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ABSTRACT. In this article, we analyze Levitin–Polyak (LP) well-posedness of a mixed
variational inequality problem involving a bifunction. Sufficient criteria are derived that
assert the solution existence. We explore the connection between saddle points of the
associated Lagrangian and solutions to both the original variational inequality and its
Minty counterpart. The study establishes key results on LP well-posedness and generalized
LP well-posedness, characterizing them through the behavior of approximate solution sets.
A notable aspect of this work is the well-posedness analysis based on the gap function
approach. In particular, we establish suitable criteria for the LP well-posedness of the
mixed variational inequality problem by examining the level boundedness of its associated
gap function. Furthermore, the LP well-posedness of the mixed variational inequality
problem is reduced to verifying the well-posedness of a related optimization problem.

KEYWORDS: mixed variational inequality problem, existence theorem, Lagrangian,
saddle point, gap function, well-posedness.

1. INTRODUCTION

Variational inequalities hold significant importance in mathematical modeling, particu-
larly in the study of equilibrium problems. They provide a framework for formulating and
analyzing equilibrium conditions, addressing aspects such as solvability, uniqueness, stabil-
ity, parameter dependence, and computational procedures. In a broad sense, a generalized
directional derivative can be viewed as an extended real valued bifunction φ(w; d), where
w refers to a point in the domain C and d refers to a given direction in Rn. A common
characteristic of most generalized directional derivatives is their positive homogeneity as
a function of the direction d. In optimization problems where the objective function is not
necessarily differentiable, necessary optimality conditions can be expressed using a gen-
eralized directional derivative. Inspired by these optimality conditions, researchers have
investigated the following variational inequality problem formulated using the bifunction
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φ, as discussed in previous studies [[1], [14]-[16]].
Find ŵ ∈ C such that
(SVI)φ φ(ŵ; z − ŵ) ≥ 0, ∀z ∈ C.

If φ(ŵ; z− ŵ) = ⟨T (ŵ), z− ŵ⟩, where T is an operator on Rn and ⟨·, ·⟩ represents the stan-
dard inner product on Rn, then the problem (SVI)φ simplifies to the classical variational
inequality problem initially proposed by Hartman and Stampacchia [10].

In this paper, we study an extension of the above problem defined as follows:
Find ŵ ∈ C such that
(MSVI)φ φ(ŵ; z − ŵ) ≥ l(ŵ)− l(z), ∀z ∈ C,

where C is a subset of Rn that is, closed and convex, φ : C × Rn −→ R, and l : C −→ R.
This formulation encompasses a variety of generalized variational inequalities, including
the generalized mixed variational inequality studied in [20]. Notably, when l ≡ 0, the
problem reduces to (SVI)φ.

The mixed variational inequality framework is particularly useful in handling problems
with additional constraints, non-monotonicity, and coupled interactions, which arise natu-
rally in fields such as optimization, economics, mechanics, and game theory. The study of
mixed variational inequalities has drawn much attention in recent studies, particularly in
dealing with nonlinear problems, leading to new solution methods and theoretical insights
[[9], [11], [20]].

Given the importance of mixed variational inequalities in various applications, an es-
sential aspect of their study involves the idea of well-posedness, which ensures stability
and convergence of solutions. The analysis of well-posedness is central to the convergence
theory of numerical methods, ensuring that iterative approximations reliably approach
the true solution of the problem. Tikhonov [24] was the first to introduce the notion of
well-posedness for minimization problems, characterizing it through the requirement that
every minimizing sequence converges to a unique minimizer. As the theory evolved, re-
searchers recognized the importance of studying well-posedness in cases where solutions
are not unique. In such scenarios, well-posedness is established if the set of minimizers
is non-empty and if a subsequence of the minimizing sequence converges to an element
within this set.

Levitin and Polyak [18] later proposed a generalized concept of well-posedness, known
as Levitin-Polyak (LP) well-posedness, which extended Tikhonov’s concept by requiring
that every sequence derived from a broader class of optimizing sequences converges to
the optimal solution. Lucchetti and Patrone [21] were the first to introduce the notion of
well-posedness for variational inequality problems, drawing motivation from the fact that
a minimization problem can be expressed as a variational inequality involving the gradient
of the objective function. Since then, the study of well-posedness in variational inequalities
has advanced significantly, with numerous researchers [[12], [19], [22],[23]] contributing to
its development. More recently, well-posedness analysis has been extended to generalized
mixed variational inequalities [[4] - [8], [12], [13]].

