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ABSTRACT. In this paper, In the Caputo sense, we examine a system of partial differ-
ential equations with mixed fractional-order derivatives. We use the Laplace Decomposi-
tion Method (LDM), which successfully integrates the Laplace transform with Adomian
decomposition method, to get approximate semi-analytical solutions. To illustrate the
effectiveness and validity of the suggested approach, it is used on a number of illustrative
problems. The correctness of the approach is validated by graphical comparisons between
the LDM solutions and exact solutions. Additionally, it is noted that when the order
becomes closer to unity, the solutions of the fractional-order system converge to those
of the equivalent integer-order system. According to these findings, LDM is a solid and
dependable method for resolving intricate fractional differential systems that appear in
mathematical and engineering models.
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1. INTRODUCTION

One of the most well-known topics in nonlinear science is the system of partial
differential equations. Numerous attempts have been undertaken to investigate dif-
ferent nonlinear partial differential equations throughout the last several decades
[7]. Inverse scattering theory [1], Backlund transformation [21, 11], Darboux trans-
formation [17], and Painlev expansion method [2] are some of the conventional tech-
niques for resolving nonlinear wave equations. The homogeneous balance method
[22] and Jafari [14], which discussed numerical solutions of telegraph and laplace
equations on cantor sets using the local fractional laplace decomposition method,
are two examples of the new, potent solving techniques that have emerged with the
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rapid development of nonlinear science. Kumar [12] employed the RDT approach to
solve the coupled Klein-Gordon equation and the coupled Burgers’ equation system.
Pirzada [19] spoke about the Adomian Decomposition approach for solving fuzzy
heat equations. Two types of systems of equations with mixed Caputo fractional
order partial derivatives were solved in this study. These systems were examined in
[6, 3, 8]. They resolved these issues for single partial derivatives or partial deriva-
tives of integer order.

In this study we expand the Caputo derivatives to mixed order type system of
partial differential equations. The expanding complexity of engineering and physi-
cal models that need for the construction and solution of fractional and mixed-order
partial differential equations (PDEs) is what motivated this project. Nonlinearities,
fractional derivatives, and multivariate systems are frequently difficult for tradi-
tional numerical techniques to handle. A potential semi-analytical method in this
regard is the Laplace Decomposition Method (LDM), which combines the Laplace
transform and Adomian Decomposition Method (ADM) in a synergistic manner.
The use of LDM to solve a system of non-homogeneous, mixed-order partial dif-
ferential equations with two to three independent variables and several dependent
variables is what makes this study innovative.

The Caputo fractional derivative is employed because of its advantageous treat-
ment of handling of initial conditions, which are stated in the same format as those
for traditional integer-order differential equations the Caputo fractional derivative
is used. As initial values are typically described in terms of classical derivatives,
the Caputo derivative is hence more suited for physical and technical challenges.
The memory and heredity characteristics of different materials and processes, which
are not well represented by conventional integer-order models, may be well modeled
using fractional calculus in general. A more precise and adaptable mathematical
model of biological systems, anomalous diffusion, viscoelasticity, and signal process-
ing is made possible by the use of fractional derivatives. Because of these features,
fractional differential equations are very useful for describing intricate dynamics
seen in actual systems. Next we provide classical defination of Caputo derivative
and integration.

Definition 1.1. The Caputo fractional partial derivative of order o with respect
to t, where n — 1 < o« < n and n € N, is defined as:

1 L oru(x, ) dr
C na )
D t) = . 1.1

t'Uz(Q?v ) I‘(n—a) /0 otn (t*T)a7n+1 ( )
Definition 1.2. The Caputo fractional partial derivative of order 8 with respect
to z, where m — 1 < 8 < m, is given by:

_ 1 T OMu(E,t) d¢
CDbu(x,t) = T(m—7) /o Bam (@ =g (1.2)

Definition 1.3. Let u(z,t) be a sufficiently smooth function defined on the domain
[0,a] x [0,b]. The Riemann-Liouville fractional integral of order o > 0 with respect
to the time variable t is defined as:

1 t

Ifu(z,t) = — | (t—7)*tu(z,7)dr, t>0. 1.3

Pule.t) = ooy [ (= ey ar (13)

Definition 1.4. The Riemann—Liouville fractional integral of order § > 0 with
respect to the spatial variable x is given by:

Bulx :L mx— A1y, T . .
Huet) = 5 [ 0= e e a>o0 (1.4)
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The present paper has the following structure. We define Lapalce decomposition
method in part 2, show the comparison results with two instances in section 3, and
provide a conclusion in section 4.

