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1. Introduction

Let (X, ∥ · ∥) be a real normed linear space, and let E be a nonempty closed
convex subset of X. Let T : E −→ E be a self-mapping. Let F (T) denote the set of
fixed points of T, that is, F (T) = {x ∈ E : Tx = x}. A self-mapping T : E −→ E is
said to be

(1). asymptotically nonexpansive [8] if there exists a sequence {an}∞n=1 ⊂ [1,∞)
with lim

n−→∞
an = 1 and such that

∥Tnx− Tny∥ ≤ an∥x− y∥, ∀x, y ∈ E, n ≥ 1. (1.1)

(2). asymptotically quasi-nonexpansive if F (T) ̸= ∅ and there exists a sequence
{an}∞n=1 ⊂ [1,∞) with lim

n−→∞
an = 1 and such that

∥Tnx− p∥ ≤ an∥x− p∥, ∀x,∈ E, p ∈ F (T) and n ≥ 1. (1.2)
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(3). uniformly L-Lipschitzian if there exists constant L ≥ 0 such that
∥Tnx− Tny∥ ≤ L∥x− y∥, ∀x, y ∈ E, n ≥ 1. (1.3)

Note that an asymptotically nonexpansive mapping must be uniformly L-Lipschitzian
as well as asymptotically quasi-nonexpansive but the converse does not hold true
in general.

In 2003, Chidume et al.[7] introduced the notion of asymptotically nonexpansive
non-self mappings as a generalization of asymptotically nonexpansive self-mappings
as follows.

Definition 1.1. [7] Let E be a nonempty subset of real normed linear space X. Let
T : E −→ X be a nonself mapping and P : X −→ E be the nonexpansive retraction
of X into E. T is said to be

(1). asymptotically nonexpansive if there exists a sequence {an}∞n=1 ⊂ [1,∞)
with lim

n−→∞
an = 1 and such that

∥T(PT)n−1x− T(PT)n−1y∥ ≤ an∥x− y∥, ∀x, y ∈ E, n ≥ 1. (1.4)
(2). uniformly L-Lipschitzian if there exists constant L ≥ 0 such that

∥T(PT)n−1x− T(PT)n−1y∥ ≤ L∥x− y∥, ∀x, y ∈ E, n ≥ 1. (1.5)

Chidume et al.[7] established a demiclosed principle, weak and strong convergence
results for such mappings in a uniformly convex Banach space via the following
algorithm:

x1 ∈ E, xn+1 = P
(
(1− αn)xn + αnT(PT)n−1xn

)
, n ≥ 1.

After Chidume et al.[7], a number of authors have studied the weak and strong
convergence for such mappings (see [10, 11, 15, 12, 26, 29, 33] for examples).

Later, in 2007 Zhou et al.[34] introduced the following generalized definition.

Definition 1.2. [34] Let E be a nonempty subset of real normed linear space X.
Let P : X −→ E be the nonexpansive retraction of X into E. A nonself mapping
T : E −→ X is said to be

(1). asymptotically nonexpansive with respect to P if there exists a sequence
{an}∞n=1 ⊂ [1,∞) with lim

n−→∞
an = 1 and such that

∥(PT)nx− (PT)ny∥ ≤ an∥x− y∥, ∀x, y ∈ E, n ≥ 1. (1.6)
(2). uniformly L-Lipschitzian with respect to P if there exists constant L ≥ 0

such that
∥(PT)nx− (PT)ny∥ ≤ L∥x− y∥, ∀x, y ∈ E, n ≥ 1. (1.7)

Zhou et al. [34] introduced the following iterative process,
x1 ∈ E, xn+1 = αnxn + βn(PT1)xn + γn(PT2)xn, n ≥ 1, (1.8)

where {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are three sequences in [a, 1 − a] for some
a ∈ (0, 1), satisfying αn+βn+γn = 1. And, they established some strong and weak
convergence theorems for common fixed points of nonself asymptotically nonexpan-
sive mappings with respect to P in uniformly convex Banach spaces.

