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ABSTRACT. The aim of this paper, by using the concept of continuity of ¢ : [0, oo)2 —
[0, 00)? which satisfying ¢(t) < ¢ and $(0) = 0 to defined some contraction condition of
T introduced by G. Meena [12], we prove the unique best proximity point of A and fixed
point of T" in complex valued rectangular b-metric space. Our results extend and improve
the results of G. Meena [12], and many others.
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1. INTRODUCTION

Fixed Points theorems in metric spaces was introduceed in 1906 [8] by Fréchet.
After that, many mathematicians studied and proved the existence theorem of fixed
points for use the Banach contraction principle in metric spaces and every general-
ized metric spaces [0, 7, 13] and [15].

The notion of b-metric spaces was introduced In 1989 by Bakhtin [3]. After, many
mathematicians extended the fixed point theorems from metric spaces to b-metric
spaces, for example in [1, 2]

In 2000, A. Branciari [5], he give a fixed point theorem related to the contraction
mapping principle of Banach and Caccioppoli; here we have considered generalized
metric spaces, that is metric spaces with the triangular inequality replaced by similar
ones which involve four or more points instead of three.

In 2011, A. Azam, B. Fisher and M. Khan [2] defined the definition of notion of
complex valued metric spaces and prove the common fixed point theorems in com-
plex valued metric spaces of a pair of mappings satisfying a contractive condition.
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In the same year, S. Bhatt, S. Chaukiyal and R. C. Dimri [4] proved a common
fixed point theorem for weakly compatible maps in complex valued metric spaces
without using the notion of continuity.

In 2015, O. Ege [6], introduce complex valued rectangular b-metric spaces. We
prove an analogue of Banach contraction principle and prove a different contraction
principle with a new condition and a fixed point theorem in this space.

In 2018, G. Meena [12], introduced the best proximity points for non-self map-
pings between two subsets in the setting of complex valued rectangular metric spaces
by using the concept of P-property.

The aim of this paper, we introdued [6, 12] we study and suppose some contractive
condition and proved the best proximity point result in b-metric space. Therefore,
our results are comprehensive the results if [10].

2. PRELIMINARIES

In this work, we let X be a nonempty set and we recalled some definitions and
lemmas for using in section 3.

Definition 2.1. Let X be a nonempty set. A function d: X x X — [0, 00) is called
a metric if for z,y, z € X the following conditions are satisfied.

(1) d(z,y) = 0 if and only if z = y;

(ii) d(z, ) = d(y, @);

(7i1) d(z, z) < d(z,y) + d(y, 2).
The pair (X, d) is called a metric space, and d is called a metric on X.

Next, we suppose the definition of b-metric space, this space is generalized than
metric spaces.

Definition 2.2. [3] Let X be a nonempty set and s > 1 be a given real number. A
function d : X x X — [0, 00) is called a b-metric if for all z,y,z € X the following
conditions are satisfied.

(¢) d(z,y) = 0 if and only if x = y;

(#1) d(z,y) = d(y,z);

(141) d(z, z) < s[d(z,y) + d(y, 2)].
The pair (X, d) is called a b-metric space. The number s > 1 is called the coeflicient
of (X,d).

The following is some example for b-metric spaces.

Example 2.3. [3] Let (X,d) be a metric space. The funcion p(z,y) is defined by
p(z,y) = (d(z,y))%. Then (X, p) is a b-metric space with coefficient s = 2. This
can be seen from the nonnegativity property and triangle inequality of metric to
prove the property (iii).

In 2000, A. Branciari [5] present the notion of rectangular metric space as follows.

Definition 2.4. [5] Let X be a nonempty set. A mapping d : X x X — [0, 00)
is called a rectangular metric on X if for any =,y € X and all distinct points
u,v € X — {x,y}, it satisfies the following conditions:

(1) d(z,y) = 0 if and only if x = y;

(”) d(z,y) = d(ya Q?);

(1) d(z,z) < d(x,u) + d(u,v) + d(v, y).
In this case, the pair (X, d) is called a rectangular metric space.