2. METHODS DESCRIPTION

The Laplace Adomian Decomposition Method (LADM) has drawn special at-
tention because of its effectiveness and simplicity among the different analytical
and semi-analytical techniques for solving differential equations, including the Ho-
motopy Analysis Method (HAM), Variational Iteration Method (VIM), and finite
difference schemes [20]. The LADM is a hybrid approach that combines the Ado-
mian Decomposition Method (ADM) and the Laplace transform, providing a strong
foundation for solving both linear and nonlinear problems. While the ADM uses
Adomian polynomials to methodically break down the nonlinear components, the
Laplace transform simplifies the equation by handling beginning conditions natu-
rally and transforming derivatives into algebraic terms. This combination eliminates
the requirement for perturbation, linearization, and discretization all of which are
sometimes necessary in other approaches.

Moreover, LADM frequently produces series solutions that converge quickly while
requiring fewer computing steps. These benefits make LADM especially appropriate
for the class of nonlinear (or fractional) differential equations that are the subject
of this investigation. Compared to other current approaches, it is a great choice
because to its proven ability to produce correct analytical or semi-analytical results.

2.1. Laplace Decomposition Method. Consider the system of mixed order par-
tial differential equations in operator form

Diu+ Sy (u,v) + M (u,v) = F1

5 (2.1)
Diu+ 2 (u,v) + Na (u,v) = Fa.
with initial conditions
u (xz,0) = hy,
(2.2)
v (z,0) = ha.

The fractional order partial differential operators are D* & D?. The linear operators
are $1 and Sy, the nonlinear operators are N7 and As, and the inhomogenous terms
are §1 and §2. The Laplace Decomposition method (LDM) is another name for the
methodology that combines the Adomian Decomposition and Laplace Transform
approaches. Finding the exact or approximate solution to a nonlinear equation
is one of this method’s primary advantages [13]. Suheil A. Khuri first introduced
the Laplace Decomposition method (LDM) [9, 10], which is an effective technique
for solving differential equations. Using initial conditions (2.2) and applying the
Laplace transform to each side of Eq. (2.1), it yields

LADSu} + L{S1 (w,v)} + L{N] (u,v)} = L{F1}

2.3
£{Dfu} + £{%2 (w0)} + LN (w,0)} = £{5a) (2
Using the differentiation property of Laplace transform, it gives
h 1 1 1
Cl{u} ==+ ZL{F1) — L{S1 (w0)} — LM ()},
S S S S (2'4)

L{v} = % + s%ﬁ{sz} - Siﬁﬁ{sz (u,v)} — Siﬁc{/\ﬂz (u,v)}.
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The Laplace Adomian decomposition method decomposes the unknown functions
u(z,t) and v(x,t) by an infinite series of components as

u(z,t) = Zuk (z,1).

0 (2.5)
v(z,t) = ka (z,1),

k=0

and the nonlinear operators A (u,v) and Na(u,v) can be represented by an infinite
series so called Adomian polynomials

Nl (U,U) = ZAk,

P (2.6)
N (u,v) = Z By,

k=0

The Adomian polynomials [23, 5, 24] can be generated for all forms of nonlinearity.
They are determined by the following relations

1 dn —
An = EW N]_ Z)\ ’Uj B
) L j=0 1 a=0,n=0,1,2
- - ’ e 2.7
- : (2.7)
B,=—— N> Z/\JU
" ld\n J
" L j=0 1 x=0n=012,..

Substituting Egs. (2.6) and (2.5) into Eq. (2.4) and doing some mathematical steps
we get

Clwy ="+ Loigy,
508 (2.8)

h 1
LA{vo} = ?2 + 8735{32}'

From (2.8) we obtain first or inital interation in the solution process by applying

inverse laplace trasformation. Furthe the iterative scheme for the solution process
is ! 1

L{ug1} = —sjﬁ {S1(w,v)} - Sjﬂ {Ak},

1 N 1 (2.9)

L{ver1} = =5 LS (w,v)} — LBk}

Finally, by applying the inverse Laplace transform, we can evaluate u; and wvg,
obtaining the solutions in the original time domain. This step converts the trans-
formed expressions back to their corresponding functions in the physical domain,
providing the final approximations for u(z,t) and v(z,t).