In 2007, Agarwal et al.[2] introduced the iterative algorithm:
xn+1 = (1− αn)Tnxn + αnTnyn,

yn = (1− βn)xn + βnTnxn, n ≥ 1.
(1.9)
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Later, in 2011 Turkmen et al.[32] used the following iterative process to establish
common fixed point results of two asymptotically nonexpansive mappings.

x1 ∈ E,
xn+1 = (1− αn)(PT1)yn + αn(PT2)yn,

yn = (1− βn)xn + βn(PT1)xn, n ≥ 1,

(1.10)

where {αn}∞n=1, {βn}∞n=1 are sequences in [0, 1] satisfying certain conditions.
Inspired by the work mentioned above, Khan et al.[16] generalized the defini-

tion of nonself asymptotically nonexpansive mappings with respect to P to nonself
asymptotically quasi-nonexpansive mappings with respect to P. Thus, a nonself
mapping T : E −→ X is said to be an asymptotically quasi-nonexpansive with
respect to P if F (T) ̸= ∅ and there exists a sequence {an}∞n=1 ⊂ [1,∞) with
lim

n−→∞
an = 1 such that

∥(PT)nx− p∥ ≤ an∥x− p∥, ∀x ∈ E, n ≥ 1. (1.11)

Khan et al.[16] introduced the following iterative process. Let E be a nonempty
closed convex subset of a real normed linear space X with retraction P. Let
T1,T2 : E −→ X be two nonself asymptotically quasi-nonexpansive mappings with
respect to P. Their iterative scheme reads as follows:

x1 ∈ E,
xn+1 = (1− αn)(PT1)

nxn + αn(PT2)
nyn,

yn = (1− βn)xn + βn(PTn
1 )xn, n ≥ 1,

(1.12)

where {αn}∞n=1, {βn}∞n=1 are sequences in [0, 1).
Khan et al.[16] obtained strong convergence theorems for two asymptotically

quasi-nonexpansive mappings using a general and independent two-step iterative
process (1.12) assuming compactness of only one of the two mappings in smooth
Banach space. They also proved a weak convergence result under Opial’s condition.

Question: Can we can extend and improve those results in [16] from a uniformly
convex and smooth Banach space to a more general set up of a uniformly convex
hyperbolic space? The answer is affirmative.

We recall the following definition.

Definition 1.3. [6] Let (X, d) be a metric space and E be a nonempty subset of X
and T : E −→ E be a self-mapping. Then T is said to be

(i). asymptotically nonexpansive if there exists a sequence {an} ⊂ [1,∞) with
lim

n−→∞
an = 1 such that

d(Tnx,Tny) ≤ and(x, y), ∀x, y ∈ E and ∀n ≥ 1. (1.13)

(ii). asymptotically quasi-nonexpansive if F (T ) ̸= ∅ and there exists a sequence
{an} ⊂ [1,∞) with lim

n−→∞
an = 1 such that

d(Tnx, p) ≤ and(x, p), ∀x, y ∈ E, ∀p ∈ F (T) and ∀n ≥ 1. (1.14)

(ii). uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx,Tny) ≤ Ld(x, y), ∀x, y ∈ E and ∀n ≥ 1. (1.15)

Note that if F (T) is nonempty, then nonexpansive mapping, quasi-nonexpansive
mapping, asymptotically nonexpansive mapping all are the special cases of asymp-
totically quasi-nonexpansive type mappings.
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The purpose of this paper is to extend and improve the results of Khan et al.[16]
from the setting of a real uniformly convex and smooth Banach space to the setting
of a uniformly convex hyperbolic space, a more general setting.

2. Preliminaries

In this section, we recall an important definition of hyperbolic space which will
be crucial for our main results.

Definition 2.1. [18] Let (X, d) is a metric space. A hyperbolic space is a triple
(X, d,W ), where W : X× X× [0, 1] −→ X is such that

(W1). d(W (x, y, α), z) ≤ (1− α)d(z, x) + αd(z, y),
(W2). d(W (x, y, α),W (x, y, β)) = |α− β|d(x, y),
(W3). W (x, y, α) = W (y, x, (1− α)),
(W4). d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w) for all x, y, z, w ∈ X,
where α, β ∈ [0, 1].

It follows from (W1) that, for each x, y ∈ X and α ∈ [0, 1],
d(W (x, y, α), x) ≤ αd(x, y), d(W (x, y, α), y) ≤ (1− α)d(x, y).

A subset E of a hyperbolic space X is convex if W (x, y, α) ∈ E for all x, y ∈ E
and α ∈ [0, 1]. For more detail of convex structure of a metric space, see [27].

