ

}
d

dτ

(
∂L

∂Q̇

)
+

{
α− 1− β

(t− τ)α
+

(α− 1)2

(t− τ)2

}
∂L

∂Q̇

1 The Euler­Poisson singular derivative operator is in reality of the form

Q̈(q̇(τ), q̈(τ)) = q̈(τ) + (β/(τ − t))q̇(τ)

and it is known as the Bessel’s operator nevertheless it appeared in the work of Euler and Poisson [34].
In our work, we called equation (3) the extended Euler­Poisson operator.
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+

{
β

(t− τ)α
− 2(α− 1)

t− τ

}
d

dτ

(
∂L

∂Q̈

)
+

{
(α− 1)(α− 2)

(t− τ)2
− β(α− 1)

(t− τ)α+1

}
∂L

∂Q̈
+

d2

dτ2

(
∂L

∂Q̈

)
= 0.

(2.4)
Proof: This problem is the same as extremizing the fractional action with Lagrangian
L(τ, Q̇, Ẏ) subject to the constraints Y = Q̇. The action of the theory is now given by:

S[Q] =
1

Γ(α)

∫ b

a

{
L
(
τ,Q, Q̇, ẏ

)
− λ

(
Y − Q̇

)}
(t− τ)α−1 dτ, (2.5)

where λ is the Lagrange multiplier. It is easy to prove after elementary calculations that the
following relation hold:

∂L

∂q
(t− τ)α−1 − d

dτ

((
∂L

∂q̇

)
(t− τ)α−1 + λ

∂Q̇

∂q̇
(t− τ)α−1

)
= 0, (2.6)

and Y = Q̇.2 Making use of the chain rules:

∂L

∂q
=

∂L

∂Q

∂Q

∂q
+

∂L

∂Q̇

∂Q̇

∂q
+

∂L

∂Q̈

∂Q̈

∂q
, (2.7)

∂L

∂q̇
=

∂L

∂Q̇

∂Q̇

∂q̇
+

∂L

∂Q̈

∂Q̈

∂q̇
, (2.8)

we obtain after simple algebraic manipulation:(
∂L

∂Q

∂Q

∂q
+

∂L

∂Q̇

∂Q̇

∂q
+

∂L

∂Q̈

∂Q̈

∂q

)
(t− τ)α−1

− d

dτ

((
∂L

∂Q̇

∂Q̇

∂q̇
+

∂L

∂Q̈

∂Q̈

∂q̇

)
(t− τ)α−1 − d

dτ

(
∂L

∂Q̈

∂Q̈

∂q̇
(t− τ)α−1

)
∂Q̇

∂q̇
(t− τ)α−1

)
= 0.

(2.9)
Using equations (2.2) and (2.3) and the fact that

∂Q

∂q
= 1 + β

∂

∂q

∫
q(τ)

τ − t
dτ = 1 + β

∫
∂

∂q

q(τ)

τ − t
dτ = 1 + ln(τ − t)β , (2.10)

we find effortlessly:{
1 + ln(τ − t)β

} ∂L

∂Q
−
{

1

(t− τ)α−1 +
α− 1

t− τ

}
d

dτ

(
∂L

∂Q̇

)
+

{
α− 1− β

(t− τ)α
+

(α− 1)2

(t− τ)2

}
∂L

∂Q̇

+

{
β

(t− τ)α
− 2(α− 1)

t− τ

}
d

dτ

(
∂L

∂Q̈

)
+

{
(α− 1)(α− 2)

(t− τ)2
− β(α− 1)

(t− τ)α+1

}
∂L

∂Q̈
+

d2

dτ2

(
∂L

∂Q̈

)
= 0.

(2.11)

Remark 2.1: When β = 0and α = 1, equation (2.4) is reduced to:

∂L

∂q
− d

dτ

(
∂L

∂q̇

)
+

d2

dτ2

(
∂L

∂q̈

)
= 0. (2.12)

For β ̸= 0 and α = 1, equation (2.4) is reduced to:

{
1 + ln(τ − t)β

} ∂L

∂Q
+

β

τ − t

{
∂L

∂Q̇
− d

dτ

(
∂L

∂Q̈

)}
− d

dτ

{(
∂L

∂Q̇

)
− d

dτ

(
∂L

∂Q̈

)}
= 0.

(2.13)
Illustrations and exemplifications are done in the subsequent section.

2 Equation (6) is the fractional Euler­Lagrange equation obtained in FALVA approach
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3. ILLUSTRATIONS AND APPLICATIONS

Before illustrating our approach, it is noteworthy we do not claim at this stage the su­
periority of the FALVA method over the standard FCV method originally developed by Riewe
[23, 24]. Both approaches are different nevertheless in our opinion, FALVA approach is
simpler. In Riewe’s approach, fractional derivatives are used to study nonconservative dy­
namical systems (NDS) and in that context, the generalization of Lagrangians taken into ac­
count the dissipative effects was performed. Whereas in FALVA approach we used fractional
integrals to study NDS and not fractional derivatives. In general, dealing with fractional
derivatives is much complicated than dealing with fractional derivatives, e.g. the fractional
integration by parts require some hard mathematical restrictions on the functions involved.
The form of the fractional equation of motion may be comparable with the classical one
but the physical meaning of the classical derivatives is loosing the meaning in the fractional
case [48]. The replacement of the classical derivative in equation (2.1) by fractional derivative
renders the mathematical manipulation of the theory very hard and consequently, numer­
ical techniques are required in order to compare FALVA approach to Riewe’s approach.
From another direction, by replacing the standard Lagrangians in Riewe’s approach by NSL
augmented by fractional SDO renders the mathematical manipulations much hard. To ap­
preciate FALVA and the importance of NSL, let us start by discussing the following simplest
example:

Example 1­We consider at the beginning the NSL L = − 1
2
{1+ ln(τ − t)β}−1Q2 + 1

2
Q̇2 + Q̈

for α = 1 where equation (2.13) holds accordingly. Equation (2.13) results into the following
dynamical equation:

Q̈− β

τ − t
Q̇ + Q = 0. (3.1)

The solution is given by:

Q(τ) = c1(τ − t)
β+1
2 Jβ+1

2

(τ − t) + c2(τ − t)
β+1
2 Yβ+1

2

(τ − t), (3.2)

where c1,c2 are integration constants and Jn(z) and Yn(z) are respectively the Bessel func­
tions of 1st and 2nd kind. For β = −1, we plot in graphs 1 and 2 sample individual solutions
and sample family solution of equation (3.1) respectively (T = τ − t):

Graph 1: sample individual solutions of equation (3.2)
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Graph 2: sample family solution of equation (3.2)

These graphs show decaying oscillations due to the presence of a positive friction term. From
equation (2.2) we find:

q(τ) = c12
−β+3

2 (τ − t)β+2Γ(β + 1)1F̃2

(
β + 1;

β + 3

2
;β + 2,− (τ − t)2

4

)

+

{
(τ − t)β+1 cos

(
π(β + 1)

2

)
Γ(β + 1)1F̃2

(
β + 1;

β + 3

2
;β + 2;− (τ − t)2

4

)

− 2β+1Γ

(
β + 1

2

)
1F̃2

(
β + 1

2
;
1− β

2
;
β + 3

2
;− (τ − t)2

4

)}
c22

−β+3
2 (τ− t) sec

(
πβ

2

)
+c3,

(3.3)

where c3 is another integration constant and pF̃q (a1, ..., ap; b1, ..., bq; z) is the generalized
regularized hypergeometric function. If for instance β = −1, then Q(τ) = c1J0(τ − t) +
c2Y0(τ − t)and

q(τ) = −c1
1

2
(τ−t)21F2

(
1

2
;
3

2
; 2;− (τ − t)2

4

)
−c2

1

2
(τ−t)G2,1

2,4

(
τ − t

2
,
1

2

∣∣∣∣ 1,−1
− 1

2
, 1
2
,−1, 0

)
.

(3.4)

pFq (a1, ..., ap; b1, ..., bq; z) is the hypergeometric function and Gm,n
p,q

(
z| a1, ...., ap

b1, ..., bq

)
is the

Meĳer G­function [48]:

Gm,n
p,q

(
z| a1, ...., ap

b1, ..., bq

)
=

1

2πi

∫
C

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏p

j=n+1 Γ(aj − s)
∏q

j=m+1 Γ(1− bj + s)
xsds. (3.5)

Assuming the initial conditions Q(2.1) = 1and Q′(2.1) = 0, then the solution of equation
(3.1) which is illustrated in graph 1 is:

Q(τ) =
J1(1)Y0(T )− Y1(1)J0(T )

J1(1)Y0(1)− Y1(1)J0(1)
, (3.6)

and accordinglyq(τ), is equal to:

(τ − t)Y1(1)G
2,0
1,3

((
τ−t
2

)2∣∣∣ 1
0, 0, 0

)
2J1(1)Y0(1)− 2J0(1)Y1(1)

−
2J1(1)G

3,0
2,4

(
τ−t
2

, 1
2

∣∣ 0, 3
2

1
2
, 1
2
, 1
2
, 0

)
2J1(1)Y0(1)− 2J0(1)Y1(1)

+c3(τ−t). (3.7)

We plot in graphs 3 and 4 sample individual solutions and sample family solution of equation
(3.7) respectively:

Graph 3: sample individual solutions of equation (3.7)
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Graph 4: sample family solution of equation (3.7)

It is very hard to describe analytically the dynamical problem by replacing the ordinary
derivative operator by a fractional and numerical techniques are required afterward. It
is noteworthy that that the dynamical equation (3.1) may be derived in general from the
standard time­dependent Lagrangian L(τ,Q, Q̇) = 1

2
(τ−t)(Q̇2−Q2) and using the standard

Euler­Lagrange equation

∂L

∂Q
− d

dτ

(
∂L

∂Q̇

)
= 0. (3.8)

Whereas in our approach, equation (2.11) gives for L(τ,Q, Q̇) = 1
2
τ(Q̇2 −Q2)

{
1

(t− τ)α−2 + 1− α

}
Q̈ +

{
α(α− 1)

t− τ
+

α− β

(t− τ)α−1

}
Q̇ +

{
1 + ln(τ − t)β

}
(τ − t)Q = 0.

(3.9)
Mainly for α = 1, we get:

(τ − t)Q̈ + (β − 1)Q̇−
{
1 + ln(τ − t)β

}
(τ − t)Q = 0. (3.10)

Obviously, for β = −1 the dynamics which result from equation (3.10) is totally different
from the one obtained from equation (3.1) as shown in graphs 5 and 6:

Graph 5: sample individual solutions of equation (3.10)
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Graph 6: sample family solution of equation (3.10)

Comparing graphs 1 and 5, we observe that for some critical values of the parameter β, the
dynamics are totally dissimilar.

Example2­We consider now the NSL L = − 1
2

(τ−t)m

1+ln(τ−t)β
Q2 + Q̇ + Q̈ with α − 1 = βand

m ∈ R. Hence we get:

Q(τ) =
(α− 1)(2α− 3)

(t− τ)2+m +
(α− 1)2

(t− τ)α+m+1 , (3.11)

and accordingly:

q̇ +
α− 1

τ − t
q = (2 +m)(α− 1)(2α− 3) (t− τ)−3−m

+ (α+m+ 1)(α− 1)2 (t− τ)−α−m−2 . (3.12)

One particular class of solution is obtained for m = −2 where the solution is given by:

q(τ) = (1− α)3(τ − t)1−α ln |τ − t|+ c4. (3.13)

c4 is one more integration constant. It is noteworthy that the dynamics of Qis complexified
for 0 < α < 1 and T = τ − t > 0 whereas the dynamics of q(τ) is real. We plot in Graph
7 the variations of equations (3.13) and in Graphs 8 and 9 the variations of equation (3.11)
(the z­axis corresponds for q(τ)):

Graph 7: Plot of equation (3.13)
.
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Graph 8: Plot of equation (3.13): real part
.

Graph 9: Plot of equation (3.13): imaginary part
.
We may conclude that equations (2.4) and (2.13) are motivating if we want to describe
Lagrangian systems holding a NSL and starting from FALVA.

Example 3­We could at present consider the following NSL L = (Q̇+f(τ, t)Q)−1considered
in [36] to model dissipations. Here f(τ, t)is an arbitrary function of time. Equation (2.11)
gives now: {

1

(t− τ)α−1 +
α− 1

t− τ

}(
(Q̇ + f(τ, t)Q)−1

(
Q̈ +

df

dτ
Q+ fQ̇

))

−
{
1 + ln(τ − t)β

}
f(τ, t) +

{
α− 1− β

(t− τ)α
+

(α− 1)2

(t− τ)2

}
= 0. (3.14)

For simplicity, we choose f(τ, t) = 1, then equation (3.14) is simplified to:{
1

(t− τ)α−1 +
α− 1

t− τ

}(
Q̈ + Q̇

)
+

({
α− 1− β

(t− τ)α
+

(α− 1)2

(t− τ)2

}
−

{
1 + ln(τ − t)β

})
(Q̇+Q) = 0.

(3.15)
To illustrate, we choose β << 1and α = 2; then equation (3.15) is simplified to

− 2

τ − t
Q̈ +

{
− 2

τ − t
+

2

(τ − t)2
− 1

}
Q̇ +

{
2

(τ − t)2
− 1

}
Q = 0. (3.16)

and the solution is given by:

Q(τ) = c5e
− 1

4
(τ−t)((τ−t+4))

(√
πe

1
4
(τ−t)2+1erf

(
τ − t− 2

2

)
− eτ−t

)
+ c6e

−(τ−t), (3.17)

where erf(x) is error function. We plot the resulting solutions in Graphs 10 and 11
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Graph 10: sample individual solutions of equation (3.17)

Graph 11: sample family solution of equation (3.17)

For very large time, we plot in Graphs 12 and 13 the solutions which correspond for q(τ) as
deduced from equation (2.2):

Graph 12: sample individual solutions for q(τ)

Graph 13: sample family solution of for q(τ)
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In [36], the resulting equation of motion which results from the NSL L = (Q̇+f(τ, t)Q)−1with
f(τ, t) = 1is: Q̈ + 1.5Q̇ + Q = 0and the solutions are plotted in Graphs 14 and 15:

Graph 14: sample individual solutions of equation Q̈ + 1.5Q̇ + Q = 0

Graph 15: sample family solution of equation Q̈ + 1.5Q̇ + Q = 0

Graphs 10 and 14 are similar however in [36], we have β = 0whereas in our approach, for
the particular case β << 1, e.g. β = 10−3, the following graphical solutions (Graphs 16 and
17) hold for q(τ):

Graph 16: sample individual solutions of q(τ)
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Graph 17: sample family solution of q(τ)
Remark 3.1: If the Lagrangian is independent of Q, then equation (2.13) is reduced to:

β

τ − t

{
∂L

∂Q̇
− d

dτ

(
∂L

∂Q̈

)}
− d

dτ

{(
∂L

∂Q̇

)
− d

dτ

(
∂L

∂Q̈

)}
= 0. (3.18)

It is easy to check after straightforward algebra that:

(
∂L

∂Q̇

)
− d

dτ

(
∂L

∂Q̈

)
= K(τ − t)β , (3.19)

where K is an integration constant. This equation is similar to the Euler­Lagrange equation
with a time­dependent dissipative term S in particular when Q̇ −→ Qand S = K(τ − t)β .
Here Qis a new generalized coordinate.
To illustrate we discuss the following examples:

Example 4­We consider the Lagrangian L = 1
2
Q̇2 − 1

2
Q̈2and we choose β = −1 Equation

(3.18) gives:

Q(τ) = c5 sin(τ − t) + c6 cos(τ − t) + c7

+Ci(τ − t)(− cos(τ − t))− Si(τ − t)(sin(τ − t)) + log(τ − t), (3.20)

where Ci(τ − t) and Si(τ − t)are respectively the cosine and the sine integrals [49]. We plot
in Graph 18 sample individual solutions and in Graph 19 a sample family solution:
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Graph 18: sample individual solutions of equation (3.20)

Graph 19: sample family solution of equation (3.20)

Example 5­We consider now the Lagrangian L = 1
2
mQ̇2 − U(Q̈)where U(Q̈) is a function

of Q̈and mis the mass of the particle. Then the equation of motion is:

p− d

dτ

(
∂U

∂Q̈

)
= K(τ − t)β , (3.21)

where p = mQ̇is the momentum. In the absence of the function U(Q̈), we get p =
K(τ − t)βand hence the momentum is time­dependent. It increases with time for β > 0and
decreases for β < 0. We plot in Graph 20 the variation of equation p = K(τ − t)β (z axis
corresponds for p):
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Graph 20: Plot of equation p = K(τ − t)β for K = 1and −3 < β < 3

4. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have explored nonlinear dynamics from both fractional and non­fractional
FALVA holding non­standard Lagrangians. The new formalism is characterized by non­
standard Lagrangians holding singular Weinstein and higher­order extended Euler­Poisson
derivative operators. The examples discussed in this paper are simple, however they prove
that non­standard Lagrangians are important and deserves attention. The results obtained
here are very relevant to those presented by Riewe. It is notable that in 1931, Bauer proved
that for a given dissipative dynamical systems with constant coefficients, the resulting dy­
namical equations of motion are not derived from a variational principle [50]. In Bauer’
approach all the derivatives are of integer order. This is one of the main reasons why Riewe
use fractional derivatives operators to model dissipative dynamical systems. Here we proved
that FALVA augmented by NSL and Weinstein differential operator could be used to model
nonconservative and dissipative systems without implementing fractional derivatives. In
other words, the Lagrangian formulation is constructed for different kinds of dissipative
systems without using the notion of fractional derivative operator. Further investigations
should be carried to elucidate and understand this approach.

In literature there exist many approaches to deal with dynamical systems [51, 52, 53];
nevertheless the equations of motion are derived from the standard action principle. How­
ever, the presented approach is in fact widespread and permits obtaining miscellaneous
forms of non­standard Lagrangians and equations of motion. We argue that this new for­
malism has important implications in many physical systems. The main advantage of the
new action explored in this work is that it offers a new view of the dynamical system under
study. We expect that the new arguments proposed in this work can be applied successfully
to a broad range of physical problems ranging from dissipative mechanics to field theories
[54]­[58]. It will be as well interesting to apply our approach to Hamiltonian and chaotic
dynamics where time takes on a fractal structure [30]. Work in these directions is under
progress.
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ABSTRACT. In this paper we define and investigate a new class of harmonic functions
defined by using Salagean integral operator with varying arguments. We obtain coefficient
inequalities, extreme points and distortion bounds.
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1. INTRODUCTION

A continuous complex­valued function f = u+ iv which is defined in a simply­
connected complex domain D is said to be harmonic in D if both u and v are real
harmonic in D. In any simply­connected domain we can write

f = h+ g, (1.1)

where h and g are analytic in D. We call h the analytic part and g the co­analytic
part of f . A necessary and sufficient condition for f to be locally univalent and
sense­preserving in D is that |h′

(z)| > |g′
(z)|, z ∈ D (see [3]).

Denote by SH the class of functions f of the form (1.1) that are harmonic univalent
and sense­preserving in the unit disc U = {z ∈ C : |z| < 1} for which f(0) = h(0) =

f
′

z(0) − 1 = 0. Then for f = h + g ∈ SH we may express the analytic functions h
and g as

h(z) = z +
∞∑
k=2

akz
k , g(z) =

∞∑
k=1

bkz
k , |b1| < 1. (1.2)
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In 1984 Clunie and Shell­Small [3] investigated the class SH as well as its geometric
subclasses and obtained some coefficient bounds. Since then, there have been
several related papers on SH and its subclasses.
Salagean integral operator In is defined as follows (see [6]):

(i) I0f(z) = f(z);

(ii) I1f(z) = If(z) =
z∫
0

f(t)t−1dt;
..................................................

(iii) Inf(z) = I(In−1f(z)) (n ∈ N = {1, 2, 3, ...}).

In [4], Cotirla defined Salagean integral operator for harmonic univalent functions
f(z) such that h(z) and g(z) are given by (1.2) as follows:

Inf(z) = Inh(z) + (−1)nIng(z), (1.3)
where

Inh(z) = z +

∞∑
k=2

k−nakz
k and Ing(z) =

∞∑
k=1

k−nbkz
k.

With the help of the modified Salagean integral operator we let EH(m,n; γ, ρ) be
the family of harmonic functions f = h+ g, which satisfy the condition

Re

{(
1 + ρeiα

) Inf(z)

Imf(z)
− ρeiα

}
≥ γ (1.4)

(α ∈ R, 0 ≤ γ < 1, ρ ≥ 0,m ∈ N, n ∈ N0 = N ∪ {0} ,m > n, and z ∈ U) ,

where Inf is defined by (1.3), we note that:
Taking α = 0, EH (n+ 1, n; 2β − 1, 1) = H (n, β) (0 ≤ β < 1) (see Cotirla [4]).
Also we note that, by the special choices of α, γ, ρ, m and n, we obtain:

(i) Taking α = 0, then EH(m,n, 2β − 1, 1) = H (m,n;β) =
{
f ∈ SH :

Re

{
Inf(z)

Imf(z)

}
> β (0 ≤ β < 1;m ∈ N;n ∈ N0;m > n; z ∈ U)

}
;

(ii) EH(n+ 1, n; γ, ρ) = EH (n; γ, ρ) =

{
f ∈ SH : Re

{(
1 + ρeiα

) Inf(z)

In+1f(z)

−ρeiα
}
≥ γ (α ∈ R; 0 ≤ γ < 1; ρ ≥ 0;n ∈ N0; z ∈ U)

}
;

(iii) EH(1, 0; γ, ρ) =EH (γ, ρ)=

{
f ∈ SH : Re

{(
1+ρeiα

) f(z)

If(z)
−ρeiα

}
≥γ

(α ∈ R; 0 ≤ γ < 1; ρ ≥ 0; z ∈ U)
}
.

Also we define the subclass VH(m,n; γ, ρ) consists of harmonic functions fn =
h+ gn in EH(m,n; γ, ρ) such that h and gn are the form:

h(z) = z +
∞∑
k=2

akz
k , gn(z) =

∞∑
k=1

bkz
k, (1.5)

and there exist a real number ϕ such that, mod 2π,

arg(ak) + (k − 1)ϕ ≡ π, k ≥ 2 and arg(bk) + (k + 1)ϕ ≡ (n− 1)π, k ≥ 1. (1.6)

Also we note that, by the special choices of α, γ, m and n, we obtain:
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(i)Taking α = 0, VH (n+ 1, n; 2β − 1, 1) = VH (n, β) ;
(ii) Taking α = 0, VH(m,n, 2β − 1, 1) = VH (m,n;β) ;
(iii) VH(n+ 1, n; γ, ρ) = VH (n; γ, ρ) ;
(iv) VH(1, 0; γ, ρ) = VH (γ, ρ).

2. MAIN RESULTS

Unless otherwise mentioned, we assume in the reminder of this paper that,
α ∈ R, 0 ≤ γ < 1, ρ ≥ 0, m ∈ N, n ∈ N0, m > n and z ∈ U. We begin with a
sufficient coefficient condition for functions in the class EH(m,n; γ, ρ).
Theorem 1. Let f = h+ g be such that h and g are given by (1.2). Furthermore,

∞∑
k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
≤ 2, (2.1)

where a1 = 1. Then f is sense­preserving, harmonic univalent in U and f ∈
EH(m,n; γ, ρ).
Proof. If z1 ̸= z2, then by using (2.1), we have∣∣∣∣f(z1)− f(z2)

h(z1)− h(z2)

∣∣∣∣
≥ 1−

∣∣∣∣ g(z1)− g(z2)

h(z1)− h(z2)

∣∣∣∣ = 1−

∣∣∣∣∣∣∣∣
∞∑
k=1

bk
(
zk1 − zk2

)
(z1 − z2) +

∞∑
k=2

ak
(
zk1 − zk2

)
∣∣∣∣∣∣∣∣

≥ 1−

∞∑
k=1

k |bk|

1−
∞∑
k=2

k |ak|
≥ 1−

∞∑
k=1

(1 + ρ)k−n − (−1)
m−n

(γ + ρ) k−m

1− γ
|bk|

1−
∞∑
k=2

(1 + ρ)k−n − (γ + ρ) k−m

1− γ
|ak|

≥ 0,

which proves univalence. Also f is sense­preserving in U since

|h
′
(z)| ≥ 1−

∞∑
k=2

k |ak| |z|k−1
> 1−

∞∑
k=2

(1 + ρ)k−n − (γ + ρ) k−m

1− γ
|ak|

≥
∞∑
k=1

(1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk| ≥
∞∑
k=1

k |bk| |z|k−1 ≥ |g
′
(z)|.

Now we show that f ∈ EH(m,n; γ, ρ). We only need to show that if (2.1) holds then
the condition (1.4) is satisfied, then we want to prove that

Re

{(
1 + ρeiα

)
Inf(z)− ρeiαImf(z)

Imf(z)

}
= Re

A(z)

B(z)
≥ γ (2.2)

Using the fact that Re {w} > γ if and only if |1− γ +w| > |1 + γ −w|, it suffices to
show that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0, (2.3)

where A(z) =
(
1 + ρeiα

)
Inf(z) − ρeiαImf(z) and B(z) = Imf(z). Substituting

for A(z) and B(z) in the left side of (2.3) we obtain
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)
Inf(z)− ρeiαImf(z) + (1−γ) Imf(z)

∣∣
−
∣∣(1+ρeiα

)
Inf(z)− ρeiαImf(z)− (1 + γ)Imf(z)

∣∣
=

∣∣∣∣∣(2−γ) z+
∞∑
k=2

[(
k−n+(1−γ) k−m

)
+ρeiα

(
k−n−k−m

)]
akz

k

− (−1)
m

∞∑
k=1

[(
(γ−1) k−m− (−1)

m−n
k−n

)
+ρeiα

(
k−m− (−1)

m−n
k−n

)]
·

·bkzk
∣∣∣− ∣∣∣∣∣γz−

∞∑
k=2

[(
k−n− (1+γ) k−m

)
+ρeiα

(
k−n−k−m

)]
akz

k+(−1)
m ·

∞∑
k=1

[(
(1+γ) k−m− (−1)

m−n
k−n

)
+ρeiα

(
k−m− (−1)

m−n
k−n

)]
bkzk

∣∣∣∣∣
≥ (2− γ) |z| −

∞∑
k=2

[
(1 + ρ)k−n − (γ + ρ− 1)k−m

]
|ak| |z|k

−
∞∑
k=1

∣∣∣(1 + ρ)k−n − (−1)
m−n

(γ + ρ− 1)k−m
∣∣∣ |bk| |z|k

−γ |z| −
∞∑
k=2

[
(1 + ρ)k−n − (γ + ρ+ 1) k−m

]
|ak| |z|k

−
∞∑
k=1

∣∣∣(1 + ρ)k−n − (−1)
m−n

(γ + ρ+ 1) k−m
∣∣∣ |bk| |z|k

=



2 (1− γ) |z| − 2
∞∑
k=2

[(1 + ρ)k−n − (γ + ρ) k−m] |ak| |z|k

−2
∞∑
k=1

[(1 + ρ)k−n + (γ + ρ) k−m] |bk| |z|k , if n­m is odd;

2 (1− γ) |z| − 2
∞∑
k=2

[(1 + ρ)k−n − (γ + ρ) k−m] |ak| |z|k

−2
∞∑
k=1

[(1 + ρ)k−n − (γ + ρ) k−m] |bk| |z|k , if n­m is even.

> 2

{
(1− γ)−

[ ∞∑
k=2

[
(1 + ρ)k−n − (γ + ρ) k−m

]
|ak|

+
∞∑
k=1

[
(1 + ρ)k−n − (−1)

m−n
(γ + ρ) k−m

]
|bk|

]}
≥ 0, this by using (2.1).

The harmonic univalent functions

f(z) = z+
∞∑
k=2

1−γ
(1+ρ)k−n−(γ+ρ)k−mxkz

k +
∞∑
k=1

1−γ
(1+ρ)k−n−(−1)m−n(γ+ρ)k−m ykzk, (2.4)

where
∞∑
k=2

|xk|+
∞∑
k=1

|yk| = 1, shows that the coefficient bound given by (2.1) is

sharp. This completes the proof of Theorem 1.
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In the following theorem, it is shown that the condition (2.1) is also necessary for
function fn = h+ gn , where h and gn are of the form (1.5).
Theorem 2. Let fn = h + gn, where h and gn are given by (1.5). Then fn ∈
VH(m,n; γ, ρ), if and only if the coefficient condition (2.1) holds.
Proof. Since VH(m,n; γ, ρ) ⊆ EH(m,n; γ, ρ), we only need to prove the \only if"
part of the theorem. For functions fn = h+ gn, where h and gn are given by (1.5),
the inequality (1.4) with f = fn is equivalent to

Re


(1 + ρeiα)[z +

∞∑
k=2

k−nakz
k + (−1)

n
∞∑
k=1

k−nbkz
k]

z +
∞∑
k=2

k−makzk + (−1)
m

∞∑
k=1

k−mbkz
k


−Re


(γ + ρeiα)[z +

∞∑
k=2

k−makz
k + (−1)

m
∞∑
k=1

k−mbkz
k]

z +
∞∑
k=2

k−makzk + (−1)
m

∞∑
k=1

k−mbkz
k

 > 0.

The above condition holds for all values of α ∈ R and z ∈ U . Upon choosing ϕ
according (1.6) and substituting α = 0 and z = reiϕ(0 < r < 1), we must have

E

1−
[ ∞∑
k=2

k−m |ak| − (−1)
m+n−1

∞∑
k=1

k−m |bk|
]
rk−1

> 0, (2.5)

where

E = (1− γ)−

( ∞∑
k=2

[
(1 + ρ)k−n − (γ + ρ) k−m

]
|ak|

)
rk−1

−

( ∞∑
k=1

[
(1 + ρ)k−n − (−1)

m−n
(γ + ρ) k−m

]
|bk|

)
rk−1.

If the inequality (2.1) does not hold, then E is negative for r sufficiently close to 1.
Thus there exists z0 = r0 in (0, 1) for which the quotient in (2.5) is negative. But
this is a contradiction, then the proof of Theorem 2 is completed.