2.2. Convergence Analysis. The convergence of a proposed analytical or semi-
analytical method is a crucial component in validating its reliability and applicabil-
ity to complex systems. In the Laplace Decomposition Method (LDM), the solution
to a system of partial differential equations is constructed as an infinite series:

u(z,t) = Zuk(x,t), v(z,t) = Z vg(x,t),
k=0 k=0
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where each term wuy(x,t) and vg(z,t) is generated iteratively using the inverse
Laplace transform and Adomian polynomials. To ensure that this series repre-
sentation leads to an accurate and valid solution, it is important to examine the
convergence of the series under appropriate assumptions.

Definition 2.1. Let {ug(z,t)} and {vg(z,¢)} be sequences of functions defined on
a closed and bounded domain D C R2. The Laplace Decomposition Method is said
to converge if the series

o0 oo
u(x,t) = Zuk(gc,t)7 vz, t) = ka(azt)
k=0 k=0
converge uniformly and absolutely to the functions u(x,t) and v(z,t), respectively,

on D.

Theorem 2.1. Let u(z,t) and v(x,t) be the solutions obtained using the Laplace
Decomposition Method (LDM) for the system of equations defined in Eq. (2.1).
Assume that the nonlinear operators Ni(u,v) and No(u,v) satisfy a Lipschitz con-
dition. Then the series

o0 oo
u(x,t) = Zuk(x,t)7 vz, t) = ka(%t)
k=0 k=0
converge uniformly and absolutely to the exact solution of the system on a finite

domain D C R2.

Proof. Let us assume that the nonlinear operators N7 and N5 satisfy the following
Lipschitz conditions:

V1 (u, v) = Ni(@, )| < La(fJu — @l + [lv = o),

IN2(u, v) = Na(a, 0)|| < La([lu = al + [lv = al)),

where 0 < Ly, Ly < 1, and || - || denotes an appropriate norm in a Banach space.

Under this condition, the Adomian polynomials Ay and By, representing the
nonlinear terms, generate bounded sequences. The Laplace transform £{-} and its
inverse are linear and bounded operators that preserve convergence. The recursive
construction of ugyq and vg4q from the previous terms,

Lluen} = = £{31 (0 0)} — o L{Ae},

E{onsn} =~ LS (u,0)} — LB,

ensures that the sequences {ur} and {vg} form Cauchy sequences in the Banach
space. Therefore, the series

Z ug(z,t), Z vg(x, 1)
k=0 k=0

converge uniformly and absolutely on D, completing the proof. O
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3. MAIN RESuULT

Example 3.1. Consider the mixed order system of partial differential equations,

@fv@,@@—1,£+ +
ore o oron T

3.1)

o%v ov  Oudv (
Y — ——=1—¢—n— <a,8<1

are ~ "oe " oron STn-nisep

with initial conditions w (£,7,0) = £ +n — 1L,v(£,n,0) = & —n + 1, with exact
solutions u (§,n,7) =&+n+7—1v(n,7) =& —n— 7+ 1 given in Example 1 of
the article [4].

By applying the Laplace transformation to both mixed-order partial differential
equations (3.1), we convert them into algebraic equations in the Laplace domain.
This transformation simplifies the analysis and solution of the given equations.

0%u Ju  0Ovdu
L{— =Lv—+———+1-—
{aTa} {U6§+67877+ 5*””}
0% v  Oudv
LS—‘=Ldu—+———+4+1-€6—n— .
(o) =l e}
Using the property of the Laplace transformation for derivatives, we obtain an

algebraic equation in the Laplace domain. This helps in transforming differential
equations into a more manageable form for analysis and solution.

L] -0 wen0) = L{ogE + T4 1 crnr]
sﬁL[v(f,n,T)]—sﬁ_l (v (&,n,0)) zL{uav—i—aza:;—&—l—ﬁ—n—T}.

Next, we apply the inverse Laplace transformation, obtaining the solution in the
domain. This step converts the transformed equations back to their initial form,

“(f»naT):L_l{u(g’n’o) +$L{vau+mau+1—f+n+7}}

s o0& Ot On
_ s fvEm0) 1o f v Oudv
v(&n,7)=L { - +56L ua£+878n+1 E—n—Tpo.