This paper undertakes a detailed study of the LP well-posedness of the mixed varia-
tional inequality problem (MSVI)φ and is structured as follows. In Section 2, we establish
existence results using the KKM lemma, addressing both compact and noncompact set-
tings. Section 3 develops gap functions for the problem and its Minty counterpart, and
explores their role in characterizing saddle points of an associated Lagrangian function. In
Section 4, we formally present the definitions of well-posedness and its generalized variant
for (MSVI)φ and provide distance-based criteria in terms of approximate solution sets.
It is shown that under suitable assumptions, LP well-posedness follows from existence
and uniqueness, while generalized well-posedness of the problem follows from the bounded
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nature of a specific approximate solution set. Furthermore, Section 4 also presents a char-
acterization of the LP well-posedness of the mixed variational inequality problem in terms
of the LP well-posedness of a corresponding optimization problem formulated via a gap
function.

2. EXISTENCE THEOREM

This section establishes criteria that ensure the admissibility of solutions to (MSVI)φ.

Definition 2.1 ([17]). A mapping K : D ⊆ Rn −→ Rn is termed as KKM mapping
if, for every finite collection of points {u1, u2, . . . , um} ⊂ D, the convex hull of these
points satisfies:

co{u1, u2, . . . , um} ⊆
m∪
i=1

K(ui).

Lemma 2.1 ([17]) (KKM Lemma). Let D ⊆ Rn, and for each z ∈ D, K(z) be a subset
of Rn which is closed. Further, let K be a KKM mapping and assume that there exists at
least one point z0 ∈ D such that K(z0) is bounded. Then∩

z∈D

K(z) ̸= ∅.

The ensuing theorem establishes the existence result by imposing compactness on the
feasible set C.

Theorem 2.1. Let C be a compact subset of Rn which is also convex. Further, suppose
that φ and l fulfill the assumptions stated below:

(i) φ exhibits positive homogeneity in the second component;
(ii) φ exhibits proper subodd property in the second component, that is, for each

v ∈ C

φ(v; d1) + φ(v; d2) + · · ·+ φ(v; dp) ≥ 0

whenever
∑p

i=1 di = 0 for di ∈ Rn, i = 1, 2, . . . , p;
(iii) l satisfies convexity and lower semicontinuity on C;
(iv) φ exhibits upper semicontinuity in both the components;

then the problem (MSVI)φ admits a solution.

Proof. Consider the set-valued operator S onC given as

S(z) = {w ∈ C | φ(w; z − w) ≥ l(w)− l(z)}.

Clearly, z ∈ S(z), since by positive homogeneity of φ, we have φ(z; 0) = 0. Therefore,
S(z) ̸= ∅. Next, we show that S satisfies the KKM property. In contrast, assume that there
exist points z1, z2, ..., zp ∈ C and non-negative scalars λi, i = 1, 2, ..., p with

∑p
i=1 λi = 1

such that for w =
∑p

i=1 λizi we have w /∈
∪p

i=1 S(zi). Consequently,

φ(w; zi − w) < l(w)− l(zi), ∀ i = 1, 2, ..., p.

As φ is positively homogeneous, multiplying the above inequalities by λi ≥ 0 and summing,
we get

p∑
i=1

φ(w;λi(zi − w)) < l(w)−
p∑

i=1

λil(zi).

Note that
∑p

i=1 λi(zi − w) = w − w = 0. By applying the proper subodd property of φ,
we conclude

0 ≤
p∑

i=1

φ(w;λi(zi − w)) < l(w)−
p∑

i=1

λil(zi),
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which yields

l(w) >

p∑
i=1

λil(zi),

a contradiction to the convexity of l. Consequently, S is a KKM map. Moreover, the lower
semicontinuity of l together with the upper semicontinuity of φ guarantees that each S(z)
is closed in C. Since C is compact and S(z) is a closed subset of C, it follows that S(z) is
compact, for each z ∈ C. Applying Lemma 2.1, we conclude that

∩
z∈C S(z) ̸= ∅ that is,

the problem (MSVI)φ is solvable. □

The next example serves to illustrate the necessity of the convexity assumption on l in
the above theorem.

Example 2.1. Let C = [−1, 2], and define φ : C × R −→ R by φ(w; d) = −w2d, and
l : C −→ R by l(w) = w3. We note that l is not convex on C, but all other conditions of
Theorem 2.1 are satisfied. It can be verified that (MSVI)φ does not admit any solution.

Remark 2.1. The existence theorem for the problem (MSVI)φ can also be deduced
from Theorem 4.4 in Aussel and Luc [3] by taking f(w, z) = φ(w; z−w)+ l(z)− l(w), but
under a different set of conditions.

The following example demonstrates that while Theorem 4.4 of [3] is not applicable,
the hypotheses of Theorem 2.1 are fulfilled.

Example 2.2. Let C = [−1, 1], define φ : C ×R −→ R as φ(w; d) = |wd|, and l : C −→ R
by l(w) = |w|. It can be seen that all the assumptions of Theorem 2.1 are met. Taking
f(w, z) = φ(w; z − w) + l(z) − l(w), we note that f(w,w) = f(z, z) = 0 but the quasi-
monotonicity assumption in Theorem 4.4 of [3] is not satisfied because for w = 1 and
z = −1, we have
min

{
f(z, w)− f(z,z), f(w, z)− f(w,w)

}
= min

{
φ
(
z;w − z

)
+ l(w)− l(z), φ

(
w; z − w

)
+ l(z)− l(w)

}
> 0.