We note that the class of hyperbolic spaces also contains Hadamard manifolds [5],
and Cartesian products of Hilbert balls, the Hilbert open unit ball equipped with
the hyperbolic metric[9], as special cases. It is wellknown that spaces like CAT(0)
spaces (in the sense of Gromov) and R-tree (in the sense of Tits) are special cases
of hyperbolic spaces. Some remarkable results in CAT(0) spaces and hyperbolic
spaces in [14, 19, 17, 20, 22, 23, 24, 25, 30, 31] are examples of nonlinear structures
which play a major role in recent research in metric fixed point theory.

A hyperbolic space (X, d,W ) is said to be uniformly convex [27] if for all x, y, u ∈
X, r > 0 and ϵ ∈ (0, 2], there exists a δ ∈ (0, 1]such that

d(x, u) ≤ r
d(y, u) ≤ r
d(x, y) ≥ ϵr

 ⇒ d(W (x, y,
1

2
), u) ≤ (1− δ)r.

A map η : (0,∞) × (0, 2] −→ (0, 1] which gives such a number δ = η(r, ϵ), for a
given r > 0 and ϵ ∈ (0, 2], is called modulus of uniform convexity. The modulus
of uniform convexity η is said to be monotone if it decreases with r (for a fixed ϵ).
A uniformly convex hyperbolic space is strictly convex (see [20]).

For more interesting results on hyperbolic spaces, we refer readers to [13, 20, 21].
The following lemma is essential for our main results.

Lemma 2.2. [13] Let (X, d,W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let u ∈ X and {αn} be a sequence in [b, c]
for some b, c ∈ (0, 1). If {xn} and {yn} are sequences in X such that

lim sup
n−→∞

d(xn, u) ≤ r, lim sup
n−→∞

d(yn, u) ≤ r

and
lim

n−→∞
d(W (xn, yn, αn), u) = r

for some r ≥ 0. Then
lim

n−→∞
d(xn, yn) = 0.
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Recall that a subset E of X is said to be retract if there exists a mapping P : X −→
E which is continuous and such that Px = x for all x ∈ E. A mapping P : X −→ X
is said to be a retraction if P2 = P. Let K and E be subsets of a hyperbolic space
X. A mapping P from K into E is called sunny if P(W (Px, x, α)) = Px for x ∈ K
with W (Px, x, α) ∈ K and α ∈ [0, 1]. Note that, if P is a retraction, then Pz = z
for every z ∈ R(P), the range of P. We note that every closed convex subset of a
uniformly convex hyperbolic space is a retract.

For each x ∈ E, the inward set IE(x) is defined by
IE(x) = {y ∈ X : y = W (x, z, λ), z ∈ E, λ ∈ [0, 1]}.

A mapping T : E −→ X is said to satisfy the inward condition if Tx ∈ IE(x) for
all x ∈ E. T is said to be weakly inward if, for each x ∈ E,Tx ∈ cl[IE(x)], where
cl[IE(x)] is the closure of IE(x).

A Hyperbolic space (X, d,W ) is said to satisfy Opial’s condition if, for any se-
quence {xn} in X, xn ⇀ x (i.e. {xn}∞n=1 converges weakly to x) implies that

lim sup
n−→∞

d(xn, x) < lim sup
n−→∞

d(xn, y),

for all y ∈ X with y ̸= x.
From now on, let T1 and T2 be two maps on E, we denote F (T1) = {x : T1x = x},

F (T2) = {x : T2x = x} the set of fixed point of T1 and T2 respectively, and
F = (F (T1) ∩ F (T2)

)
̸= ∅.

Recall that a sequence {xn} in a metric space X is said to be Fejér monotone
with respect to E (a subset of X) if d(xn+1, x) ≤ d(xn, x) for all x ∈ E and for all
n ≥ 1.

A map T : E −→ E is said to be semi-compact if any bounded sequence {xn}
satisfying d(xn,Txn) −→ 0 as n −→ ∞, has a convergent subsequence.

Let f be a nondecreasing selfmap on [0,∞) with f(0) = 0 and f(t) > 0 for all
t ∈ (0,∞) and let d(x,A) = inf{d(x, y) : y ∈ A}.

Let T1 and T2 be two mappings on E with F ̸= ∅. Then the two mappings are
said to satisfy:

(i). condition (A) on E if
f(d(x,F)) ≤ d(x,T1x) or f(d(x,F)) ≤ d(x,T2x)

for all x ∈ E, holds for at least one Ti, i = 1, 2.
(ii). condition (B) on E if

f(d(x,F)) ≤ 1

2

[
d(x,T1x) + d(x,T2x)

]
holds for all x ∈ E.