There is a completeness property in real number but on order relation is not
welll-defined in complex numbers. Before giving the definition of complex valued
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metric spaces and complex-valued b-metric spaces, we define partial order in com-
plex numbers (see [L1]). Let C be the set of complex numbers and z1, z2 € C. Define
partial order relation < on C as follows;

z1 < 22 if and only if Re(z1) < Re(z2) and Im(z1) < Im(z2).

This means that we would have z; < 25 if and only if one of the following conditions
holds:

(1) Re(z1) = Re(z2) and Im(z1) = Im(z2),

(i1) Re(z1) < Re(z2) and Im(z1) = Im(z2),

(791) Re(z1) = Re(z2) and Im(z1) < Im(z2),

(iv) Re(z1) < Re(za) and Im(z1) < Im(z2).
If one of the conditions (i%), (¢4i), and (iv) holds, then we write z; < z2. From the
above partial order relation we have the following remark.

Remark 2.5. We can easily check the following:
(i) fa,b e R,0<a<band 21 X 29 then az; < bzq,Vzy, 29 € C.
(ZZ) If 0 < 21 < 2 then |21| < |Z2|
(#i7) If 21 < 22 and 29 < 23 then 21 < z3.
(iv) If z € C, for a,b € R and a < b, then az < bz.

A b-metric on a b-metric sapce is a funcion having real value. Based on the def-
inition of partial order on complex number, real-valued b-metric can be generalized
into compleex-valued b-metric as folllows.

Definition 2.6. [2] Let X be a nonempty set. A function d : X x X — C is called
a complex valued metric on X if for all z,y,z € C, the following conditions are
satisfied:

(i) 0 x d(z,y) and d(x,y) = 0 if and only if z = y,

(i) d(z,y) = d(y,z),

(i14) d(z, z) < d(z,y) + d(y, 2).
Then d is called a complex valued metric on X and (X, d) is called a complex valued
metric space.

Next, we give the definition of complex valued b-metric space.

Definition 2.7. [13] Let X be a nonempty set and let s > 1 be a given real
number. A function d : X x X — C is called a complex valued b-metric on X if, for
all z,y, z € C, the following conditions are satisfied:

(1) 0 < d(z,y)

(#4) d(z,y) = 0 if and only if z =y,

(id) d(z,y) = d(y,z),

() d(z, 2) < s[d(z,y) + d(y, 2)].

The pair (X, d) is called a complex valued b-metric space. We see that if s =1
then (X, d) is complex valued metric space which is defined in Definition 2.6. The
following example is some example of complex valued b-metric space.

Example 2.8. [13] Let X = C. Define the mapping d : C x C — C by d(z,y) =
|z — y|? + iz — y|? for all z,y € X. Then (C,d) is complex valued b-metriic space
with s = 2.

From A. Branciari [5] and [13] we can define the notion of rectangular b-metric
space as follows.
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Definition 2.9. [6] Let X be a nonempty set. A mapping d : X x X — C is called
a complex valued rectangular b-metric on X if for any x,y € X and all distinct
points u,v € X — {z,y}, it satisfies the following conditions:

(i) 0 < d(x,y)

(7i) d(z,y) = 0 if and only if x = y;

(”7’) d(.’L‘, y) = d(y7 :L‘);

() d(x, z) % s[d(z,u) + d(u,v) + d(v,y)].
In this case, the pair (X,d) is called a complex valued rectangular b-metric
space.

Example 2.10. [(] Let X = AU B, where A = {1 : n € N} and B = Z" and
d: X x X — C defined as follows:

9(z,y) = d(y, z)
for all z,y € X and

0 if z=y
d(z,y) 2t if z,ye A
m? = .
Y & if xe€Aandye{2,3}
t otherwise,

where ¢t > 0 is a constant. Then X,d) is a complex valued rectangular b-metric
space with coefficient s =2 > 1.