Using the given initial conditions, we obtain specific expressions for the transformed
equations. These conditions help determine the first iteration of the solution process,
providing a foundation for further computations. u (§,7,0) =&+n—1,v(£,7,0) =
E—n+1, we get

1 0 ov o
u(f,n,r)zf—l—n—l—l—[/_l{L{vu—i-vu—i-l—é—i-??—&-T}}

e
e -1) L ov  ouodv B
v(nT)=¢6—n+1+1L {sﬁL{u8§+378n+1 E—n T}}

Next, we apply the concept of Adomian polynomials to handle the nonlinear term,
expressing it as a series expansion that simplifies the solution process and allows
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for iterative approximation.

= 1
Swisnnsen1 L
k=0

o
>
k=0

(5,7777)_5—77+1+L1{

k=0 k=0

{ZCk U, v) +ZDk (w,v)+1—-€6—n—1

k=0
(3.3)

where the Adomian polynomials, Ay, By, Ck, and Dy, are defined in equation (2.7)

and may be represented as follows.

The answer may be computed efficiently by

breaking down the nonlinear terms into a sequence of iterative terms using these

polynomials.
0
Ao = voal;
Ju ou
A1 = ,UOTSI V1 87;
BuQ 87.1,1 8u0
Ay =w — +v
“og "o T o
(%0 auo
= or (‘377
_ 0w | Oui Jug
YT or an or On
81}0 8uQ 81}1 8u1 a”UQ 8u0
27 or 877 or 877 or 877
0
Co = ani;
o 8111 81;0
Cl = U (96 Ul 85
_ 8112 8111 81}0
Co =uy—o- € +uy a¢ +us— - G
6U0 81}0
= or oy
ug Ovy, Ous I
Y= 9 o T or op
8U0 81}2 8U1 6’01 8U2 81}0
2T 9r oy " or on ' or on
Now, the initial apprximation is
up (§:m,0) =& +n—1,
Vo (577770) 25—77+ 1.

Further we obtain

ugt1 (§,m,7) Ll{slaL{ZAk(v,u)JrkZOBk(v,u)Jrl§+77+T}},

k=0

vk+1(§,n,7)=L_ {ZL{ZC% U, v —l—ZDk u,v)+1—-¢&— ’I]—T}}

k=0

k=0
(3.4)
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where w1 and v, represent the current approximations at the k" iteration,
and Ay, By, Cx and Dy are the Adomian polynomials for the respective nonlinear
terms. These iterative schemes allow for successive approximations to converge to
the solution of the nonlinear system. Thus, the first terms Ag, By, Cp and Dy
provide the initial approximations of the nonlinear terms, which will be used in the
first iteration of the scheme.

2 1 27 Tt
=Lt =
ur (§,n,7) {5a+1 +3a+2} I'a+1) +I‘(a+2)

oy (3.5)
v (§m,7) = {85+2}1—\(6+2)'

Pltof (¢, ,05) Plotofv{¢, 7,05)

FIGURE 1. Plot of the approximate and exact solution of (Example
3.1) for u(¢,n, 7(=0.5)) and v(&,n, 7(= 0.5)) for « = 8 = 1.
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Eror betveen Exactand ApprorimeteSoluion ot u, 7,09 Eorbetween Exctand ApproineteSouion o, 7,09

FIGURE 2. Plot of error of estimation |uezact(&,n,7(= 0.5)) —

uapproz(év m, T(: 0'5>)| and |vezact(§7 , T(: 0~5))_’U¢1PPTOE(€7 m, T(:
0.5))] for Example 3.1 taking o = § = 1.

Applying the scheme in same fashion and taking the sum of the iterations we
obtain the approximate semi-analytic solution for Example 3.1. This approach
allows for a systematic refinement of the solution with each iteration, progressively

improving the accuracy of the approximation as more terms are included in the
series.