Lemma 2.3. [3] Let (X, d) be a complete metric space and E be a nonempty closed
subset of X, and {xn} be Fejér monotone with respect to E. Then {xn} converges
to some p ∈ E if and only if lim

n−→∞
d(xn,E) = 0.

The following lemma is very useful.

Lemma 2.4. [28] Let {an}∞n=1, {bn}∞n=1 and {δn}∞n=1 be sequences of nonnegative
real numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∑∞

n=1 bn < ∞ and
∑∞

n=1 δn < ∞, then
(i). lim

n−→∞
an exists.
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(ii). In particular, if {an}∞n=1 has a subsequence which converges strongly to
zero, then lim

n−→∞
an = 0.

For more details of results obtained by Khan et al. in the context of uniformly
convex and smooth Banach spaces, we refer readers to [16].

Inspired and motivated by the works of Khan et al.[16] and some related results,
we establish common fixed point theorems for two uniformly L-Lipschitzian asymp-
totically quasi-nonexpansive mappings with respect to P in the setting of hyperbolic
space, a more general set up. Our results extend and improve the results obtained
by Khan et al.[16], as well as many related results in CAT(0) spaces and uniformly
Banach spaces.

3. Main Results

Let {a(1)n }∞n=1 ⊂ [1,∞) and {a(2)n }∞n=1 ⊂ [1,∞) be sequences satisfying the
asymptotically quasi-nonexpansive mappings T1 and T2 with

∑∞
n=1(a

(i)
n − 1) <

∞, (i = 1, 2). Let an = max{a(1)n , a
(2)
n }, and throughout this section, we will take

only sequence {an}∞n=1 ⊂ [1,∞) satisfying
∑∞

n=1(an − 1) < ∞.
Let (X, d,W ) be a hyperbolic space and E be a nonempty closed convex subset

of X with retraction P. Let T1,T2 : E −→ X be two non-self asymptotically quasi-
nonexpansive mappings with respect to P. We define the sequence {xn}∞n=1 in a
hyperbolic space as follows:-

x1 ∈ E,
xn+1 = W

(
(PT1)

nxn, (PT2)
nyn, αn

)
,

yn = W
(
xn, (PT1)

nxn, βn

)
, ∀n ≥ 1.

(3.1)

We introduce the following definition.

Definition 3.1. Let (X, d) be a metric space and E be a nonempty subset of X and
T : E −→ X be a nonself mapping with respect to retraction P. Then T said to be:

(i). asymptotically nonexpansive with respect to P if there exists a sequence
{an} ⊂ [1,∞) with lim

n−→∞
an = 1 such that

d((PT)nx, (PT)ny) ≤ and(x, y), ∀x, y ∈ E and ∀ n ≥ 1. (3.2)
(ii). asymptotically quasi-nonexpansive with respect to P if F (T) ̸= ∅ and there

exists a sequence {an} ⊂ [1,∞) with lim
n−→∞

an = 1 such that

d((PT)nx, p) ≤ and(x, p), ∀x, y ∈ E, ∀p ∈ F (T) and ∀n ≥ 1. (3.3)
(ii). uniformly L-Lipschitzian with respect to P if there exists a constant L > 0

such that
d((PT)nx, (PT)ny) ≤ Ld(x, y), ∀x, y ∈ E and ∀n ∈ N. (3.4)

We first prove two technical lemmas.

Lemma 3.2. Let (X, d,W ) be a hyperbolic space with monotone modulus of uni-
form convexity η and E be a nonempty closed convex subset of X which is also
a nonexpansive retract of X. Let F ̸= ∅ and T1,T2 : E −→ X be two uniformly
L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect to P with
sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying

∑∞
n=1(an − 1) < ∞. Suppose

that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and {βn}∞n=1 are sequences in
[a, 1− a] for some a ∈ (0, 1). Then
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(i). lim
n−→∞

d(xn, p) exists, ∀p ∈ F.
(ii). There exists a constant C > 0 such that d(xn+m, p) ≤ Cd(xn, p), ∀m,n ∈ N

and p ∈ F.

Proof. (i). Let p ∈ F. From (3.1), we have
d(yn, p) = d

(
W (xn, (PT1)

nxn, βn), p
)

≤ (1− βn)d(xn, p) + βnd((PT1)
nxn, p)

≤ (1− βn)d(xn, p) + βnand(xn, p)

= (1 + βn(an − 1))d(xn, p)

≤ (1 + (an − 1))d(xn, p)

= and(xn, p).