However, the set of solutions of the problem (MSVI)φ is precisely {−1, 0, 1}.

The subsequent theorem provides sufficient conditions for existence of solution to
(MSVI)φ for the case when C is an unbounded.

Theorem 2.2. Let C be a nonempty closed and convex but unbounded set in Rn. Fur-
thermore, let φ and l satisfy all the assumptions of Theorem 2.1, along with the condition

(v) there is nonempty set D ⊂ C which is convex and compact, such that for each
w ∈ C \D, we can find an element ẑ ∈ D satisfying

φ(w; ẑ − w) < l(w)− l(ẑ);

then the problem (MSVI)φ is solvable and the solution is included in D.

Proof. Define the set valued map S : C −→ 2C as
S(z) = {w ∈ C | φ(w; z − w) ≥ l(w)− l(z)}.

Then, repeating the same argument as in Theorem 2.1, it can be shown that for every
z ∈ C, S(z) is nonempty and closed. Moreover, S is a KKM map, and from condition (v),
we deduce that S(ẑ) is a compact set. Therefore, applying Lemma 2.1 on this map, we
have

∩
z∈C S(z) ̸= ∅. It follows that any solution of (MSVI)φ belongs to this intersection

and hence, it also included in S(ẑ) ⊆ D. □

Next consider the mixed Minty variational inequality problem (MMVI)φ defined as:
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Find ŵ ∈ C such that
(MMVI)φ φ(ŵ; ŵ − z) ≤ l(z)− l(ŵ), ∀ z ∈ C

where C, φ and l are as introduced earlier in the context of (MSVI)φ.

We proceed to demonstrate an association between the solution sets of (MSVI)φ and
(MMVI)φ, providing a refinement of the classical Minty Lemma.

Definition 2.2. An extended real valued function s : C ⊆ Rn −→ R is said to be hemi-
continuous on a convex set C if, for every pair of points, u, v ∈ C and for all λ ∈ [0, 1], the
mapping λ→ s(u+ λ(v − u)) is continuous from the right at λ = 0.

Theorem 2.3. Let C be a nonempty convex subset of Rn which is also closed. Then, the
following statements hold:

(i) If the bifunction φ satisfies monotonicity criteria then every solution to (MSVI)φ
also solves (MMVI)φ ;

(ii) If φ is hemicontinuous in the first component, subodd and positively homoge-
neous in the second component and l is a convex function on C then every
solution of (MMVI)φ also solves (MSVI)φ.

Proof. (i) It follows from monotonicity of φ.

(ii) Let w ∈ C solve (MMVI)φ. Let z ∈ C be arbitrary but fixed and r ∈]0, 1[. Then,
owing to convexity of C we have

φ(w + r(z − w);w − (w + r(z − w))) ≤ l(w + r(z − w))− l(w).

Given that φ is positively homogeneous in the second variable and l is convex, we infer
that

rφ(w + r(z − w);w − z) ≤ r(l(z)− l(w)),

which, dividing by r > 0, gives
φ(w + r(z − w);u− z) ≤ l(z)− l(w).

Taking the limit as r −→ 0+ and making use of the hemicontinuity of φ in the first variable,
we obtain the following.

φ(w;w − z) ≤ l(z)− l(w),

which invoking the suboddness of φ leads to
φ(w; z − w) ≥ l(w)− l(z).

Since z ∈ C was arbitrary, the result follows. □

Remark 2.2. It can be observed from Example 2.2 that the solution set to (MMVI)φ
is {0}. Consequently, the solution set of (MSVI)φ is not contained within that of
(MMVI)φ. This non-inclusion occurs due to the failure of the monotonicity condition for
the bifunction φ on C.

3. GAP FUNCTION AND LAGRANGIAN SADDLE SOLUTIONS

One common technique for addressing variational inequality problems involves utilizing
a gap function. This technique reformulates the original problem as an optimization
problem, which then allows the use of established optimization algorithms and methods
to efficiently determine solutions.

We now introduce an Auslender-type gap function (see [2]) for the problem (MSVI)φ.
To this end, we begin by defining the concept of a gap function for this problem.
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Definition 3.1. A function ψ : C −→ R∪ {−∞} is called a gap function for the problem
(MSVI)φ if it satisfies the following conditions:

(i) ψ(ŵ) = 0 ⇔ ŵ is a solution to (MSVI)φ;
(ii) ψ(w) ≤ 0 ∀ w ∈ C.

Obviously, if φ(w; 0) = 0 ∀ w ∈ C, then the function ψ : Rn −→ R ∪ {−∞} given by
ψ(w) = inf

z∈C

{
φ(w; z − w) + l(z)− l(w)

}
is a gap function for the problem (MSVI)φ.