27 7-0‘+1 _T20¢+1 7_2a
wEnr) =t -t re S Y et T Tea sy Tl
et 0 (+2)—(a+ T (a+1)\ 4, T3
"TBar2 " T(3a+ 1)L (a+2) )73 T Rat2)
_ 2al () 73! ((QI‘ (a+2)—(a+1)T(a+1)2al (a)) 301
T'(a+1)T (3a) T (3a)T (2a+ 1)L (a +2) 4

~(rEgresn) ™

(3.6)
and
_ — B+l 2 (B+2)— (B+1)T(B+1) N
v =t m ey T T T s T+ 2) )
726+1 28T (5) 726-1 _p3B+1
+r(2/3+2)_r(/3+1)r(2/3)+1“(35+2) (37)

i <(ﬂ+1)F(ﬂ+1)2ﬂF (25)> 361
TEAHTB+T B+ )T
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Plotof u(¢, 7,02 for a=0.95 and 4=0.75 Plotof v(¢, 7,02) for a=0.95 and 4=0.75

FIGURE 3. Plot of the approximate and exact solution of (Example
3.1) for u(¢,n,7(=0.2)) and o = 0.95 and 8 = 0.75.

Plotof u(¢, 5,02 for a=0.75 and 4=0.95 Plotof v(¢, 5,02) for a=0.75 and 4=0.95

FIGURE 4. Plot of the approximate and exact solution of (Example
3.1) for u(§,n,7(=0.2)) and o = 0.75 and 8 = 0.95.

[ gprinte
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‘Comparison of  and v or Different a and 3 Values at y=15 and =05 - Comparison ofu and v for Diferent a and § Values at =15 and r=1

F1GURE 5. Plot of the comparision approximate of solutions of
Example 3.1 for u(¢,n, 7) and v(&, n, 7) for different values of o and

B.
Next, we provide the comparision table for Example 3.1 for o = 0.9, 5 = 0.95,
£=0.5,n7=0.5.

TABLE 1. Comparison of Exact and Approximate Solutions for
a=0.9,6=0095 £=05n=0.5

T Uexact Uapprox |uerror | Vexact Vapprox ‘”error |

0.01 | 0.01 |-0.053082 | 0.063082 | 0.99 | 0.967223 | 0.022777
0.02 | 0.02 |-0.079156 | 0.099156 | 0.98 | 0.939118 | 0.040882
0.03 | 0.03 |-0.104809 | 0.134809 | 0.97 | 0.910646 | 0.059354
0.04 | 0.04 |-0.130043 | 0.170043 | 0.96 | 0.881849 | 0.078151
0.05 | 0.05 |-0.154858 | 0.204858 | 0.95 | 0.852767 | 0.097233
0.06 | 0.06 |-0.179255 | 0.239255 | 0.94 | 0.823437 | 0.116563
0.07 | 0.07 |-0.203234 | 0.273234 | 0.93 | 0.793893 | 0.136107
0.08 | 0.08 |-0.226796 | 0.306796 | 0.92 | 0.764165 | 0.155835
0.09 | 0.09 |-0.249942 | 0.339942 | 0.91 | 0.734283 | 0.175717
0.10 | 0.10 |-0.272672 | 0.372672 | 0.90 | 0.704274 | 0.195726

Example 3.2. Consider the mixed order system of partial differential equations

0%u ou

bt TV T -
9Pv ov (3:8)
oF gy U hOS @l

with the initial conditions u (x,0) = e*,v (z,0) = e~ 7, with exact solutions u (x,t) =
e’ t v (z,t) = e provided in Example 3.3 from the article [6].
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By applying the Laplace transformation to both partial differential equations, we
convert them into algebraic equations in the Laplace domain. This transformation
simplifies the analysis and solution of the given equations.

0%u ou
8@ Ov

Using the property of the Laplace transformation for derivatives, we obtain an
algebraic equation in the Laplace domain. This helps in transforming differential
equations into a more manageable form for analysis and solution.

s*L{u(z,t)} — s tu(x,0) = L{1} — L{vgu} L{u}

sPL{v (z,t)} — "o (x,0) = L{l}—l—L{ug}—l—L{v}

Using the given initial conditions, we obtain specific expressions for the transformed
equations. These conditions help determine the first iteration of the solution pro-
cess, providing a foundation for further computations.

s“L{u(z,t)} = s w+—L{ g“} L{u}

SPL{v(z, 1)} =P "le ® + B —|—L{ gv} + L{v}

e’ 1 1 ou 1
L{u(z,t)} = 5 + o STKL {Uax} - S—QL{U}

0

Next, we apply the inverse Laplace transformation, obtaining the solution in the
domain. This step converts the transformed equations back to their initial form,

R 1 1 ou 1
u(xz,t) =1L 1{S+SQ—HSQL{’06.’L‘} aL{u}}

e 1 1 v
v(z,t)=1L 1{—|— B+1+56L{ e }+ L{v}}

Now, the first iteration is obtained by substituting the initial conditions into the
transformed equations, providing an approximation that serves as the starting point
for further iterations.