We now obtain the distortion bounds for functions in VH(m,n; γ, ρ).
Theorem 3. Let fn = h + gn, where h and gn are given by (1.5) and fn ∈
VH(m,n; γ, ρ). Then for |z| = r < 1, we have

|fn(z)| ≤ (1 + |b1|) r +
[

1−γ
(1+ρ)2−n−(γ+ρ)2−m − (1+ρ)−(−1)m−n(γ+ρ)

(1+ρ)2−n−(γ+ρ)2−m |b1|
]
r2 (2.6)

and

|fn(z)| ≥ (1 + |b1|) r −
[

1−γ
(1+ρ)2−n−(γ+ρ)2−m − (1+ρ)−(−1)m−n(γ+ρ)

(1+ρ)2−n−(γ+ρ)2−m |b1|
]
r2. (2.7)

Proof. We prove the first inequality.
Let fn ∈ VH(m,n; γ, ρ), we have

|fn(z)| ≤ (1+ |b1|) r+
∞∑
k=2

(|ak|+ |bk|) rk≤ (1 + |b1|) r +
∞∑
k=2

(|ak|+ |bk|) r2

≤ (1+ |b1|) r+ 1−γ
(1+ρ)2−n−(γ+ρ)2−m

∞∑
k=2

(1+ρ)2−n−(γ+ρ)2−m

1−γ (|ak|+ |bk|) r2

≤ (1 + |b1|) r + 1−γ
(1+ρ)2−n−(γ+ρ)2−m ·
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·
∞∑
k=2

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
r2

≤ (1 + |b1|) r + 1−γ
(1+ρ)2−n−(γ+ρ)2−m

[
1− (1+ρ)−(−1)m−n(γ+ρ)

1−γ |b1|
]
r2

≤ (1 + |b1|) r +
[

1−γ
(1+ρ)2−n−2−m(γ+ρ) −

(1+ρ)−(−1)m−n(γ+ρ)
(1+ρ)2−n−2−m(γ+ρ) |b1|

]
r2.

The proof of the second inequality is similar, thus it is left.
The bounds given in Theorem 3 for functions fn = h + gn such that h and gn are
given by (1.6) also hold for functions f = h+ g such that h and g are given by (1.2)
if the coefficient condition (2.1) is satisfied.
Using the same technique used earlier by Aghalary [1] we introduce the extreme
points of the class VH(m,n; γ, ρ).
Theorem 4. The closed convex hull of the class VH(m,n; γ, ρ) (denoted by clcoVH(m,n; γ, ρ))
is {

f(z) = z +
∞∑
k=2

akz
k +

∞∑
k=1

bkzk ∈ EH(m,n; γ, ρ) :

∞∑
k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
≤ 2

}
,

where a1=1. Set λk=
1−γ

(1+ρ)k−n−(γ+ρ)k−m and µk=
1−γ

(1+ρ)k−n−(−1)m−n(γ+ρ)k−m . For b1
fixed, |b1| ≤ 1−γ

(1+ρ)−(−1)m−n(γ+ρ) , the extreme points of the class VH(m,n; γ, ρ) are{
z + λkxz

k + b1z
}
∪
{
z + µkxzk + b1z

}
, (2.8)

where k ≥ 2 and |x| = 1− (1+ρ)−(−1)m−n(γ+ρ)
1−γ .

Proof. Any function f ∈ VH(m,n; γ, ρ) may be expressed as

f(z) = z +

∞∑
k=2

|ak| eiβkzk + b1z +

∞∑
k=2

|bk| eiδkzk,

where the coefficients satisfy the inequality (2.1). Set

h1(z)=z, g1(z)=b1z, hk(z)=z+λke
iβkzk, gk(z)=b1z+µke

iδkzk, k=2, 3, ... .

Writing Xk = |ak|
λk

, Yk = |bk|
µk

, k = 2, 3, ... and X1 = 1−
∞∑
k=2

Xk, Y1 = 1−
∞∑
k=2

Yk, we

have

f(z) =
∞∑
k=1

(
Xkhk(z) + Ykgk(z)

)
.

In particular, setting
f1(z) = z + b1z,

and
fk(z) = z + λkxz

k + b1z + µkyzk,(
k ≥ 2, |x|+ |y| = 1− (1 + ρ)− (−1)

m−n
(γ + ρ)

1− γ
|b1|

)
,

we see that extreme points of the class VH(m,n; γ, ρ) are contained in {fk(z)}. To
see that f1(z) is not an extreme point, note that f1(z) may be written as

f1(z) =
1

2

{
f1(z) + λ

(
1− (1 + ρ)k−n − (−1)

m−n
(γ + ρ) k−m

1− γ
|b1|

)
z2

}
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+
1

2

{
f1(z)− λ

(
1− (1 + ρ)k−n − (−1)

m−n
(γ + ρ) k−m

1− γ
|b1|

)
z2

}
,

a convex linear combination of functions in the class VH(m,n; γ, ρ). Next we will
show if both |x| ̸= 0 and |y| ≠ 0, then fk is not an extreme point. Without loss
of generality, assume |x| ≥ |y|. Choose ϵ > 0 small enough so that ϵ < |x|

|y| . Set

A = 1 + ϵ and B = 1−
∣∣∣ ϵxy ∣∣∣ , we then see that both

t1(z) = z + λkxAz
k + b1z + µkyBzk

and

t2(z) = z + λkx (2−A) zk + b1z + µky (2−B) zk,

are in the class VH(m,n; γ, ρ) and note that

fk(z) =
1

2
(t1(z) + t2(z)) .

The extremal coefficient bounds shows that functions of the form (2.8) are the
extreme points for the classVH(m,n; γ, ρ), then the proof of Theorem 4 is completed.

Now we will examine the closure properties of the class VH(m,n; γ, ρ) under the
generalized Bernardi­Libera­Livingston integral operator (see [2, 5]) Lc(f) which is
defined by

Lc(f (z)) =
c+ 1

zc

z∫
0

tc−1f (t) dt (c > −1). (2.9)

Theorem 5. Let fn = h + gn ∈ VH(m,n; γ, ρ), where h and gn are given by (1.5).
Then Lc(fn(z)) belongs to the class VH(m,n; γ, ρ).
Proof. From the representation of Lc(fn(z)), it follows that

Lc(fn(z)) =
c+ 1

zc

z∫
0

tc−1 (h (t) + gn(t)) dt

=
c+ 1

zc

z∫
0

tc−1

{
t+

∞∑
k=2

akt
k +

∞∑
k=1

bktk

}
dt

= z +

∞∑
k=2

Akz
k +

∞∑
k=1

Bkzk,

where Ak = c+1
c+kak, Bk = c+1

c+k bk. Therefore, we have,

∞∑
k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ

c+ 1

c+ k
|ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ

c+ 1

c+ k
|bk|
]

≤
∞∑
k=1

[
(1+ρ)k−n−(γ+ρ)k−m

1−γ |ak|+ (1+ρ)k−n−(−1)m−n(γ+ρ)k−m

1−γ |bk|
]
≤ 2,

and the proof of Theorem 5 is completed.
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ABSTRACT. In this study, we introduce the class of asymptotically generalized Φ­ pseudo­
contractive mappings in the intermediate sense and prove the convergence of Mann type
iterative scheme to their fixed points. Our results improves and generalizes the results of
Kim et al. [J. K. Kim, D. R. Sahu, Y. M. Nam, Convergence theorem for fixed points of nearly
L­Lipschitzian mappings, Nonlinear Analysis 71 (2009) 2833­2838] and several others.

KEYWORDS : Asymptotically generalized Φ­pseudocontractive mappings in the intermediate
sense, Banach spaces, Mann type iterative scheme, strong convergence, unique fixed point.
AMS Subject Classification: 47H09; 47H10.

1. INTRODUCTION

Let E be an arbitrary real normed linear space with dual E∗. We denote by J
the normalized duality mapping from E into 2E

∗
defined by

J(x) :=
{
f∗ ∈ E∗ : ⟨x, f∗⟩ = ∥x∥2 = ∥f∗∥2

}
, (1.1)

where ⟨., .⟩ denotes the generalized duality pairing.
In the sequel, we give the following definitions which will be useful in this study

Definition 1.1. Let C be a nonempty subset of real normed linear space E. A
mapping T : C −→ E is said to be

(1) strongly pseudocontractive [12] if for all x, y ∈ C, there exist constant k ∈ (0, 1)
and

j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ≤ k∥x− y∥2, (1.2)

(2) ϕ­strongly pseudocontractive [12] if for all x, y ∈ C, there exist strictly increas­
ing
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Article history : Received October 09,2014 Accepted June 12, 2014.
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function ϕ : [0,∞) −→ [0,∞) with ϕ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 − ϕ(∥x− y∥)∥x− y∥, (1.3)

The class of ϕ­strongly pseudocontractive mappings includes the class of strongly
pseudocontractive mappings by setting ϕ(s) = ks for all s ∈ [0,∞). However, the
converse is not true (see, e.g. Hirano and Huang [10]).

(3) generalized Φ­pseudocontractive [1, 6] if for all x, y ∈ C, there exist strictly
increasing

function Φ : [0,∞) −→ [0,∞) with Φ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

⟨Tx− Ty, j(x− y)⟩ ≤ ∥x− y∥2 − Φ(∥x− y∥), (1.4)

(4) asymptotically generalized Φ­pseudocontractive [12] with sequence {kn} if for
each n ∈ N and x, y ∈ C, there exist constant kn ≥ 1 with limn−→∞ kn = 1, strictly
increasing function Φ : [0,∞) −→ [0,∞) with Φ(0) = 0 and j(x − y) ∈ J(x − y)
satisfying

⟨Tnx− Tny, j(x− y)⟩ ≤ kn∥x− y∥2 − Φ(∥x− y∥), (1.5)

The class of asymptotically generalized Φ­pseudocontractive was introduced by Kim
et al. [12].

Definition 1.2. [19]. A mapping T : C −→ C is said to be asymptotically pseudo­
contractive mapping in the intermediate sense if

lim sup
n−→∞

sup
x,y∈C

(
⟨Tnx− Tny, x− y⟩ − kn∥x− y∥2

)
≤ 0, (1.6)

where {kn} is a sequence in [1,∞) such that kn −→ 1 as n −→ ∞. Put

νn = max

{
0, sup

x,y∈C

(
⟨Tnx− Tny, x− y⟩ − kn∥x− y∥2

)}
. (1.7)

It follows that νn −→ 0 as n −→ ∞. Then, (1.6) is reduced to the following:

⟨Tnx− Tny, x− y⟩ ≤ kn∥x− y∥2 + νn, ∀n ≥ 1, x, y ∈ C. (1.8)

Qin et al. [19] introduced the class of asymptotically pseudocontractive map­
pings in the intermediate sense. They proved weak convergence theorems for this
class of nonlinear mappings. They also established some strong convergence re­
sults without any compact assumption by considering the hybrid projection meth­
ods. Olaleru and Okeke [17] in 2012 proved a strong convergence of Noor type
scheme for a uniformly L­Lipschitzian and asymptotically pseudocontractive map­
pings in the intermediate sense without assuming any form of compactness.

Motivated by the above facts, we now introduce the following class of nonlinear
mappings

Definition 1.3. Let C be a nonempty subset of real normed linear space E. A map­
ping T : C −→ C is said to be asymptotically generalized Φ­pseudocontractive map­
ping in the intermediate sense with sequence {kn} if for each n ∈ N and x, y ∈ C,
there exists constant kn ≥ 1 with limn−→∞ kn = 1 and strictly increasing function
Φ : [0,∞) −→ [0,∞) with Φ(0) = 0 and j(x− y) ∈ J(x− y) satisfying

lim sup
n−→∞

sup
x,y∈C

(
⟨Tnx− Tny, j(x− y)⟩ − kn∥x− y∥2 +Φ(∥x− y∥)

)
≤ 0. (1.9)

Put

τn = max

{
0, sup

x,y∈C

(
⟨Tnx− Tny, j(x− y)⟩ − kn∥x− y∥2 +Φ(∥x− y∥)

)}
. (1.10)



CONVERGENCE THEOREMS ON ASYMPTOTICALLY GENERALIZED Φ­PSEUDOCONTRACTIVE MAPPINGS 47

It follows that τn −→ 0 as n −→ ∞. Hence (1.9) is reduced to the following

⟨Tnx− Tny, j(x− y)⟩ ≤ kn∥x− y∥2 + τn − Φ(∥x− y∥). (1.11)

We remark that if τn = 0 for all n ∈ N, the class of asymptotically generalized
Φ­pseudocontractive mapping in the intermediate sense is reduced to the class of
asymptotically generalized Φ­pseudocontractive.

Example 1.4. Let E = R1 and C = [c,∞), where c > 0 is any given constant.
Define the mapping T : C −→ 2E by

Tx =


[0, c], if x = c,

k(x−c)2

1+(x−c) , if x > c,

where k ∈ (0, 1).
Clearly, T has a unique fixed point p = c ∈ C. Define Φ : [0,∞) −→ [0,∞) by
Φ(t) = t2

(1+t) . Clearly, Φ is strictly increasing and Φ(0) = 0. Now, for each x ∈ C,

we have
⟨Tnx− Tnp, j(x− p)⟩ = k(x−c)3

1+(x−c)

= kn(|x− c|2 − |x−c|2
1+|x−c| )

≤ kn|x− p|2 − Φ(|x− p|) + kn.
Hence, T is asymptotically generalized Φ­pseudocontractive mapping in the inter­
mediate sense.

Let C be a nonempty of a normed linear space E. A mapping T : C −→ E is said
to be Lipschitzian if there exists a constant L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥ (1.12)

for all x, y ∈ C and generalized Lipschitzian [12] if there exists a constant L > 0
such that

∥Tx− Ty∥ ≤ L(∥x− y∥+ 1) (1.13)

for all x, y ∈ C. A mapping T : C −→ C is called uniformly L­Lipschitzian [12] if for
each n ∈ N, there exists a constant L > 0 such that

∥Tnx− Tny∥ ≤ L∥x− y∥ (1.14)

for all x, y ∈ C.
Clearly, every Lipschitzian mapping is a generalized Lipschitzian mapping. Every

mapping with a bounded range is a generalized Lipschitzian mapping. The following
example shows that the class of generalized Lipschitzian mappings properly con­
tains the class of Lipschitzian mappings and that of mappings with bounded range.

Example 1.5. [4]. Let E = (−∞,∞) and T : E −→ E be defined by Tx =
x− 1 if x ∈ (−∞,−1),

x−
√
1− (x+ 1)2 if x ∈ [−1, 0),

x+
√
1− (x− 1)2 if x ∈ [0, 1],

x+ 1 if x ∈ (1,∞).

Then T is a generalized Lipschitzian mapping which is not Lipschitzian and whose
range is not bounded.

Sahu [20] introduced a new class of nonlinear mappings which is more general
than the class of generalized Lipschitzian mappings and the class of uniformly L­
Lipschitzian mappings.
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Definition 1.6. [20]. Let C be a nonempty subset of a Banach space E and
fix a sequence {an} in [0,∞) with an −→ 0.

(1) A mapping T : C −→ C is said to be nearly Lipschitzian with respect to {an}
if for each n ∈ N, there exists a constant kn > 0 such that

∥Tnx− Tny∥ ≤ kn(∥x− y∥+ an) (1.15)

for all x, y ∈ C.
The infimum of constants kn in (1.15) is called nearly Lipschitz constant and is

denoted by η(Tn).
(2) A nearly Lipschitzian mapping T with sequence {(an, η(Tn))} is said to be

nearly uniformly L­Lipschitzian if kn = L for all n ∈ N, i.e.

∥Tnx− Tny∥ ≤ L(∥x− y∥+ an) (1.16)

and nearly asymptotically nonexpansive if kn ≥ 1 for all n ∈ N with limn−→∞ kn = 1.
(3) A mapping T : C −→ E will be called generalized (M,L)­Lipschitzian if there

exist two constants L,M > 0 such that

∥Tx− Ty∥ ≤ L(∥x− y∥+M) (1.17)

for all x, y ∈ C.
Observe that the class of generalized (M,L)­Lipschitzian mappings is a gener­

alization of the class of Lipschitzian mappings. Clearly, the class of nearly uni­
formly L­Lipschitzian mappings properly contains the class of generalized (M,L)­
Lipschitzian mappings and the class of uniformly L­Lipschitzian mappings. We
remark that every nearly asymptotically nonexpansive mapping is nearly uniformly
L­Lipschitzian.

It has been shown by Sahu [20] that the class of nearly uniformly L­Lipschitzian
is not necessarily continuous. Sahu [20] extended the results of Goebel and Kirk
[8] to demicontinuous mappings and proved that if C is a nonempty closed convex
bounded subset of a uniformly convex Banach space, then every demicontinuous
nearly asymptotically nonexpansive self­mapping of C has a fixed point.

It is our purpose in this study to use the concept of nearly uniformly L­ Lip­
schitzian (not necessarily continuous) mappings to prove a strong convergence
result for the class of asymptotically generalized Φ­pseudocontractive mappings in
the intermediate sense in a general Banach space. Our results is an improvement
of several other results in literature.

The following Lemmas will be useful in this study

Lemma 1.1. [3]. Let E be a Banach space. Then for each x, y ∈ E, there ex­
ists j(x+ y) ∈ J(x+ y) such that

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩.

Lemma 1.2. [18]. Let {δn}, {βn} and {γn} be three sequences of nonnegative
numbers such that

δn+1 ≤ (1 + βn)δn + γn

for all n ∈ N. If
∑∞

n=1 βn < ∞ and
∑∞

n=1 γn < ∞, then limn−→∞ δn exists.

Lemma 1.3. [14]. Let {θn} be a sequence of nonnegative real numbers and {λn} a
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real sequence in [0, 1] such that
∑∞

n=1 λn = ∞. If there exists a strictly increasing
function ϕ : [0,∞) −→ [0,∞) with ϕ(0) = 0 such that

θ2n+1 ≤ θ2n − λnϕ(θn+1) + σn

for all n ≥ n0, where n0 is some nonnegative integer and {σn} is a sequence of
nonnegative numbers such that σn = o(λn), then limn−→∞ θn = 0.

Lemma 1.4. [12]. Let {δn}, {βn}, {γn} and {σn} be four sequences of nonnegative
numbers such that

δ2n+1 ≤ (1 + βn)δ
2
n + γn(δn + σn)

2

for all n ∈ N. If
∑∞

n=1 βn < ∞,
∑∞

n=1 γn < ∞ and {σn} is bounded, then
limn−→∞ δn exists.

2. Main Results

We prove the following Lemma which will be needed in this study.

Lemma 2.1. Let {δn}, {βn}, {γn}, {σn} and {ρn} be five sequences of nonneg­
ative numbers such that

δ2n+1 ≤ (1 + βn)δ
2
n + γn(δn + σn)

2 + ρ2n (2.1)

for all n ∈ N. If
∑∞

n=1 βn < ∞,
∑∞

n=1 γn < ∞,
∑∞

n=1 ρn < ∞ and {σn} is bounded,
then limn−→∞ δn exists.

Proof. Using (2.1), we obtain

δ2n+1 ≤ (1 + βn)δ
2
n + γn(δn + σn)

2 + ρ2n
≤ (1 + βn)δ

2
n + 2γn(δ

2
n + σ2

n) + ρ2n
≤ (1 + βn + 2γn)δ

2
n + 2γnσ

2
n + ρ2n. (2.2)

Since {σn} is bounded and
∑∞

n=1 ρn < ∞, then by Lemma 1.2, it follows that
limn−→∞ δn exists. The proof of Lemma 2.1 is completed. □

Theorem 2.2. Let C be a nonempty convex subset of a real Banach space E and
T : C −→ C a nearly uniformly L­Lipschitzian mapping with sequence {an} and
asymptotically generalized Φ­pseudocontractive mapping in the intermediate sense
with sequences {τn} and {kn} as defined in (1.11) and F (T ) ̸= ∅. Let {αn} be a
sequence in [0, 1] satisfying the conditions:

(i) { an

αn
} is bounded,

(ii)
∑∞

n=1 αn = ∞,
(iii)

∑∞
n=1 α

2
n < ∞ and

∑∞
n=1 αn(kn − 1) < ∞.

Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ∈ N. (2.3)

Then the sequence {xn} in C defined by (2.3) converges strongly to a unique fixed
point of T.

Proof. Fix p ∈ F (T ), using (1.16) and (2.3) and set
An := 2αn(kn − 1) + α2

n[1 + L(1 + L)]
and
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Bn := 1− 2αnkn − α2
nL(1 + L).

∥xn+1 − xn∥ = αn∥Tnxn − xn∥
≤ αn(∥Tnxn − p∥+ ∥xn − p∥)
≤ αn(L∥xn − p∥+ an) + ∥xn − p∥)
≤ αn(1 + L)∥xn − p∥+ anL. (2.4)

Using (1.11), (1.16), (2.3), (2.4) and Lemma 1.1, we obtain

∥xn+1 − p∥2 = ∥(1− αn)(xn − p) + αn(T
nxn − p)∥2

≤ (1− αn)
2∥xn − p∥2 + 2αn⟨Tnxn − p, j(xn+1 − p)⟩

≤ (1− αn)
2∥xn − p∥2 + 2αn{⟨Tnxn+1 − p, j(xn+1 − p)⟩

+⟨Tnxn − Tnxn+1, j(xn+1 − p)⟩}
≤ (1− αn)

2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)
+∥Tnxn − Tnxn+1∥ × ∥xn+1 − p∥}

≤ (1− αn)
2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)

+L (∥xn+1 − xn∥+ an) ∥xn+1 − p∥}
≤ (1− αn)

2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)
+L (αn(1 + L)∥xn − p∥+ anL+ an) ∥xn+1 − p∥}

= (1− αn)
2∥xn − p∥2 + 2αn{kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)

+αnL(1 + L)
(
∥xn − p∥+ an

αn

)
∥xn+1 − p∥}

≤ (1− αn)
2∥xn − p∥2 + 2αn

{
kn∥xn+1 − p∥2 + τn − Φ(∥xn+1 − p∥)

}
+α2

nL(1 + L)

{(
∥xn − p∥+ an

αn

)2

+ ∥xn+1 − p∥2
}
. (2.5)

From (2.5), we obtain

∥xn+1 − p∥2 ≤
(

(1−αn)
2

1−2αnkn−k2
nL(1+L)

)
∥xn − p∥2 + 2αnτn

1−2αnkn−α2
nL(1+L)

− 2αnΦ(∥xn+1−p∥)
1−2αnkn−α2

nL(1+L) +
α2

nL(1+L)
1−2αnkn−α2

nL(1+L)

(
∥xn − p∥+ an

αn

)2

=
(

(1−αn)
2

Bn

)
∥xn − p∥2 + 2αnτn

Bn
− 2αn

Bn
Φ(∥xn+1 − p∥)

+
α2

nL(1+L)
Bn

(
∥xn − p∥+ an

αn

)2

. (2.6)

From (2.6), we obtain

∥xn+1 − p∥2 ≤
(
1 + An

Bn

)
∥xn − p∥2 + 2αnτn

Bn
− 2 αn

Bn
Φ(∥xn+1 − p∥)

+
2α2

nL(1+L)
Bn

(
∥xn − p∥+ an

αn

)2

. (2.7)

But Bn = 1− 2αnkn − α2
nL(1 + L) −→ 1, there exists a number n0 ∈ N such that

1
2 < Bn ≤ 1 for each n ≥ n0. From (2.7), we have

∥xn+1 − p∥2 ≤ (1 + 2An)∥xn − p∥2 + 4αnτn − 2αnΦ(∥xn+1 − p∥)

+4α2
nL(1 + L)

(
∥xn − p∥+ an

αn

)2

. (2.8)

∥xn+1 − p∥2 ≤ (1 + 2An)∥xn − p∥2 + 4αnτn

+4α2
nL(1 + L)

(
∥xn − p∥+ an

αn

)2

. (2.9)

From the conditions
∑∞

n=1 αn(kn − 1) < ∞ and
∑∞

n=1 α
2
n < ∞, it follows that∑∞

n=1 An < ∞. Since { an

αn
} is bounded, we have from (2.8) and Lemma 2.1 that

limn−→∞ ∥xn−p∥ exists. Hence, {xn} is bounded. Now, we set M1 := sup{∥xn−p∥ :
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n ∈ N}, M2 := sup{ an

αn
: n ∈ N} and M3 := sup{αnτn : n ∈ N}. Then from (2.8),we

have
∥xn+1 − p∥2 ≤ ∥xn − p∥2 + 4M3 − 2αnΦ(∥xn+1 − p∥)

+4α2
nL(1 + L)(M1 +M2)

2 + 2AnM
2
1 . (2.10)

Taking θn = ∥xn−p∥, λn = 2αn and σn = 4α2
nL(1+L)(M1+M2)

2+2AnM
2
1 +4M3,

(2.10) reduces to
θ2n+1 ≤ θ2n − λnϕ(θn+1) + σn.

Hence from Lemma 1.3, it follows that ∥xn − p∥ −→ 0. The proof of Theorem 2.2 is
completed. □

Corollary 2.3. Let C be a nonempty convex subset of a real Banach space E
and T : C −→ C a nearly uniformly L­Lipschitzian mapping with sequence {an}
and asymptotically generalized Φ­pseudocontractive mapping with sequence {kn}
as defined in (1.4) and F (T ) ̸= ∅. Let {αn} be a sequence in [0, 1] satisfying the
conditions:

(i) { an

αn
} is bounded,

(ii)
∑∞

n=1 αn = ∞,
(iii)

∑∞
n=1 α

2
n < ∞ and

∑∞
n=1 αn(kn − 1) < ∞.

Let {xn} be the sequence in E generated from arbitrary x1 ∈ C by

xn+1 = (1− αn)xn + αnT
nxn, n ∈ N. (2.11)

Then the sequence {xn} in C defined by (2.11) converges strongly to a unique fixed
point of T.

Remark 2.4. The results of Theorem 2.2 shows that the class of asymptotically
generalized Φ­pseudocontractive mappings in the intermediate sense includes the
class of asymptotically generalized Φ­pseudocontractive mappings introduced by
Kim et al. [12]. Furthermore, Our results extended the works of Qin et al. [19] and
Zegeye et al. [22] from Hilbert spaces to the general Banach spaces.

Example 2.5. Let E = R and C = [0, 1]. For all x ∈ C, we define T : C −→ C by

Tx =

 (3−
√
x)2 if x ∈ [0, 1)

0 if x = 1

It is easy to see that T is asymptotically generalized Φ­pseudocontractive map­
ping in the intermediate sense with sequence {kn = 1}, Φ(t) = t2

3 , t ∈ [0,∞) and
{τ} = 1

n2 .

Put αn = 1
n . We can see that the conditions (i), (ii) and (iii) of Theorem 2.2 are

satisfied.
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ABSTRACT. In this paper, by using nonsmooth version of very recently theorem of Ricceri
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1. INTRODUCTION

Ricceri in [9] established a new result for sequentially weakly lower semicon­
tinuous functionals and in [10, Theorem 1.1], applied this result for a class of
continuous functions with a certain assumption and proved that problem{

−div(|∇u|p−2∇u) = h(x)f(u) in Ω
u = 0 on ∂Ω

where Ω ⊂ RN is a bounded domain, h ∈ L∞(Ω) and f is continuous function,
has a weak solution and gradient of solution is lower than an estimate depends on
value of a positive constant r.

In the present paper, we apply this result of Ricceri [9, Theorem 1], for a class
of discontinuous functions, which obtains a new existence theorem for Dirichlet
problems involving this type of functions. It is essential, in view of this study, that
our nonlinearity is an upper­semicontinuous multifunction with compact convex
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values. Our main theorem (Theorem 3.2) has a few assumptions on nonlinearity
for which the existence of a solution is obtained with a precise estimate on the
gradient of solution.

The existence of solution is proved by using variational method, following the
ideas of Chang [1] relating to partial differential inclusions. we will prove that our
problem admits a nonzero solution under some technical assumptions on nonlin­
earity.

Partial differential inclusions involving a multifunction have been studied by
some authors using nonsmooth critical point theory introduced by Clark [2]. Among
others, we refer the reader to [3], [4], [7] and [13].

2. PRELIMINARIES AND NOTATIONS

Now, let Ω ⊂ Rn be a bounded domain with smooth boundary and also p > 1.
On the Soboleve space W 1,p

0 (Ω), consider the norm

||u|| = (

∫
Ω

|∇u(x)|pdx)
1
p .

Our assumptions on the multifunction F defined on R are the following:
(F1) F : R → 2R is upper semicontinuous with compact convex values;
(F2) |ξ| ⩽ e(1 + |s|q) for all s ∈ R, ξ ∈ F (s) (e > 0) such that 0 < q ≤ pn

n− p
for

n > p and 0 < q < +∞ for n ≤ p.
Suppose that γ ∈ L∞(Ω)+\{0} and F satisfies (F1),(F2), consider the following
Dirichlet problem {

−div(|∇u|p−2∇u) ∈ γ(x)F (u) in Ω
u = 0 on ∂Ω

(2.1)

Our aim is to prove the existence of a non­zero solution for problem (2.1). In
follow­up, this section is devoted to the statement some lemmas and results of
nonsmooth analysis.

Let X be a Banach space whose dual is denoted by X∗. We recall that the
generalized directional derivative Φ◦(u; v) of a locally Lipschitz function Φ : X → R
at a point u ∈ X and in the direction v ∈ X is defined by

Φ◦(u; v) = lim sup
w→u
τ→0+

Φ(w + τv)− Φ(w)

τ
.

The set ∂Φ(u) := {u∗ ∈ X∗ :< u∗, v >≤ Φ◦(u; v) for all v ∈ X} denotes the
generalized gradient of the function Φ.

Lemma 2.1. ([6, Proposition 1.1]). Let Φ ∈ C1(X) be a functional. Then Φ is locally
Lipschitz and

(1) Φ◦(u; v) =< Φ′(u), v > for all u, v ∈ X;
(2) ∂Φ(u) = {Φ′(u)} for all u ∈ X.

Lemma 2.2. ([2, Proposition 2.2.9]). Let Φ be Lipschitz near each point of an open
convex subset U of X. Then Φ is convex on U if and only if the multifunction ∂Φ(u) is
monotone on U, that is, if and only if

< u∗1 − u∗2, u1 − u2 >⩾ 0 ∀ui ∈ U, ∀u∗i ∈ ∂Φ(ui) (i = 1, 2).

Lemma 2.3. ([6, Proposition 1.6]). Let Φ,Ψ : X → R be a locally Lipschitz function­
als. Then

(1) ∂(λΦ)(u) = λ∂Φ(u) for all u ∈ X,λ ∈ R;
(2) ∂(Φ + Ψ)(u) ⊆ ∂Φ(u) + ∂Ψ(u) for all u ∈ X.
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The following lemma helps us to relate locally Lipschitz functions to lower semi­
continuous functions.

Lemma 2.4. ([5, Lemma 6]). Let f : X → R be a locally Lipschitz functional with
compact gradient. Then f is sequentially weakly continuous.

Proposition 2.5. ([6, Corollary 1.1]). If u ∈ U is a local minimum or maximum of
the locally Lipschitz function f : U → R on an open set a Banach space X, then
0 ∈ ∂f(u).
If, in addition, f is convex, then the above condition is also sufficient for u to be a
global minimum.