Similarly, assuming φ(w; 0) = 0 ∀ w ∈ C, the function ξ : Rn −→ R∪ {+∞} defined as
ξ(z) = sup

w∈C

{
φ(w; z − w) + l(z)− l(w)

}
is a gap function for the problem (MMVI)φ, that is, it satisfies the conditions:

(i) ξ(z) ≥ 0, ∀ z ∈ C;
(ii) ξ(z∗) = 0 ⇔ z∗ solves (MMVI)φ.

One important application of gap functions lies in establishing error bounds, which
offer upper estimates on the distance between a feasible point and the solution set of a
variational inequality problem. In the following, we establish an upper estimate for the
gap function ψ by leveraging the notion of strong monotonicity.

Definition 3.2. The bifunction g : C × Rn −→ R is called strongly monotone with
modulus ρ > 0 if, for every w1, w2 ∈ C the following inequality holds:

g(w1;w2 − w1) + g(w2;w1 − w2) ≤ −ρ∥w1 − w2∥2.

Theorem 3.1. Suppose the assumptions listed below hold :
(i) φ is positively homogeneous with respect to the second argument;

(ii) φ is strongly monotone on C;
(iii) φ(w; 0) = 0, ∀w ∈ C;
(iv) l is a convex function on C.

Then, for any solution ŵ ∈ C of (MSVI)φ, there exists a positive constant ρ such that

ψ(w) ≤ −ρ∥ŵ − w∥2, ∀w ∈ C.

Proof. Since ŵ ∈ C is a solution of (MSVI)φ, we have
φ(ŵ; z − ŵ) + l(z)− l(ŵ) ≥ 0, ∀z ∈ C. (3.1)

Given that φ is strongly monotone, there exists a constant µ > 0 satisfying
φ(ŵ; z − ŵ) + φ(z; ŵ − z) ≤ −µ∥z − ŵ∥2, ∀z ∈ C.

Combining this with (3.1) we get
φ(z; ŵ − z) + l(ŵ)− l(z) ≤ −µ∥z − ŵ∥2. (3.2)

For any w ∈ C, consider z = ŵ + t(w − ŵ), t ∈]0, 1[ then
ψ(w) ≤ φ(w; ŵ + t(w − ŵ)− w) + l(ŵ + t(w − ŵ))− l(w),

As φ exhibits positive homogeneity in the second variable and l is convex, we derive
ψ(w) ≤ (1− t)φ(w; ŵ − w) + (1− t)(l(ŵ)− l(w)).

Making use of inequality (3.2) we obtain
ψ(w) ≤ −µ(1− t)∥w − ŵ∥2

= −ρ∥w − ŵ∥2, where ρ = µ(1− t) > 0.

□

Define the Lagrangian function L : C × C −→ R̄ as
L(w, z) = φ(w; z − w) + l(z)− l(w). (3.3)
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Then the condition w∗ ∈ C solves (MSVI)φ is equivalent to L(w∗, z) ≥ 0, ∀ z ∈ C and
z∗ ∈ C solves (MMVI)φ is equivalent to L(w, z∗) ≤ 0, ∀ w ∈ C.

Definition 3.3. A pair (w∗, z∗) ∈ C×C is referred to as a saddle point of the Lagrangian
L if the following condition holds for all w, z ∈ C

L(w, z∗) ≤ L(w∗, z∗) ≤ L(w∗, z).

Moreover, it is well established that a saddle point (w∗, z∗) ∈ C × C of the Lagrangian L
can be characterized by the equality

sup
w∈C

inf
z∈C

L(w, z) = inf
z∈C

sup
w∈C

L(w, z) = L(w∗, z∗).

Theorem 3.2. Assume that φ(w; 0) = 0, ∀w ∈ C and let L be the Lagrangian function
defined as in (3.3). Then the following results hold:

(i) (MSVI)φ has a solution w∗ ∈ C if and only if

sup
w∈C

inf
z∈C

L(w, z) = 0

and the supremum is attained at w∗;

(ii) (MMVI)φ has a solution z∗ ∈ C if and only if

inf
z∈C

sup
w∈C

L(w, z) = 0

and the infimum is attained at z∗;

(iii) w∗ and z∗ solve (MSVI)φ and (MMVI)φ respectively if and only if (w∗, z∗) is
a saddle point of L on C × C.

Proof. (i) The function ψ(w) = infz∈C L(w, z) serves as a gap function for the problem
(MSVI)φ. Therefore, w∗ ∈ C solves (MSVI)φ if and only if ψ(w∗) = 0, that is,

0 = ψ(w∗) = sup
w∈C

inf
z∈C

L(w, z).