L{v(x,t)}:§+sﬁlﬂ+ lL{ ‘%}+ —L{v}

e 1 o t
ug (z,t) = L {S—i_saﬂ}_e +m

F) FE A S S G "
vg (x,t) = =e

o s sPtl rB+1)
Next, we apply the concept of Adomian polynomials to handle the nonlinear term,
expressing it as a series expansion that simplifies the solution process and allows
for iterative approximation.

(3.9)

ZAk & u ZBk (3.10)
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Where Ay, and By, are the Adomian polynomials, defined in equation (2), and are
expressed in the following manner. These polynomials are used to decompose the
nonlinear terms into a series of iterative terms, which allows for efficient computation
of the solution.

ﬁuo
An = vn—2
0 Vo 81‘ )
o ﬁul 87.L0
A=y Ty
Ay =g 22 4y 21y, O
2700 ox U1 ox 2 ox
8’00
Bn = up—2
0= Uo oz’
ov ov
By = anfl U18707
- 2 8’1)1 31}0
By = ug ) ’Uflai 2 Oz

Using all the above estimations, the iterative scheme is given by:

Ui (z,t) = —=L71 {;L{Ak}} — L7t {;L{uk}}

vkir (1) = L1 {;L{Bk}} o {;L{Uk}}. (3.11)

where up,; and v, represent the current approximations at the k' iteration,
and Ay and By are the Adomian polynomials for the respective nonlinear terms.
These iterative schemes allow for successive approximations to converge to the so-
lution of the nonlinear system. Thus, the first terms Ay & By provide the initial
approximations of the nonlinear terms, which will be used in the first iteration of
the scheme.

VR S (= G WA PN S
0= %% “\° TrB+n/)oz\" "T(a+)

~(r+t55m)

By=wu v _ ew+7ta 9 e_w+7tﬂ
0 o T(a+1)) oz T(3+1)

(3.12)

and

(3.13)
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Now, the next iteration is obtained by applying the recursive relation for the Ado-
mian polynomials to the nonlinear terms as follows

uy (z,t) = —L7* {;L{Ao}} -L! {;L{uo}}

h x pes g (3.14)
= Tarn ) T TarsrD’ TEar )
and
(1 (1
U1 (Qj’t) =L {sﬁL {Bo}} + L {SBL {’UO}}
B B . tot8 . +28 <3'15)
TG D TR+ Ta+s+)t TR+

Bract Souton g =¢* Approximate Soluton ) for a=L0and =10

FIGURE 6. Plot of the approximate and exact solution of (Example
3.2) for u(x,t) and a = 8 = 1.
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‘Approximate Solution v(x,) for o=L0 and 3=10

Exact Souton (e =6

,
7
,

774

P
775

7

7
7
)

7
7

7
77

7

7/
P77
i
A

FIGURE 7. Plot of the approximate and exact solution of (Example

3.2) for v(z,t) and a = = 1.

Enorinvixd: v
et g

Eorinul, -0
g

FIGURE 8. Plot of error of estimation |tegact(T,t) — Uappros (2, t)
and |Vegact (T, ) — Vapproz (x,t)| for Example 3.2 for a = 8 = 1.
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AoproriteSoluon u) o =05 and 0%

AoprorinteSoluon v for =05 and 0%
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FIGURE 9. Plot of u(x,t) and v(x,t) to Example 3.2 for «
0.853 = 0.95.

AgproviteSolaon i) for =0 and 307

HoprorinateSouton ) o =09 307

FIGURE 10. Plot of the approximate solution of (Example 3.2 ) for
u(z,t) & v(z,t) and o = 0.9,8 = 0.7.
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. Comparison of U and Vfor Different a and i Values at r=L . Comparison of U and Vfor Different a and  Values at r=L

FiGURE 11. Plot of the comparision approximate of solutions of
Example 3.2 for u(z,t) and v(z,t) for different values of o and
by fixingt=1& t =3

In the simillar fashion we evaulate the next iterations and the sum of the it-
erations provides the approximate semi-analytic solution for Example 3.2. This
approach allows for a systematic refinement of the solution with each iteration, pro-
gressively improving the accuracy of the approximation as more terms are included
in the series.