(3.5)

From (3.1) and (3.5), we have
d(xn+1, p) = d

(
W ((PT1)

nxn, (PT2)
nyn, αn), p

)
≤ (1− αn)d((PT1)

nxn, p) + αnd((PT2)
nyn, p)

≤ (1− αn)and(xn, p) + αnand(yn, p)

≤ (1− αn)and(xn, p) + αna
2
nd(xn, p)

= (1 + αnan(an − 1))d(xn, p)

≤ (1 + an(an − 1))d(xn, p)

≤ (1 + (a2n − 1))d(xn, p).

(3.6)

Note that
∑∞

n=1(an − 1) < ∞. This implies
∑∞

n=1(a
2
n − 1) < ∞. Thus, by Lemma

2.4, lim
n−→∞

d(xn, p) exists, ∀p ∈ F.
(ii). From (3.6), we have

d(xn+1, p) ≤ (1 + (a2n − 1))d(xn, p). (3.7)
We know that 1 + x ≤ ex for all x ≥ 0. Using it for the above inequality (3.7), we
have

d(xn+m, p) ≤ (1 + (a2n+m−1 − 1))d(xn+m−1, p)

≤ ea
2
n+m−1−1d(xn+m−1, p)

≤ [ea
2
n+m−1−1]

(
1 + (a2n+m−2 − 1)

)
d(xn+m−2, p)

≤ [e(a
2
n+m−1−1+a2

n+m−2−1)]d(xn+m−2, p)

...

≤ [e
∑n+m−1

j=n (a2
j−1)]d(xn, p)

= Cd(xn, p),

(3.8)

where C = e
∑n+m−1

j=n (a2
j−1). That is, d(xn+m, p) ≤ Cd(xn, p) for all n,m ∈ N and

p ∈ F. □

Lemma 3.3. Let (X, d,W ) be a hyperbolic space with monotone modulus of uni-
form convexity η and E be a nonempty closed convex subset of X which is also
a nonexpansive retract of X. Let F ̸= ∅ and T1,T2 : E −→ X be two uniformly
L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect to P with
sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying

∑∞
n=1(an − 1) < ∞. Suppose
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that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and {βn}∞n=1 are sequences in
[a, 1− a] for some a ∈ (0, 1). Then

lim
n−→∞

d(xn, (PT1)
nxn) = 0 = lim

n−→∞
d(xn, (PT2)

nxn)

and also
lim

n−→∞
d(xn, (PT1)xn) = 0 = lim

n−→∞
d(xn, (PT2)xn).

Proof. By Lemma 3.2, lim
n−→∞

d(xn, p) exists. Assume that lim
n−→∞

d(xn, p) = ζ. Tak-
ing lim sup on both sides in the inequality (3.5), we obtain

lim sup
n−→∞

d(yn, p) ≤ lim sup
n−→∞

d(xn, p) = ζ. (3.9)

Next, d((PT1)
nxn, p) ≤ and(xn, p) for all n ∈ N implies that

lim sup
n−→∞

d((PT1)
nxn, p) ≤ ζ. (3.10)

Also, by (3.9) we get

lim sup
n−→∞

d((PT2)
nyn, p) ≤ lim sup

n−→∞
d(yn, p) ≤ ζ. (3.11)

Moreover, from (3.6) we have

lim
n−→∞

d(xn+1, p) = lim
n−→∞

d
(
W ((PT1)

nxn, (PT2)
nyn, αn), p

)
= ζ. (3.12)

From (3.10), (3.11), (3.12), and Lemma 2.2, we have

lim
n−→∞

d((PT1)
nxn, (PT2)

nyn) = 0. (3.13)

Observe that
d(xn+1, p) = d

(
W ((PT1)

nxn, (PT2)
nyn, αn), p

)
≤ (1− αn)d((PT1)

nxn, p) + αnd((PT2)
nyn, p)

≤ (1− αn)d((PT1)
nxn, p) + αn[d

(
(PT2)

nyn, (PT1)
nxn

)
+ d((PT1)

n)xn, p)].

Taking the limit inf. as n −→ ∞ in the above inequality, and applying (3.13) we
get

ζ ≤ lim inf
n−→∞

d((PT1)
nxn, p). (3.14)

From (3.10) and (3.14), we get

lim
n−→∞

d((PT1)
nxn, p) = ζ.