(ii) Similarly, since ξ(z) = supw∈C L(w, z) acts as a gap function for (MMVI)φ, we have
that z∗ ∈ C solves (MMVI)φ, which holds true when

0 = ξ(z∗) = inf
z∈C

sup
w∈C

L(w, z).

(iii) Let w∗ and z∗ solve (MSVI)φ and (MMVI)φ respectively. Consequently, in view of
(i) and (ii), one concludes that (w∗, z∗) is a saddle point of L on C × C.
Conversely, if (w∗, z∗) ∈ C ×C is a saddle point of L on C ×C. Then, for all w, z ∈ C we
have

φ(w; z∗ − w) + (z∗)− l(w) ≤ φ(w∗; z∗ − w∗) + l(z∗)− l(w∗)

≤ φ(w∗; z − w∗) + l(z)− l(w∗).

By choosing w = z∗ and z = w∗ in the above inequalities, we obtain

φ(w∗; z∗ − w∗) + l(z∗)− l(w∗) = 0,

thereby establishing that w∗ is a solution to (MSVI)φ while z∗ is a solution to (MMVI)φ. □
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4. WELL-POSEDNESS CRITERIA FOR (MSVI)φ

This section focuses on analyzing the well-posedness of (MSVI)φ . Denote by Sφ the
set of solutions of (MSVI)φ, that is,

Sφ :=
{
ŵ ∈ C : φ(ŵ; z − ŵ) ≥ l(ŵ)− l(z), ∀ z ∈ C

}
.

We proceed by introducing the concept of an LP approximating solution sequence,
which plays a key role in defining LP well-posedness of (MSVI)φ.

Definition 4.1. A sequence {wn} ∈ Rn is referred to as LP approximating sequence for
(MSVI)φ provided there exists positive real sequence {εn} with εn −→ 0 satisfying the
following:

(i) d(wn, C) ≤ εn;
(ii) φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C.

Definition 4.2. The problem (MSVI)φ is LP well-posed if
(i) it admits one and only one solution ŵ;

(ii) each LP approximating sequence must converge to ŵ.

For each positive ε, consider the set of approximate solutions to (MSVI)φ given by

Sφ(ε) :=
{
ŵ ∈ Rn : d(ŵ, C) ≤ ε, φ(ŵ; z − ŵ) ≥ l(ŵ)− l(z)− ε, ∀ z ∈ C

}
.

Clearly, Sφ ⊆ Sφ(ε) for all ε > 0.

The upcoming theorem characterizes the LP well-posedness of (MSVI)φ using a metric
approach, by examining the nature of the approximate solution set. For any nonempty set
S ⊆ X = Rn, the diameter is defined as the maximum distance between any two points in
S, that is,

diamS := sup
s1,s2∈S

∥s1 − s2∥.

Theorem 4.1. Assume that the conditions imposed in Theorem 2.3 hold. In addition,
let φ be lower semicontinuous in the second argument and l be lower semicontinuous on
C. Then (MSVI)φ is LP well-posed precisely if and only if

Sφ(ε) ̸= ∅, ∀ ε > 0, and diamSφ(ε) −→ 0 as ε −→ 0. (4.1)

Proof. If (MSVI)φ is LP well-posed, then it has one and only one solution ŵ ∈ Sφ and
hence Sφ(ε) ̸= ∅ for all ε > 0. Suppose, in contrast, that diamSφ(ε) ↛ 0 as ε −→ 0. Then
there exist m > 0, a positive integer k, a sequence {εn} with εn −→ 0, and wn, w̄n ∈
Sφ(εn) such that

∥wn − w̄n∥ > m, ∀n ≥ k. (4.2)
Since wn ∈ Sφ(εn), it follows that

d(wn, C) ≤ εn , φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C.

Similarly, for w̄n ∈ Sφ(εn),
d(w̄n, C) ≤ εn, φ(w̄n; z − w̄n) ≥ l(w̄n)− l(z)− εn, ∀ z ∈ C.

Thus, both {wn} and {w̄n} are LP approximating sequences for (MSVI)φ. By LP well-
posedness, they must converge to the unique solution ŵ ∈ Sφ, which contradicts (4.2).

Conversely, let {wn} ∈ Rn be an LP approximating sequence for (MSVI)φ. Then
there exists a sequence {εn} with εn −→ 0 such that

d(wn, C) ≤ εn φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C.

This implies that for each n ∈ N , there exists w′
n ∈ C such that

∥wn − w′
n∥ ≤ εn.
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Since diamSφ(εn) −→ 0 as εn −→ 0, it is evident that {wn} is a Cauchy sequence in Rn

and hence converges to some ŵ ∈ Rn. Then it follows that

d(ŵ, C) ≤ ∥ŵ − w′
n∥ ≤ ∥ŵ − wn∥+ ∥wn − w′

n∥ −→ 0 as n −→ ∞.