The next theorem has proved by Ricceri[11], recall a consequence of the varia­
tional principle, and is a technical tool which obtains the estimate on solution.

Theorem 2.1. Let X be a reflexive real Banach space and let Φ,Ψ : X → R be
two sequentially weakly lower semicontinuous functionals, with Ψ also coercive and
Φ(0) = Ψ(0) = 0.

Then, for each σ > inf
X

Ψ and each λ satisfying

λ > −
inf

Ψ−1(]−∞,σ])
Φ

σ
,

the restriction of λΨ+Φ to Ψ−1(]−∞, σ[) has a global minimum.

3. MAIN RESULTS

In the first of this section, we collect some basic notations that used in our main
result and some especially results about our nonlinearity in form of some lemmas.

For each λ ∈ [0,+∞], we denote by Mλ the set of all global minima of λψ−φ or
the empty set according to whether λ < +∞ or λ = +∞. We adopt the conventions
inf ∅ = +∞ and sup ∅ = −∞.

Moreover, for a, b that are two fixed number in [0,+∞], with a < b, we put

α := max{inf
X
ψ, sup

Mb

ψ}

and
β := min{sup

X
ψ, inf

Ma

ψ}.

From [7], by standard results of setvalued analysis, for a F satisfies (F1) and (F2),
the mapping minF : R → R is lower semicontinuous and maxF : R → R is upper
semicontinuous.
Put

f(s) =

{
maxF (s) if s < 0
minF (s) if s ⩾ 0

then f : R → R is a measurable selection of F . Moreover, f is lower semicontinuous
on [0,+∞[ and upper semicontinuous on ]−∞, 0[, so it is measurable in R.

Now, we set

H(s) =

∫ s

0

f(t)dt for all s ∈ R,

that the convexity of F (s) (see (F1)) implies the convexity of H(s) for every x ∈ R.
Finally, set

J(u) :=

∫
Ω

γ(x)H(u)dx for all u ∈ Lp(Ω).
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The growth condition (F2) implies that J is well defined on Lp(Ω), because for all
u ∈ Lp(Ω) we have∫

Ω

γ(x)
∣∣∣ ∫ u

0

f(s)ds
∣∣∣dx ≤ ||γ||∞

∫
Ω

e(|u|+ |u|p

p
)dx ≤ c||u||pp (c > 0).

Lemma 3.1. ([4, Lemma 3.2]). The functional J : Lp(Ω) → R is Lipschitz on
any bounded subset of Lp. Moreover, for all u ∈ Lp and u∗ ∈ ∂J(u), we have
u∗(x) ∈ γ(x)F (u(x)) for a.a. x ∈ Ω.

Now, for the Banach space X defined before, we have the following lemma.

Lemma 3.2. ([4, Lemma 3.3]). The functional J : X → R is locally Lipschitz and its
gradient ∂J : X → 2X

∗
is compact.

Proof. Since the space X = W 1,p
0 (Ω) is compactly embedded into Lp(Ω), so proof

is similar to the proof of [4, Lemma 3.3] and we do not repeat it. □

Ricceri in [9, Theorem 1], proved the next theorem in a measurable space where
φ and ψ were sequentially weakly lower semicontinuous. Here, by applying Lemma
2.4, we denote this theorem for locally Lipschitz functions.

Theorem 3.1. Let X be a reflexive real Banach space, and ψ : X → R be a
sequentially weakly lower semicontinuous functional and φ : X → R be a locally
Lipschitz functional with compact gradient such that sup

X
ψ > 0 and

inf
x∈X

ψ(x)

1 + ||x||p
> −∞,

for some p > 0. Moreover, assume that the functional λψ − φ is coercive and has a
unique global minimum for each λ ∈]a, b[. Suppose also that α < β.

Then, for each γ ∈ L∞(Ω)+\{0}, and for each r ∈]α, β[ if we put

Vγ,r := {u ∈ Lp(Ω) :

∫
Ω

γ(x)ψ(u(x))dx ⩽ r

∫
Ω

γ(x)dx},

we have

sup
u∈Vγ,r

∫
Ω

γ(x)φ(u(x))dx ⩽ sup
ψ−1(r)

φ

∫
Ω

γ(x)dx. (3.1)

Proof. First of all by Lemma 2.4, functional φ is sequentially weakly continuous,
and the rest of proof is noting else than a very particular case of [9, Theorem 1]. □

The following lemma is a particular case of [12, Theorem 1 ].

Lemma 3.3. Let φ,ψ : R → R be two functions such that, for each λ ∈]a, b[, the
function λψ−φ is lower semicontinuous, coercive and has a unique global minimum
in R. Assume that α < β, then, for each r ∈]α, β[, there exists λr ∈]a, b[, such that
the unique global minimum of the function λrψ − φ lies in ψ−1(r).

Definition 3.4. A function u ∈ X is a weak solution of problem (2.1) if there exists

u∗ ∈ Lq(Ω) (
1

p
+

1

q
= 1) such that∫

Ω

|∇u(x)|p−2∇u(x)∇v(x)− u∗vdx = 0 for all v ∈ X,

such that u∗(x) ∈ γ(x)F (u(x)) for a.a. x ∈ Ω.
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Moreover, if λ1,p denotes the principal eigenvalue of the problem{
−div(|∇u|p−2∇u) = λ|u|p−2u in Ω
u = 0 on ∂Ω

we obtain

λ1,p = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u(x)|pdx∫
Ω

|u(x)|pdx
.

We now are ready to state our main theorem.

Theorem 3.2. Let γ ∈ L∞(Ω)+\{0} and (F1), (F2) hold. Furthermore, we assume

(i) H(s) ⩽ m(1 + |s|l) for s ∈ R, 1 < l < p, m > 0;

(ii) lim inf
s→0+

H(s)

sp
>

λ1,p
p ess inf γ

, where ess inf γ(x) > 0;

(iii) for all λ > 0, function s→ λ|s|p −H(s) has a unique global minimum in R;
(iv) there is r > 0 satisfying α < r < β such that

sup
|s|p<r

H(s) < r (
λ1,p

p ess sup γ
), (3.2)

then, the problem {
−div(|∇u|p−2∇u) ∈ γ(x)F (u) in Ω
u = 0 on ∂Ω

(3.3)

has a non­zero weak solution satisfying

∫
Ω

|∇u(x)|pdx < r (

λ1,p

∫
Ω

γ(x)dx

ess sup γ
).

Proof. We are going to apply Lemma 3.3 by taking φ(s) = H(s), ψ(s) = |s|p.
According to definition of H(s), φ is lower semicontinuous and therefore, λψ − φ
is lower semicontinuous. Also, by hypothesis (F2), f is bounded on any bounded
subset of R, henceH is Lipshitz on any such set with constant L > 0, in particular,
H is a locally Lipschitz. Set a := 0, b := +∞. So, let λ ∈]a, b[ and from (i) one can
conclude that

λ|s|p −H(s) ⩾ λ|s|p −m(1 + |s|l),
since 1 < l < p, it follows that

lim
|s|→+∞

(λ|s|p −H(s)) = +∞,

this means that λψ − φ is coercive.
Also by (iii) for all λ > 0 the function λψ − φ has a unique global minimum.

Now, we are allowed to apply Lemma 3.3, note that α = 0 and β = inf
s∈A

|s|p, where

A = {s ∈ R : 0 ∈ −∂H(s)}. Set r :=
1

p
β, thus, if we put

Vγ,r := {u ∈ Lp(Ω) :

∫
Ω

γ(x)ψ(u(x))dx ⩽ β

p

∫
Ω

γ(x)dx},

Theorem 3.1, ensures that

sup
u∈Vγ,r

∫
Ω

γ(x)H(u(x))dx ⩽ sup
|s|p<r

H

∫
Ω

γ(x)dx. (3.4)
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Also, by definition of function ψ, it follows that∫
Ω

γ(x)ψ(u(x))dx ⩽ ess sup γ

∫
Ω

|u(x)|pdx, (3.5)

and, according to the sobolev embedding theorem, one can conclude that

{u ∈W 1,p
0 (Ω) :

∫
Ω

|∇u(x)|pdx ⩽ β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
}

⊆ {u ∈ Lp(Ω) :

∫
Ω

|u(x)|pdx ⩽ β

p

(∫
Ω

γ(x)dx

ess sup γ

)
}. (3.6)

By setting B := {u ∈W 1,p
0 (Ω) :

∫
Ω

|∇u(x)|pdx ⩽ β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
}, and due to

(3.5), (3.6) and definition of ψ, one can get for u ∈ B,∫
Ω

γ(x)ψ(u(x))dx

⩽ ess sup γ

∫
Ω

|u(x)|pdx

⩽ ess sup γ

β

∫
Ω

γ(x)dx

p ess sup γ

=
β

p

∫
Ω

γ(x)dx,

hence B ⊆ Vγ,r. Consequently

sup
u∈B

∫
Ω

γ(x)H(u(x))dx ⩽ sup
u∈Vγ,r

∫
Ω

γ(x)H(u(x))dx. (3.7)

Accordingly, if put σ =
β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
in view of (3.2), (3.4) and (3.7) admits

sup
u∈B

∫
Ω

γ(x)H(u(x))dx

⩽ sup
|s|p<r

H

∫
Ω

γ(x)dx

⩽ βλ1,p
p2 ess sup γ

∫
Ω

γ(x)dx

=
1

p
σ.

At this point, by applying Theorem 2.1 and takingX =W 1,p
0 (Ω), Ψ(u) =

∫
Ω

|∇u(x)|pdx

and Φ(u) = −J(u), problem has a local minimum u which is weak solution for

problem (3.3) such that
∫
Ω

|∇u(x)|pdx < β

p

(λ1,p ∫
Ω

γ(x)dx

ess sup γ

)
.
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We finally remark that 0 is not a local minimum of the energy functional. Indeed,
by a classical result, there is a bounded and positive v ∈W 1,p

0 (Ω) such that∫
Ω

|∇v(x)|pdx = λ1,p

∫
Ω

|v(x)|pdx. (3.8)

On the other hand, the assumption (ii) implies that there exists an element k > 0
such that for every s ∈]0, k[, it follows that

H(s) >
λ1,p s

p

p ess inf γ
. (3.9)

We deduce that for each η ∈]0, k

supΩ v
[ and (3.8) and (3.9),

I(ηv(x)) =
1

p

∫
Ω

(
|∇ηv(x)|pdx−

∫
Ω

γ(x)H(ηv(x))
)
dx

<
1

p

∫
Ω

(
|∇ηv(x)|p − ess inf γ(x)

λ1,p (ηv(x))
p

p ess inf γ

)
dx

=
1

p

∫
Ω

(
λ1,p|ηv(x)|p − ess inf γ(x)

λ1,p (ηv(x))
p

p ess inf γ

)
dx.

We then get I(ηv(x)) < 0. This implies that the energy functional takes negative
values in each ball of W 1,p

0 centered at 0, and so 0 is not a local minimum for it,
and the proof is complete. □

Corollary 3.5. Let Ω =]0, 1[, γ =
1

4
, by applying Theorem 3.2, the only positive

solution of the problem {
−u′′ ∈ γ(x)F (u) in ]0, 1[
u(0) = u(1) = 0

(3.10)

that for each s ∈ R when u(x) = s, function

F (s) =


{1} s < 2

[1,
3

2
] s = 2

{2s− 3} s > 2

satisfies the inequality ∫
Ω

|u′(x)|2dx ⩽ r
(λ1,2 ∫Ω γ(x)dx

ess sup γ

)
. (3.11)

In fact, for p = 2 clearly the assumptions (F1), (F2) and (i) and (iii) in Theorem 3.2

are verified. On the other hand, lim inf
s→0+

H(s)

s2
⩾ λ1,2

2 ess inf γ
.

Also, for β = inf
s= 3

2

|s|2 =
9

4
, suppose that there is 0 < r <

9

4
such that

sup
|s|2<r

H(s) < r
( λ1,2
2 ess sup γ

)
,

this implies that the only weak solution of problem (3.10) satisfies (3.11).
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ABSTRACT. In this paper, we consider a mixed equilibrium problem in real Hilbert space.
By using the auxiliary principle technique, some new iterative algorithms for solving mixed
equilibrium problems are suggested and analyzed. Further, we prove that the sequences
generated by iterative algorithms converge weakly to a solution of mixed equilibrium prob­
lem.
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1. INTRODUCTION

Equilibrium problem theory is an important and interesting branch of applica­
ble mathematics with a wide range of applications in pure and applied sciences.
This theory has become a rich source of inspiration and motivation for the study
of a large number of problems arising in economics, optimization, operation re­
search in a general and unified way. There is a substantial number of papers
on existence results for solving equilibrium problems based on different­relaxed
monotonicity notions and various compactness assumptions. In 2002, Moudafi [9]
considered a class of mixed equilibrium problems which includes variational in­
equalities as well as complementarity problems, convex optimization, saddle point
problems, problems of finding a zero of a maximal monotone operator, and Nash
equilibria problems as special cases. He studied sensitivity analysis and devel­
oped some iterative methods for mixed equilibrium problems. It is well­known that
there are many numerical methods including projection methods, resolvent op­
erator technique, Wiener­Hopf equations, extragradient and descent methods for
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solving various variational inequality problems but there are no such methods for
solving various equilibrium problems, since it is impossible to find the projection.
To overcome this drawback, one uses usually the auxiliary principle technique.
This technique deals with finding a suitable auxiliary problem and prove that the
solution of an auxiliary problem is the solution of original problem by using fixed­
point approach. Recently, Noor [11­13] and Ding [5] have used the auxiliary prin­
ciple technique to suggest some iterative algorithms for solving generalized mixed
variational inequality problems.

Inspired and motivated by the recent research work by [4,6,9,11,14­15], in this
paper we study a new class of mixed equilibrium problems and by using the auxil­
iary principle, we define a class of resolvent mappings. Further, by using fixed point
and resolvent methods, we give some iterative algorithms for solving mixed equi­
librium problems and prove that the sequences generated by iterative algorithms
converge weakly to the solution of mixed equilibrium problems. The auxiliary
principle techniques and iterative methods presented in this paper generalize and
improve the methods given in [11] for variational inequality problems and given in
[9] for mixed equilibrium problems.

2. PROBLEM FORMULATION AND BASIC DEFINITIONS

Let H be a real Hilbert space whose inner product and norm are denoted by ⟨., .⟩
and ∥.∥, respectively. Let K ⊂ H be nonempty, closed, convex set; T,A : K −→ K
be nonlinear mappings, and N : K × K −→ K be a nonlinear mapping. If F :
K ×K −→ R and ϕ : H ×H −→ R are nonlinear bi­mappings, then we consider
the following mixed equilibrium problem (for short, MEP): Find x ∈ K such that

F (x, y) + ⟨N(Tx,Ax), y − x⟩+ ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K. (2.1)

This problem include fixed point problems, optimization problems, variational in­
equality problems, Nash equilibrium problems and equilibrium problems as special
cases (see for example, [2]).

Some special cases:

(I) If N(Tx,Ax) = B(x), where B : K −→ K, then MEP (2.1) reduces to the
mixed equilibrium problem of finding x ∈ K such that

F (x, y) + ⟨Bx, y − x⟩+ ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K. (2.2)

which has been studied in [6].
(II) If N(Tx,Ax) = B(x), ϕ(x, y) = 0 ∀x, y ∈ K, where B : K −→ K, then

MEP (2.1) reduces to the mixed equilibrium problem of finding x ∈ K such
that

F (x, y) + ⟨Bx, y − x⟩ ≥ 0, ∀y ∈ K, (2.3)

which has been studied in [9].
(III) If N(Tx,Ax) = B(x), F (x, y) = 0 and ϕ(x, y) = ψ(y), ∀x, y ∈ K, where

ψ : K −→ R, then MEP (2.1) reduces to the variational inequality problem
of finding x ∈ K such that

⟨Bx, y − x⟩+ ψ(y)− ψ(x) ≥ 0, ∀y ∈ K. (2.4)

This problem has been studied in [11].
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(IV) If N(Tx,Ax) = 0, ∀x ∈ K, then MEP (2.1) reduces to the equilibrium
problem of finding x ∈ K such that

F (x, y) + ϕ(x, y)− ϕ(x, x) ≥ 0, ∀y ∈ K. (2.5)

This problem has been studied in [13].
(V) If, in (IV), ϕ(x, y) = 0, ∀x, y ∈ K, then (2.5) reduces to the equilibrium

problem of finding x ∈ K such that

F (x, y) ≥ 0, ∀y ∈ K. (2.6)

This problem has been studied in [2].

The following definitions and theorem will be needed in the sequel.

Definition 2.1. Let N : K ×K −→ K be a nonlinear mapping. Then N is said to
be:

(a) mixed monotone w.r.t. T and A, if

⟨N(Tx,Ax)−N(Ty,Ay), x− y⟩ ≥ 0, ∀x, y ∈ K;

(b) mixed pseudomonotone w.r.t. T and A, if

⟨N(Tx,Ax), y − x⟩ ≥ 0 implies ⟨N(Ty,Ay), y − x⟩ ≥ 0, ∀x, y ∈ K;

(c) θ­ mixed pseudomonotone w.r.t. T and A, where θ is a real­valued multi­
variate function, if

⟨N(Tx,Ax), y−x⟩+θ(x, y) ≥ 0 implies ⟨N(Ty,Ay), y−x⟩+θ(x, y) ≥ 0, ∀x, y ∈ K;

(d) mixed strongly monotone w.r.t. T and A, if

⟨N(Tx,Ax)−N(Ty,Ay), x− y⟩ ≥ ∥x− y∥2, ∀x, y ∈ K;

(e) inverse mixed strongly monotone w.r.t. T and A, if there exists a constant
α > 0 such that

⟨N(Tx,Ax)−N(Ty,Ay), x− y⟩ ≥ α∥N(Tx,Ax)−N(Ty,Ay)∥2, ∀x, y ∈ K;

(f) firmly nonexpansive if it is inverse mixed strongly monotone with α = 1;
(g) δ­mixed pseudo contactive w.r.t. T and A, if

⟨N(Tx,Ax)−N(Ty,Ay), x− y⟩ ≥ δ∥x− y∥2;

(h) k­Lipschitz continuous w.r.t. T and A, if there exists a constant k > 0 such
that

∥N(Tx,Ax)−N(Ty,Ay)∥ ≤ k∥x− y∥, ∀x, y ∈ K;

(i) nonexpansive w.r.t. T and A, if it is Lipschitz continuos with k = 1.

Definition 2.2[1]. A bifunction ϕ : H ×H −→ R is said to be skew­symmetric if

ϕ(x, x)− ϕ(x, y)− ϕ(y, x) + ϕ(y, y) ≥ 0, ∀x, y ∈ H.

The skew­symmetric bifunctions have the properties which can be considered an
analog of monotonicity of gradient and nonnegativity of second derivative for the
convex function.

Definition 2.3. Let K be a nonempty subset of a Hilbert space H and let {xn} be
a sequence in H. Then {xn} is Fejer monotone with respect to K if

∥xn+1 − x∥ ≤ ∥xn − x∥, ∀x ∈ K.
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Definition 2.4. Let F : K ×K −→ R be a real­valued function. Then F is said to
be:

(a) monotone if F (x, y) + F (y, x) ≤ 0, for each x, y ∈ K;
(b) strictly monotone if F (x, y) + F (y, x) < 0, for each x, y ∈ K, with x ̸= y;
(c) upper­hemicontinuous, if for all x, y, z ∈ K, lim

t−→0+
supF (tz+ (1− t)x, y) ≤

F (x, y).

The following Theorem is a special case of Theorem 3.9.3 of Chang [3].

Theorem 2.1. If the following conditions hold true for F : K ×K −→ R:

(i) F is monotone and upper­hemicontinuous;
(ii) F (x, .) is convex and lower semicontinuous for each x ∈ K;
(iii) there exists a compact subset B of H and there exists y0 ∈ B ∩ K such

that F (x, y0) < 0 for each x ∈ K\B,

then the set of solutions to the following equilibrium problem of finding x ∈ K such
that F (x, y) ≥ 0, ∀y ∈ K, is nonempty convex and compact.

Moreover, if F is strictly monotone then the solution of equilibrium problem is
unique.

Lemma 2.1. MEP (2.1) has a solution x if and only if x satisfies the equation

x = JF,ϕ
r (x− rN(Tx,Ax)), for r > 0. (2.7)

We now define the residue vector R(x) by the relation

R(x) = x− JF,ϕ
r [x− rN(Tx,Ax)]. (2.8)

Invoking Lemma 2.1, one can observe that x ∈ K is a solution of MEP (2.1) if
and only if x ∈ K is a zero of the equation

R(x) = 0. (2.9)

3. AUXILIARY PROBLEMS AND ITERATIVE ALGORITHMS

We consider the following auxiliary problem (in short, AP) for MEP(2.1): For
r > 0 and for each fixed x ∈ H, find z ∈ K such that

F (z, y) + ϕ(z, y)− ϕ(z, z) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ K. (3.1)

We remarked that when z = x then the solution sets of problem (2.5) and AP(3.1)
are the same.

The following lemma which gives the existence and uniqueness of solution of
AP(3.1) is a special case of Lemma 3.1 due to Ding [5].

Lemma 3.1. Let K ⊂ H be a nonempty closed and convex subset of a real Hilbert
space H. Let F : K ×K −→ R and ϕ : H ×H −→ R be nonlinear bifunctions and
let r > 0. Suppose that the following conditions are satisfied:

(i) F satisfies conditions (i)­(ii) in Theorem 2.1;
(ii) ϕ is skew­symmetric, convex in second argument and continuous;
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(iii) For each fixed x ∈ H, there exists a compact subset Dx of H and y0 ∈
K ∩Dx such that

F (z, y0) + ϕ(z, y0)− ϕ(z, z) +
1

r
⟨y0 − z, z − x⟩ < 0,

for each z ∈ K\Dx. Then for each fixed x ∈ H, AP(3.1) has a unique
solution z ∈ K.

Lemma 3.2. It follows from Lemma 3.1 that for r > 0 and for each x ∈ H, we can
write the unique solution of AP(3.1) as z = JF,ϕ

r (x) ∈ K. Then for all y ∈ K, we
have

F (JF,ϕ
r (x), y)+ϕ(JF,ϕ

r (x), y)−ϕ(JF,ϕ
r (x), JF,ϕ

r (x))+
1

r
⟨JF,ϕ

r (x)−x, y−JF,ϕ
r (x)⟩ ≥ 0.

(3.2)
Hence x = JF,ϕ

r : H −→ K is well defined and single­valued mapping, which is
called the resolvent mapping for MEP (2.1). We observe that x = JF,ϕ

r (x) if and
only if x is a solution of problem (2.5). Further, Lemma 3.1 gives the strict proof of
the assumption taken in [13] for the existence of solution of AP(3.1).

Throughout the rest of paper unless otherwise stated, we assume that the bi­
functions F, ϕ satisfy all conditions of Lemma 3.1.

Lemma 3.3. The mapping JF,ϕ
r : H −→ K is firmly nonexpansive.

Proof. Let us denote u := JF,ϕ
r (x) and v := JF,ϕ

r (y) for each x, y ∈ H. By Lemma
3.1 and Lemma 3.2 we have for each x, y ∈ H,

F (u, v) + ϕ(u, v)− ϕ(u, u) +
1

r
⟨v − u, u− x⟩ ≥ 0,

F (v, u) + ϕ(v, u)− ϕ(v, v) +
1

r
⟨u− v, v − y⟩ ≥ 0.

Adding above inequalities, we have

F (u, v)+F (v, u)−[ϕ(u, u)−ϕ(u, v)−ϕ(v, u)+ϕ(v, v)]+1

r
⟨x−y, u−v⟩ ≥ 1

r
⟨u−v, u−v⟩.

Since F is monotone and ϕ is skew­symmetric, above inequality reduces to

⟨u− v, x− y⟩ ≥ ∥u− v∥2

because r > 0. This completes the proof.

Remark 3.1. Lemmas 3.1, 3.2 and Lemma 3.3 generalize Lemma 2.3 due to Peng
and Yao [14].

The fixed point formulation given in Lemma 2.1 for MEP (2.1) is very useful from
the numerical point of views. This fixed point formulation enables us to suggest
and analyze the following iterative algorithm.

Algorithm 3.1. For a given x0 ∈ K, compute the approximate solution xn+1, by
the iterative scheme

xn+1 = JF,ϕ
r [xn − rN(Txn, Axn)], n = 0, 1, 2, ...

Rewrite equation (2.7) in the form

x = JF,ϕ
r

[
x− rN(TJF,ϕ

r [x− rN(Tx,Ax)], AJF,ϕ
r [x− rN(Tx,Ax)])

]
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by replacing the solution. This fixed point formulation allows us to suggest the
following extragradient method.

Algorithm 3.2. For a given x0 ∈ K, compute xn+1, by the iterative scheme

xn+1 = JF,ϕ
r

[
xn − rN(TJF,ϕ

r [xn − rN(Txn, Axn)], AJ
F,ϕ
r [xn − rN(Txn, Axn)])

]
,

where n = 0, 1, 2...
If F (x, y) = δk(y) − δk(x), and ϕ(x, y) = 0 for all x, y ∈ K, then JF,ϕ

r = Pk, the
projection of H onto K and have Algorithm 3.2 reduces the extragradient method
of Korpelvich [7].

Now define the residue vector R(x) by the relation

R(x) = x− JF,ϕ
r

[
x− rN(TJF,ϕ

r [x− rN(Tx,Ax)], AJF,ϕ
r [x− rN(Tx,Ax)])

]
.

We can easily observe that x ∈ K is a solution of MEP (2.1) if and only if x ∈ K
is a zero of the equation

R(x) = 0.

For a constant γ ∈ (0, 2), equation (2.9) can be written as

x+ rN(Tx,Ax) = x+ rN(Tx,Ax)− γR(x).

This formulation is used to suggest a new implicit method for solving MEP (2.1).

Algorithm 3.3. For a given x0 ∈ K, compute xn+1 by the iterative scheme

xn+1 = xn + rN(Txn, Axn)− rN(Txn+1, Axn+1)− γR(xn), n = 0, 1, 2... (3.3)

If γ = 1, then Algorithm 3.3 reduces to:

Algorithm 3.4. For a given x0 ∈ K, compute xn+1 by the iterative scheme

xn+1 =
(
I + rN(T (.), A(.))

)−1[
JF,ϕ
r [I + rN(T (.), A(.))] + rN(T (.), A(.))

]
xn,

where n = 0, 1, 2... and [N(T (.), A(.))x] = N(Tx,Ax), ∀x ∈ K, which is a variant
of the Douglas­Rachford splitting algorithm studied by Lions and Mercier [8], and
appears to be new for MEP (2.1).

Theorem 3.1. Let F satisfies the conditions of Theorem 2.1, and let x̄ ∈ K be a
solution of MEP (2.1). If N is mixed monotone with respect to T and A, then

⟨x− x̄+ r[N(Tx,Ax)−N(T x̄, Ax̄)], R(x)⟩ ≥ ∥R(x)∥2, ∀x ∈ K,

where R(x) is defined by equation (2.8).

Proof. Let x̄ ∈ K be a solution of MEP (2.1), then

F (x̄, y) + ⟨N(T x̄, Ax̄), y − x̄⟩+ ϕ(x̄, y)− ϕ(x̄, x̄) ≥ 0, ∀y ∈ K. (3.4)

Taking y = x−R(x) in (3.4), we have

rF (x̄, x−R(x))+⟨rN(T x̄, Ax̄), x−R(x)−x̄⟩+rϕ(x̄, x−R(x))−rϕ(x̄, x̄) ≥ 0. (3.5)

Setting: y := x̄, z = JF,ϕ
r (x) := JF,ϕ

r (x − rN(Tx,Ax)) = x − R(x) and x :=
x− rN(Tx,Ax) in (3.2), we have

rF (x−R(x), x̄) + rϕ(x−R(x), x̄)− rϕ(x−R(x), x−R(x))

+⟨x−R(x)− (x− rN(Tx,Ax)), x̄− (x−R(x))⟩ ≥ 0. (3.6)

Adding (3.5) and (3.6), we have

r[F (x−R(x), x̄)+F (x̄, (x−R(x))]+⟨rN(T x̄, Ax̄)−rN(Tx,Ax)+R(x), x−R(x)−x̄⟩
−r[ϕ(x̄, x̄)− ϕ(x̄, x−R(x))− ϕ(x−R(x), x̄) + ϕ(x−R(x), x−R(x))] ≥ 0. (3.7)
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Since F is monotone and ϕ is skew­symmetric, equation (3.7) implies that

⟨rN(T x̄, Ax̄)− rN(Tx,Ax)−R(x), (x−R(x))− x̄⟩ ≥ 0. (3.8)

Since N is mixed monotone with respect to T and A from equation (3.8), we have

⟨x− x̄− r[N(Tx,Ax)−N(T x̄, Ax̄)], R(x)⟩

= ⟨R(x), R(x)⟩+ ⟨R(x)− r[N(Tx,Ax)−N(T x̄, Ax̄), x− x̄−R(x)⟩
+r⟨N(Tx,Ax)−N(T x̄, Ax̄), x− x̄⟩ ≥ ∥R(x)∥2.

This completes the proof.

Theorem 3.2. Let x̄ ∈ K be the solution of MEP (2.1). If the mapping N is mixed
monotone w.r.t. T and A then the iterative sequence xn generated by Algorithm
3.3 is bounded.

Proof. Since x̄ is a solution of MEP (2.1) and xn+1 satisfies (3.3), then using Theo­
rem 3.1, we have

∥xn+1 − x̄+ r[N(Txn+1, Axn+1)−N(T x̄, Ax̄)]∥2

= ∥xn − x̄+ r[N(Txn, Axn)−N(T x̄, Ax̄)]− γR(xn)∥2

≤ ∥xn−x̄+r[N(Txn, Axn)−N(T x̄, Ax̄)]∥2−2γ∥R(xn)∥2+γ2∥R(xn)∥2

= ∥xn − x̄+ r[N(Txn, Axn)−N(T x̄, Ax̄)]∥2 − γ(2− γ)∥R(xn)∥2.
(3.9)

≤ ∥xn − x̄+ r[N(Txn, Axn)−N(T x̄, Ax̄)]∥2 (3.10)

because γ ∈ (0, 2). Inequality (3.10) which gives the Fejers monotonicity of the
sequence {(I + rN(T,A))xn} with respect to the solution set of MEP(2.1) and
hence {(I + rN(T,A))xn} is bounded. Further it also follows from (3.10) that the
sequence {∥(I+ rN(T,A))xn− (I+ rN(T,A))x̄∥2 is monotonically decreasing and
therefore convergent.
Again since N is mixed monotone w.r.t. T and A, for any x, y ∈ K, we have

⟨(I + rN(T,A))x− (I + rN(T,A))y, x− y⟩

= ∥x− y∥2 + r⟨N(Tx,Ax)−N(Ty,Ay), x− y⟩ ≥ ∥x− y∥2

which implies that the mapping (I + rN(., .)) is 1­strongly monotone. Hence, we
have

∥(I + rN(T,A))xn − (I + rN(T,A))x̄∥ ≥ ∥xn − x̄∥.
This implies that the sequence {xn} is bounded.