Furthermore,

d
(
(PT1)

nxn, p
)
≤ d

(
PT1)

nxn, (PT2)
nyn

)
+ d((PT2)

nyn, p)

≤ d
(
PT1)

nxn, (PT2)
nyn

)
+ and(yn, p).

(3.15)

This implies
ζ ≤ lim inf

n−→∞
d(yn, p). (3.16)

By (3.9) and (3.16), we obtain

lim
n−→∞

d(yn, p) = ζ. (3.17)
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Therefore,
ζ = lim

n−→∞
d(yn, p) = lim

n−→∞
d
(
W (xn, (PT1)

nxn, βn), p
)

≤ lim
n−→∞

{(1− βn)d(xn, p) + βnand(xn, p)}

= lim
n−→∞

[1 + βn(an − 1)]d(xn, p)

≤ lim
n−→∞

d(xn, p) = ζ.

(3.18)

That is,
lim

n−→∞
d(W (xn, (PT1)

nxn, βn), p) = ζ. (3.19)

We know that lim supn−→∞ d(xn, p) ≤ ζ, together with (3.10), (3.19) and Lemma
2.2, we obtain

lim
n−→∞

d((PT1)
nxn, xn) = 0. (∗) (3.20)

In addition, we have
lim

n−→∞
d(yn, xn) = lim

n−→∞
d
(
W (xn, (PT1)

nxn, βn), xn

)
≤ lim

n−→∞
[βnd((PT1)

nxn, , xn)].
(3.21)

Hence, by (3.20) we get
lim

n−→∞
d(yn, xn) = 0. (3.22)

Also
d((PT2)

nyn, xn) ≤ d
(
(PT2)

nyn, (PT1)
nxn

)
+ d((PT1)

nxn, xn)

which implies, by (3.13) and (3.20), that
lim

n−→∞
d((PT2)

nyn, xn) = 0. (3.23)

And, from (3.22) and (3.23) we have
d
(
(PT2)

nxn, xn

)
≤ d

(
(PT2)

nxn, (PT2)
nyn

)
+ d((PT2)

nyn, xn)

≤ Ld(xn, yn) + d((PT2)
nyn, xn) −→ 0, as n −→ ∞.

(3.24)

That is,
lim

n−→∞
d((PT2)

nxn, xn) = 0. (∗) (3.25)

Using (3.20) and (3.23), we obtain that
d(xn+1, xn) = d((PT1)

nxn, (PT2)
nyn, αn), xn)

≤ (1− αn)d((PT1)
nxn, xn) + αnd((PT2)

nyn, xn)

−→ 0, as n −→ ∞.

(3.26)

Therefore, by (3.22) and (3.26) we obtain
d(xn+1, yn) ≤ d(xn+1, xn) + d(xn, yn)

−→ 0, as n −→ ∞.
(3.27)

Consider
d(xn+1, (PT1)

nyn) ≤ d(xn+1, xn) + d(xn, (PT1)
nxn)

+ d((PT1)
nxn, (PT1)

nyn)

≤ d(xn+1, xn) + d(xn, (PT1)
n)xn)

+ Ld(xn, yn).

(3.28)

This implies, by (3.20), (3.22) and (3.26), that
lim

n−→∞
d(xn+1, (PT1)

nyn) = 0. (3.29)
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Next, consider
d(xn, (PT1)xn) ≤ d(xn, (PT1)

nxn) + d
(
(PT1)

nxn, (PT1)
nyn−1

)
+ d

(
(PT1)

nyn−1, (PT1)xn

)
≤ d

(
xn, (PT1)

nxn

)
+ Ld(xn, yn−1)

+ Ld
(
(PT1)

n−1yn−1, xn

)
.