Moreover, since φ is monotone and lower semicontinuous in its second component,l is lower
semicontinuous, we have for any z ∈ C that

φ
(
z; ŵ − z

)
+ l(ŵ)− l(z)

≤ lim inf
n−→∞

[
φ
(
z;wn − z

)
+ l(wn)− l(z)

]
≤ lim inf

n−→∞

[
− φ

(
wn; z − wn

)
+ l(wn)− l(z)

]
≤ lim inf

n−→∞
(−εn) = 0.

Hence, according to Theorem 2.3, ŵ is a solution of (MSVI)φ. Its uniqueness follows from
the condition in (4.1). □

Example 4.1. Let C = [0,∞), define φ and l by φ(w; d) = |d| and l(w) = 2w. Observe
that

Sφ(ε) = [−ε, ε], ∀ ε > 0, and hence if ε −→ 0, then diameterSφ(ε) approaches zero.

Thus, from Theorem 4.1 it is evident that (MSVI)φ is LP well-posed.

The subsequent result provides a characterization of LP well-posedness for the mixed
variational inequality problem by linking it to the uniqueness of its solution.

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 are satisfied. Then (MSVI)φ
is LP well-posed if and only if it admits a unique solution.

Proof. Suppose (MSVI)φ is LP well-posed. Then, as defined, solution of (MSVI)φ is
unique.

Conversely, let (MSVI)φ admit a unique solution ŵ. Assume, to the contrast, that
(MSVI)φ is not LP well-posed. Then, we can choose a LP approximating sequence
{wn} ∈ Rn such that wn ↛ ŵ. By definition of LP approximating sequence, we can find
{εn} with εn > 0 and εn −→ 0 such that

d(wn, C) ≤ εn, (4.3)

φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C. (4.4)
By (4.3), for each n ∈ N , there exists w′

n ∈ C such that

∥wn − w′
n∥ ≤ εn. (4.5)

We assert that {wn} is bounded. If {wn} fails to be bounded then without loss of generality,
assume ∥wn∥ −→ ∞ as n −→ ∞. Fix any z ∈ C, define λn = 1

∥wn−ŵ∥ and vn =

ŵ+λn(z−ŵ). Without loss of generality, let λn ∈ (0, 1) so that vn ∈ C and vn −→ v ̸= ŵ.
By the lower semicontinuity and positive homogeneity of φ in the second argument, the
lower semi-continuity of l, it follows that for any z ∈ C,

φ(z; v − z) + l(v)− l(z) ≤ lim inf
n−→∞

[φ(z; vn − z) + l(vn)− l(z)]

≤ lim inf
n−→∞

[−φ(z; (1− λn)(ŵ − z)) + (1− λn)(l(ŵ)− l(z))]

= −φ(z; ŵ − z) + l(ŵ)− l(z) ≤ 0.

Since z was arbitrary, Theorem 2.3 ensures that v is a solution of (MSVI)φ, which counters
the uniqueness of ŵ. Hence, {wn} must be bounded and therefore, has a convergent
subsequence {wnk} with limit w0. Then, it follows from above and on using (4.5) that

d(w0, C) ≤ ∥w0 − w′
nk

∥ ≤ ∥w0 − wnk∥+ ∥wnk − w′
nk

∥ −→ 0 as k −→ ∞.
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Thus, w0 ∈ C. Using the lower semi-continuity of φ and l, monotonicity of φ and (4.4),
we get for any z ∈ C,

φ(z;w0 − z) + l(w0)− l(z) ≤ lim inf
k−→∞

[φ(z;wnk − z) + l(wnk )− l(z)]

≤ lim inf
k−→∞

[−φ(wnk ; z − wnk ) + l(wnk )− l(z)]

≤ lim inf
k−→∞

(−εnk ) = 0.

Hence, by Theorem 2.3, w0 is a solution of (MSVI)φ. By uniqueness, w0 = ŵ. Therefore,
every convergent subsequence of {wn} must converge to ŵ, implying wn −→ ŵ. This leads
us to the well-posedness of (MSVI)φ. □

We now relax the notion of well-posedness to discuss the case when (MSVI)φ does not
have a unique solution.

Definition 4.3. (MSVI)φ is said to be LP well-posed in the generalized sense if:
(i) Sφ is nonempty;

(ii) every LP approximating sequence associated with (MSVI)φ possesses a subse-
quence converging to some point of Sφ.

Consider the following condition:
{Sφ ̸= ∅, and for any LP approximating sequence {wn}, d(wn, Sφ) −→ 0.} (4.6)

Proposition 4.1. If (MSVI)φ is LP well-posed in the generalized sense, then Condition
(4.6) holds. Conversely, if (4.6) holds and Sφ is compact, then (MSVI)φ is LP well-posed
in the generalized sense.
Proof. The result follows immediately from the definitions of LP approximating sequence
and generalized LP well-posedness. □

Theorem 4.3. Let C be a nonempty compact convex subset of Rn and suppose that
assumptions of Theorem 4.1 hold. Then the variational inequality problem (MSVI)φ is
generalized LP well-posed if and only if Sφ ̸= ∅.
Proof. Suppose that (MSVI)φ is generalized LP well-posed. By Definition 4.3, its
solution set Sφ must be nonempty.