(1) =" + - P i A
u(z,t)=e - —e — e
F'a+1) T(a+1) Fla+p+1) TI'(a+1)
t2a t2a . tza - t(x+[‘3
TT@atD) T@atl) “TRarD “T@isrl
t3a t4oz t3aew t3a t2a+,8 e
T TBa+l) T@at+l) TGatl) TBa+l) T@atB+D)
(3.16)
and
8 8 8 totB
,t _ + o + —x —x
S TS N ES )RS U FS) S U PR )
+26 +26 +26 tat+B
+ - +e +e "
T26+1) T(28+1) r(26+1) T(a+B+1)
t3’8 t3,8 t3,ﬁe—w ta+2,6’e—ac t4[3
+ - + - +
T33+1) TI(BB+1) T@BB+1) [(@+28+1)  T@EB+1)
(3.17)

Which seems to be a complex structure of the solution, let us simplify. After
rearranging the terms, we get a more manageable form that allows for easier com-
putation and clearer interpretation of the solution.

u (1‘ t) et Lez Lt 120 B TR N
T I'(a+1) F2a+1) TBa+1) 318
th 26 38 (3.18)

ty=e ® -z
v(z,t)=e +F +

GRSV

26+1) " TEE+1°
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This approach converges to the exact solution u (z,t) = e v (z,t) = e **t for
the limiting case when a = 1 & 8 = 1. In this case, the iterative process becomes
exact, yielding the known analytical solution at limiting case.

TABLE 2. Exact vs Approximate Solutions for w(z,t) =
e*~t v(z,t) = e T with « = 0.9, =0.95, 2 =1

t Uexact | Uapprox | Uerror | Vexact | Vapprox ‘ Verror |

0.01 | 1.788 | 1.788 | 0.0004 | 0.406 | 0.406 | 0.0003
0.02 | 1.768 | 1.767 | 0.0013 | 0.414 | 0.414 | 0.0010
0.03 | 1.748 | 1.747 | 0.0029 | 0.423 | 0.422 | 0.0019
0.04 | 1.729 | 1.726 | 0.0047 | 0.431 | 0.430 | 0.0029
0.05 | 1.710 | 1.705 | 0.0068 | 0.440 | 0.438 | 0.0040
0.06 | 1.691 | 1.684 | 0.0091 | 0.449 | 0.446 | 0.0052
0.07 | 1.673 | 1.662 | 0.0115 | 0.458 | 0.455 | 0.0065
0.08 | 1.655 | 1.641 | 0.0140 | 0.468 | 0.464 | 0.0079
0.09 | 1.638 | 1.620 | 0.0170 | 0.477 | 0.472 | 0.0095
0.10 | 1.622 | 1.598 | 0.0201 | 0.487 | 0.481 | 0.0111

4. CONCLUSION

This work demonstrates the successful application of the Laplace decomposi-
tion method to solve a system of non-homogeneous mixed-order partial differential
equations with specified initial conditions. In Examples 3.1 and 3.2, we addressed
problems involving three and two independent variables, respectively, with two de-
pendent variables. Through this approach, we obtained approximate semi-analytic
solutions and analyzed the behavior of these solutions for various parameter values.
In this work we compared the approximate solution with exact solution by means
of graphical represntation. Additionally, we computed the errors between the ex-
act and approximate solutions for different fractional orders. The results indicate
that the Laplace decomposition method provides an effective and reliable means for
obtaining approximate solutions to such complex problems. This method is partic-
ularly advantageous for handling nonlinearities and fractional orders, making it a
valuable tool for solving similar types of differential equations in mathematical and
engineering applications.

When it comes to solving nonlinear systems of mixed-order fractional partial dif-
ferential equations, the suggested Laplace Decomposition Method (LDM) has var-
ious advantages. It offers speedily convergent semi-analytical solutions, effectively
manages nonlinearities, and avoids discretization and linearization. The complex
processes of producing Adomian polynomials for extremely nonlinear systems and
the reliance on invertible Laplace transforms are obstacles, though. The approach
may be expanded in future research to include stochastic models, variable-order
systems, and boundary value issues. Its performance might also be confirmed by
automated symbolic computation and compared with other techniques like HAM
or -HATM.
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