Theorem 3.3. Let H be a finite dimensional space. The approximate solution xn+1

obtained from Algorithm 3.3 converges to a solution x̄ of MEP (2.1).

Proof. Let x̄ ∈ K be the solution of MEP (2.1). From Theorem 3.2, it follows that
the sequence {xn} is bounded and

∞∑
n=0

γ(2− γ)∥R(xn)∥2 ≤ ∥x0 − x̄+ r[N(Tx0, Ax0)−N(T x̄, Ax̄)]∥2,

and consequently
lim

n−→∞
R(xn) = 0.

Let x̂ be a limit point of {xn}. A subsequence {xni} of {xn}, which converges to x̂.
Since R(x) is continuous, so

R(x̂) = lim
i−→∞

R(xni) = 0,
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and hence x̂ is the solution of MEP (2.1) and

∥xn+1 − x̂+ r[N(Txn+1, Axn+1)−N(T x̂, Ax̂)]∥2

≤ ∥xn − x̄+ r[N(Txn, Axn)−N(T x̂, Ax̂)]∥2.
It follows that the sequence {xn} has exactly one limit point and lim

n−→∞
xn = x̂ ∈ K,

satisfies the MEP (2.1).

4. RESOLVENT EQUATION TECHNIQUE

Now related to MEP (2.1), we consider the following resolvent equation (in short,
RE): Find z ∈ H such that for x ∈ K,

N(Tx,Ax) +AF,ϕ
r (z) = 0 (4.1)

and
x = JF,ϕ

r (z), for r > 0, (4.2)

where AF,ϕ
r is a regularized operator and is defined as AF,ϕ

r = 1
r (I − JF,ϕ

r ), I is the
identity operator on H.

Lemma 4.1. MEP (2.1) has a solution x if and only if RE (4.1)­(4.2) has a solution
z ∈ H where

x = JF,ϕ
r (z) (4.3)

and
z = x− rN(Tx,Ax), for r > 0. (4.4)

Lemma 4.1 shows that MEP (2.1) and RE (4.1)­(4.2) both have the same solution
set.
Using the fact that AF

r = 1
r (I − JF,ϕ

r ), RE (4.1)­(4.2) can be written as

z − JF,ϕ
r (z) + rN

(
TJF,ϕ

r (z), AJF,ϕ
r (z)

)
= 0.

For a step size γ, we can write above equation as

x = x− γ[z − JF,ϕ
r (z) + rN(TJF,ϕ

r (z), AJF,ϕ
r (z))] = 0.

This fixed point formulation allows us to suggest the following iterative algorithm
for MEP (2.1).

Algorithm 4.1. For a given x0 ∈ K, compute the approximate solution xn+1 by
the iterative schemes

zn = xn − rN(Txn, Axn)

wn = zn − JF,ϕ
r zn + rN(TJF,ϕ

r zn, AJ
F,ϕ
r zn))

xn+1 = xn − γwn

where n = 0, 1, 2, ..., r > 0 and γ > 0.

Theorem 4.1. Let x̄ ∈ K be the solution of MEP (2.1) and let N is θ­mixed
pseudomonotone w.r.t. T and A, where θ(x, y) = F (x, y)+ϕ(x, y)−ϕ(x, x), ∀x, y ∈
K and δ­ mixed pseudo contractive. Then

⟨x− x̄, R(x)− r[N(Tx,Ax)−N(Tz,Az)]⟩ ≥ (1− rδ)∥R(x)∥2; ∀x ∈ K,

where z := x− rN(Tx,Ax) and R(x) is defined by (2.8)
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Proof. Since N is θ­mixed pseudomonotone w.r.t. T and A, where θ(x, y) =
F (x, y) + ϕ(x, y)− ϕ(x, x), ∀x, y ∈ K, then for all z, x̄ ∈ K,

⟨N(T x̄, Ax̄), z − x̄⟩+ θ(x, y) ≥ 0

implies
⟨N(Tz,Az), z − x̄⟩+ θ(x, y) ≥ 0

i.e., F (x̄, z) + ⟨N(Tz,Az), z − x̄⟩+ ϕ(x̄, z)− ϕ(x̄, x̄) ≥ 0, ∀z ∈ K.

Since F is monotone then above inequality implies that

−F (z, x̄) + ⟨N(Tz,Az), z − x̄⟩+ ϕ(x̄, z)− ϕ(x̄, x̄) ≥ 0, ∀z ∈ K.

In particular for z = x−R(x), we have

−F (x−R(x), x̄) + ⟨N(T (x−R(x)), A(x−R(x))), (x−R(x))− x̄⟩
+ϕ(x̄, x−R(x))− ϕ(x̄, x̄) ≥ 0 (4.5)

Adding (3.6) and (4.5), we have

⟨R(x)− rN(Tx,Ax) + rN(T (x−R(x)), A(x−R(x)), (x−R(x))− x̄⟩ ≥ 0,

where we have used skew­symmetricity of ϕ. Since N is mixed pseudo contractive
w.r.t. T and A, above inequality implies

⟨R(x)− rN(Tx,Ax) + rN(T (x−R(x)), A(x−R(x)), x− x̄⟩
≥ ⟨R(x)− rN(Tx,Ax) + rN(T (x−R(x)), A(x−R(x)), R(x)⟩
≥ ∥R(x)∥2− r⟨N(Tx,Ax)−N(T (x−R(x)), A(x−R(x)), x− (x−R(x))⟩
≥ (1− rδ)∥R(x)∥2.

This completes the proof.

Theorem 4.2. Let x̄ ∈ K be the solution of MEP (2.1) and let N is θ­mixed
pseudomonotone w.r.t. T and A, where θ(x, y) = F (x, y)+ϕ(x, y)−ϕ(x, x), ∀x, y ∈
K and δ­Lipschitz continuous w.r.t. T and A. If rδ < 1 and γ ∈ (0, 2), then the
iterative sequence {xn} generated by Algorithm (4.1) converges weakly to x̄.

Proof. Let x̄ ∈ K be the solution of MEP (2.1), using Algorthm (4.1), we have

∥xn+1 − x̄∥2 = ∥xn − x̄− γ[xn − rN(Txn, Axn)− JF,ϕ
r [xn − rN(Txn, Axn]

+rN(TJF,ϕ
r )[xn − rN(Txn, Axn), AJ

F,ϕ
r [xn − rN(Txn, Axn]]∥2

= ∥xn − x̄− γ[R(xn) + rN(Txn −R(xn))− rN(Txn, Axn)]∥2

= ∥xn−x̄∥2−2γ⟨R(xn)+rN(T (xn−R(xn), A(xn−R(xn))−rN(Txn, Axn), xn−x̄]⟩
+γ2∥R(xn)|+ rN(T (xn −R(xn), A(xn −R(xn))− rN(Txn, Axn)∥2

≤ ∥xn−x̄∥2−2γ⟨R(xn)+rN(T (xn−R(xn), A(xn−R(xn))−rN(Txn, Axn), xn−x̄]⟩
+γ2{∥R(xn)∥2 + ∥N(T (xn −R(xn), A(xn −R(xn))−N(Txn, Axn)∥2}

≤ ∥xn − x̄∥2 − {2γ(1− rδ)− γ2(1 + r2δ2)}∥R(xn)∥2

≤ ∥xn − x̄∥2, (4.6)

where we have used the Lipschitz continuity of N and rδ < 1 and γ ∈ (0, 2).

Inequality (4.6) gives the Fejers monotonicity of the sequence xn with respect to
the solution set of MEP(2.1) and hence xn is bounded. Further, we observe that
the sequence ∥xn− x̄∥2 is monotonically decreasing and therefore convergent. This
completes the proof.
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We remark that the iterative methods presented in this paper improve and extend
the iterative methods given in [11] for variational inequality problem (2.4) in finite
dimensional space and given in [9] for problem (2.3).
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ABSTRACT.We present some hybrid fixed point theorems for nonincreasing mappings in a
partially ordered complete metric space and apply to prove the existence as well as an algo­
rithm for the solutions of initial value problems of nonlinear first order ordinary differential
equations. An example is also provided to illustrate the abstract theory developed in this
paper.
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1. INTRODUCTION

It is well­known that the hybrid fixed point theorems which are obtained using
the mixed arguments from different branches of mathematics are very rich in ap­
plications to allied areas of mathematics, particularly to the theory of nonlinear
differential and integral equations (see Heikkïla and Lakshmikantham [6], Zeidler
[9] and Dhage [2, 3, 5]). Recently, Ran and Reurings [8] initiated the study of hybrid
fixed point theorems in partially ordered sets which is further continued in Nieto
and Rodriguez­Lopez [7] and proved the hybrid fixed point theorems for the mono­
tone mappings in partially ordered metric spaces using the mixed arguments from
algebra, analysis and geometry. Monotone mappings include both nondecreasing
and nonincreasing mappings on ordered sets. The monotone nondecreasing map­
pings are frequently used in nonlinear analysis whereas nincreasing mappings are
rare. Very recently, a different approach for nondecreasing mappings in partially
ordered sets is established in Dhage [5] which is very much useful in the existence
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theory for nonlinear equations. In this paper we follow the same approach and ob­
tain some hybrid fixed point theorems for noninreasing operators in metric spaces.
The following two notions of regularity and monotone mappings are fundamental
for the fixed point theory in ordered spaces.

Definition 1.1. A partially ordered metric space (X,⪯, d) is called regular if {xn}
is a nondecreasing (resp. nonincreasing) sequence in X such that xn −→ x∗ as
n −→ ∞, then xn ⪯ x∗ (resp. xn ⪰ x∗) for all n ∈ N.

Definition 1.2. A mapping T : X −→ X is called monotone nondecreasing if it
preserves the order relation ⪯, that is, if x ⪯ y implies T x ⪯ T y for all x, y ∈ X.
Similarly, T is called monotone nonincreasing if x ⪯ y implies T x ⪰ T y for all
x, y ∈ X. A monotone mapping T is one which is either monotone nondecreasing
or monotone nonincreasing on X.

Nieto and Lopez [7] introduced the following definition.

Condition (NL): A partially ordered metric space X with metric d is said to
satisfy Condition(NL) if for every convergent sequence {xn} in X to the point x∗

whose consecutive terms are comparable then there exists a subsequence {xnk
} of

{xn} such that every term is is comparable to the limit x∗.

The following hybrid fixed point theorem for nonincreasing mappings is proved
in Nieto and Lopez [7].

Theorem 1.3 (Nieto and Rodriguez­Lopez [7]). Let (X,⪯) be a partially ordered set
and suppose that there is a metric d in X such that (X, d) is a complete metric space.
Let T : X −→ X be a monotone nonincreasing mapping such that there exists a
constant k ∈ [0, 1) such that

d(T x, T y) ≤ k d(x, y) (1.1)

for all elements x, y ∈ X, x ≥ y. Assume that either T is continuous or X satisfies
Condition (NL). Further if there is an element x0 ∈ X satisfying x0 ⪯ T x0 or x0 ⪰
T x0, then T has a fixed point which is further unique if ‘‘every pair of elements in X
has a lower and an upper bound."

Note that Condition (NL) of Theorem 1.3 is very difficult to verify in actual practice
and only continuous case has been applied in Nieto and Lopez [7] to periodic BVP
of first order differential equations for proving the existence of a unique solution,
wherein the nonlinearity is a nonincrasing function in the unknown variable. In
this paper we generalize Theorem 1.3 under a condition which is more general than
Condition (NL) for the self­mappings of a partially ordered metric space satisfying
a condition of nonlinear contraction which is again more general than (1.1). Our
abstract result is applied to a nonlinear first order ordinary differential equations
for proving the existence of unique solution under partially Lipschitz condition.

2. Hybrid Fixed Point Theory

We consider the following definition in what follows.

Condition (D): A partially ordered metric space X with metric d is said to satisfy
Condition (D) if every sequence {xn} in X whose consecutive terms are comparable
has a monotone, i.e. nondecreasing or nonincreasing subsequence.
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There do exist sequences in X with Condition (D). For example, if we consider

X = R, then the sequence {xn} in R defined by xn = (−1)n+1 1

n
has two sub­

sequences, one is nondecreasing another is nonincreasing. Again, the sequence
{1,−1

2 , 3,−
1
4 , . . .} satisfies the Condition (D) but not Condition (NL).

Note that Condition (D) is more general than Condition (NL) in the sense that
Condition (D) implies Condition (NL), however converse may no be true. Indeed if
the Condition (D) holds and if {xn} is any sequence in X converging to x∗ whose
consecutive terms are comparable, then there is a monotone subsequence {xnk

}
of {xn} which also converges to x∗. By regularity of X, xnk

⪯ x∗ or xnk
⪰ x∗ for

all k ∈ N, that is, every term of {xnk
} is comparable to the limit x∗.

Let (X, d) be a metric space and let T : X −→ X be a mapping. Given an
element x ∈ X, we define an orbit O(x; T ) of T at x by

O(x; T ) =
{
x, T x, T 2x, ..., T nx, . . .

}
.

Then T is called T ­orbitally continuous on X if for any sequence
{
xn

}
⊆ O(x; T ),

we have that xn −→ x∗ implies T xn −→ T x∗ for each x ∈ X. The metric space X
is called T ­orbitally complete if every Cauchy sequence

{
xn

}
⊆ O(x; T ) converses

to a point x∗ in X. Notice that continuity implies that T ­orbitally continuity
and completeness implies T ­orbitally completeness of a metric space X, but the
converse may not be true.

Definition 2.1 (Dhage [5]). A mapping T : X −→ X is called partially continuous
at a point a ∈ E if for ϵ > 0 there exists a δ > 0 such that ∥T x−T a∥ < ϵ whenever
x is comparable to a and ∥x − a∥ < δ. T called partially continuous on X if it is
partially continuous at every point of it. It is clear that if T is partially continuous
on X, then it is continuous on every chain C contained in X.

We frequently need a fundamental result concerning Cauchy sequence in what
follows. For, we need the following definition.

Definition 2.2 (Dhage [4]). A mapping ψ : R+ −→ R+ is called a dominating
function or, in short, D­function if it is an upper semi­continuous and monotonic
nondecreasing function satisfying ψ(0) = 0.

There do exist D­functions and commonly used D­functions are

ψ(r) = k r, for some constant k > 0,

ψ(r) =
Lr

K + r
, for some constants L > 0,K > 0,

ψ(r) = tan−1 r,

ψ(r) = log(1 + r),

ψ(r) = er − 1.

The above defined D­functions have been widely used in the existence theory of
nonlinear differential and integral equations.

Remark 2.3. If ϕ, ψ R+ −→ R+ are two D­functions, then i) ϕ + ψ, ii) λϕ, λ > 0,
and iii) ϕ◦ψ are also D­functions on R+. The class of D­functions on R+ is denoted
by D.

Lemma 2.4 (Dhage [4]). Let ψ : R+ −→ R+ be a D­function satisfying ψ(r) < r for
r > 0. Then limn−→∞ ψn(t) = 0 for each t ∈ R+ and vice versa.



74 B. C. DHAGE AND S. B. DHAGE/JNAO : VOL. 5, NO. 2, (2014), 71­79

Now we are ready to state a key result in terms of D­function characterizing the
Cauchy sequences in a metric space X.

Lemma 2.5. If {xn} is a sequence in a metric space (X, d) satisfying

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) (2.1)

for all n ∈ N, where ψ is a D­function such that ψ(r) < r, r > 0, then {xn} is Cauchy.

Proof. The proof is well­known and may found in Dhage [5]. So we omit the details.
□

Theorem 2.6. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→ X
be a monotone nonincreasing mapping such that there exists a D­function such that

d(T x, T 2x) ≤ ψ(d(x, T x)) (2.2)

for all elements x ∈ X comparable to T x, where ψ(r) < r, r > 0. Suppose that
either X is T ­orbitally complete and T is T ­orbitally continuous or T is partially
T ­orbitally continuous and X is regular and satisfies Condition (D). Further if there
is an element x0 ∈ X satisfying x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point x∗

and the sequence {Tnx0} of iterations converges to x∗.

Proof. Define a sequence {xn} of successive iterations of T at x0 as

xn+1 = T xn, n = 0, 1, . . . . (2.3)

By nonincreasing nature of T , {xn} is a sequence in X whose consecutive terms
are comparable. If xn = xn+1 for some ∈ N, then u = xn is a fixed point of T .
Therefore, we assume that xn ̸= xn+1 for each n ∈ N. If x = xn−1 and y = xn,
then by condition (2.2), we obtain

d(xn, xn+1) ≤ ψ(d(xn−1, xn)) (2.4)

for each n = 1, 2, . . . . Now, an application of Lemma 2.5, {xn} is Cauchy. Since
the metric space X is T ­orbitally complete, {xn} converges to a unique limit x∗.
If T is T ­orbitally continuous, x∗ is a fixed point of T and the sequence {T nx0}
of successive iterations converges to x∗. Next, suppose that X satisfies Condition
(D). By hypothesis, the sequence {T nx0} of iterates of T at x0 has a monotone
subsequence, say {xnk

}. Then {xnk
} also converges to x∗ and xnk

≤ x∗ for all
k ∈ N. By the partial T ­orbitally continuity of T , we obtain

T x∗ = T
(

lim
k−→∞

xk

)
= lim

k−→∞
T (T nkx0) = lim

k−→∞
xnk+1 = x∗.

This completes the proof.‘ □

Theorem 2.7. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→ X
be a monotone nonincreasing mapping such that there exists a D­function such that

d(T x, T y) ≤ ψ(d(x, y)) (2.5)

for all comparable elements x, y ∈ X, where ψ(r) < r, r > 0. Suppose that either X
is T ­orbitally complete and T is T ­orbitally continuous or T is partially T ­orbitally
continuous andX is regular and satisfies Condition (D). Further if there is an element
x0 ∈ X satisfying x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point x∗ and the
sequence {T nx0} of iterations converges to x∗ which is further unique if ‘‘every pair
of elements in X has a lower and an upper bound."
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Proof. Now the inequality (2.5) implies that the mapping T is partially T ­orbitally
continuous on X. If we let y = T x in (2.5), then it reduces to (2.2). Therefore,
by Theorem 2.6, T has a fixed point x∗ and the sequence {T nx0} of successive
iterations converges to x∗. The uniqueness of fixed point is proved using arguments
given in Nieto and Lopez [7]. □

It is known that ‘every pair of elements in X has a lower and an upper bound
if it is a lattice (cf. Birkhoff [1]). As every monotone nondecreasing or monotone
nonincreasing sequence always has a monotone subsequence and the limit of the
sequence is the limit of the subsequence, we obtain the following general fixed point
theorems for both nondecreasing as well as nonincreasing mappings on partially
ordered metric spaces.

Theorem 2.8. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→ X be
a monotone mapping (monotone nonincreasing or monotone nonincreasing) satisfying
(2.2). Suppose that either X is T ­orbitally complete and T is T ­orbitally continuous
or T is partially T ­orbitally continuous and X is regular and satisfies Condition (D).
If there exists an x0 ∈ X with x0 ⪯ T x0 or x0 ⪰ T x0, then T has a fixed point x∗

and the sequence {T nx0} of iterations converges to x∗.

Theorem 2.9. Let (X,⪯, d) be a partially ordered complete metric space. Let
T : X −→ X be a monotone mapping (monotone nonincreasing or monotone non­
increasing) satisfying (2.5). Suppose that either X is T ­orbitally complete and T is
T ­orbitally continuous or T is partially T ­orbitally continuous and X is regular and
satisfies Condition (D). If there exists an x0 ∈ X with x0 ⪯ T x0 or x0 ⪰ T x0, then T
has a fixed point x∗ and the sequence {T nx0} of iterations of T at x0 converges to
x∗ which is further unique if ‘‘every pair of elements in X has a lower and an upper
bound."

Finally, we mention that the claim made in Nieto and Lopez [7] that the conti­
nuity of the mapping T is not required to guarantee the existence of unique fixed
point is not true. Actually we need certain kind of continuity, namely, the partial
continuity of the mapping T which follows directly from the condition of partial
contraction on X. However, the monotonicity of T is not essential for the exis­
tence of the fixed points, so in this context we replace this monotonicity condition
by preservation of comparable elements, that is transformation of comparable el­
ements into comparable elements. A couple of fixed point results in this direction
are as follows.

Theorem 2.10. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→
X be a mapping satisfying (2.2) and maps comparable elements into comparable
elements, that is,

x, y ∈ X,x ⪯ y ⇒

 T x ⪯ T y
or

T x ⪰ T y.
Suppose that X is T ­orbitally complete and T is T ­orbitally continuous or T is

partially T ­orbitally continuous and X is regular and satisfies Condition (D). If there
exists an x0 ∈ X with x0 is comparable to T x0, then T has a fixed point x∗ and the
sequence {T nx0} of iterations converges to x∗.

Theorem 2.11. Let (X,⪯, d) be a partially ordered metric space. Let T : X −→
X be a mapping satisfying (2.5) and maps comparable elements into comparable
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elements, that is,

x, y ∈ X,x ⪯ y ⇒

 T x ⪯ T y
or

T x ⪰ T y.
Suppose that either X is T ­orbitally complete and T is T ­orbitally continuous or

T is partially T ­orbitally continuous and X is regular and satisfies Condition (D). If
there exists an x0 ∈ X with x0 is comparable to T x0, then T has a unique fixed
point x∗ and the sequence {T nx0} of iterations converges to x∗.

The proofs of Theorems 2.10 and 2.11 are similar to Theorems 2.6 and 2.7 and
so we omit the details.

3. Applications to Hybrid Differential Equations

Given a closed and bounded interval J = [t0, t0 + a] of the real line R for some
t0, a ∈ R with a > 0, consider the initial value problem (in short IVP) of first order
ordinary nonlinear hybrid differential equation (in short HDE)

x′(t) = f(t, x(t)), t ∈ J,

x(t0) = x0 ∈ R,

}
(3.1)

where f : J × R −→ R is continuous function.
By a solution of the HDE (3.1) we mean a function x ∈ C1(J,R) that satis­

fies equation (1.1), where C1(J,R) is the space of continuously differentiable real­
valued functions defined on J .

The HDE (3.1) is well­known in the literature and discussed at length for ex­
istence as well as other aspects of the solutions. The HDE (3.1) is considered in
the function space C(J,R) of continuous real­valued functions defined on J . We
define a norm ∥ · ∥ and the order relation ≤ in C(J,R) by

∥x∥ = sup
t∈J

|x(t)| (3.2)

and
x ≤ y ⇐⇒ x(t) ≤ y(t) (3.3)

for all t ∈ J . Clearly, C(J,R) is a Banach space with respect to above supremum
norm and also partially ordered w.r.t. the above partially order relation ≤ in it. It
is known that the partially ordered Banach space C(J,R) is regular as well as a
lattice.

We need the following definition in what follows.

Definition 3.1. A function u ∈ C1(J,R) is said to be a lower solution of the HDE
(1.1) if it satisfies

u′(t) ≤ f(t, u(t)),

u(t0) ≤ x0,

}
(∗)

for all t ∈ J.

We consider the following set of assumptions in what follows:
(A1) There exist constants λ > 0 and µ > 0, with λ ≥ µ, such that

−µ(x− y)

1 + (x− y)
≤ [f(t, x) + λx]− [f(t, y) + λy] ≤ 0,

for all t ∈ J and x, y ∈ R, x ≥ y.
(A2) The HDE (1.1) has a lower solution u ∈ C1(J,R).
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Consider the IVP of the HDE
x′(t) + λx(t) = f̃(t, x(t)),

x(t0) = x0,

}
(3.4)

for all t ∈ J, where f̃ , g : J × R −→ R and

f̃(t, x) = f(t, x) + λx. (3.5)

Remark 3.2. Note that the function f̃ is continuous on J×R, and so the associated
superposition Nymetski operator (Fx) is integrable on J . Again, a function u ∈
C1(J,R) is a solution of the HDE (3.4) if and only if it is a solution of the HDE (1.1)
on J .

Lemma 3.3. A function u ∈ C1(J,R) is a solution of the HDE (3.4) if and only if it is
a solution of the nonlinear integral equation,

x(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds (3.6)

for all t ∈ J where c is a real number defined by c = x0 e
t0 .

Theorem 3.4. Assume that hypotheses (A1) and (A2) hold. Then the HDE (1.1) has a
unique solution x∗ defined on J and the sequence {xn} of successive approximations
defined by

xn+1(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, xn(s)) ds (3.7)

where x0 = u, converges to x∗.

Proof. Set E = C(J,R) and define two operators A on E by

Ax(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds, t ∈ J. (3.8)

From the continuity of the integral, it follows that A defines the map A : E −→
E. Now by Lemma 3.3, the HDE (3.1) is equivalent to the operator equation

Ax(t) = x(t), t ∈ J. (3.9)

We shall show that the operator A satisfies all the conditions of Theorem 2.6.
First we show that A is monotone nonincreasing on E. Let x, y ∈ E be such

that x ≥ y. Then by hypothesis (A1), we obtain

Ax(t) = c e−λt + e−λt

∫ t

t0

eλsf̃(s, x(s)) ds

≤ c e−λt + e−λt

∫ t

t0

eλsf̃(s, y(s)) ds

= Ay(t),
for all t ∈ J . This shows that A is nonincreasing operator on E into E.

Next, let x, y ∈ E be such that x ≥ y. Then,

|Ax(t)−Ay(t)| =

∣∣∣∣e−λt

∫ t

t0

eλs[f̃(s, x(s))− f̃(s, y(s))] ds

∣∣∣∣
≤ e−λt

∫ t

t0

eλs
µ(x(s)− y(s))

1 + (x(s)− y(s))
ds

≤ e−λt

∫ t

t0

eλsλ
|x(s)− y(s)|

1 + |x(s)− y(s)|
ds
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≤ e−λt

∫ t

t0

d

ds
eλs

∥x− y∥
1 + ∥x− y∥

ds

≤
[
1− e−λ(t−t0)

] ∥x− y∥
1 + ∥x− y∥

≤ ∥x− y∥
1 + ∥x− y∥

,

for all t ∈ J . Taking supremum over t, we obtain

∥Ax−Ay∥ ≤ ψ(∥x− y∥),

for all x, y ∈ E with x ≥ y, where ψ is a D­function defined by ψ(r) =
r

1 + r
< r,

r > 0. Hence A satisfies the contraction condition (2.5) on E which further implies
that A is a partially continuous and consequently partially T ­orbitally continuous
on E.

Next, we show that u satisfies the operator inequality u ≤ Au. By hypothesis
(A2), the HDE (1.1) has a lower solution u. Then we have

u′(t) ≤ f(t, u(t)),
u(t0) ≤ x0,

}
(3.10)

for all t ∈ J. Adding λu(t) on both sides of the first inequality in (3.10), we obtain

u′(t) + λu(t) ≤ f(t, u(t)) + λu(t), t ∈ J. (3.11)

Again, multiplying the above inequality (3.11) by eλt,(
eλtu(t)

)′
≤ eλtf̃(t, u(t)). (3.12)

A direct integration of (3.12) from t0 to t yields

u(t) ≤ c e−λt + e−λt

∫ t

t0

eλsf̃(s, u(s)) ds (3.13)

for all t ∈ J . From definition of the operator A it follows that u(t) ≤ Au(t) for
all t ∈ J . Hence u ≤ Au. Thus A satisfies all the conditions of Theorem 2.7
and we apply it to conclude that the operator equation Ax = x has a solution.
Consequently the integral equation and the HDE (1.1) has a solution x∗ defined on
J . Furthermore, the sequence {xn} of successive approximations defined by (3.7)
converges to x∗. This completes the proof. □
Remark 3.5. The conclusion of Theorem 3.4 also remains true if we replace the
hypothesis (A1) with the following one:

(A′
1) There exist a continuous and nondecreasing function ϕ : R+ −→ R+ and

the constants λ > 0 and µ > 0, with λ ≥ µ, such that

−µϕ(x− y) ≤ [f(t, x) + λx]− [f(t, y) + λy] ≤ 0,

for all t ∈ J and x, y ∈ R, x ≥ y, where ϕ(r) < r, r > 0.

Finally, we give a numerical example to show the realization of the abstract
theory in this section.

Example 3.6. Given a closed and bounded interval J = [0, 1], consider the IVP of
HDE,

x′(t) = − tan−1 x(t)− x(t),

x(0) = 1 ∈ R,

}
(3.14)

for all t ∈ J.
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Here, f(t, x) = − tan−1 x − x. Clearly, the functions f is continuous on J × R.
The function f satisfies the hypothesis (A1) with λ = 1 = µ. To see this, we have

0 ≤ tan−1 x− tan−1 y ≤ 1

1 + ξ2
(x− y)

for all x, y ∈ R, x ≥ y, where x > ξ > y. Therefore, λ = 1 = µ, and ψ(r) =
r

1 + ξ2
,

0 < ξ < r, so the hypothesis (A′
1) is satisfied. Finally, the HDE (3.15) has a lower

solution u(t) = −2 defined on J and so (A2) is held. Thus all the hypotheses of
Theorem 3.4 are satisfied. Hence we apply Theorem 3.4 and conclude that the HDE
(3.15) has a solution x∗ defined on J and the sequence {xn} defined by

xn+1(t) = e−t + e−t

∫ t

0

es tan−1 xn(s) ds, t ∈ J, (3.15)

where x0 = −2, converges to x∗.
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ABSTRACT. We develop a semilocal convergence analysis for Newton’s method under mild
differentiability conditions. Our sufficient convergence conditions can be weaker than con­
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1. INTRODUCTION

In this work, we study the problem of approximating a locally unique solution
x⋆ of the nonlinear equation

F(x) = 0 (1.1)
where F is a Fréchet–differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

Many problems – from nonlinear convex analysis and other disciplines – can be
formulated in the form of equation (1.1) using Mathematical Modelling [6]. The
solution of these equations can rarely be found in closed form. That is why the
solution methods for these equations are usually iterative. In particular, the prac­
tice of numerical analysis for finding such solutions is essentially connected to
Newton­type methods [6, 13]. For iterattions n = 0, 1, 2, . . ., we define Newton’s
method as {

F ′(xn)∆xn = −F(xn)

xn+1 = xn +∆xn
(1.2)

where x0 is an initial guess. The study about convergence of iterative procedures
is normally centered on two types: semilocal and local convergence analysis. The
semilocal convergence analysis is based on the information around an initial point
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to give criteria ensuring the convergence of iterative procedures. While the local
analysis is based on the information around a solution to find estimates of the radii
of convergence balls. There exist many studies which deals with the local and the
semilocal convergence analysis of Newton­type methods such as [1­21].