(3.30)

Using (3.20), (3.27) and (3.29), we obtain
lim

n−→∞
d(xn, (PT1)xn) = 0. (∗∗)

Now,
d(xn+1, (PT2)

nxn) ≤ d(xn+1, xn) + d(xn, (PT2)
nxn). (3.31)

This implies, by (3.25), (3.26) that
lim

n−→∞
d(xn+1, (PT2)

nxn) = 0. (3.32)

Next, we consider
d
(
xn+1, (PT2)xn+1

)
≤ d

(
xn+1, (PT2)

n+1xn+1

)
+ d

(
(PT2)

n+1xn+1, (PT2)
n+1xn

)
+ d

(
(PT2)

n+1xn, (PT2)xn+1)
)

≤ d
(
xn+1, (PT2)

n+1xn+1

)
+ Ld(xn+1, xn)

+ Ld((PT2)
nxn, xn+1))

(3.33)

Again, this implies, by (3.25), (3.26) and (3.32), that
lim

n−→∞
d(xn, (PT2)xn) = 0. (∗∗)

Our proof is finished. □

Theorem 3.4. Let (X, d,W ) be a uniformly convex hyperbolic space. Let E be a
nonempty closed convex subset of of X with monotone modulus of uniform convexity
η and P as a sunny nonexpansive retraction. Let F ̸= ∅ and T1,T2 : E −→ X be two
uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect
to P with sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying

∑∞
n=1(an − 1) < ∞.

Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and {βn}∞n=1 are sequences
in [a, 1− a] for some a ∈ (0, 1). If T1 and T2 are weakly inward and one of T1 and
T2 is compact, then {xn}∞n=1 converges strongly to a common fixed point of T1 and
T2.

Proof. By Lemma 3.2, lim
n−→∞

d(xn, p) exists for any p ∈ F. It is sufficient to show
that {xn}∞n=1 has a subsequence which converges strongly to a common fixed point
of T1 and T2. By Lemma 3.3, lim

n−→∞
d(xn, (PT1)xn) = 0 = lim

n−→∞
d(xn, (PT2)xn).

Suppose that T1 is compact. Since P is nonexpansive, there exists a subsequence
{(PT1)xnj

} of {(PT1)xn} such that (PT1)xnj
−→ p. Thus

d(xnj
, p) ≤ d

(
xnj

, (PT1)xnj

)
+ d

(
(PT1)xnj

, p
)
−→ 0, as j −→ ∞.

This means xnj
−→ p as j −→ ∞. Again lim

j−→∞
d
(
xnj

, (PT1)xnj

)
= 0 yields by

continuity of P and T1 that p = (PT1)p. Similarly, p = (PT2)p. Noting that
F (PT) = F (T). Therefore p = F (T1) = F (T2), and so p ∈ F. Thus {xn}∞n=1

converges strongly to a common fixed point p of T1 and T2. □
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Corollary 3.5. Let X be a complete CAT(0) space and E be a nonempty closed
convex subset of of X with P as a sunny nonexpansive retraction. Let F ̸= ∅ and
T1,T2 : E −→ X be two uniformly L-Lipschitzian asymptotically quasi-nonexpansive
mappings with respect to P with sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying∑∞

n=1(an − 1) < ∞. Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and
{βn}∞n=1 are sequences in [a, 1 − a] for some a ∈ (0, 1). If T1 and T2 are weakly
inward and one of T1 and T2 is compact, then {xn}∞n=1 converges strongly to a
common fixed point of T1 and T2.

Theorem 3.6. Let (X, d,W ) be a uniformly convex hyperbolic space. Let E be a
nonempty closed convex subset of of X with monotone modulus of uniform convexity
η and P as a sunny nonexpansive retraction. Let F ̸= ∅ and T1,T2 : E −→ X be two
uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect
to P with sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying

∑∞
n=1(an − 1) < ∞.

Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and {βn}∞n=1 are sequences
in [a, 1−a] for some a ∈ (0, 1). If T1 and T2 are weakly inward and satisfy condition
(B), then {xn}∞n=1 converges strongly to a common fixed point of T1 and T2..

Proof. By Lemma 3.2 lim
n−→∞

d(xn, p) exists and so lim
n−→∞

d(xn,F) exists for all p ∈ F.
Again, by Lemma 3.3, lim

n−→∞
d(xn, (PT1)xn) = 0 = lim

n−→∞
d(xn, (PT2)xn). It follows

from condition (B) and Lemma 3.3 that

lim
n−→∞

f(d(xn,F)) ≤ lim
n−→∞

(1
2
[d(xn, (PT1)xn)) + d(xn, (PT2)xn)]

)
= 0.

That is,
lim

n−→∞
f(d(xn,F)) = 0.

Since f is nondecreasing with f(0) = 0, it follows that lim
n−→∞

d(xn,F) = 0.

Next, we show that xn is a Cauchy sequence. Let ϵ > 0. Since lim
n−→∞

d(xn,F) = 0,
there exists a positive number n0 such that for all n ≥ n0, we have

d(xn,F) <
ϵ

2C
,

where C > 0 is the constant in Lemma 3.2(ii). So we can find p′ ∈ F such that

d(xn, p
′) <

ϵ

2C
.