Definition 2.11. [6] Let (X, d) be a complex valued rectangular b-metric space.

(7) A point = € X is called interior point of set A C X if there exists 0 < r € C
such that

B(z,r)={y € X : d(z,y) <r} C A.

(#4) A point z € X is called limit point of a set A if for every 0 < r € C, B(z,r)N
(A—z)#0

(7i7) A subset A C X is open if each element of A is an interior point of A.

(iv) A subset A C X is closed if each limit point of A is contained in A.

Definition 2.12. [6] Let (X, d) be complex valued rectangular b-metric space, {x,, }
be a sequence in X and x € X.

(¢) The sequence {x,} is converges to x € X if for every 0 < r € C there exists
N € N such that for all n > N,d(z,,2z) < r. Thus z is the limit of (x,) and we

write lim x, = x or x,, — x as n — oo.
n— oo

(#4) The sequence {x,} is said to be a Cauchy sequence if for ever 0 < r € C
there exists N € N such that for all n > N, d(z,, €ptm) < r, where m € N.

(7i7) If for every Cauchy sequence inX is convergent, then (X, d) is said to be a
complete complex valued b-metric space.

Lemma 2.13. [6] Let (X, d) be a complez valued rectangular b-metric space and let
{zn} be a sequence in X. Then {x,} converges to x if and only if |d(xy,,2z)| = 0
as n — oo.

Lemma 2.14. [6] Let (X,d) be a complex valued rectangular b-metric space and
let {z,} be a sequence in X. Then {z,} is a Cauchy sequence if and only if
|d(@p, Tpm)| = 0 as n — oo, where m € N.

Definition 2.15. [12] The max function for complex numbers with partial order
relation < is defined as
(1) max{z1,22} = 20 = 21 < 22;
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(#1) 21 < max{z1,22} = 21 < 22 Or 21 X 23.
On the similar lines Singh et al. [14] defined min function as

(7)) min{z1, 20} = 21 = 21 % 29;

(#) min{z1, 20} < 23 = 21 <X 23 or 22 < 23. Now we introduce the best proximity
point and some related concept in complex valued rectangular metric space.

Definition 2.16. [16] Let A and B be two nonempty bounded subsets of a complex
valued rectangular b-metric space (X,d). Then {d(z,y) : © € A,y € B} is always
bounded below by zy = 0 4 0¢ and hence inf{d(z,y) : © € A,y € B} exists. Here
we define
d(A,B) =inf{d(x,y) : x € A,y € B},
Ag={x € A:d(z,y) = d(A, B) for some y € B},
By ={y € B:d(z,y) = d(4, B) for some z € A}.

From the above definition, it is clear that for every x € Ay there exists y € By
such that d(z,y) = d(A, B) and conversely, for every y € By there exists x € A
such that d(x,y) = d(A, B).

Definition 2.17. [16] Let A and B be two nonempty bounded subsets of a complex
valued rectangular b-metric space (X,d) and T : A — B be a non-self-mapping. A
point x € A is called a best proximity point of T' if d(x,T'z) = d(A, B).

The definition of P-property was introduced in [17]. Now we define them in
complex valued rectangular b-metric space.

Definition 2.18. [17] Let A and B be two nonempty subsets of a complex valued
rectangular b-metric space (X, d) with Ag # (. Then the pair (A4, B) is said to have
the P-property if, for any z1,22 € Ag and y1,y2 € By such that

d(z1,91) = d(A, B) and d(x2,y2) = d(A, B) = d(x1,72) = d(y1, y2)-

3. MAIN RESULTS

In this section, we consider the context of Matkowski [0] the function ¢ : [0, 00)? —

[0,00)? such that ¢(t) < t and ¢(0) = O[where t = (t1,t2) € [0,0)?]. We denote ®
the family of function of ¢.