In this work – particularly motivated by optimization considerations – we provide
sufficient convergence conditions that can be weaker than the ones found in earlier
studies such as [11­14,16,18­21] and our majorizing sequences can be finer as
well. Moreover, the new advantages are obtained under the same computational
cost.

The rest of the paper is organized as follows. In section 2, we present earlier
results in order to make the study as self contained as possible. Section 3 contains
the semilocal convergence of Newton’s method. Section 4 reports numerical work.

2. Preliminaries

Let U(x0, r) and U(x0, r) stand, respectively, for the open and closed balls in X
with center x0 and radius r > 0. We denote by L(X,Y) the space of bounded linear
operators from X into Y. In this Section, we assume that p ∈ (0, 1] unless stated
otherwise. Let x0 ∈ D be such that F ′(x0)

−1 ∈ L(Y,X). Assume F ′ satisfies a
p­center–Hölder condition at some p ∈ (0, 1]∥∥∥F ′(x0)

−1 (F ′(x)−F ′(x0))
∥∥∥ ≤ L0 ∥x− x0∥p

for each x ∈ U(x0, R) ⊆ D and some L0 > 0, R > 0
(2.1)

and a p­Hölder condition at some p ∈ (0, 1]∥∥∥F ′(x0)
−1 (F ′(x)−F ′(y))

∥∥∥ ≤ L ∥x− y∥p

for each x, y ∈ U(x0, R) ⊆ D and for some L > 0.
(2.2)

We have that
L0 ≤ L (2.3)

holds in general and that L/L0 can be arbitrarily large [3, 6] (see also the Examples
in §4). Note that (2.2) always implies (2.1). In practice the computation of L requires
computing L0. Hence, (2.1) is not an additional requirement to the hypothesis (2.2).
For earlier results on Newton’s method under conditions (2.1) or (2.2), we refer
interested reader to the interesting work: [2,4,6,10–18,21 and references therein].
In particular, a new result was given by Cianciaruso in [7] which improves earlier
sufficient convergence conditions for p ∈ (0, 1), but not necessarily the error bounds
[8,10,14–19]. Consider

c0 =
L+

√
L2 + 4L0 L (1 + p)p p1−p

2L
(2.4)

and

h0(t) =

(
1− 1

t

)p
1 + p(

(L0 (1 + p))

1

1− p + (L t (t− 1))

1

1− p
)1−p

. (2.5)

Then, the convergence condition is given by

ηp ≤ h0(c0). (2.6)



SOME DEVELOPMENT FOR NEWTON’S METHOD UNDER MILD DIFFERENTIABILITY CONDITIONS 83

3. Semilocal convergence analysis

First we present four auxiliary results on majorizing sequences for Newton’s
method.

Lemma 3.1. Let ℓ0 > 0, ℓ > 0, η > 0 and p ∈ (0, 1] be given parameters. Define
function g0 on [0, 1) by

g0(t) =
ℓ

1 + p
ηp(t− 1) + ℓ0t

1/p
[
(1 + t1/p)p − 1

]
ηp.

We denote by α the minimal zero of g0 in the interval (0, 1). Suppose that

0 <
ℓηp

(1 + p)(1− ℓ0ηp)
≤ α1/p ≤ 1− ℓ

1/p
0 η. (3.1)

Then, the scalar sequence {tn} defined by

t0 = 0, t1 = η, tn+2 = tn+1 +
ℓ(tn+1 − tn)

1+p

(1 + p)(1− ℓ0t
p
n+1)

for each n = 0, 1, 2, . . .

(3.2)
is increasing, bounded from above by

t⋆⋆ =
η

1− α1/p
(3.3)

and converges to its unique least upper bound denoted by t⋆ which satisfies t⋆ ∈
[η, t⋆⋆]. Moreover, the following estimates hold for each n = 0, 1, 2, . . .

0 < tn+2 − tn+1 ≤ α1/p(tn+1 − tn) ≤ α(n+1)/pη. (3.4)

Proof. Since g0(1) = ℓ0 η
p(2p − 1) > 0, g0(0) = −ℓ ηp/(1 + p) < 0 thus – it follows

from the intermediate value theorem applied to the function g0 on the interval [0, 1]
that – the function g0 has zeros in (0, 1). We denote the smallest such zero of
function g0– in the interval (0, 1) – by α.

Estimate (3.4) holds, if

0 < tk+2 − tk+1 =
ℓ (tk+1 − tk)

p

(1 + p)(1− ℓ0 t
p
k+1)

≤ α1/p. (3.5)

Inequalities (3.4) and (3.5) hold for k = 0 by (3.1). Let us assume that (3.4) and
(3.5) hold for all k ≤ n. Then, we obtain

tk+1 ≤ tk + α1/p(tk − tk−1)

≤ tk−1 + α1/p(tk−1 − tk−2) + α1/p(tk − tk−1)

≤ t1 + α1/p(t1 − t0) + α1/p(t2 − t1) + · · ·+ α1/p(tk − tk−1)

≤ η + α1/pη + α2/pη + · · ·+ αk/pη =
1− αk+1/p

1− α1/p
η <

η

1− α1/p
= t⋆⋆

(3.6)
and

tk+1 − tk ≤ α1/p(tk − tk−1) ≤ · · · ≤ αk/p(t1 − t0) = αk/pη. (3.7)

In view of (3.6) and (3.7), estimate (3.5) holds, if

ℓ
(
(α1/p)nη

)p

≤ (1 + p)α1/p
[
1− ℓ0

(1− α(n+1)/p

1− α1/p
η
)p]

or

ℓαnηp + (1 + p)α1/pℓ0(1 + α1/p + α2/p + · · ·+ αn/p)pηp − α1/p(1 + p) ≤ 0
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or

ℓαnηp + (1 + p)α1/pℓ0(1 + α1/p + α2/p + · · ·+ αn/p)η − α1/p(1 + p) ≤ 0. (3.8)

Estimate (3.8) motivates us to introduce recurrent functions fk on (0, 1) by

fk(t) = ℓηptk + (1 + p)t1/pℓ0(1 + t1/p + t2/p + · · ·+ tk/p)− t1/p(1 + p). (3.9)

We need a relationship between two consecutive functions fk. Using (3.9) we get
that

fk+1 = fk(t) + gk(t) (3.10)
where

gk(t) =
ℓ

1 + p
ηptn(t−1)+ℓ0t

1/pηp
[
(1+t1/p+· · ·+t(n+1)/p)p−(1+t1/p+· · ·+tn/p)p

]
.

(3.11)
We have that

gk+1(t) = gk(t) +
ℓ

1 + p
ηptk(t− 1)2 + ℓ0t

1/pηp
[
(1 + t1/p + · · ·+ t(k+2)/p)2

− 2(1 + t1/p + · · ·+ t(k+1)/p)p + (1 + t1/p + · · ·+ tk/p)p
]
≥ gk(t). (3.12)

In particular, it follows from the definition of α, (3.10) and (3.12) that

fk+1(α) = gk(α)+ fk(α) ≥ gk−1(α)+ fk(α) ≥ · · · ≥ g0(α)+ fk(α) = fk(α). (3.13)

We define function f∞ on [0, 1) by

f∞(t) = lim
t−→∞

fk(t). (3.14)

Then, using (3.8), (3.9) and (3.14) we get that

f∞(t) = (1 + p)t1/p
[
ℓ0

( η

1− α1/p

)p

− 1
]
. (3.15)

Moreover, we have that

f∞(t) ≥ fk(t) for each k = 0, 1, 2, . . . . (3.16)

Hence, it follows from (3.8), (3.9), (3.15) and (3.16) that (3.8) holds if

f∞(α) ≤ 0. (3.17)

But (3.16) is implied by the right hand side of the hypothesis (3.1). The induction
for (3.4) and (3.5) is complete. It follows that sequence {tn} is increasing, bounded
from above by t⋆⋆ and as such it converges to its unique least upper bound t⋆ ∈
[η, t⋆⋆]. □

Next, we present another auxiliary result of majorizing sequences for Newton’s
method.

Lemma 3.2. Let ℓ0 > 0, ℓ > 0, η > 0 and p ∈ (0, 1] be given parameters. Suppose
that

ℓ0η
p < 1 (3.18)

and there exists α ∈ (0, 1) such that

min

{
ℓ(s2 − s1)

p

(1 + p)(1− ℓ0s
p
2)
,

ℓ

1 + p

( ℓ0η
1+p

(1 + p)(1− ℓ0ηp)

)p

α

+ℓ0α
1/p

(
η +

ℓ0η
1+p

(1− ℓ0ηp)(1− αp)

)p
}

≤ α1/p.

(3.19)
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Then, the scalar sequence {sn} defined by
s0 = 0, s1 = η, s2 = s1 +

ℓ0(s1 − s0)
1+p

(1 + p)(1− ℓ0s
p
1)
,

sn+2 = sn+1 +
ℓ(sn+1 − sn)

1+p

(1 + p)(1− ℓ0s
p
n+1)

, for each n = 1, 2, . . .

(3.20)

is increasing, bounded from above by

s⋆⋆ =

[
1 +

ℓ0η
p

(1− α1/p)(1 + p)(1− ℓ0ηp)

]
η (3.21)

and converges to its unique least upper bound s⋆ which satisfies s⋆ ∈ [s2, s
⋆⋆].

Moreover, the following estimate holds for each n = 1, 2, 3, . . .

0 < sn+2 − sn+1 ≤ αn/pℓ0η
1+p

(1 + p)(1− ℓ0ηp)
. (3.22)

Proof. Estimate (3.22) holds if

0 <
ℓ(sk+1 − sk)

p

(1 + p)(1− ℓ0s
p
k+1)

≤ α1/p for each k = 1, 2, . . . . (3.23)

Inequalities (3.22) and (3.23) hold for k = 1 by (3.19) and (3.20). From (3.23) and
(3.22), we obtain

s3 − s2 ≤ α1/p(s2 − s1)

=⇒ s3 ≤ s2 + α1/p(s2 − s1)

=⇒ s3 ≤ s2 + (1 + α1/p)(s2 − s1)− (s2 − s1)

=⇒ s3 ≤ s1 +
1− α2/p

1− α1/p
(s2 − s1) < s1 +

1

1− α1/p
(s2 − s1) = s⋆⋆ (3.24)

Suppose that (3.22) and (3.23) hold for all k ≤ n. Then, we have

sk+2 − sk+1 ≤ αk/p(s2 − s1) (3.25)

and

sk+2 ≤ s1 +
1− α(k+1)/p

1− α1/p
(s2 − s1) < s⋆⋆. (3.26)

We need to show that (3.23) holds if k is replaced by k+ 1. Then – by (3.23), (3.25)
and (3.26) – we must show that

ℓ

1 + p
(sk+2 − sk+1)

p + α1/pℓ0s
p
k+2 − α1/p ≤ 0

or

ℓ

1 + p

(
αk/p(s2 − s1)

)p

+ α1/pℓ0

(
s1 +

1− α(k+1)/p

1− α1/p
(s2 − s1)

)p

− α1/p ≤ 0

or
ℓ

1 + p
αk(s2 − s1)

p + α1/pℓ0

(
η +

s2 − s1
1− α1/p

)p

− α1/p ≤ 0

or since α ∈ (0, 1)

ℓ

1 + p
α(s2 − s1)

p + α1/pℓ0

(
η +

s2 − s1
1− α1/p

)p

≤ α1/p
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which is true by (3.19). This completes the induction for (3.22) and (3.23). Hence,
sequence {sn} is increasing, bounded from above by s⋆⋆ and as such it converges
to its unique least upper bound s⋆ ∈ [s2, s

⋆⋆]. □

We extend Lemma 3.1 and Lemma 3.2 through the following two useful addi­
tions: Lemma 3.3 and Lemma 3.4, respectively

Lemma 3.3. Let ℓ0 > 0, ℓ > 0, η > 0 and p ∈ (0, 1] be given parameters. Let
N = 0, 1, 2, . . . be fixed. We define function gN0 on [0, 1) by

gN0 (t) =
ℓ

1 + p
(tN+1 − tN )p(t− 1) + ℓ0t

1/p
[
(1 + t1/p)p − 1

]
(tN+1 − tN )p.

Let αN denotes the minimal zero of gN0 (t) in the interval (0, 1). Suppose that

t1 < t2 < t3 < · · · < tN < tN+1 < ℓ
−1/p
0 (3.27)

and

0 <
ℓ(tN+1 − tN )p

(1 + p)(1− ℓ0t
p
N+1)

≤ α
1/p
N ≤ 1− ℓ

1/p
0 (tN+1 − tN ).

Then, the sequence {tn} – defined by (3.2) – is increasing, bounded from above
by t⋆⋆N = (tN+1 − tN )/(1 − α1/p) and converges to its unique least upper bound
t⋆N ∈ [tN+1, t

⋆⋆
N ]. Moreover, for each n = 1, 2, . . ., the following estimate

0 < tN+n − tN+n−1 ≤ α1/p(tN+n−1 − tN+n−2) for each n = 0, 1, 2, . . .

holds.

Lemma 3.4. Let ℓ0 > 0, ℓ > 0, η > 0 and p ∈ (0, 1] be given parameters. Let
N = 0, 1, 2, . . . be fixed. Suppose that

s1 < s2 < s3 < · · · < sN < sN+1 < ℓ
−1/p
0 ,

ℓ0(sN+1 − sN )p < 1

and (3.19) holds with sN+1 − sN replacing η. Then, scalar sequence {sn} – defined
by (3.20) – is increasing, bounded from above by

s⋆⋆N =
[
1 +

ℓ0(sN+1 − sN )p

(1− α1/p)(1 + p)(1− ℓ0s
p
N+1)

]
(sN+1 − sN )

and converges to its unique least upper bound s⋆N ∈ [sN+1, s
⋆⋆
N ]. Moreover, for each

n = 1, 2, . . ., the following estimate

0 < sN+n+2 − sN+n+1 ≤ αn/pℓ0(sN+1 − sN )1+p

(1 + p)(1− ℓ0s
p
N+1)

for each n = 0, 1, 2, . . .

holds. Notice that, for N = 0, the Lemma 3.3 and the Lemma 3.4 reduce to the
Lemma 3.1 and the Lemma 3.2, respectively.

We state the main semilocal convergence theorem for Newton’s method. The
proof of which is obtained from [4, Theorem 3.3] by replacing the hypotheses of
Lemma 3.1 in [4] – involving the convergence of {tn} – with the new Lemma 3.3 or
Lemma 3.4.

Theorem 3.5. Let F : D ⊆ X −→ Y be Fréchet­differentiable. Suppose there
exist a point x0 ∈ D and parameters η > 0, ℓ0 > 0, ℓ > 0, R > 0, p ∈ (0, 1],
such that conditions (2.1), (2.2), hypotheses of Lemma 3.1 or Lemma 3.3 hold and
U(x0, t

⋆) ⊆ U(x0, R). Then, {xn} (n ≥ 0) generated by Newton’s method is well
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defined, remains in U(x0, t
⋆) for all n ≥ 0 and converges to a unique solution x⋆ ∈

U(x0, t
⋆) of equation F(x) = 0. Moreover, the following estimates

∥xn+2 − xn+1∥ ≤ ℓ ∥xn+1 − xn∥1+p

(1 + p) (1− ℓ0 ∥xn+1 − x0∥p)
≤ tn+2 − tn+1 (3.28)

and

∥xn − x⋆∥ ≤ t⋆ − tn, (3.29)

hold for each n = 0, 1, . . ., where, iteration {tn} and t⋆ are given in Lemma 3.1.
Furthermore, if there exists R ≥ t⋆ such that

R0 ≤ R and ℓ0

∫ 1

0

(θ t⋆ + (1− θ)R)p dθ < 1,

then, the solution x⋆ is unique in U(x0, R0). If hypotheses of Lemma 3.2 (or Lemma
3.4) hold, instead of Lemma 3.1 (or Lemma 3.3), then the preceding conclusions hold
with s⋆, {sn} (or s⋆N , {sN}) replacing t⋆, {tN} (or t⋆N , {tN}), respectively.

Remark 3.6. Until now we presented convergence criteria, that can be weaker
than the ones reported in Section 2 (especially criterion (2.23)), and a majorizing
sequence {sn} which is finer than the sequence {tn} [11]. Under the criterion
(2.23), we notice that

sn ≤ tn, (3.30)
sn+1 − sn ≤ tn+1 − tn, (3.31)

s⋆ ≤ t⋆. (3.32)

If ℓ0 < ℓ then for n ≥ 2 we observe that strict inequality applies in (3.30) and (3.32)
(also see the numerical examples).

However – along the lines of Lemma 3.3 and Lemma 3.4 – we can weaken the
condition (2.23) in another way too as follows:

Lemma 3.7. Let ℓ0 > 0, ℓ > 0, η > 0 and p ∈ (0, 1). Let N = 0, 1, 2, . . . be fixed.
Suppose that

t1 < t2 < t3 < · · · < tN < tN+1 < ℓ
1/p
0

and

(tN+1 − tN )p ≤ h0(c0)

where function h0 is defined in (2.21). Then, sequence {tn} converges increasingly
to t⋆.

Theorem 3.8. Let F : D ⊆ X → Y be Fréchet differentiable. Suppose there exist
a point x0 ∈ D and parameters η > 0, ℓ0 > 0, ℓ > 0, p ∈ (0, 1) such that conditions
(2.2), (2.3), (2.4), hypotheses of Lemma 3.7 and U(x0, t

⋆) ⊆ U(x0, R). Then, the
conclusions of Theorem 3.5 hold.

Remark 3.9. If N = 0, the results in Lemma 3.7 and Theorem 3.8 reduce to
the corresponding onces in [11]. Moreover, if N ≥ 1, then two preceding results
constitute an improvement of the results in [11]. Clearly, sequence {sn} can also
replace {tn} in Lemma 3.7 and Theorem 3.8. In practice, we shall test existing
criteria and use the onces that apply and also provide the best available error
estimates and uniqueness result.
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4. Numerical work

Example 4.1. Let X = Y = Rn−1 for natural integer n ≥ 2. X and Y are equipped
with the max­norm∥x∥ = max

1≤i≤n−1
∥xi∥. The corresponding matrix norm is

∥A∥ = max
1≤i≤n−1

j=n−1∑
j=1

|aij |

for A = (aij)1≤i,j≤n−1. On the interval [0, 1], we consider the following two point
boundary value problem {

v′′ + v3/2 = 0
v(0) = v(1) = 0.

(4.1)

[?, see]]ah­WSPC,rokne. To discretize the above equation, we divide the interval
[0, 1] into n equal parts with length of each part: h = 1/n and coordinate of each
point: xi = i h with i = 0, 1, 2, . . . , n. A second­order finite difference discretization
of equation (4.1) results in the following set of nonlinear equations

F(v) :=

 vi−1 + h2 v
3/2
i − 2vi + vi+1 = 0

for i = 1, 2, . . . , (n− 1) and from (4.1) v0 = vn = 0
(4.2)

where v = [v1, v2, . . . , v(n−1)]
T For the above system­of­nonlinear­equations, we

provide the Fréchet derivative

F ′(v) =



3v
1/2
1

2n2
− 2 1 0 0 · · · 0 0

1
3v

1/2
2

2n2
− 2 1 0 · · · 0 0

0 1
3v

1/2
3

2n2
− 2 1 · · · 0 0

...
...

...
... · · ·

...
...

0 0 0 0 · · · 1
3v

1/2
(n−1)

2n2
− 2


.

Let n = 101 and x0 = [50, 50, . . . , 50]T. To solve the linear systems (step 1 in the
in Algorithm 1), we use MatLab routine ‘‘linsolve’’ which uses LU factorization with
partial pivoting. Figure 1 plots our numerical solution. From the above expression
and the inequalities (2.1), (2.2), (2.4), we obtain

p =
1

2
, η = 9.15311× 10−5 and L = L0 = 5.86207705× 10−4.

From (2.20) and (2.21), we get

c0 = 1.556421035 and h0(c0) = 883.3185142.

For the condition (2.23) we obtain: 0.009567188720 < 810.7294898. Thus the condi­
tion (2.23) holds. For the Lemma 3.1, the condition (3.1) yields: 0 < 0.00008814005478 <
0.7422855001 < 0.9999971581. Thus Lemma 3.1 is applicable. To verify the inequal­
ity (3.4) and to ascertain the properties of the sequence (3.2) we produce the Table
1: From the equation (3.3)

t⋆⋆ = 0.0002236156293.

From the Table 1 we see that the estimation (3.4) holds. Furthermore we notice
that the sequence {tn} is increasing and bounded from above by t⋆⋆.
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Figure 1. Solution of the boundary value problem (4.1).

n tn tn+2 − tn+1 α1/p(tn+1 − tn) α(n+1)/pη

0 0.000000× 10+00 3.421069× 10−10 5.037923× 10−05 5.037923× 10−05

1 9.153110× 10−05 2.472017× 10−18 1.882976× 10−10 2.772901× 10−05

2 9.153144× 10−05 1.518400× 10−30 1.360612× 10−18 1.526221× 10−05

3 9.153144× 10−05 7.309504× 10−49 8.357357× 10−31 8.400404× 10−06

4 9.153144× 10−05 2.441409× 10−76 4.023192× 10−49 4.623630× 10−06

5 9.153144× 10−05 1.490286× 10−117 1.343766× 10−76 2.544872× 10−06

6 9.153144× 10−05 2.247571× 10−179 8.202620× 10−118 1.400712× 10−06

7 9.153144× 10−05 4.162736× 10−272 1.237076× 10−179 7.709597× 10−07

8 9.153144× 10−05 3.318005× 10−411 2.291193× 10−272 4.243406× 10−07

9 9.153144× 10−05 7.466626× 10−620 1.826249× 10−411 2.335594× 10−07

Table 1. Numerical solution of (4.1) – after 6 nonlinear iterations
– at Gauss­Legendre points.
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ABSTRACT. In the present paper we study the class of convex optimization problems in
uncertain environment. The objective and constraint functions are assumed to be interval
valued. Solution concepts are proposed under two order relations on the set of all closed
intervals. Weakly continuously differentiability is employed in order to derive necessary
and sufficient conditions for KKT optimality conditions. These theoretical developments are
illustrated through a numerical example.
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Type­I and Type­II solutions.
AMS Subject Classification: 90C29, 90C30.

1. INTRODUCTION

For solutions of the optimization problems the main components are theory and
methods of mathematical modelling. In practice, it is usually difficult to determine
the real valued coefficients of objective and/or constraint functions involved. There
are two deterministic optimization models to deal with uncertain data viz. robust
optimization Ben­tal et al. [2], and another is interval valued optimization Ben­
Israel and Robers [1]. Many approaches have been developed to deal with these
problems. Birge and Louveaux [14], Vajda [24], Stanchu­Minasian [12], Prekopa
[4] provide various techniques for solving stochastic optimization problems. On
the other hand the collection of papers on fuzzy optimization edited by Slowinski
[21] and Delgado et al. [16] gives the main stream to the topic. Lai and Hwang
[25, 26] also give useful survey. Inuiguchi and Ramik [17] give a review of fuzzy
optimization and a comparison with stochastic optimization in portfolio selection
problems. Slowinski and Teghem [22] provide comparison between two types of the
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optimization problems for multiobjective programming problems.

Charnes et al. [3] considered the linear programming problems in which the
right­hand sides of linear inequality constraints were taken as closed intervals.
In a paper Stancu­Minasian and Tigan [13] obtained solutions for interval valued
optimization problems. Steuer [20] proposed three algorithms, called the F­cone
algorithm, E­cone algorithm and all emanating algorithm to solve the linear pro­
gramming problems with interval objective functions. Ishibuchi and Tanaka [7]
proposed the ordering relation between two closed intervals by considering the
maximization and minimization problems separately. Mraz [6] proved algorithms
to compute the exact upper bound and lower bound for linear programming prob­
lems with interval coefficients. Chanas and Kuchta [23] presented an approach
to unify the solution methods proposed in Ishibuchi and Tanaka [7] and in Rom­
melfanger and Hanuscheck [8]. Oliveria and Antunes [5] provided an overview of
multiobjective linear programming problems with interval coefficients by illustrat­
ing many numerical examples. Lai and Huang et al. [25] proposed an interval
parameter fuzzy nonlinear optimization model for stream water quality manage­
ment under uncertainty.

The Karush­Kuhn­Tucker optimality conditions play an important role in the
area of optimization theory and have been studied for over a century. For inter­
val valued optimization problems, the KKT optimality conditions are also studied
in many recent publications. Recently Wu [10, 11] have studied KKT optimality
conditions for interval valued optimization problems. Also Chalco­Cano et al. [27]
studied the KKT optimality conditions of interval valued optimization problem via
generalised derivative. Moreover Zhang et al. [15] derived the KKT optimality con­
ditions for non­convex programming problems with interval valued objective func­
tions. This paper focuses on nonlinear programming problems in which objective
and constraint functions are interval valued. The main motivation for consider­
ing interval valued constraints is that the uncertainty that is imposed on objective
functions is likely also to be imposed on constraints. The remaining paper is organ­
ised as: In section 2, we introduce some preliminaries of interval arithmetic and the
concept of weak differentiability for intervals valued functions. Moreover by using
the concept of order relations ” ⪯LU ” and ” ⪯UC ” the solution concepts for inter­
val valued optimization problems are given. Also the concept of LU ­convexity and
UC­convexity are provided. In section 3, KKT optimality conditions are derived for
optimization problems with interval valued objective and interval valued constraint
functions. Also by invoking pseudoconvexity the same is derived. An example is
also given in order to illustrate our main result. Finally section 4 is devoted to the
conclusion.

2. PRELIMINARIES AND NOTATIONS

The values of objective and constraint functions in our model are closed inter­
vals, we need to compare the closed intervals. Let us denote by I, the class of all
closed and bounded intervals in R. Throughout this paper, when A is a closed
interval, then it is also bounded. We also adopt the notation A = [aL, aU ], where
aL and aU are the lower and upper end points of A, respectively.

Let A,B ∈ I. Then A + B is defined by A + B = {a + b : a ∈ A and
b ∈ B} = [aL + bL, aU + bU ]. And −A is defined by −A = −a : a ∈ A. And
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A−B = A+ (−B) = [aL − bU , aU − bL].

Further for any real number k,

kA =

{
[kaL, kaU ] if k ≥ 0,

[kaU , kaL] if k < 0;

and for h > 0,

A

h
=

[
aL

h
,
aU

h

]
.

The function f : Rn −→ I, is called an interval valued function, i.e., f(x) =
f(x1, x2, · · · , xn) is a closed interval in R for each x ∈ Rn. Clearly f(x) =
[fL(x), fU (x)], where fL and fU are real valued functions defined on Rn and
satisfy fL(x) ≤ fU (x) for every x ∈ Rn.

Definition 2.1. [10] Let X be open in Rn and let x0 = (x
(0)
1 , x

(0)
2 , · · · , x(0)

n ) ∈ X be
fixed. An interval valued function f : Rn −→ I with f(x) = [fL(x), fU (x)] is said
to be

(i) weakly differentiable at x0 ∈ X if the real valued functions fL and fU are
differentiable at x0 (in the usual sense i.e., all of the partial derivatives(

∂fL

∂xi

)
and

(
∂fU

∂xi

)
exist at x0 for i = 1, 2, · · · , n).

(ii) weakly continuously differentiable at x0 if the real valued functions fL and
fU are continuously differentiable at x0 (i.e., all of the partial derivatives of
fL and fU exist on some neighborhoods of x0 and are continuous at x0).

Wu [10] has formulated two solution concepts for interval valued optimization
problem. We may follow similar solution concepts as that used in [10]. Consider
the following interval valued optimization problem.
(IV P1)

Min f(x) = [fL(x1, x2, · · · , xn), f
U (x1, x2, · · · , xn)] = [fL(x), fU (x)]

Subject to x = (x1, x2, · · · , xn) ∈ X ⊆ Rn.

Since the objective function f(x) is a closed interval, we need to make clear the
meaning of minimization problem (IV P1). Let A = [aL, aU ] and B = [bL, bU ] be
two closed intervals in R. We write A ⪯LU B if and only if aL ≤ bL and aU ≤ bU ,
and A ≺LU B if and only if A ⪯LU B and A ̸= B. Equivalently, A ≺LU B if and
only if {

aL ≤ bL

aU < bU ;
or

{
aL < bL

aU < bU ;
or

{
aL < bL

aU ≤ bU .
(2.1)

Definition 2.2. [10] Let x∗ be a feasible solution of (IV P1). We say that x∗ is
type­I solution of (IV P1) if there exists no x̄ ∈ X, such that f(x̄) ≺LU f(x∗).
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Another solution concept follows from Ishibuchi and Tanaka [7]. Let A =
[aL, aU ] be the closed interval in R. Then we can calculate the centre aC =
1
2 [a

L + aU ] and half width aW = 1
2 [a

U − aL] of A. In this case we can use the
notation

⟨
aC , aW

⟩
for A. i.e., A =

⟨
aC , aW

⟩
. Ishibuchi and Tanaka [7] have pro­

posed the ordering relation between closed intervals A and B by using minimization
and maximization problem separately.

(i) For maximization we write, A ⪯CW B iff aC ≤ bC and aW ≥ bW . i.e., the
interval with higher centre and lower half width (i.e., less uncertainty) is
preferred for maximization problem.

(ii) For minimization we write, A ⪯CW B iff aC ≤ bC and aW ≤ bW . i.e., the
interval with lower centre and lower half width (i.e., less uncertainty) is
preferred for minimization problem.

Also we write A ≺CW B iff A ⪯CW B and A ̸= B.

Ishibuchi and Tanaka [7] proved that

(i) A ⪯UC B Iff A ⪯LU B or A ⪯CW B.
(ii) A ≺UC B Iff A ≺LU B or A ≺CW B.

Definition 2.3. Let x∗ be a feasible solution of (IV P1). We say that x∗ is type­II
solution of (IV P1) if there exists no x̄ ∈ X. s.t., f(x̄) ≺UC f(x∗).

Remark 2.4. [10] Let x∗ be a feasible solution of (IV P1). If x∗ is a type­I solution
of (IV P1) then x∗ is also a type­II solution of (IV P1).

For our on­going discussion we consider the following definition of convexity for
interval valued functions.

Definition 2.5. [10] Let f(x) = [fL(x), fU (x)] be an interval valued function de­
fined on convex set X ⊆ Rn. We say that F is LU ­convex or simply convex at x∗ if

f(λx∗ + (1− λ)x) ⪯LU λf(x∗) + (1− λ)f(x) (2.2)

for each λ ∈ (0, 1) and for each x ∈ X. f is said to be LU ­convex on X if it is
LU ­convex on each point of X. Similarly we can define UC­convexity by using
relation ‘⪯UC ’.