Conversely, assume that {wn} ∈ Rn is an LP approximating sequence for (MSVI)φ.
Then there exists a sequence {εn} of positive real numbers with εn −→ 0 such that

d(wn, C) ≤ εn, and φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C.

Then, for each n ∈ N , there exists w′
n ∈ C such that
∥wn − w′

n∥ ≤ εn.

By the compactness of C, the sequence {w′
n} has a convergent subsequence {w′

nk
} such that

{w′
nk

} −→ ŵ ∈ C. Consequently, the corresponding subsequence {wnk} also converges to
ŵ. Then, applying similar process as in the proof of Theorem 4.2, we conclude that ŵ
solves (MSVI)φ.

□

The following example serves to validate the preceding theorem.

Example 4.2. Let C = [−1, 1], define φ(w; d) = |d| and l(w) = |w|. It can be verified
that

Sφ = [−1, 1] and Sφ(ε) = [−1− ε, 1 + ε], ∀ ε > 0.

Hence, by Theorem 4.3, (MSVI)φ is generalized LP well-posed.

The corollary below establishes generalized LP well-posedness by relaxing the compact-
ness assumption on the feasible set.
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Corollary 4.1. Let C be a subset of Rn that is nonempty closed convex and suppose that
all conditions of Theorem 4.1 hold. If there exists ε > 0 such that Sφ(ε) is nonempty and
bounded, then (MSVI)φ is generalized LP well-posed.

The above corollary is demonstrated by the example that follows.
Example 4.3. Let C = [0, ∞) and define

φ(w; d) = |d|, l(w) =

{
w if w ≤ 1,

2w if w > 1.

It can be verified that Sφ = [0, 1] and Sφ(ε) = [−ε, 1] for ε > 0. Hence, by Corollary 4.1,
(MSVI)φ is generalized LP well-posed.

The gap function defined in Section 3 allows us to reformulate the variational inequality
problem as the following optimization problem:

(OP) max
w∈C

ψ(w),

where Ω is the solution set of (OP).

Subsequently, this gap functions enables us to conduct a rigorous analysis of well-posedness.
In particular,the gap function plays a pivotal role in this framework by establishing a con-
nection between the well-posedness of variational inequalities and its associated optimiza-
tion problems and by facilitating the derivation of sufficient conditions for well-posedness.

We proceed to define well-posedness in the context of (OP).

Definition 4.4. A sequence {wn} ∈ Rn is termed to be LP maximizing for (OP) if there
exists {εn} in R, εn > 0, with εn −→ 0 such that:

(i) d(wn, C) ≤ εn;
(ii) lim infn−→∞ ψ(wn) ≥ ψ(ŵ) and ψ(ŵ) = 0.

Definition 4.5. The problem (OP) is termed as LP well-posed if:
(i) a unique solution ŵ of (OP) exists;

(ii) each LP maximizing sequence associated with (OP) converges to ŵ.

Definition 4.6. (OP) is said to be LP well-posed in the generalized sense if:
(i) Ω is nonempty;

(ii) every LP maximizing sequence associated with (OP) admits a subsequence con-
verging to some element of Ω.

For the upcoming results, take φ(w; 0) = 0 for all w ∈ C.
Theorem 4.4. LP well-posedness (or LP well-posedness in the generalized sense) of the
mixed variational inequality problem (MSVI)φ holds if and only if the corresponding op-
timization problem (OP) is LP well-posed (respectively, LP well-posed in the generalized
sense).
Proof. Since ψ is a gap function, it is an immediate consequence that

ŵ ∈ Sφ ⇐⇒ ψ(ŵ) = 0 ∀ ŵ ∈ Ω.

To establish the result, it suffices to show that {wn} is an LP approximating sequence for
(MSVI)φ if and only if it is an LP maximizing sequence for (OP).

Suppose {wn} is an LP approximating sequence for (MSVI)φ. Then there exists a
sequence {εn} with εn > 0, εn −→ 0 such that d(wn, C) ≤ εn and for every z ∈ C,

φ(wn; z − wn) + l(z)− l(wn) ≥ −εn.

It follows that ψ(wn) ≥ −εn, which implies lim infn−→∞ ψ(wn) ≥ 0 = ψ(ŵ).
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Conversely, let {wn} be an LP maximizing sequence for (OP).Then it follows that
lim infn−→∞ ψ(wn) ≥ 0. Hence, there exists {εn} with εn > 0 and εn −→ 0 such that
ψ(wn) ≥ −εn. Therefore, for all z ∈ C,

φ(wn; z − wn) + l(z)− l(wn) ≥ −εn,

which shows that {wn} is an LP approximating sequence for (MSVI)φ. □

Definition 4.7. A function g : Y ⊆ Rn −→ R∪{−∞} is termed as level bounded if either
of the following conditions hold:

(i) the domain Y is bounded;
(ii) lim∥y∥−→∞ g(y) = −∞.