Theorem 3.1. Let A and B be two nonempty bounded subsets of a complete complex
valued rectangular b-metric space (X, d) with a pair (A, B) satisfies the P-property.
Let a continuous mapping T : A — B with T(Ag) C By, where Ay is nonempty, if
there exists L > 0 and a continuous ¢ € ®, such that

d(Tz, Ty) < ko ( max { (d(aTy)7d<A,B))<d<y,Tx>ffi3&572)<d(w,Tx)+d<y,Ty>72d<A,B)> Ld(z,y) })

+Lmin { (d(z, Tz)~d(A, B)), (d(y, Ty)—d(A, B)), (d(z, Ty)~d(A, B)), (d(y, Tz)—d(4, B)) }
(3.1)
for all x,y € X, where 0 < k < % < 1. Then T has a unique best prorimity point
in A.

Proof. Let xg € Ay. Since T'(Ap) C By we have Ty € By then there exists 21 € Ay
such that d(z1,Txzo) = d(A, B). Again Tx; € By, then there exists x5 € Ay such
that

d(IQ, T:L‘l) = d(A, B)
By continuing this process we can form a sequence {z,} in Ay, with

d(xpy1,Txy) =d(A,B), Vn e N.
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From a pair (A, B) satisfying P-property, we have
d(p, Tpt1) = d(Txp—1,Txy).
If there exists ng € N such that x,,_1 = x,,, then we have
d(xny, TTno—1) = d(A, B) = d(xny—1,TTny—1)- (3.2)

This proof is complete.
Assume that x,—1 # x,, for all n € N. We replace ¢ = x,,_1 and y = x,, in (3.1),
we have
d(xp, pt1) = d(Txp—1,Txy)
k¢>(max { (d(zn—1,Txn)—d(A,B))(d(xn,Txn_1)—d(A,B))(d(@n_1,Txn_1)+d(xn,T2,)—2d(A, B))

1+d(zn—1,2n)
d({En,h xn) })

+Lmin {(d(xn,h T, 1) — d(A, B)), (d(zn, Tay) — d(A, B)),
(d(2n_1,Tzn) — d(A, B)), (d(xn, Tn_1) — d(A, B))}.
It follows that,
d(pny Tpt1) < ko (d(Tp—1,20)) .
From the definition of ¢ we have
AT, Tnt1) < kd(Xp_1,2p).
It follows that
ATy Tpt1) < kd(Tp_1,2n) < k2d(xn,2,xn,1) < g EMd(xo,x1).
For any m > n, we have
AXp,xm) < S[d(@n, Tn_1) + d(@ni1, Tni2) + d(@ppo, Tm)]

< 8d(Tp, Tno1) + 8d(Tni1, Tnta) + 87 [d(Tnto, Tnis)
+d($n+37 xn+4) + d(xn+4» xm)]

< sd(zy, J73n71) + sd(Tpi1, Tni2) + Sgd($n+2a $n+3) + 32d($n+3a $n+4)
+82[d(Tnta, Tnss) + A(@Tnss, Tne) + A(Tnse, Tm)]
< sd(2p, Tpo1) + $A(Tng1, Tpgo) + S d(Tpgo, Tnys) + S d(Tngs, Tnga)
+53d(xn+47 xn+5) + 53d(xn+57 xn—&-b’) + o
(m—n—1)
+s 2 [d(xn+(mfn73)7 anr(mfan)) + d(xn+(mfn72)7 T4 (m—n—1)
+d(xn+(m—n—1)a xm)]
< |:Skn Logkntl g Q2nt2 4 @2pnt3 | Bpntd | Bpnts |
+S(m n—1) km 1}d(g;0’3;1)
< [(Sk)n 4 (Sk)n+1 4 (Sk)n+2 4 (Sk)n+3 + (sk)n+4 + (sk)n+5 4
(k)= (o, 1)
= (sk)"[1+ (sk) + (sk)® + (sk)® + (sk)* + -~ + (sk)™ " d(xo, 1)
< (sE)"M[1 + (sk) 4 (sk)* + (sk)> + (sk)* + ---]d(z0, 21)
(sk)"

d(xg,21) — 0 as m,n — 0.