Proposition 2.6. [10] Let X be a convex subset of R and f be an interval valued
function defined on X. Then we have the following properties.

(i) f is LU ­convex at x∗ iff fL and fU are convex at x∗.
(ii) f is UC­convex at x∗ iff fU and fC are convex at x∗.
(iii) If f is LU ­convex at x∗, then f is UC­convex at x∗.
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3. THE KARUSH­KUHN­TUCKER OPTIMALITY CONDITIONS

Consider the optimization problem.
(IV P2)

Min f(x) = [fL(x), fU (x)]
Subject to gj(x) ≤ 0, j = 1, 2, · · · ,m.

Where X = {x ∈ Rn : gj(x) ≤ 0, j = 1, 2, · · · ,m} be feasible set of problem
(IV P2) and let J(x∗) = {j : gj(x

∗) = 0, j = 1, 2, · · · ,m} be the index set of active
constraints. We say that the real valued constraint functions gj , j = 1, 2, · · · ,m
satisfy the Kuhn­Tucker constraint qualification at x∗ when, if, ∇gj(x

∗)
T
d ≤ 0 for

all j ∈ J(x∗), where d ∈ Rn, then there exists an n­dimensional vector function
a : [0, 1] −→ Rn such that a is right­differentiable at 0, a(0) = x∗, a(t) ∈ X for all
t ∈ [0, 1], and there exists a real number α > 0 with a′+(0) = αd Wu [9]. Also
let x∗ ∈ X, We say that gj , j = 1, 2, · · · ,m satisfy KKT­assumptions at x∗ if gj is
convex on Rn and continuously differentiable at x∗ for j = 1, 2, · · · ,m Wu [10].
The KKT optimality conditions for (IV P2) obtained in Wu [10] are as follows.

Theorem 3.1. [10] Suppose that the real valued constraint functions gj : Rn −→
R, j = 1, 2, · · · ,m satisfies KKT­assumptions at x∗ and the interval valued objective
functions f : Rn −→ I is LU ­convex and weakly continuously differentiable at x∗.
If there exist (lagrange) multipliers λ = (λL, λU ) > 0 and µj ≥ 0, j = 1, 2, · · · ,m in
R, such that

(i) λL∇fL(x∗) + λU∇fU (x∗) +
m∑
j=1

µj∇gj(x
∗) = 0

(ii) µjgj(x
∗) = 0,for j = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P2).

Next in this section we are going to obtain KKT optimality conditions for opti­
mization problem (IV P1). For this we consider the optimization problem (IV P1)
with feasible set X = {x ∈ Rn : gj(x) ⪯LU [0, 0], j = 1, 2, ...,m}, where gj(x) =
[gLj (x), g

U
j (x)] are interval valued functions for j = 1, 2, ...,m, defined on Rn. That

is
(IV P3)

Min f(x) = [fL(x), fU (x)]
Subject to gj(x) ⪯LU [0, 0], j = 1, 2, ...,m.

Where f and gj , j = 1, 2, ...,m are interval valued functions.

Next we define the following.

Definition 3.2. Let x∗ be the feasible solution of (IV P3). We say that the interval
valued constraint functions gj , j = 1, 2, ...,m satisfy the Kuhn­Tucker constraint
qualification at x∗ if gLj and gUj , j = 1, 2, ...,m satisfy the Kuhn­Tucker constraint
qualification at x∗.
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In the proof of the following theorem, the Motzkins theorem of alternative is re­
quired. It states that, given matrices A ̸= 0 and C, exactly one of the following
system has a solution:

System 1: Ax < 0, Cx ≤ 0 for some x ∈ Rn.
System 2: ATλ+ CTµ = 0 for some µ ≥ 0 and λ ≥ 0 with λ ̸= 0.

In the following theorem we obtain necessary conditions for type­I solution.

Theorem 3.3. (KKT optimality conditions) Suppose that x∗ is type­I solution of
problem (IV P3) and the interval valued functions f and gj , j = 1, 2, · · · ,m are
weakly differentiable at x∗. Also assume that the interval valued constraint function
gj , j = 1, 2, · · · ,m satisfy Kuhn­Tucker constraint qualification at x∗. Then there
exist (Lagrange) multipliers µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m and ξL, ξU > 0 in R , such

that

ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0;

µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), j = 1, 2, · · · ,m.

Proof. Since f is weakly differentiable at x∗, by Definition 2.1 fL and fU are dif­
ferentiable at x∗. Let there exists d ∈ Rn, such that

∇fL(x∗)T d < 0,
∇fU (x∗)T d < 0,

∇gLj (x
∗)T d ≤ 0, j ∈ J(x∗),

∇gUj (x
∗)T d ≤ 0, j ∈ J(x∗).

(3.1)

Since gj , j = 1, 2, · · · ,m satisfy Kuhn­Tucker constraint qualification at x∗ and fL

is differentiable at x∗, we have

fL(a(t)) = fL(x∗) +∇fL(x∗)T (a(t)− x∗)+ ∥ a(t)− x∗ ∥ ϵ(a(t), x∗)

= fL(x∗) +∇fL(x∗)T (a(t)− a(0))+ ∥ a(t)− a(0) ∥ ϵ(a(t), a(0))

= fL(x∗) + t∇fL(x∗)T
(a(0 + t)− a(0))

t
+ ∥ a(t)− a(0) ∥ ϵ(a(t), a(0))

Where ϵ(a(t), a(0)) −→ 0 as ∥ a(t) − a(0) ∥−→ 0. Therefore, when t −→ 0+, we
have a(0+t)−a(0)

t −→ a′+(0) = αd, where α > 0.

Since ∇fL(x∗)d < 0, we have fL(a(t1)) < fL(x∗) for a sufficiently small t1 > 0.
Similarly we have fU (a(t2)) < fU (x∗) for a sufficiently small t2 > 0. There­
fore we have fL(a(t)) < fL(x∗) and fU (a(t)) < fU (x∗) for a sufficiently small
t < min{t1, t2}; consequently f(a(t)) ≺LU f(x∗) for a sufficiently small t, which
contradicts the fact that x∗ is type­I solution of (IV P3). Therefore system (3.1) has
no solution.
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Now let A be the matrix whose rows are ∇fL(x∗)T and ∇fU (x∗)T and C be the ma­
trix whose rows are ∇gLj (x

∗)T and ∇gUj (x
∗)T for j ∈ J(x∗). According to Motzkins

theorem of alternative, since the system (3.1) has no solution, there exist multipli­
ers ξL, ξU > 0 and µL

j , µ
U
j ≥ 0 in R for j ∈ J(x∗), such that

ξL∇fL(x∗) + ξU∇fU (x∗) +
∑

j∈J(x∗)

{µL
j ∇gLj (x

∗) + µU
j ∇gUj (x

∗)} = 0

Set µL
j = 0 = µU

j for j ∈ {1, 2, · · · ,m} \ J(x∗). Then we have

ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0.

µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), for j = 1, 2, · · · ,m.

and the proof is completed.
□

The following theorem states some sufficient conditions for type­I optimality.

Theorem 3.4. Suppose that the interval valued functions f and gj , j = 1, 2, · · · ,m
are LU ­convex and weakly continuously differentiable at x∗ ∈ X. If there exist
ξL, ξU > 0 and µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m in R, such that

(i) ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(ii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), for j = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P3).

Proof. Since gj , j = 1, 2, ...,m are weakly continuously differentiable at x∗, by Def­
inition 2.1 we see that the real valued functions gLj and gUj , j = 1, 2, · · · ,m are
continuously differentiable at x∗. Define the real valued function

ḡj(x) = µ̄L
j g

L
j (x) + µ̄U

j g
U
j (x), j = 1, 2, · · · ,m. (3.2)

Where µ̄L
j , µ̄

U
j ≥ 0, j = 1, 2, · · · ,m. Since gj , j = 1, 2, · · · ,m are LU ­convex at x∗,

according to proposition 2.6, gLj and gUj , j = 1, 2, · · · ,m are convex at x∗. Therefore
ḡj , j = 1, 2, · · · ,m are also convex and continuously differentiable at x∗.

Utilising (3.2), we see that

µL
j ∇gLj (x

∗) + µU
j ∇gUj (x

∗) = µj{µ̄L
j g

L
j (x) + µ̄U

j g
U
j (x)}

= µj ḡj(x), j = 1, 2, · · · ,m (3.3)

Where µj µ̄
L
j = µL

j and µj µ̄
U
j = µU

j for j = 1, 2, · · · ,m. Invoking (3.2) and (3.3) in
(i) and (ii) of theorem we obtain.

(i) ξL∇fL(x∗) + ξU∇fU (x∗) +
m∑
j=1

µj∇ḡj(x
∗) = 0
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(ii) µj ḡj(x
∗) = 0,for j = 1, 2, · · · ,m.

Therefore using Theorem 3.1, x∗ is a type­I solution of the problem heaving in­
terval valued objective function f(x) subject to real valued constraints ḡj(x

∗), j =
1, 2, · · · ,m, i.e.,

f(x∗) ≺LU f(x̄), for each x̄( ̸= x∗) ∈ X. (3.4)

Now suppose that x∗ is not a type­I solution of problem (IV P3). Then, based on
Definition 2.2, there exists x̄ ∈ X, such that{

fL(x̄) ≤ fU (x∗)
fL(x̄) < fU (x∗);

or

{
fL(x̄) < fU (x∗)
fL(x̄) < fU (x∗);

or

{
fL(x̄) < fU (x∗)
fL(x̄) ≤ fU (x∗).

Therefore we see that, f(x̄) ≺LU f(x∗). Which contradicts (3.4). This shows that
x∗ is type­I solution of problem (IV P3) and hence by Remark 2.4, x∗ is also type­II
solution of problem (IV P3). This proves the theorem.

□
Example 3.5. Consider the following programming problem with interval valued
objective and constraint functions:

Min f(x) = [fL(x), fU (x)] = [2x2
1 + 2x2

2 + 3, 2x2
1 + 2x2

2 + 4]
Subject to g1 = [gL1 , g

U
1 ] = [1− x1 − x2, 6− 3x1 − x2] ⪯ [0, 0]
x1 ≥ 0, x2 ≥ 0

Then we have

fL(x1, x2) = 2x2
1 + 2x2

2 + 3, fU (x1, x2) = 2x2
1 + 2x2

2 + 4

gL1 (x1, x2) = 1− x1 − x2, g
U
1 (x1, x2) = 6− 3x1 − x2

It is easy to see that the above functions satisfy the assumptions of Theorem 3.4.
We have to find x1, x2 and ξL, ξU and µL

1 , µ
U
1 , such that:

ξL
[

4x1

4x2

]
+ ξU

[
4x1

4x2

]
+ µL

1

[
−1
−1

]
+ µU

1

[
−3
−1

]
=

[
0
0

]
and


1− x1 − x2 ≤ 0,
6− 3x1 − x2 ≤ 0,

µL
1 (1− x1 − x2) = 0,

µU
1 (6− 3x1 − x2) = 0,

ξL, ξU > 0, µL
1 , µ

U
1 ≥ 0, xi ≥ 0, i = 1, 2.

(3.5)

That is, we have to find a solution for the following simultaneous equations which
satisfy the conditions (3.5).

4ξLx1 + 4ξUx1 − µL
1 − 3µU

1 = 0;
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4ξLx2 + 4ξUx2 − µL
1 − µU

1 = 0.

After some algebraic calculations, we obtain

(x∗
1, x

∗
2) = ( 95 ,

3
5 ), ξ

L = 1
4 , ξ

U = 1
4 , µ

L
1 = 0 and µU

1 = 6
5 .

Since gU1 (
9
5 ,

3
5 ) = 0, condition (ii) in Theorem 3.4 is satisfied. Therefore (x∗

1, x
∗
2) =

( 95 ,
3
5 ) is type­I solution. In view of the Remark 2.4, type­II solution is obvious.

Further let k is non zero integer such that 1 < k < m, the sufficient conditions
can be resorted as:

Theorem 3.6. Under the same assumption of Theorem 3.4, let k be any integer with
1 < k < m. If there exist (Lagrange) multipliers µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m s.t,

(i) ∇fL(x∗) +
k∑

j=1

µL
j ∇gLj (x

∗) +
k∑

j=1

µU
j ∇gUj (x

∗) = 0

(ii) ∇fU (x∗) +
m∑

j=k

µL
j ∇gLj (x

∗) +
m∑

j=k

µU
j ∇gUj (x

∗) = 0

(iii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), forj = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P3).

Proof. Multiplying (i) by ξL > 0 and (ii) by ξU > 0, and adding then we get.

(i) ξL∇fL(x∗) + ξU∇fU (x∗) +
k∑

j=1

µ̂L
j ∇gLj (x

∗) +
k∑

j=1

µ̂U
j ∇gUj (x

∗) = 0

(ii) µ̂L
j g

L
j (x

∗) = 0 = µ̂U
j g

U
j (x

∗), forj = 1, 2, · · · ,m.

Where µ̂L
j = ξLµL

j , µ̂
U
j = ξLµU

j , for j = 1, 2, · · · , k and µ̂L
j = ξUµL

j , µ̂
U
j = ξUµU

j ,
for j = k + 1, · · · ,m Therefore by Theorem 3.4, we see that x∗ is type­I and type­II
solution of (IV P3).

□
Next we introduce centre function f c = 1

2 [f
L + fU ] and then resort the condi­

tions as:

Theorem 3.7. Under the same assumption of Theorem 3.4, Let fC = 1
2 [f

L + fU ]. If
there exist ξC , ξU > 0 and µL

j , µ
U
j ≥ 0, j = 1, 2, · · · ,m. s.t,

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(ii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), forj = 1, 2, · · · ,m.

Then x∗ is type­I and type­II solution of (IV P3).

Proof. Using (3.2) and (3.3) in (i) and (ii) of this theorem we obtain.

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µj∇ḡj(x
∗) = 0
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(ii) µL
j ḡ

L
j (x

∗) = 0, forj = 1, 2, · · · ,m.

Also since f is LU ­convex and weakly continuously differentiable at x∗, therefore
fC = 1

2 [f
L + fU ] is convex and continuously differentiable at x∗ (by Proposition

2.6 and Definition 2.1). Now suppose x∗ is not type­II solution, using similar ar­
guments as in Theorem 3.4, we conclude that x∗ is a type­II solution of problem
(IV P3). Since

ξU∇fU (x∗) + ξC∇fC(x∗) = ξU∇fU (x∗) +
1

2
ξC [∇fL(x∗) +∇fU (x∗)]

=
1

2
ξC∇fL(x∗) +

(
1

2
ξC + ξU

)
∇fU (x∗),

We conclude that x∗ is also a type­I solution by using Theorem 3.4.
□

Next we present KKT conditions for type­II solution.

Theorem 3.8. Suppose that the interval valued functions gj , j = 1, 2, ...,m are LU ­
convex and weakly continuously differentiable at x∗ ∈ X. Also suppose that the
interval valued function f is UC­convex and weakly continuously differentiable at
x∗. If there exist (Lagrange) multipliers ξL, ξC > 0 and µL

j , µ
U
j ≥ 0, j = 1, 2, ...,m in

R, such that

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(ii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), forj = 1, 2, · · · ,m

Then x∗ is type­II solution of (IV P3).

Proof. Using (3.2) and (3.3) in (i) and (ii) of this theorem we obtain.

(i) ξU∇fU (x∗) + ξC∇fC(x∗) +
m∑
j=1

µj∇ḡj(x
∗) = 0

(ii) µj ḡj(x
∗) = 0, for j = 1, 2, · · · ,m

Since f is UC­convex and weakly continuously differentiable at x∗, we see that fU

and fC are convex and continuously differentiable at x∗ (by Proposition 2.6 and
Definition 2.1). Using similar arguments as in Theorem 3.4, we conclude that x∗

is a type­II solution of (IV P3). Despite of the fact that

ξU∇fU (x∗) + ξC∇fC(x∗) =
1

2
ξC∇fL(x∗) +

(
1

2
ξC + ξU

)
∇fU (x∗).

We cannot conclude that x∗ is also a type­I solution in view of Theorem 3.4, since
the assumptions in this theorem is different from that of Theorem 3.4 and the UC­
convexity does not imply LU ­convexity in general.

□
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Next let us consider pseudoconvexity in order to relax the convexity assumptions
of interval valued objective function.

Definition 3.9. [10] Let f be differentiable real valued function defined on non
empty convex set X of R, then f is said to be pseudoconvex at x∗ if f(x) < f(x∗)
then ∇f(x∗)T (x − x∗) < 0 for x ∈ X and f is strictly pseudoconvex at x∗ if
f(x) ≤ f(x∗) then ∇f(x∗)T (x− x∗) < 0 for x ∈ X.

Definition 3.10. [10] Let f(x) = [fL(x), fU (x)] be an interval valued function de­
fined on convex set X ⊆ Rn. We say that f is pseudoconvex at x∗ if the real valued
functions fL and fU are pseudoconvex at x∗.

Let X be a nonempty feasible set and x∗ ∈ cl(X) (the closure of X). The cone of
feasible directions of X at x∗, denoted by D, is defined by

D = {d ∈ Rn : d ̸= 0, there exists a δ > 0 such that x∗+τd ∈ X for all τ ∈ (0, δ)}.

Each d of D is called a feasible direction of X.

Proposition 3.11. [19] Let X = {x ∈ Rn : gj(x) ≤ 0, j = 1, 2, ...,m} be a feasible
set and a point x∗ ∈ X. Assume that gj are differentiable at x∗ for all j = 1, 2, ...,m.
Let J = {j : gj(x∗) = 0} be the index set for the active constraints. Then

D ⊆ {d ∈ Rn : ∇gj(x
∗)T d ≤ 0 for each j ∈ J}.

(Note that this proposition still hold true if we just assume that gj are continuous
at x∗ instead of differentiable at x∗ for j /∈ J ).

In the proof of the following theorem the Tuckers theorem of the alternative is
needed. It states that, given matrices A and C, exactly one of the following system
has a solution:

System 1: Ax ≤ 0, Ax ̸= 0, Cx ≤ 0 for some x ∈ Rn;
System 2: ATλ+ CTµ = 0, for some λ > 0 and µ ≥ 0.

Theorem 3.12. Suppose that the interval valued functions gj , j = 1, 2, ...,m are LU ­
convex and weakly continuously differentiable at x∗ ∈ X. and the interval valued
objective function f is weakly differentiable and pseudoconvex at x∗. If there exist
(Lagrange) multipliers µL

j , µ
U
j ≥ 0, j = 1, 2, ...,m in R, such that,

(i) ∇fL(x∗) +
m∑
j=1

µL
j ∇gLj (x

∗) = 0

(ii) ∇fU (x∗) +
m∑
j=1

µU
j ∇gUj (x

∗) = 0

(iii) µL
j g

L
j (x

∗) = 0 = µU
j g

U
j (x

∗), for j = 1, 2, · · · ,m

Then x∗ is type­I and type­II solution of (IV P3).
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Proof. We shell prove this result by contradiction. Suppose that x∗ is not a type­I
solution. Then by definition there exists an x̄ ̸= x∗ such that f(x̄) ≺LU f(x∗),
which implies that either fL(x̄) < fL(x∗) or fU (x̄) < fU (x∗). Since f is weakly
differentiable and pseudoconvex at x∗, by Definition 2.1 and 3.10, fL and fU are
differentiable and pseudoconvex at x∗, we have either ∇fL(x∗)T (x̄ − x∗) < 0 or
∇fU (x∗)T (x̄− x∗) < 0. Let us consider the case

∇fL(x∗)T (x̄− x∗) < 0. (3.6)

Let d = x̄ − x∗. Then x = x∗ + τd = τ x̄ + (1 − τ)x∗ ∈ X for τ ∈ (0, 1). Since X
is a convex set and x̄, x∗ ∈ X. This shows that d ∈ D. From Proposition 3.11, we
conclude that

∇gLj (x
∗)d ≤ 0 for each j ∈ J(x∗). (3.7)

Let A be the matrix whose rows are ∇fL(x∗)T and C be the matrix whose rows are
∇gLj (x

∗)T for j ∈ J . Therefore by using Tuckers theorem of the alternative, since
System 1 has a solution d = x̄− x∗ (see (3.6) and (3.7)), there exist no multipliers
0 < λ ∈ R and 0 ≤ µj ∈ R, j ∈ J(x∗), such that λ∇fL(x∗)+

∑
j∈J(x∗)

µj∇gLj (x
∗) = 0,

or equivalently, there exist no multipliers 0 ≤ µL
j ∈ R , j ∈ J(x∗), such that

∇fL(x∗) +
∑

j∈J(x∗)

µL
j ∇gLj (x

∗) = 0, where µL
j =

µj

λ . Setting µL
j = 0, j /∈ J , we get

a contradiction to (i) and (iii). Similarly, If ∇fU (x∗)T (x̄− x∗) < 0, then conditions
(ii) and (iii) will be violated. This shows that x∗ is a type­I solution. From Remark
2.4, the proof is complete. □

4. CONCLUSIONS

Interval programming is one of the approaches to handle the uncertain optimiza­
tion, in which an interval is used to model the uncertainty of variables. Most of the
recent work has been done by considering interval coefficients of objective function.
Although the same uncertainty is also likely to be imposed on constraints. In this
paper we have successfully derived the KKT optimality conditions for programming
problems with interval valued objective and interval valued constraint functions.
Although the interval valued equality constraints are not considered in this paper,
the similar methodology proposed in this paper can also be used to handle the
interval valued equality constraints. Future research is oriented to consider the
uncertain environment in order to study the optimality conditions involving Fuzzy
parameters.
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ABSTRACT. In this note we prove a common fixed point theorem for weakly compatible
maps in intuitionistic fuzzy metric spaces using property (S­B), which generalize the results
of Kumar and Vats [26], Alaca, Turkoglu and Yildiz [5]
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1. INTRODUCTION

The concept of fuzzy sets was introduced initially by Zadeh [45] in 1965. Since,
then to use this concept in topology and analysis many authors have expansively
developed the theory of fuzzy sets and applications. A fuzzy set A in X is a func­
tion with domain X and values in [0, 1]. The concept of fuzzy set corresponds
to the degree of nearness between two objects. Deng [9], Erceg [11], Fang [12],
George and Veeramani [14], Kaleva and Seikkala [20], Kramosil and Michalek [23]
have introduced the concept of fuzzy metric spaces in different ways. Atanassove
[6] introduced and studied the concept of intuitionistic fuzzy sets as a general­
ization of fuzzy sets. Intuitionistic fuzzy sets deals with both degree of nearness
and non­nearness. Park [32] defined the notion of intuitionistic fuzzy metric space
with the help of continuous t­norms and continuous t­conorms as a generalization
of fuzzy metric spaces due to George and Veeramani [14]. Further, Alaca et al.
[4] using the idea of intuitionistic fuzzy sets, defined the notion of intuitionistic
fuzzy metric space, as park with the help of continuous t­norms and continuous t­
conorms, as a generalization of fuzzy metric space due to Kramosil and Michalek
[24]. Further Coker [8] introduced the concept of intuitionisitc fuzzy topological
spaces. Turkoglu et. al. [42] gave a generalization of Jungck’s common fixed point
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theorem [17] to intuitionistic fuzzy metric spaces. They first formulated the def­
inition of weakly commuting and R­weakly commuting mappings in intuitionistic
fuzzy metric spaces and proved the intuitionistic fuzzy version of Pant’s theorem
[31]. Recently, many authors have also studied the fixed point and common fixed
point theorems in intuitionistic fuzzy metric space (See [2], [39], [40], [41]). Sharma
and Bamboria [38] defined a property (S­B) for self maps and obtained some com­
mon fixed point theorems for such mappings under strict contractive conditions.
The class of (S­B) maps contains the class of non compatible maps. Kamran [21]
obtained some coincidence and fixed point theorems for hybrid strict contractions.
Sharma and Sharma [37] proved common fixed point theorem in intuitionistic fuzzy
metric spaces under (S­B) property.

2. PRELIMINARIES

The concept of triangular norms (t­norm) and triangular conorms (t­ conorm) are
known as the axiomatic skeletons that we use for characterization fuzzy intersec­
tions and union respectively. These concepts were originally introduced by Menger
[29] in study of statistical metric spaces.

Definition 2.1:[36] A binary operation * : [0, 1] × [0, 1] −→ [0, 1] is continuous
t­norm if * is satisfying the following conditions:

(i) * is commutative and associative;
(ii) * is continuous;
(iii) a ∗ 1 = a ∀ a ∈ [0, 1];
(iv) a ∗ b ⩽ c ∗ d whenever a ⩽ c and b ⩽ d; ∀ a, b, c, d ∈ [0, 1]

Definition 2.2:[36] A binary operation ♢ : [0, 1] × [0, 1] −→ [0, 1] is continuous
t­conorm if ♢ is satisfying the following conditions:

(i) ♢ is commutative and associative;
(ii) ♢ is continuous;
(iii) a♢ 0 = a∀ a ∈ [0, 1];
(iv) a♢ b ⩽ c♢ d whenever a ⩽ c and b ⩽ d; ∀ a, b, c, d ∈ [0, 1]

Alaca et al. [4] using the idea of intuitionistic fuzzy sets, defined the notion of intu­
itionistic fuzzy metric space with the help of continuous t­norms and continuous
t­conorms as a generalization of fuzzy metric space due to Kramosil and Michalek
[24] as follows;

Definition 2.3:[4] A 5 tuple (X,M,N,*,♢) is said to an intuitionistic fuzzy met­
ric space if X is an arbitrary set, * is a continuous t­norm, ♢ is a continuous t­
conorm and M,N are fuzzy sets on X2× (0,∞) satisfying the following conditions;

(i) M(x, y, t) +N(x, y, t) ⩽ 1∀x, y ∈ X and t > 0;
(ii) M(x, y, t) = 0 ∀x, y ∈ X;
(iii) M(x, y, t) = 1 for all x, y ∈ X and t > 0
(iv) M(x, y, t) = M(y, x, t) ∀x, y ∈ X and t > 0;
(v) M(x, y, t) ∗M(y, z, s) ⩽ M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0;
(vi) For all x, y ∈ X,M(x, y, .) : [0,∞) −→ [0, 1] is continuous;
(vii) limt−→∞ M(x, y, t) = 1 for all x, y ∈ X and t > 0;
(viii) N(x, y, 0) = 1 for all x, y ∈ X;
(ix) N(x, y, t) = 0 for all x, y ∈ X and t > 0 iff x = y;
(x) N(x, y, t) = N(y, x, t) for all x, y ∈ X and t > 0;
(xi) N(x, y, t)♢N(y, z, s) ⩾ N(x, z, t+ s) for all x, y, z ∈ X and s, t > 0;
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(xii) For all x, y ∈ X,N(x, y, .) : [0,∞) −→ [0, 1] is continuous;
(xiii) limt−→∞ N(x, y, t) = 0 for all x, y ∈ X;

Then (M,N) is called an intuitionistic fuzzy metric on X. The functions M(x, y, t)
and N(x, y, t) denote the degree of nearness and the degree of non­nearness be­
tween x and y with respect to t, respectively.

Example 2.1:[26] Let X = {1/n : n εN}u{0} with * continuous t­norm and ♢
continuous t­conorm defined by a ∗ b = ab and a♢ b = min {1, a + b} respectively
for all a, b ∈ [0, 1]. For each t ∈ (0,∞) and x, y ∈ X, define(M,N) by

M(x, y, t) =

{
t

t+|x−y| if t > 0.

0 if t = 0.
andN(x, y, t) =

{
|x−y|

t+|x−y| if t > 0.

1 if t = 0.

Then (X,M,N , *, ♢) is an intuitionistic fuzzy metric space.

Remark 2.1:[27] Every fuzzy metric space (X,M , *)is an intuitionistic fuzzy met­
ric space of the form (X,M, 1 − M , *, ♢) such that t­norm * and t­conorm ♢ are
associated as x♢ y = 1− ((1− x) ∗ (1− y)) ∀x, y ∈ X.

Remark 2.2:[26] An intuitionistic fuzzy metric spaces with continuous t­norm *
and continuous t­conorm ♢ defined by a * a ⩾ a and (1−a)♢(1−a) ⩽ (1−a) ∀ a ∈
[0, 1]. Then for all x, y ∈ X,M(x, y, *) is non­ decreasing and N(x, y,♢) is non­
increasing.

Alaca, Turkoglu, and Yildiz [4] introduced the following notions:

Definition 2.4: Let (X,M,N , *,♢) be an intuitionistic fuzzy metric space. Then

(i) a sequence {xn} is said to be Cauchy sequence if, for all t > 0 and p > 0,
limn−→∞ M(xn+p, xn, t) = 1, limn−→∞ N(xn+p, xn, t) = 0

(ii) a Sequence {xn} in X is said to be convergent to a point x ∈ X if, for all
t > 0, limn−→∞ M(xn, x, t) = 1, limn−→∞ N(xn, x, t) = 0

Since * and ♢ are continuous, the limit is uniquely determined from (v) and (xi) of
definitions 3 respectively.

Definition 2.5: An intuitionistic fuzzy metric space (X,M,N , *, ♢) is said to
be complete if and only if every Cauchy sequence in X is convergent.

Turkoglu, Alaca and Yildiz [43] introduced the notions of compatible mappings
in intuitionistic fuzzy metric space, akin to the concept of compatible mappings
introduced by Jungck [18] in metric spaces.

Definition 2.6: A pair of self mappings (f, g) of a intuitionistic fuzzy metric space
(X,M,N , *, ♢) is said to be compatible if limn−→∞ M(fgxn, gfxn, t) = 1 and
limn−→∞ N(fgxn, gfxn, t = 0 for every t > 0, whenever {xn} is a sequence in X
such that limn−→∞ fxn = limn−→∞ gxn = z for some z ∈ X.

Definition 2.7: A pair of self mappings (f, g) of a intuitionistic fuzzy metric space
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(X,M,N , *, ♢) is said to be non­compatible if limn−→∞ M(fgxn, gfxn, t) ̸= 1 or
non­ existent and limn−→∞ N(fgxn, gfxn, t) ̸= 0 or non­ existent for every t > 0,
whenever {xn} is a sequence in X such that limn−→∞ fxn = limn−→∞ gxn = z
for some z ∈ X.

In 1998, Jungck and Rhoades [19] introduced the concept of weakly compatible
maps as follows.

Definition 2.8: Two self maps f and g are said to be weakly compatible if they
commute at coincidence points.