Theorem 4.5. Suppose that assumptions of Theorem 4.1 hold and the extended gap
function ψ is level bounded over C, then the problem (MSVI)φ is LP well-posed in the
generalized sense.
Proof. Let {wn} ∈ Rn be an LP approximating sequence for (MSVI)φ. Then there
exists {εn} with εn > 0 and εn −→ 0 such that d(wn, C) ≤ εn and

φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C,

which implies
ψ(wn) ≥ −εn. (4.7)

Suppose {wn} is unbounded. Then, without loss of generality, assume ∥wn∥ −→ ∞.
Applying the level boundedness of ψ, limn−→∞ ψ(wn) = −∞, which contradicts (4.7).
Hence, {wn} is bounded, so it has a convergent subsequence {wnk} converging to w̃.
Following the arguments in Theorem 4.2, w̃ ∈ C and subsequently, w̃ solves (MSVI)φ. □

Remark 4.1. For the problem (MSVI)φ in Example 4.3, the gap function

ψ(w) =

{
0 if w ≤ 1,

−w if w > 1

is level bounded. Hence, (MSVI)φ is LP well-posed.

Consider a real-valued function θ : R2
+ −→ R satisfying:

θ(p, q) ≥ 0, ∀ p, q ≥ 0; θ(0, 0) = 0 (4.8)
and

pn ≥ 0, qn −→ 0, θ(pn, qn) −→ 0 =⇒ pn −→ 0. (4.9)

Theorem 4.6.
(i) (MSVI)φ is LP well-posed (or LP well-posed in the generalized sense), then

there exists a function θ satisfying (4.8) and (4.9) such that for every w ∈ C,
|ψ(w)| ≥ θ(d(w, Sφ), d(w,C)). (4.10)

(ii) Suppose that Sφ is nonempty and compact and (4.10) holds for some θ satisfying
(4.8) and (4.9). Then (MSVI)φ is LP well-posed in the generalized sense.

Proof. (i) Let
θ(p, q) = inf{ |ψ(w)| : d(w, Sφ) = p, d(w,C) = q}.

Then θ(p, q) ≥ 0 for all p, q ≥ 0 and θ(0, 0) = 0 since ψ is a gap function for (MSVI)φ.
Let pn ≥ 0, qn −→ 0, and θ(pn, qn) −→ 0. Then there exists a sequence {wn} ∈ Rn

with d(wn, Sφ) = pn and d(wn, C) = qn such that ψ(wn) −→ 0. Hence, {wn} is an
LP maximizing sequence for (OP). By Theorem 4.4, {wn} is also an LP approximating
sequence for (MSVI)φ. Since (MSVI)φ is LP well-posed, Proposition 4.1 yields pn =
d(wn, Sφ) −→ 0. Thus, the function θ satisfies (4.8) and (4.9), and inequality (4.10) holds
by its definition.
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(ii) Let {wn} be an LP approximating sequence for (MSVI)φ. Then, we can choose {εn}
with εn > 0, εn −→ 0, such that

d(wn, C) ≤ εn, φ(wn; z − wn) ≥ l(wn)− l(z)− εn, ∀ z ∈ C.

By (4.10),
|ψ(wn)| ≥ θ(d(wn, Sφ), d(wn, C)).

Let pn = d(wn, Sφ) and qn = d(wn, C). Then qn −→ 0. Moreover, {wn} is an LP
maximizing sequence for (OP) and hence, ψ(wn) −→ 0. Using (4.9), it follows that
pn = d(wn, Sφ) −→ 0. The compactness of Sφ and Proposition 4.1 then yield that
(MSVI)φ is LP well-posed in the generalized sense. □

Remark 4.2. It is worth noting that analogous definitions of well-posedness can be
formulated for the Minty problem (MMVI)φ. Consequently, the results established in
this section for (MSVI)φ may be extended to the Minty formulation by employing the
Minty Lemma. This observation also suggests a potential equivalence between the well-
posedness of the two problems.

5. CONCLUSION

This paper studied the existence and LP well-posedness of a mixed variational inequal-
ity problem involving a bifunction. Existence results were established using the KKM
lemma and gap functions were introduced to relate the problem to an equivalent optimiza-
tion formulation. Characterizations for LP well-posedness were developed by observing
the behavior of approximate solution sets, as well as using the gap function approach.
Suitable examples were provided to illustrate the theoretical findings. These results con-
tribute to the foundation for further research in non-smooth variational analysis. Future
work may explore algorithmic approaches and extensions to broader classes of problems.
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