—_

— sk
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Thus {z,} is a cauchy sequence in A. Since X is complete, so there exists u € X
such that xz, — u € X. Since A is closed subset of X, we have u € A. Next, we
show that u is a best proximity point in A. Using the rectangular b-metric, we get

du,Tu) =< sldu,Tns1) +d(@nt1, Ten) + d(Txy, Tu))
< sd(u, Tpg1) + sd(@pg1, Tay)

d(xpn,Tu)—d(A,B))(d(uw,Txy)—d(A,B))(d(zn,Ten)+d(u,Tu)—2d(A,B
+sk¢(max{( (oo T o) 0o BT ) -, ) T s )~ B ))’d@’y)})

+L min {(d(mn, Tx,) —d(A, B)), (d(u,Tu) — d(A, B)), (d(z,, Tu) — d(A, B)),
(d(u, Tz,) — d(A, B))}
From (3.3), taking n — oo, we get
d(u,Tu) < d(A, B).
Since u € A, Tu € B and the definition of d(A, B), it follows that
d(u,Tu) = d(A, B).

Hence, v is the best proximity point of T
Finally, we show that u is a unique best proximity point of T. Let u* € A is
another best proximity point of 7. Then

d(u*,Tu*) = d(A, B).
Assume u # u*, by using P-property, we have
du,u*) = d(Tu,Tu")

w,Tu*)—d(A, u*, Tu)—d(A, u,Tu u*, Tu™)—2d(A, *
¢ i max { LTV DA L) d ) (U Tl TN, 1))

+Lmin {(d(u, Tw) — d(A, B)), (d(u*, Tu*) — d(A, B)), (d(u, Tu*) — d(A, B)),
(d(w*, Tu) - d(A, B)) }

< ko(d(u,u”))
< kd(u,u”).

A contradiction. Hence, d(u,u*) = 0 or v = u* is a unique best proximity point
of T. [l

From Theorem 3.1, we have the parallel result with the result of G. Meena [12],
as follows.

Corollary 3.2. [12] Let A and B be two nonempty bounded subsets of a complete
complez valued rectangular metric space (X,d) with a pair (A, B) satisfies the P-
property. Let a continuous mapping T : A — B with T(Ag) C By, where Ay is
nonempty, if there exists L > 0 and a continuous ¢ € ®, such that

d(Tz, Ty) < k¢(max{(d(wyTy)—d(AyB))(d(%Tr)—d(AB))(d(z,Tﬂ:)-i-d(vay)—Qd(AyB)) d(x,y)})

1+d(z,y) ’
(dly, T) - d(4, B)) }.
forall x,y € X, where 0 < k < 1. Then T has a unique best proximity point in A.

Theorem 3.3. Let (X,d) be a complete complex valued rectangular b-metric space.
Let a mapping T : X — X and a continuous ¢ € ®, such that

d(Tz,Ty) < ko <max { d(z, Ty)d(y, jlxj—(flii’ z;) +dy, Ty)) ,d(z, y)})
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+Lmin{d(z,Tz),d(y, Ty),d(x,Ty),d(y, Tx)},
for all z,y € X, and k is any real number with 0 < k < % < 1. Then T has a
unique fized point in X.

Proof. Let zg € X, from T : X — X there exists 1 € X such that 1 = T'zg. From
x1 € X there exists x5 € X such that xo = T'z;. By the following method we have
a sequence {z,} C X such that x,,11 = Ta,. Consider,

d(l‘n, xn-&-l) = d(Txn—la Txn)

< k¢( max { d(frn—l7T:En)d(mn7Tx17I(i1():v(iEZ17:;iSTzn—l)er(m'ruTmn)) L d(xn_1, 1) })

+L min {d(xn,l, Trp-1), (X, Txy),d(Xn-1,Txy),d(Tn, TTn_1 }
It follows that,

d(@n, Tnt1) < kP (d(@n_1,20)).