Example 2.2: Let X = R and define f, g : R −→ R by fx = x/3 and gx =
x2 ∀x ∈ R. Here 0 and 1/3 are two coincidence points for the mapsf and g. Note
that fand g commute at 0, i.e.fg(0) = gf(0) = 0.But fg(1/3) = f(1/9) = 1/27
and gf(1/3) = g(1/9) = 1/81 and so f and g are not weakly compatible maps on R.

Remark 2.3: Weakly compatible maps need not be compatible.

Aamri and Moutawakil [1] generalized the concept of non compatibility in met­
ric spaces by defining the notion of E.A. property and proved common fixed point
theorems. Using this property Sharma and Bamboria [38] defined (S−B) property
in fuzzy metric space.

Definition 2.9:[38] A pair of self mappings (S, T ) of an intuitionistic fuzzy metric
space (X,M,N , *,♢) is said to satisfy the (S−B) property if there exists a sequence
{xn} in X such that limn−→∞ M(Sxn, Txn, t) = 1, limn−→∞ N(Sxn, Txn, t) = 0.

Example 2.3: Let X = [0,∞) consider (X,M,N , *, ♢) be an intuitionistic fuzzy
metric space, where M and N are two fuzzy sets defined by M(x, y, t) = t/[t +
d(x, y)] and N(x, y, t) = d(x, y)/[t + d(x, y)] where d is usual metric. Define
T, S : X −→ [0,∞) by Tx = x/5 and Sx = 2x/5 for all x in X. Consider xn = 1/n.
Now, limn−→∞ M(Sxn, Txn, t) = 1, limn−→∞ N(Sxn, Txn, t) = 0. Therefore S and
T satisfy property (S −B).

Now we state two lemmas which are useful in proving our main results.

Lemma 2.1:[3] Let (X,M,N , *, ♢) be an intuitionistic fuzzy metric space and
for all x, y ∈ X, t > 0 and if for a number k ∈ (0, 1),M(x, y, kt) ⩾ M(x, y, t) and
N(x, y, kt) ⩽ N(x, y, t) then x = y.

Lemma 2.2:[3] Let (X,M,N , *,♢) be an intuitionistic fuzzy metric space and {yn}
be a sequence in X. If there exists a number k ∈ (0, 1) such that;
M(yn+2, yn+1, kt) ⩾ M(yn+1, yn, t), N(yn+2, yn+, kt) ⩽ N(yn+1, yn, t) for all t > 0
and n = 1, 2, . . . then {yn} is a Cauchy sequence in X.

Alaca et al [5] proved the following theorem.

Theorem A: Let A,B, S and T be self maps of a complete intuitionistic fuzzy met­
ric spaces (X,M,N , *, ♢) with continuous t­norm * and continuous t­conorm ♢
defined by a * a ⩾ a and (1− a) ⩽ (1− a)♢ (1− a) for all a ∈ [0, 1] satisfying the
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following conditions;

(A.1) A(X) ⊂ T (X), B(X) ⊂ S(X);
(A.2) S and T are continuous;
(A.3) The pairs {A,S} and {B, T} are compatible maps;
(A.4) For allx, y ∈ X, t > 0 and k ∈ (0, 1) such that

M(Ax,By, kt) ⩾ M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t) * M(By, Sx, 2t)*
M(Ax, Ty, t)
N(Ax,By, kt) ⩽ N(Sx, Ty, t)♢N(Ax, Sx, t)♢N(By, Ty, t)♢N(By, Sx, 2t)♢N(Ax, Ty, t).

Then A, B, S and T have a unique common fixed point in X.

Kumar and Vats [26] proved the following.

Theorem B: Let A,B, S and T be self maps of a complete intuitionistic fuzzy met­
ric spaces(X,M,N , *, ♢) with continuous t­norm * and continuous t­conorm ♢
defined by a* a ⩾ a and(1 − a)♢(1 − a) ⩽ (1 − a) for all a ∈ [0, 1] satisfying the
following conditions;

(B.1) A(X) ⊂ T (X), B(X) ⊂ S(X)
(B.2) ∀x, y ∈ X, t > 0 and k ∈ (0, 1) such that
M(Ax,By, kt) ⩾ M(Sx, Ty, t) * M(Ax, Sx, t) * M(By, Ty, t) * M(By, Sx, 2t) *
M(Ax, Ty, t
N(Ax,By, kt) ⩽ N(Sx, Ty, t)♢N(Ax, Sx, t)♢N(By, Ty, t)♢N(By, Sx, 2t)♢N(Ax, Ty, t)

Then
(i) A and S have a point of coincidence;
(ii) B and T have a point of coincidence.
Moreover, if the pairs{A,S} and {B, T} are weakly compatible maps, then A,B, S
and T have a unique common fixed point in X.

3. MAIN RESULTS

Now, we prove our main result which generalizes the theorems A and B.

Theorem 3.1. Let A,B, S and T be self maps of a intuitionistic fuzzy metric spaces
(X,M,N , *, ♢) with continuous t­norm * and continuous t­conorm ♢ defined by a
* a ⩾ a and (1 − a)♢(1 − a) ⩽ (1 − a) for all a ∈ [0, 1]satisfying the following
conditions;
(3.1) A (X) ⊂ T (X), B (X) ⊂ S (X)
(3.2) pairs {A,S} and {B, T} are weakly compatible.
(3.3) pairs {A,S} or {B, T} satisfies the property (S­B)
(3.4) for all x, y ∈ X, t > 0 and k ∈ (0, 1)such that
M (Ax, By, kt) ⩾ M (Sx, Ty, t) * M (Ax, Sx, t) * M (By, Ty, t) * M (By, Sx, 2t) * M (Ax, Ty,
t)
N (Ax, By, kt) ⩽ N (Sx, Ty, t) ♢ N (Ax, Sx, t) ♢ N (By, Ty, t) ♢ N (By, Sx, 2t) ♢ N (Ax, Ty,
t)
(3.5) one of A(X), B(X), S(X) or T(X) is a closed subset of X.

Then A, B, S and T have a unique common fixed point in X.
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Proof. Suppose that (B, T ) satisfies the property (S − B), then there exists a se­
quence {xn} in X such that limn−→∞ Bxn = limn−→∞ Txn = z for some z ∈ X.

SinceB(X) ⊂ S(X) there exists a sequence {xn} ∈ X such that

limn−→∞ Bxn = limn−→∞ Syn = z

Now we shall show that limn−→∞ Ayn = z

From (3.4), we have;

M(Ayn, Bxn, kt) ⩾ M(Syn, Txn, t) * M(Ayn, Syn, t)* M(Bxn, Txn, t)* M(Bxn, Syn, 2t)
* M(Ayn, Txn, t)
and
N(Ayn, Bxn, kt) ⩽ N(Syn, Txn, t)♢N(Ayn, Syn, t)♢N(Bxn, Txn, t)♢N(Bxn, Syn, 2t)♢N(Ayn, Txn, t)

Proceeding limit as n −→ ∞, we have;

limn−→∞ M(Ayn, z, kt) ⩾ limn−→∞[M(z, z, t)*M(Ayn, z, t) *M(z, z, t) *M(z, z, 2t)
* M(Ayn, z, t)]
and
limn−→∞ N(Ayn, z, kt) ⩽ limn−→∞[N(z, z, t)♢N(Ayn, z, t)♢N(z, z, t)♢ (z, z, 2t)♢N(Ayn, z, t)],

limn−→∞ M(Ayn, z, kt) ⩾ limn−→∞[1*M(Ayn, z, t)* 1* 1* M(Ayn, z, t)]
and
limn−→∞ N(Ayn, z, kt) ⩽ limn−→∞[0♢N(Ayn, z, t)♢ 0♢ 0♢N(Ayn, z, t)]

It follows that

limn−→∞ M(Ayn, z, kt) ⩾ limn−→∞ M(Ayn, z, t)
and
limn−→∞ N(Ayn, z, kt) ⩽ limn−→∞ N(Ayn, z, t)

and we deduce that limn−→∞ Ayn = z

Suppose that S(X) is a closed subset of X .Then z = Su for some u ∈ X.
Subsequently, we have,

limn−→∞ Ayn = limn−→∞ Bxn = limn−→∞ Txn = limn−→∞ Syn = z = Su.

Now, we shall show that Au = Su

From (3.4) we have,

M(Au,Bxn, kt) ⩾ M(Su, Txn, t) * M(Au, Su, t) *M(Bxn, Txn, t) *M(Bxn, Su, 2t)
*M(Au, Txn, t)
and
N(Au,Bxn, kt) ⩽ N(Su, Txn, t)♢N(Au, Su, t)♢N(Bxn, Txn, t)♢N(Bxn, Su, 2t)♢N(Au, Txn, t)

Taking the limit as n −→ ∞, we have,
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M(Au, Su, kt) ⩾ M(Su, Su, t) * M(Au, Su, t) * M(Su, Su, t) * M(Su, Su, 2t)*M(Au, Su, t)
and
N(Au, Su, kt) ⩽ N(Su, Su, t)♢N(Au, Su, t)♢N(Su, Su, t)♢N(Su, Su, 2t)♢N(Au, Su, t),

M(Au, Su, kt) ⩾ 1 *M(Au, Su, t) * 1 * 1* M(Au, Su, t)
and
N(Au, Su, t) ⩽ 0 *N(Au, Su, t) * 0 * 0 *N(Au, Su, t),

M(Au, Su, kt) ⩾ M(Au, Su, t)
and
N(Au, Su, kt) ⩽ N(Au, Su, t)

Therefore by lemma 2.1, we have; Au = Su.

i.e. u is a coincidence point of A and S

The weak compatibility of A and S implies that ASu = SAu and then AAu =
ASu = SAu = SSu on the other hand since A(X) ⊂ T (X), there exists a point
v ∈ X such that Au = Tv. We claim that Tv = Bv.

Suppose that Tv ̸= Bv. Then (3.4) implies that.

M(Au,Bv, kt) ⩾ M(Su, Tv, t)*M(Au, Su, t) *M(Bv, Tv, t)* M(Bv, Su, 2t) *M(Au, Tv, t)
and
N(Au,Bv, kt) ⩽ N(Su, Tv, t)♢N(Au, Su, t)♢N(Bv, Tv, t)♢N(Bv, Su, 2t)♢N(Au, Tv, t),

M(Au,Bv, kt) ⩾ M(Au,Au, t) *M(Au,Au, t)*M(Bv,Au, t) * M(Bv,Au, 2t) *M(Au,Au, t)
and
N(Au,Bv, kt) ⩽ N(Au,Au, t)♢N(Au,Au, t)♢N(Bv, Tu, t)♢N(Bv,Au, 2t)♢N(Au,Au, t),

M(Au,Bv, kt) ⩾ 1 *1*M(Bv,Au, t) *M(Bv,Au, 2t)*1
and
N(Au,Bv, kt) ⩽ 0♢ 0♢N(Bv,Au, t)♢N(Bv,Au, 2t)♢ 0

Thus, it follows that M(Au,Bv, kt) ⩾ M(Au,Bv, t)
and
N(Au,Bv, kt) ⩽ N(Au,Bv, t)

Therefore by lemma 2.1 we have; Au = Bv. Hence Tv = Bv.

i.e. v is a coincidence point of B and T .

Thus we have: Au = Su = Tv = Bv.

The weak compatibility of B and T implies that

BTv = TBv and TTv = TBv = BTv = BBv.

Let us show that Au is a common fixed point of A,B, S and T .
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Suppose that AAu ̸= Au. Then using (3.4) we have;

M(AAu,Bv, kt) ⩾ M(SAu, Tv, t) * M(AAu, SAu, t) * M(Bv, Tv, t) * M(Bv, SAu, 2t)
*M(AAu, Tv, t)
and
N(AAu,Bv, kt) ⩽ N(SAu, Tv, t)♢N(AAu, SAu, t)♢N(Bv, Tv, t)♢N(Bv, SAu, 2t)♢N(AAu, Tv, t),

M(AAu,Au, kt) ⩾ M(AAu,Au, t)*M(AAu,AAu, t) *M(Bv,Bv, t) *M(Au,AAu, 2t)
* M(AAu,Au, t)
and
N(AAu,Au, kt) ⩽ N(AAu,Au, t)♢N(AAu,AAu, t)♢N(Bv,Bv, t)♢N(Au,AAu, 2t)♢N(AAu,Au, t),

M(AAu,Au, kt) ⩾ M(AAu,Au, t)* 1 * 1 *M(Au,AAu, 2t) *M(AAu,Au, t)
and
N(AAu,Au, kt) ⩽ N(AAu,Au, t)♢ 0♢ 0♢N(Au,AAu, 2t)♢N(AAu,Au, t)

M(AAu,Au, kt) ⩾ M(AAu,Au, t)
and
N(AAu,Au, kt) ⩽ N(AAu,Au, t)

Therefore by lemma 2.1, we have; AAu = Au.

Since AAu = SAu, therefore,Au = AAu = SAu

i.e. Au is a common fixed point of A and S.

Similarly, we prove that Bv is a common fixed point of B and T . Since Au = Bv,
we conclude that Au is a common fixed point of A,B, S and T . The proof is sim­
ilar when T (X) is assumed to be a closed subset of X. The cases in which A(X)
or B(X) is a closed subset of X are similar to the cases in which T (X) or S(X)
respectively is closed subset of X, since A(X) ⊂ T (X) and B(X) ⊂ S(X). Unique­
ness follows easily.

□

Theorem 3.2. Let A,B and S be self maps of a intuitionistic fuzzy metric spaces
(X,M,N, *,♢ ) with continuous t­norm * and continuous t­conorm ♢ defined by a*
a ⩾ a and (1 − a)♢ (1 − a) ⩽ (1 − a) for all a ∈ [0, 1] satisfying the following
conditions;
(3.21) A (X) ⊂ S (X), B (X) ⊂ S (X)
(3.22) pairs {A,S} and {B,S} are weakly compatible.
(3.23) pairs {A,S} or {B,S} satisfies the property (S­B)
(3.24) for all x, y ∈ X, t > 0 and k ∈ (0, 1) such that
M2(Ax,By, kt) ⩾ [M(Ax, Sx, t) * M(By, Sx, t)]2

N2(Ax,By, kt) ⩽ [N(Ax, Sx, t)♢N(By, Sx, t)]2

(3.25) one of A(X), B(X), S(X) or T(X) is a closed subset of X.
Then A,B and S have a unique common fixed point in X.

Proof. Suppose that (B,S) satisfies the property (S − B), then there exists a se­
quence {xn} in XSuch that limn−→∞ Bxn = limn−→∞ Sxn = z for some z ∈ X.
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Since B(X) ⊂ S(X) there exists a sequence{yn} ∈ X such that limn−→∞ Bxn =
limn−→∞ Syn = z

Now, we shall show that limn−→∞ Ayn = z

From (3.24), we have; (at x = yn, y = xn)

[M(Ayn, Bxn, kt)]
2 ⩾ [M(Ayn, Syn, t) * M(Bxn, Syn, t)]

2

[N(Ayn, Bxn, kt)]
2 ⩽ [N(Ayn, Syn, t)♢N(Bxn, Syn, t)]

2

Proceeding limit as n −→ ∞, we have;

[limn−→∞ M(Ayn, z, kt)]
2 ⩾ [limn−→∞ M(Ayn, z, t) * M(z, z, t)]2

and
[limn−→∞ N(Ayn, z, kt)]

2 ⩽ [limn−→∞ N(Ayn, z, t)♢N(z, z, t)]2

[limn−→∞ M(Ayn, z, kt)]
2 ⩾ [limn−→∞ M(Ayn, z, t) * 1]2

and
[limn−→∞ N(Ayn, z, kt)]

2 ⩽ [limn−→∞ N(Ayn, z, t)♢ 0]2

Thus, it follows that,

limn−→∞ M(Ayn, z, kt) ⩾ limn−→∞ M(Ayn, z, t)
and
limn−→∞ N(Ayn, z, kt) ⩽ limn−→∞ N(Ayn, z, t)

and we deduce that limn−→∞ Ayn = z.

Suppose that S(X) is a closed subset of X. then z = Su. For some u ∈ X,
subsequently we have;

limn−→∞ Ayn = limn−→∞ Bxn = limn−→∞ Syn = z = Su

Now, we shall show that Au = Su.

From (3.24) we have ( at x = u, y = xn)

[M(Au,Bxn, kt)]
2 ⩾ [M(Au, Su, t) * M(Bxn, Su, t)]

2

and
[N(Au,Bxn, kt)]

2 ⩽ [N(Au, Su, t)♢N(Bxn, Su, t)]
2

Taking the limit as n −→ ∞, we have;

[M(Au, Su, kt)]2 ⩾ [M(Au, Su, t) * M(Su, Su, t)]2

and
[N(Au, Su, kt)]2 ⩽ [N(Au, Su, t)♢N(Su, Su, t)2

[M(Au, Su, kt)]2 ⩾ [M(Au, Su, t) * 1]2
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and
[N(Au, Su, kt)]2 ⩽ [N(Au, Su, t)♢ 0]2

Thus, it follows that,

M(Au, Su, kt) ⩾ M(Au, Su, t)
and
N(Au, Su, kt) ⩽ N(Au, Su, t)

Therefore, by lemma 2.1, we have; Au = Su.

i.e. u is a coincidence point of A and S.

The weak compatibility of A and S implies that ASu = SAu and then AAu =
ASu = SAu = SSu. On the other hand, since A(X) ⊂ S(X), there exist a point
v ∈ X such that Au = Sv. We claim that Sv = Bv.

i.e. v is a coincidence point of S and B.

Using (3.24), we have;

[M(Au,Bv, kt)]2 ⩾ [M(Au, Su, t) *M(Bv, Su, t)]2

and
[N(Au,Bv, kt)]2 ⩽ [N(Au, Su, t)♢N(Bv, Su, t)]2

[M(Au,Bv, kt)]2 ⩾ [M(Au,Au, t) * M(Bv,Au, t)]2

and
[N(Au,Bv, kt)]2 ⩽ [N(Au,Au, t)♢N(Bv,Au, t)]2

[M(Au,Bv, kt)]2 ⩾ [1* M(Au,Bv, t)]2

and
[N(Au,Bv, kt)]2 ⩽ [0♢N(Au,Bv, t)]2

Thus, it follows that,

M(Au,Bv, kt) ⩾ M(Au,Bv, t)
and
N(Au,Bv, kt) ⩽ N(Au,Bv, t)

Therefore, by lemma 2.1, we have; Au = Bv

Thus Au = Su = Sv = Bv.

The weak compatibility of B and S implies BSv = SBv and thenBBv = BSv =
SBv = SSv.

Let us show that Au is a common fixed point of A,B and S.

In view of (3.24), it follows that
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[M(AAu,Bv, kt)]2 ⩾ [M(AAu, SAu, t) * M(Bv, SAu, t)]2

and
[N(AAu,Bv, kt)]2 ⩽ [N(AAu, SAu, t)♢N(Bv, SAu, t)]2

[M(AAu,Bv, kt)]2 ⩾ [M(AAu,AAu, t) * M(Au,AAu, t)]2

and
[N(AAu,Bv, kt)]2 ⩽ [N(AAu,AAu, t)♢N(Au,AAu, t)]2

[M(AAu,Bv, kt)]2 ⩾ [1 * M(Au,AAu, t)]2

and
[N(AAu,Bv, kt)]2 ⩽ [0♢N(Au,AAu, t)]2

That, it follows that,

M(AAu,Au, kt) ⩾ M(Au,AAu, t)
and
N(AAu,Au, kt) ⩽ N(Au,AAu, t)

Therefore, by lemma 2.1, we have; AAu = Au.

Thus AAu = Au = SAu and Au is a common fixed point of A and S.

Similarly, we prove that Bv is a common fixed point of B and S.

Since Au = Bv, we conclude that Au is a common fixed point of A,B and S.

If Az = Bz = Sz = z and Aw = Bw = Sw = w, then by (3.24), we have;

[M(Az,Bw, kt)]2 ⩾ [M(Az, Sz, t) * M(Bw,Sz, t)]2

and
[N(Az,Bw, kt)]2 ⩽ [N(Az, Sz, t)♢N(Bw,Sz, t)]2

[M(z, w, kt)]2 ⩾ [M(z, z, t) * M(w, z, t)]2

and
[N(z, w, kt)]2 ⩽ [N(z, z, t)♢N(w, z, t)]2

[M(z, w, kt)]2 ⩾ [1 * M(z, w, t)]2

and
[N(z, w, kt)]2 ⩽ [0♢N(z, w, t)]2

Thus, it follows that,

M(z, w, kt) ⩾ M(z, w, t)
and
N(z, w, kt) ⩽ N(z, w, t)

Therefore, by lemma 2.1, we have;z = w.

Hence the common fixed point is unique.
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This completes the proof of the theorem.

□
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ABSTRACT. In this note, we consider the nonlinear scalarization function in topological
vector spaces and present some properties of it and by using the nonlinear scalarization
function we establish an existence theorem for a solution of a generalized quasi­vector equi­
librium problems. Moreover, we show that under suitable conditions the solution set of the
generalized quasi­vector equilibrium problem is compact.
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1. INTRODUCTION AND PRELIMINARIES

Equilibrium problems have been extensively studied in recent years, the origin
of which can be traced back to Blum and Oettli [1]. It is well known that vec­
tor equilibrium problems provide a unified model for several classes of problems,
for examples, vector variational inequality problems, vector complementarity prob­
lems, vector optimization problems, and vector saddle point problems, see [1, 10]
and the references therein. It is notable that vector variational inequality was first
introduced and studied by Giannessi [8] in 1980.

Later on, vector variational inequality and its various extensions have been
studied by Chen and Cheng [3], Chen, Huang and Yang [4] and other authors.

Recently, Chen et al. [5] introduced a nonlinear scalarization function for a
variable domain structure and obtained several important properties , such as,
the subadditivity and the continuity of it in the setting of a locally convex space.
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Further, they applied their nonlinear scalarization function in order to study the
existence of solutions for a generalized vector quasi­equilibrium problem (GVQEP,
for short).

Inspired and motivated by the works mentioned above, we first consider non­
linear scalarization function for a variable domain structure and present some
properties of it in the setting of topological vector spaces and then using the func­
tion we deal with an existence theorem for a solution of (GVQEP) without any
continuity on the maps and show that the solution set of (GVQEP) is compact un­
der our assumptions. It worth noting that the author of [2] introduced the weakest
notion of continuity for a (scalar) equilibrium problem. The results presented in
this paper generalized some corresponding results in the literature.

In the rest of this section we recall some definitions and preliminaries results
which we need in the sequel.

Definition 1.1. Let X and Y be two topological spaces. A multi­valued map
T : X −→ 2Y is :

(i) upper semi­continuous (u.s.c.) at x ∈ X if for each open set V containing
T (x), there is an open set U containing x such that for each t ∈ U , T (t) ⊆
V ; T is said to be u.s.c. on X if it is u.s.c. at all x ∈ X.

(ii) lower semi­continuous (l.s.c.) at x ∈ X if for each open set V with
T (x)∩V ̸= ∅, there is an open set U containing x such that for each t ∈ U ,
T (t) ∩ V ̸= ∅; T is said to be l.s.c. on X if it is l.s.c. at all x ∈ X.

(iii) continuous on X if it is at the same time u.s.c. and l.s.c. on X.

(iv) closed if the graph Gr(T ) of T , i.e., {(x, y) : x ∈ X, y ∈ T (x)}, is a closed
set in X × Y .

(v) compact if the closure of range T , i.e., T (X), is compact, where T (X) =∪
x∈X T (x).

Lemma 1.2. ([11]) Let X and Y be topological spaces and T : X −→ 2Y be a
multi­valued map. The following assertions are valid.

(i) T is l.s.c. at x ∈ X if and only if for any y ∈ T (x), and any net {xα}, xα −→
x, there is a net {yα} such that yα ∈ T (xα) and yα −→ y.

(ii) If for any x ∈ X,T (x) is compact, then T is u.s.c. on X if and only if for
any net {xα} in X such that xα −→ x (x ∈ X) and for every yα ∈ T (xα),
there exist y ∈ T (x) and a subnet {yβ} of {yα}, such that yβ −→ y.

(iii) T is closed if and only if for any net xα, xα −→ x, and any net yα, yα ∈
T (xα), with yα −→ y one has y ∈ T (x).

(iv) If T is closed and T is compact, then T is u.s.c..
(v) If T is u.s.c. and for each x ∈ X,T (x) is closed set, then T is closed.
(vi) If X is compact and T is u.s.c. and for any x ∈ X,T (x) is compact, then

T (X) is compact.

Theorem 1.3. ([9]) (Kakutani­Fan­Glicksberg Fixed point Theorem) Let S be a
non­empty, compact and convex subset of a locally convex topological vector space.
Let F : S −→ 2S be a mapping with nonempty compact and convex values. Then
F has a fixed point.
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2. MAIN RESULTS

In this section we first introduce a nonlinear scalarization function for a mov­
ing cone in the setting of topological vector spaces (t.v.s. for short) and then some
important properties of the nonlinear scalarization function will be presented. Fi­
nally, we establish an existence theorem for a solution of (GQEP) and we show that
under our assumptions the solution set (GQEP) is compact.

Let E be a topological vector space with its zero vector θ and the topological
dual space E∗. By a cone P ̸= {θ} we understand a closed convex subset of E such
that λP ⊆ P for all λ ≥ 0 and P ∩ −P = {θ}. Given a cone P ⊆ E, we define a
partial ordering ⪯ with respect to P by x ⪯ y if and only if y−x ∈ P . We shall write
x ≺ y to indicate that x ⪯ y but x ̸= y, while x ≪ y will stand for y − x ∈ intP if P
has nonempty interior.

Definition 2.1. Let E be a t.v.s. and C : E −→ 2E a multi­valued map and for
all x ∈ E, C(x) be a solid cone (that is, intC(x) is nonempty). Let e : E −→ E
be a map with e(x) ∈ C(x) for all x ∈ E. The nonlinear scalarization function
ξ : E × E −→ R is defined as follows:

ξ(x, y) = inf{r ∈ R : y ∈ re(x)− C(x)}.

In the following we establish some important properties of the nonlinear scalar­
ization function which generalize Propositions 2.3 and 2.4 in [5] from locally con­
vex spaces to topological vector spaces by presenting a new proof. Moreover if we
take C(x) = P (P is a cone with e ∈ intP ) and define e(x) = e for all x ∈ E,
then it collapses to the corresponding result given in [7]. It is worthwhile to note
that, we will not assume int(

∩
x∈X C(x)) ̸= ∅ as considered in [6]. The condition

int(
∩

x∈X C(x)) ̸= ∅ is too restrictive even for finite dimensional t.v.s., for exam­
ple, take X = R and consider C(x) = [0,∞) for x ∈ Q(the rational numbers) and
C(x) = (−∞, 0] for x ∈ Qc(the irrational numbers) then int(

∩
x∈X C(x)) = ∅.

Proposition 2.2. Let E be a t.v.s., C : E −→ 2E a multi­valued map and for all
x ∈ E, C(x) be a solid cone. Let e : E −→ E be a function with e(x) ∈ C(x), for all
x ∈ E. Then the following assertions, for each r ∈ R and y ∈ E, are satisfied.

(i) ξ(x, y) = inf{r ∈ R : y ∈ re(x)− C(x)} = min{r ∈ R : y ∈ re(x)− C(x)};
(ii) ξ(x, y) ≤ r ⇐⇒ y ∈ re(x)− C(x);
(iii) ξ(x, y) < r ⇐⇒ y ∈ re(x)− intC(x);
(iv) If y1 ⪯ y2, then ξ(x, y1) ≤ ξ(x, y2);
(v) For each fixed x ∈ E the function z −→ ξ(x, z) is continuous, positively

homogeneous and subadditive on E;
(vi) For each fixed x ∈ E the function z −→ ξ(x, z) is bounded on some neighbor­

hood of zero.

Proof. (i) It is obvious from e(x) ∈ intC(x) that , for each y ∈ E, the set

A(y) = {r ∈ R : y ∈ re(x)− C(x)}

is nonempty. The nonlinear scalarization function ξ is well­defined, otherwise there
exist a y ∈ E and a sequence {rn} of real numbers such that

y ∈ rne(x)− C(x) and rn −→ −∞.
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Hence
1

−rn
y ∈ e(x) + C(x),

and so
−e(x) ∈ intC(x).

Thus
e(x) ∈ C(x) ∩ −C(x) = {θ},

and hence θ = e(x) ∈ intC(x) and so C(x) = E which is contradicted by C(x) ∩
−C(x) = {θ}. Finally the infimum is attainable for each y ∈ E. Indeed, by the
property of the infimum there exists a sequence {rn} of real numbers such that
rn −→ ξ(x, y) with y ∈ rne(x)− C(x). Hence it follows from the continuities of the
scalar multiplication and the vector addition defined on E and the closedness of
C(x) that ξ(x, y)e(x)− y ∈ C(x).

To see (ii), if y ̸∈ re(x)− C(x) then assume r < ξ(x, y). The converse is obvious
by the definition of ξ(x, y).

To verify (iii) let y ∈ re(x)− intC(x). Since re(x)− intC(x) is an open set and the
sequence {y + 1

ne(x)} is convergent to y, there exists a natural number n0 such
that

y +
1

n
e(x) ∈ re(x)− intC(x), ∀n > n0.

Then
y ∈ (r − 1

n
)e(x)− intC(x), ∀n > n0,

and so for all n > n0 we have

ξ(x, y) ≤ r − 1

n
< r.

Conversely, if ξ(x, y) < r and re(x)− y ∈ C(x)\intC(x), then

ne(x)− y ∈ C(x)\intC(x), ∀n ∈ N, n > r,

and so
e(x)− 1

n
y =

1

n
(ne(x)− y) ∈ C(x)\intC(x), ∀n ∈ N, n > r.

Hence e(x) ∈ C(x)\intC(x), which is a contradiction. This completes the proof of
(iii).

To prove (iv), let y1 ⪯ y2. If re(x) − y2 ∈ C(x), then it follows from y1 ⪯ y2 that
re(x)− y1 ∈ C(x) and so the proof of (iv) is finished. It follows from (i) and (ii) that,
for all r ∈ R,

ξ−1(x, .)(r,∞) = {z ∈ E : ξ(x, z) ∈ (r,∞)} = (re(x)− C(x))c,

and similarly
ξ−1(x, .)(−∞, r) = re(x)− intC(x),

are open sets and then the function z −→ ξ(x, z) is continuous. Also if t is a
positive real number and y ∈ E, then

ξ(x, ty) = inf{r ∈ R : ty ∈ re(x)− C(x)} = inf{r ∈ R : y ∈ r

t
e(x)− C(x)}

= t inf{r
t
∈ R : y ∈ r

t
e(x)− C(x)} = t inf{r

′
∈ R : x ∈ r

′
e(x)− C(x)} = tξ(x, y),

and so the function z −→ ξ(x, z) is positively homogenous. If y, z ∈ E with
y ∈ re(x)− C(x) and z ∈ se(x)− C(x) then y + z ∈ (r + s)e(x)− C(x) and so

ξ(x, y + z) ≤ ξ(x, y) + ξ(x, z).
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Hence the function z −→ ξ(x, z) is subadditive and so the proof of (v) is completed.
Finally, if we take r = 1 in (ii) then ξ(x, y) ≤ 1 for all y ∈ e(x)−C(x) and especially
for some symmetric neighborhood U of zero (note that e(x) ∈ intC(x)). Hence,
for each y ∈ U, by (v), we have −ξ(x,−y) ≤ ξ(x, y) ≤ 1 and so ξ(x,−y) ≥ −1
and hence since U = −U we obtain |ξ(x, y)| ≤ 1 for each y ∈ U, and so the proof
completes. □

Theorem 2.3. Let E be a topological vector space and K be a closed subset of E.
Let C : K −→ 2E be a multi­valued map such that, for each x ∈ K, C(x) is a solid
convex cone, and let e : K −→ E be a continuous map with e(x) ∈ intC(x) for all
x ∈ E. Define W : K −→ 2E by W (x) = E \ intC(x), for all x ∈ K.

(i) If the multi­valued map W is closed, then the function (x, y) −→ ξ(x, y) is upper
semicontinuous on K ×K.

(ii) If the multi­valued map C is closed, then the function (x, y) −→ ξ(x, y) is lower
semicontinuous on K ×K.

Proof. (i) Let λ be an arbitrary real number. We shall prove that

A(λ) = {(x, y) ∈ K ×K : ξ(x, y) ≥ λ}
is closed.

For the purpose, let {(xα, zα)}α∈I ∈ A(λ) be a net and (xα, zα) −→ (x, z).
Since (xα, zα) ∈ A(λ), it follows from Proposition 2.2 (iii) that

zα ̸∈ λe(xα)− intC(xα), ∀α ∈ I,

and so
zα ∈ λe(xα)−W (xα), ∀α ∈ I.

This means
λe(xα)− zα ∈ W (xα), ∀α ∈ I.

Since W has a closed graph, the map x −→ e(x) is continuous and (xα, zα) −→
(x, z), we get λe(x) − z ∈ W (x) and so λe(x) − z ̸∈ intC(x). Hence it follows from
Proposition 2.2 (iii) that ξ(x, z) ≥ λ, which shows that A(λ) is closed.

(ii) Let λ be an arbitrary real number. We show that

B(λ) = {(x, y) ∈ K ×K : ξ(x, y) ≤ λ}
is closed. For that purpose, we use a similar way as given for (i). Let {(xα, zα)}α∈I ∈
B(λ) be a net and (xα, zα) −→ (x, z). Now the result follows from Proposition 2.2(ii),
continuity of the map e and being closed of the graph Gr(C) of C. □

We need the following definition and lemma in the sequel.

Definition 2.4. ([10]) Let X and Y be linear spaces and C ⊆ Y a convex cone of
Y . The function f : X −→ Y is called C− quasi­convex if for any y ∈ Y the set

{x ∈ X : f(x) ∈ y − C},
is a convex subset of X.

Lemma 2.5. ([5]) Let E,Z and X be topological vector spaces. Let C : X −→ 2X be
a multi­valued map so that for every x ∈ X,C(x) is a proper, closed and convex cone
with a nonempty interior intC(x). Assume that intC(.) has a continuous selection
e(.). Y ⊂ E and D ⊂ Z be nonempty convex sets. Let g : E −→ X and f :
Y × D × Y −→ X be two functions. If, for each y ∈ Y, z ∈ Z, the function
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v −→ f(y, z, v) is C(g(y))− quasi­convex, then the function v −→ ξ(g(y), f(y, z, v))
is R+− quasi­convex.

Now, we are ready, by using the nonlinear scalarization function, present the
first existence theorem of (GVQEP) without any assumption of monotonicity and
semi­continuity on the multi­valued functions.

Theorem 2.6. Let E,Z and X be locally convex topological vector spaces. Let C :
X −→ 2X be a multi­valued map so that for every x ∈ X,C(x) is a proper, closed and
convex cone with a nonempty interior intC(x). Assume that intC(.) has a continuous
selection e(.). Define a multi­valued map W : X −→ 2X by W (x) = X\intC(x), for
x ∈ X. Let Y ⊂ E and D ⊂ Z be nonempty compact convex sets. Let Q : Y −→ 2Y

be a lower semi­continuous function and V : Y −→ 2D be multi­valued function. Let
g : E −→ X and f : Y ×D × Y −→ X be two functions. Suppose all the following
conditions are satisfied

(i)The multi­valued functions C,W, V and Q are closed ;
(ii)f and g are continuous on Y ×D × Y and E, respectively;
(iii) For each y ∈ Y and z ∈ D the function v ∈ f(y, z, v) is C(g(y))− quasi­convex;
(iv) For each y ∈ Y, V (y) (Q(y), respectively) is a nonempty and convex subset of

D ( Y, respectively).
Then, there exists y ∈ Q(y) and z ∈ V (y) such that

f(y, z, y)− f(y, z, y) ̸∈ int C(g(y)), ∀y ∈ Q(y).

Furthermore the solution set of (GVQEP) is a closed subset of Y and so compact.

Proof. Define F : Y ×D −→ 2Y by

F (y, z) = {u ∈ Q(y) : ξ(g(y), f(y, z, u)) = min
v∈Q(y)

ξ(g(y), f(y, z, v))},

where ξ is the mapping given in Lemma 2.5. It follows from lemma 2.5 and (iii) that,
for each (y, z) ∈ Y × D, the set F (y, z) is convex. Moreover F is closed. Indeed,
let uα ∈ F (yα, zα) and (uα, yα, zα) −→ (u, y, z) we shall show that u ∈ F (y, z).
For that purpose, let w ∈ Q(y). Since yα −→ y and Q is lower semi­continuous it
follows from Lemma 1.2(i) that there is a net wα ∈ Q(yα) with wα −→ w and then
using the definition of the multi­valued function F and uα ∈ F (yα, zα) we deduce

ξ(g(yα), f(yα, zα, uα)) ≤ ξ(g(yα), f(yα, zα, wα)),

and by taking limit the inequality ( note ξ, g, f are continuous and (yα, zα, wα) is a
convergent net) and applying our assumptions

ξ(g(y), f(y, z, u)) ≤ ξ(g(y), f(y, z, w))

and since w ∈ Q(y) was an arbitrary element we get

ξ(g(y), f(y, z, u)) = min
w∈Q(y)

ξ(g(y), f(y, z, v))

and hence u ∈ F (y, z). So F has a closed graph and so F is upper semi­continuous,
note that F has a closed graph and the values of F are closed subsets of the compact
set Y ( see Lemma 1.2 (iv)).

Now we define W : Y ×D −→ 2Y×D , for each (y, z) ∈ Y ×D by

W (y, z) = F (y, z)× V (y).

Since F and V are upper semi­continuous, note that V has closed graph with
closed values of the compact set Y, then W is an upper semi­continuous function.
Further it has closed convex values, since F and V have closed convex values.
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Hence W fulfils all the assumptions of Theorem 1.3 and so there is (y, z) ∈ W (y, z)
and then z ∈ V (y) and y ∈ F (y, z). So

ξ(g(y), f(y, z, y)) = min
w∈Q(y)

ξ(g(y), f(y, z, v)).

Then
ξ(g(y), f(y, z, y)) ≤ ξ(g(y), f(y, z, v)), ∀v ∈ Q(y),

and so it follows from Proposition 2.2 (v)( in fact ξ is subadditive) that

0 ≤ ξ(g(y), f(y, z, y))−ξ(g(y), f(y, z, v)) ≤ ξ(g(y), f(y, z, v)−(g(y), f(y, z, v)), ∀v ∈ Q(y)

and so it follows from Proposition 2.2 (iii), by taking r = 0, that

f(y, z, y)− f(y, z, v) ̸∈ −intC(g(y)), ∀v ∈ Q(y).

Since f, g are continuous, W closed, Q lower semi­continuous through Lemma 1.2
one can see that the solution set (GQEP) is closed and so compact ( note the solution
set of (GQEP) is a subset of the compact set Y ). This completes the proof. □
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ABSTRACT. Conjugate gradient method is one of the most useful method for solving large
scale unconstrained optimization problems. In this article a new hybrid conjugate gradient
method that satisfies the descent condition independently of the line searches is proposed.
In particular, it is a hybrid of the Fletcher­Reeves (βFR

k ) and Polak­Ribiere­Polyak (βPRP
k )

methods. Convergence analysis of the new method is presented. Numerical results of the
method show that the proposed hybrid algorithm is just as competitive.
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1. INTRODUCTION

Conjugate gradient methods (CG) are very useful in finding the optimal solution
to the unconstrained optimization problem

min{f(x) : x ∈ Rn}, (1.1)

where f : Rn → R is the objective function and is continuously differentiable.
Conjugate gradient methods are the most preferred methods for solving large scale
unconstrained problems because, unlike Newton and Quasi­Newton methods [4,
13, 23], they only need the first derivatives and hence less storage capacity is
needed. They are also relatively simple to program.

Given an initial guess x0 ∈ Rn, the CG method generates a sequence {xk} for
problem (1.1) as

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (1.2)

where αk is a step length which is determined by a line search and dk is a descent
direction of f at xk. The step length αk is obtained by carrying out an exact or

∗Corresponding author.
Email address : modunco@yahoo.com (M. Koontse), kaelop@mopipi.ub.bw (P. Kaelo).
Article history : Received November 12, 2013 Accepted January 28, 2015.



128 M. KOONTSE AND P. KAELO/JNAO : VOL. 5, NO. 2, (2014), 127­137

inexact one dimensional line search. If exact line search is used, then αk is such
that

f(xk + αkdk) = min
α≥0

f(xk + αdk). (1.3)

As for inexact line searches, we have the Amirjo condition [4, 23], which requires
αk to satisfy

f(xk + αkdk) ≤ f(xk) + µαk∇f(xk)
T dk, (1.4)

and the standard Wolfe conditions [4, 23], which require αk to satisfy (1.4) and the
curvature condition

∇f(xk + αkdk)
T dk ≥ σ∇f(xk)

T dk, (1.5)

where 0 < µ < σ < 1. Strong Wolfe conditions have also been used in a number of
papers and are given by (1.4) and

|∇f(xk + αkdk)
T dk| ≤ −σ∇f(xk)

T dk, (1.6)

again with 0 < µ < σ < 1. The search direction dk for CG methods is generated as

dk =

{
−gk, if k = 0
−gk + βkdk−1, if k ≥ 1,

(1.7)

where gk = ∇f(xk) is the gradient of f at xk and βk is a scalar, known as the
conjugate gradient coefficient. Different choices of the conjugate gradient coefficient
βk lead to different CG methods. Some of the well­known CG methods include the
Hestenes­Stiefel (βHS

k ) method [3, 8, 18], the Polak­Ribière­Polyak (βPRP
k ) method

[11, 15, 16, 23, 24, 26], the Fletcher­Reeves (βFR
k ) method [11, 13, 14, 23, 25, 28],

the Liu­Storey (βLS
k ) method [3, 19], the conjugate descent (βCD

k ) method [3, 13]
and the Dai­Yuan (βDY

k ) method[6, 8, 10, 11]. The conjugate gradient coefficient
βk for these mentioned CG methods are, respectively,

βHS
k =

gTk (gk − gk−1)

dTk−1(gk − gk−1)
, (1.8)

βPRP
k =

gTk (gk − gk−1)

||gk−1||2
, (1.9)

βFR
k =

gTk gk
||gk−1||2

, (1.10)

βLS
k = −gTk (gk − gk−1)

dTk−1gk−1
, (1.11)

βCD
k = − gTk gk

dTk−1gk−1
, (1.12)

βDY
k =

gTk gk
dTk−1gk−1

, (1.13)

where || · || represent the norm of vectors.
It has been shown in the literature that although the above formulae are equiv­

alent for the quadratic functions, their performance strongly depends on the coef­
ficient βk. The CG methods βFR

k , βCD
k and βDY

k possess strong global convergence
properties [1, 5, 8, 7, 17, 23], but have less computational performance. On the
other hand, the βPRP

k , βHS
k and βLS

k methods have been shown that although
they may not always converge, they often offer better computational performance
[5, 15, 16, 17, 23].
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In this paper, we suggest another approach to get a hybrid conjugate gradient
method that combines the strengths of βPRP

k and βFR
k methods. This proposed

method is presented in section 2. In Section 3 we present the convergence anal­
ysis of the new algorithm. Section 4 presents some numerical experiments and
conclusion is given in Section 5.

2. New algorithm

In this section a hybrid of the βPRP
k and βFR

k methods is presented. As al­
ready mentioned, βFR

k method has an attractive property as far as convergence
is concerned. Its strength, that is, the global convergence property usually hap­
pens under strong Wolfe conditions. On the other hand, the βPRP

k method has
good computational properties and often performs better compared to other con­
jugate gradient methods. This method has been proved that when the function is
strongly convex and the line search is exact, then the method is globally convergent.
However, for general nonlinear functions, the convergence of the βPRP

k method is
uncertain. It appeared, after several failed attempts to prove global convergence
of the βPRP

k algorithm, that positiveness of βk is crucial as far as convergence is
concerned. This lead Gilbert and Nocedal [15] to modify βPRP

k method as

βPRP+
k = max{0, βPRP

k }

and proved that it is globally convergent with the standard Wolfe conditions.
There are a number of other βPRP

k and βFR
k hybrid conjugate gradient methods

that have been proposed in the literature. One of the first hybrid conjugate gradient
method of this form was introduced by Touati­Ahmed and Storey [27] where the
parameter βk is computed as

βTS
k = max{0,min{βPRP

k , βFR
k }}.

This motivated other researchers to come up with more and improved βk hybrids
involving βPRP

k and βFR
k . For instance, Mo, Gu and Wei [21] proposed a βk

method which is a modification of the hybrid method proposed by Touati­Ahmed
and Storey [27]. Their hybrid method computes βk as

βMGW
k = max{0,min{βPRP

k , βFR
k , β+

k }},

where

β+
k = βPRP

k +
2gTk gk−1

∥ gk−1 ∥2
.

They proved that their hybrid method is globally convergent when the step size
satisfies the strong Wolfe conditions. Another hybrid was that of Gilbert and No­
cedal [15] who suggested a combination between the βPRP

k and βFR
k method as

βGN
k = max{−βFR

k ,min{βPRP
k , βFR

k }}, (2.1)

which is an extension of the Touati­Ahmed and Storey [27] method.
In this article, we propose yet another hybrid of βPRP

k and βFR
k that is based on

the ideas of Gilbert and Nocedal [15], where their βk given by (2.1), and those of
Dai and Yuan [8], where they suggested the hybrid method

βHS−DY
k = max{−cβDY

k ,min{βHS
k , βDY

k }}, (2.2)

where c = 1−γ
1+γ > 0. In particular, we propose a hybrid method which computes the

parameter βk as

β∗
k = max{min{−cβPRP

k , βFR
k },min{βFR

k , βPRP
k }}, (2.3)
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with c = 1−γ
1+γ , γ ∈ [ 12 , 1] and the direction dk defined as

dk =

{
−gk k = 0
−θkgk + β∗

kdk−1 k ≥ 1
(2.4)

where θk = 1 + β∗
k

dT
k−1gk
∥gk∥2 . The parameter θk, as defined, makes the direction dk

satisfy the descent condition independently of any line search. Also, from the above
definition of β∗

k and the range of γ, we see that 0 < β∗
k ≤ βFR

k for all k. Now, with
β∗
k and dk defined as above, we present our new β∗

k algorithm.

Algorithm 2.1. The New β∗
k algorithm

Step 1 Given x0 ∈ Rn and the parameters ϵ > 0, 0 < µ < σ < 1, γ ∈ [ 12 , 1]
set k = 0
compute f(x0) and g0 = ∇f(x0)
set d0 = −g0,
if ∥ g0 ∥≤ ϵ then stop.

Step 2 Compute αk > 0 using any line search and find the next iterate

xk+1 = xk + αkdk.

compute f(xk+1), gk+1 = ∇f(xk+1)
if ||gk+1|| ≤ ϵ then stop.

Step 3 compute β∗
k from (2.3) and generate dk from (2.4)

Step 4 let k = k + 1 and go to step 2.

3. Convergence analysis

To establish the convergence of our method, we make the following basic as­
sumptions on the objective function which have been widely used in the literature
to analyze the global convergence of conjugate gradient methods.

Assumptions

(i) f is bounded below on the level set S = {x ∈ Rn : f(x) ≤ f(x0)}, where x0

is the starting point.
(ii) In some neighborhood N of S the function f is continuously differentiable

and its gradient, g(x) = ∇f(x), is Lipschitz continuous, i.e. there exist a
constant L > 0 such that ∥ g(x)− g(y) ∥≤ L ∥ x− y ∥ for all x, y ∈ N

Under Assumptions (i) and (ii) on f , we have the following lemma.

Lemma 3.1. (Zoutendĳk). Suppose that Assumptions (i) and (ii) hold. Consider a
CG method in the form xk+1 = xk + αkdk and (1.7), where dk is a descent direction
and the step length αk satisfies the standard Wolfe conditions (1.4) and (1.5). Then
we have that

∞∑
k=0

(∇f(xk)
T dk)

2

∥ dk ∥2
< +∞. (3.1)

Proof. From the Lipschitz continuity and (1.5) we have that

(σ − 1)dTk∇f(xk) ≤ dTk (∇f(xk + αkdk)−∇f(xk)) (3.2)

≤∥ ∇f(xk + αkdk)−∇f(xk) ∥∥ dk ∥ (3.3)

= Lαk ∥ dk ∥2 (3.4)

Thus,

αk ≥ (σ − 1)dTk∇f(xk)

L ∥ dk ∥2
. (3.5)
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It follows from (1.4) that

f(xk)− f(xk + αkdk) ≥ −µ

(
(σ − 1)dTk∇f(xk)

L ∥ dk ∥2

)
∇f(xk)

T dk, (3.6)

which implies

f(xk)− f(xk + αkdk) ≥ C1
(∇f(xk)

T dk)
2

∥ dk ∥2
, (3.7)

where C1 = µ(1−σ)
L > 0. Now,

f(x0)− f(x0 + αd0) ≥ C1
(∇f(x0)

T d0)
2

∥ d0 ∥2
(3.8)

f(x1)− f(x2) ≥ C1
(∇f(x1)

T d1)
2

∥ d1 ∥2
(3.9)

f(x2)− f(x3) ≥ C1
(∇f(x2)

T d2)
2

∥ d2 ∥2
(3.10)

... (3.11)
(3.12)

f(xk−1)− f(xk) ≥ C1
(∇f(xk−1)

T dk−1)
2

∥ dk−1 ∥2
(3.13)

Adding up we get

f(x0)− f(xk) ≥ C1

k−1∑
i=0

(∇f(xi)
T di)

2

∥ di ∥2
(3.14)

Noting that f is bounded from below as k → ∞, we have

f(x0)− f∗ ≥ C1

∞∑
k=0

(∇f(xk)
T dk)

2

∥ dk ∥2
, (3.15)

where
f∗ = lim

k→∞
f(xk).

Hence
∞∑
k=0

(∇f(xk)
T dk)

2

∥ dk ∥2
< +∞. (3.16)

□

Lemma 3.2. Let xk+1 = xk + αkdk be given by Algorithm ( 2.1). Then the direction
dk given by ( 2.4) satisfies the descent condition

dTk gk = − ∥ gk ∥2, ∀k ≥ 0. (3.17)

Proof. Let βk = β∗
k . For d0 = −g0, we have

gT0 d0 = −gT0 g0 (3.18)

= − ∥ g0 ∥2 . (3.19)
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Therefore the result holds for k = 0.
For k ≥ 1, we have that

dk = −θkgk + β∗
kdk−1. (3.20)

Now, for βk = β∗
k , we have

dk = −(1 + β∗
k

gTk dk−1

∥ gk ∥2
)gk + β∗

kdk−1 (3.21)

= β∗
kdk−1 − (1 + β∗

k

gTk dk−1

∥ gk ∥2
)gk. (3.22)

Multiplying both sides by gTk we get

gTk dk = β∗
kg

T
k dk−1 − (1 + β∗

k

gTk dk−1

∥ gk ∥2
)gTk gk (3.23)

= β∗
kg

T
k dk−1− ∥ gk ∥2 −β∗

k

gTk dk−1

∥ gk ∥2
∥ gk ∥2 (3.24)

⇒ gTk dk = − ∥ gk ∥2 . (3.25)

Thus ( 3.17) holds for all k ≥ 1, which concludes the proof. □

Theorem 3.3. Suppose that Assumptions (i) and (ii) hold. Consider the conjugate
gradient method of the form xk+1 = xk + αkdk and dk is given by ( 2.4) with αk

satisfying any line search. Then either gk = 0 for some k or

lim
k→∞

inf ∥ gk ∥= 0. (3.26)

Proof. If gk = 0 then the statement holds. Suppose that (3.26) is not true, then
there exist a constant ε > 0 such that

∥ gk ∥≥ ε ∀k. (3.27)

From ( 2.4), we have
dk + θkgk = β∗

kdk−1 (3.28)
By squaring both sides of ( 3.28) and applying the descent condition ( 3.17), we get

∥ dk ∥2= (β∗
k)

2 ∥ dk−1 ∥2 −2θkd
T
k gk − θ2k ∥ gk ∥2 .

Dividing both sides by (gTk dk)
2, and noting that gTk dk = − ∥ gk ∥2, we have

∥ dk ∥2

(gTk dk)
2
= (β∗

k)
2 ∥ dk−1 ∥2

(gTk dk)
2

+
2θk

∥ gk ∥2
− θ2k

∥ gk ∥2
. (3.29)

Since 0 < β∗
k ≤ βFR

k , we have that

∥ dk ∥2

(gTk dk)
2
≤ (βFR

k )2
∥ dk−1 ∥2

∥ gk ∥4
+

2θk
∥ gk ∥2

− θ2k
∥ gk ∥2

(3.30)

=

(
∥ gk ∥2

∥ gk−1 ∥2

)2 ∥ dk−1 ∥2

∥ gk ∥4
+

2θk
∥ gk ∥2

− θ2k
∥ gk ∥2

(3.31)

=
∥ dk−1 ∥2

∥ gk−1 ∥4
+

2θk
∥ gk ∥2

− θ2k
∥ gk ∥2

(3.32)

=
∥ dk−1 ∥2

∥ gk−1 ∥4
− 1

∥ gk ∥2
(θ2k − 2θk + 1− 1) (3.33)

=
∥ dk−1 ∥2

∥ gk−1 ∥4
− (θk − 1)2

∥ gk ∥2
+

1

∥ gk ∥2
(3.34)
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≤ ∥ dk−1 ∥2

∥ gk−1 ∥4
+

1

∥ gk ∥2
(3.35)

=
∥ dk−1 ∥2

(gTk−1dk−1)2
+

1

∥ gk ∥2
. (3.36)

From the above, and the fact that gT0 d0 = − ∥ g0 ∥2, it follows that

∥ d1 ∥2

(gT1 d1)
2
≤ ∥ d0 ∥2

(gT0 d0)
2
+

1

∥ g1 ∥2
(3.37)

=
1

∥ g0 ∥2
+

1

∥ g1 ∥2
(3.38)

=

1∑
i=0

1

∥ gi ∥2
. (3.39)

∥ d2 ∥2

(gT2 d2)
2
≤ ∥ d1 ∥2

(gT1 d1)
2
+

1

∥ g2 ∥2
(3.40)

≤ 1

∥ g0 ∥2
+

1

∥ g1 ∥2
+

1

∥ g2 ∥2
(3.41)

=
2∑

i=0

1

∥ gi ∥2
. (3.42)

... (3.43)

∥ dk ∥2

(gTk dk)
2
≤ ∥ dk−1 ∥2

(gTk−1dk−1)2
+

1

∥ gk ∥2
(3.44)

≤ 1

∥ g0 ∥2
+

1

∥ g1 ∥2
+

1

∥ g2 ∥2
+ · · ·+ 1

∥ gk ∥2
(3.45)

=
k∑

i=0

1

∥ gi ∥2
. (3.46)

Thus,

∥ dk ∥2

(gTk dk)
2
≤

k∑
i=0

1

∥ gi ∥2
. (3.47)

From ( 3.27), we have
k∑

i=0

1

∥ gi ∥2
≤ k + 1

ε2
.

Therefore, the last inequality implies
∞∑
k=0

(gTk dk)
2

∥ dk ∥2
≥ ε2

∞∑
k=0

1

k + 1
= +∞,

which contradicts ( 3.1). Thus the proof is complete. □

4. Numerical results

In this chapter, we present numerical results of the new β∗
k algorithm. We also do

a comparison of our method with other methods in the literature. These methods
include the βGN

k hybrid by Gilbert and Nocedal [15], the βTS
k conjugate gradient

hybrid method by Touati­Ahmed and Storey [27] and the βHS−DY
k (Hestenes and

Stiefel and Dai and Yuan) [8] hybrid conjugate gradient method. A total of 14
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test problems are used to test our algorithms and have been taken from different
sources, that is, Luksan and Vlcek [20], Neculai Andrei [2] and More, Garbow and
Hillstrom [22].
A number of parameters used are defined. These are the tolerance, ϵ, the constants
µ and σ and the step length αk. The tolerance has been set to ϵ = 10−6, the
constants µ and σ are set to σ = 0.7 and µ = 0.3. The step length αk > 0 is
calculated using the strong Wolfe line search. All the parameters used in testing
our algorithms have been set to the same values for each algorithm. Our new
algorithm is coded in MATLAB R2010a.

We first of all present our numerical results in the form of a table, Table 1, where
the methods are presented as follows:

• M1: The new β∗
k hybrid method;

• M2: The Gilbert and Nocedal βGN
k Hybrid method [15];

• M3: The Touti Ahmed and Storey βTS
k hybrid method [27];

• M4: The Dai and Yuan βHS−DY hybrid method [8].

The columns ‘Problem’ and ‘Dim’ represent the name of the test problem and the di­
mension of the problems, respectively. The results are denoted by ′iter/fe′, where
iter and fe are the number of iterations and function evaluations, respectively.
The highlighted results show the best out of the 4 methods.

M1 M2 M3 M4
Problem Dim iter/fe iter/fe iter/fe iter/fe

Rosenbrock 2 72/1476 68/1314 76/1486 47/894
Freud n Roth 2 36/723 71/1434 60/1205 50/1033

Beale 2 69/741 28/288 28/288 45/453
Himmelblau 2 16/167 18/179 21/212 23/195

White 6 52/1140 50/1008 66/1389 82/1760
Wood 4 165/3593 148/3004 94/1922 106/2134
PQuad 7 35/289 31/221 34/236 29/205
Power 6 41/526 50/596 50/596 41/492

Fletcher 5 42/1035 33/798 36/873 39/942
Trig 3 17/249 19/254 20/265 16/220

Powell 2 19/793 15/632 17/708 18/727
ExPowell 4 266/3954 150/2165 199/2862 253/3530
Penalty I 5 10/31 13/25 13/25 12/26

Broyden tri 10 29/463 33/514 33/514 29/449
Table 1. Numerical results for all the four methods

From Table 1, we see that the new β∗
k hybrid method (M1) and the Gilbert and

Nocedal hybrid method (M2) requires fewer function evaluations and number of
iterations for 5 problems. On the other hand Touti­Ahmed and Storey hybrid
method (M3) and Dai and Yuan hybrid (M4) have fewer function evaluations and
number of iterations for 2 problems and 4 problems, respectively. We also see that
although M2 and M3 had the same number of iterations and function evaluations
for Beale problem, it is not always the case as we see that for the Power problem, M1
and M4 have the same number of iterations but the number function evaluations
is higher for M1. Generally, we can say that our new hybrid conjugate gradient
method is promising and competitive.
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Figure 1. Performance Profile for Function Evaluations

To better compare the numerical performance of the 4 methods, we use perfor­
mance profiles, introduced in [12]. This is reflected in Figure 1 where the perfor­
mance profile for function evaluations is plotted. Letting P = {p1, p2, . . . , p14} be
the set of problems and S = {s1, s2, s3, s4} be the set of the solvers M1, M2, M3,
M4, respectively, we compare the performance of the solvers in S on the problems
in P. Let ap,s denote the performance measure (e.g. function evaluations) required
by solver s ∈ S to solve problem p ∈ P. Then the performance ratio is given by

rp,s =
ap,s

min{ap,s : s ∈ S}
.

We assume that a parameter rM ≥ rp,s is chosen, for all p, s, and rp,s = rM if
and only if solver s does not solve problem p. To obtain an overall assessment of
the performance of the solver, we define performance profile as,

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ},

where ρs(τ) is the probability for solver s ∈ S that a performance ratio rp,s is within
a factor τ ∈ R of the best possible ratio and np is the number of problems. The
function ρs is the cumulative distribution function for the performance ratio. Note
that we always have rp,s ≥ 1. When rp,s = 1 we have

ap,s = min{ap,s : s ∈ S},

meaning that solver s ∈ S was best for a certain problem p of all the problems.
Figure 1 shows the performance of the four methods relative to the function

evaluations. We can see that all the methods successfully solved all the problems.
From the figure, we see that the new method β∗

k is very much competitive with
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the other hybrid methods. Thus, the new method adds to the already available
collection of hybrid methods that can be useful both to other researchers and
people looking for solutions to optimization problems in the industries.

5. Conclusion

In this research, we have presented a new hybrid conjugate gradient algorithm
in which the parameter βk is a combination of the ideas of Dai and Yuan [8] and
Gilbert and Nocedal [15]. Our new computational scheme takes advantage of the
attractive features of the Fletcher Reeves (βFR

k ) and Polak­Ribiere­Polyak (βPRP
k )

methods. The direction dk generated by our algorithm satisfies the descent condi­
tion independently of the line search used. A convergence analysis of the proposed
algorithm was also carried out and we showed that the algorithm is globally con­
vergent independently of any line search.

Furthermore, our new algorithm was compared with three other hybrid conju­
gate gradient methods that have been proposed in the literature. Using a set of
14 test unconstrained optimization problems, a numerical study concerning the
behavior of our new algorithm has been presented. The numerical results show
that our algorithm is very competitive with these other methods.

Further research will be done on developing more hybrid conjugate gradient
methods for large scale unconstrained optimization problems. Although test prob­
lems of lower dimension were mainly used for testing our algorithm, we intend
to extend the algorithm in future to problems with much higher dimension. An­
other direction would be to extend this conjugate gradient methods to constrained
optimization problems, as well as optimal control problems.
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