From the definition of ¢ we have
d(Xp, Tpi1) < kd(Tn—1,Zn).
It follows that
(T, Tpi1) < kd(Tn_1,20) < K2d(Tn_2,0p 1) < -+ < K"d(x0,21).
For any m > n, we have
d(Tn,xm) < s[d(@n, Tn—1) + d(@nt1, Tnaa) + d(Tpt2, Tm)]
< 8d(Tp, Tpo1) + 8d(Tng1, Tng2) + Sz[d(xn+27 Tpy3) + d(Tpy3, Tnya)

+d(Tnta, Tm)]
5d(Tn, Tp_1) + 8d(Tpi1, Tnyo) + 82d(Tni, Tnis) + 82d(Tnis, Tnid)
+83[d(Tnsa, Tnys) + d(Tnis, Tnie) + ATt Tm)]
$d(Zpn, Ty_1) + $A(Tpy1, Tnyo) + 82d(Tnio, Tnys) + $2d(Tnis, Tria)
+8d(Tnra, Tngs) + S°d(Tnis, Tngs) + -

R

R

(m—n—1)
+s 2 [d(xn+(mfn73)a xn+(mfnf2)) + d(xn+(mfn72)a xn+(m7n71))

+d($n+(m—n—1)a xm):|

R

|:Skn+skn+1+52k,n+2+S2kn+3+53kn+4+53kn+5+.”

(m—n—1)

+s 2 km_1:|d($0,$1)

[(8k)™ + (sk)™ ™ + (sk)" 2 + (sk)" 2 + (sk)"* + (sk)" 5 + -
+(sk) M= =D]d (20, 1)

= (sk)"[L+ (sk) + (sk)* + (sk)® + (sk)* + - - + (sk)™ " ']d(z0, 21)

< (sk)"[L+ (sk) + (sk)? + (sk)® + (sk)* + - - - ]d(z0, x1)

= filgi;d(:to,xl) — 0 as m,n — 0.
Thus {z,} is a cauchy sequence in A. Since X is complete, so there exists u € X
such that x,, — u € X. Since A is closed subset of X, we have u € A. Next, we
show that u is a fixed point of T'. Using the rectangular b-metric, we get
d(u,Tu) =< sldu,xns1) +d(@n1, Ten) + d(Txy, Tu))

< sd(uy,Tpi1) + sd(@pg1, Tay)

R
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©sko (max { d(xy, Tu)d(u, Tfj_)(dd(f:;j;zn) + d(u, Tu)) d(z, y)})
+Lmin {d(xn, Tx,),d(u, Tu), d(x,, Tu), d(u, Ta,)} (3.3)
From (3.3), taking n — oo, we get
d(u, Tu) < skd(u, Tu).

Hence, u is fixed point of T
Finally, we show that u is a unique fixed point of T'. Let u* € A is anotherfixed
point of T'. Then u* = Tw*. Assume u # u*, consider
du,u*) = d(Tu,Tu")
T * * T T * T *
b0 (smae § 40 ) To) o, T) e, T -
1+ d(u,u*)
+Lmin {d(u, Tu),d(u*, Tu*),d(u, Tu*),d(u", Tu)}
< ke(d(u, u”))

N

< kd(u,u”).
A contradiction. Hence, u = u* is a unique fixed point of T'. O
Corollary 3.4. [12] Let (X,d) be a complete complex valued rectangular b-metric

space. Let a mapping T : X — X and a continuous ¢ € ®, such that
d(z, Ty)d(y, Tz)(d(z, Tx) + d(y, Ty))
dTz,Ty) < k¢ <ma><{ T+ dz.y) ,d(z,y)
+Lmin {d(z, Tx), d(y, Ty), d(x, Ty), d(y, )}

for all x,y € X, and k is any real number with 0 < k < % < 1. Then T has a

unique fized point in X.
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