Using Lemma 3.2(ii), we have for all n ≥ n0 and m ∈ N that
d(xn+m, xn) ≤ d(xn+m, p′) + d(p′, xn)

≤ Cd(xn, p
′) + d(xn, p

′)

≤ Cd(xn, p
′) + Cd(xn, p

′)

= 2Cd(xn, p
′) < ϵ.

(3.34)

Hence, {xn} is a Cauchy sequence in a closed convex subset E of a hyperbolic
space X, therefore, it must converge to a point in E. Let lim

n−→∞
xn = q. Now,

lim
n−→∞

d(xn,F) = 0 yields that d(q,F) = 0. Since the set of fixed points of asymp-
totically quasi-nonexpansive mappings is closed, we have q ∈ F. □

Corollary 3.7. Let X be a complete CAT(0) space and E be a nonempty closed
convex subset of of X with P as a sunny nonexpansive retraction. Let F ̸= ∅ and
T1,T2 : E −→ X be two uniformly L-Lipschitzian asymptotically quasi-nonexpansive
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mappings with respect to P with sequence {an}∞n=1 ⊂ [1,∞), lim
n−→∞

an = 1 satisfying∑∞
n=1(an − 1) < ∞. Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and

{βn}∞n=1 are sequences in [a, 1 − a] for some a ∈ (0, 1). If T1 and T2 are weakly
inward and satisfy condition (B), then {xn}∞n=1 converges strongly to a common
fixed point of T1 and T2.

We shall use condition (A) to prove strong convergence of the algorithm (3.1).
Before that, we prove the following technical lemma.

Lemma 3.8. Let (X, d,W ) be a uniformly convex hyperbolic space. Let E be a
nonempty closed convex subset of of X with monotone modulus of uniform convexity
η and P as a sunny nonexpansive retraction. Let F ̸= ∅ and T1,T2 : E −→ X be two
uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect
to P with sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying

∑∞
n=1(an − 1) < ∞.

Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and {βn}∞n=1 are sequences
in [a, 1 − a] for some a ∈ (0, 1). If T1 and T2 are weakly inward and satisfy
condition (A). Then the sequence {xn} converges strongly to p ∈ F if and only if
lim

n−→∞
d(xn,F) = 0.

Proof. We know from Lemma 3.2 that d(xn+1, p) ≤ d(xn, p). It follows that {xn}
is Fejér monotone with respect to F and lim

n−→∞
d(xn,F) exists. Hence, the result

follows from Lemma 2.3. □

Applying Lemma 3.8, we obtain following strong convergence theorem.

Theorem 3.9. Let (X, d,W ) be a uniformly convex hyperbolic space. Let E be a
nonempty closed convex subset of of X with monotone modulus of uniform convexity
η and P as a sunny nonexpansive retraction. Let F ̸= ∅ and T1,T2 : E −→ X be two
uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect
to P with sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying

∑∞
n=1(an − 1) < ∞.

Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and {βn}∞n=1 are sequences
in [a, 1−a] for some a ∈ (0, 1). If T1 and T2 are weakly inward and satisfy condition
(A), then {xn}∞n=1 converges strongly to a common fixed point of T1 and T2.

Proof. It follows from Lemma 3.2 that lim
n−→∞

d(xn,F) exists. Moreover, by Lemma
3.3 we have that lim

n−→∞
d(xn, (PT1)xn) = lim

n−→∞
d(xn, (PT2)xn) = 0. Applying

condition (A), we obtain
lim

n−→∞
f(d(xn,F)) = 0.

Since f is nondecreasing with f(0) = 0, it follows that lim
n−→∞

d(xn,F) = 0. Therefore,
Lemma 3.8 implies that {xn} converges strongly to a point p ∈ F. □

Corollary 3.10. Let X be a complete CAT(0) space and E be a nonempty closed
convex subset of of X with P as a sunny nonexpansive retraction. Let F ̸= ∅ and
T1,T2 : E −→ X be two uniformly L-Lipschitzian asymptotically quasi-nonexpansive
mappings with respect to P with sequence {an}∞n=1 ⊂ [1,∞), lim

n−→∞
an = 1 satisfying∑∞

n=1(an − 1) < ∞. Suppose that {xn}∞n=1 is defined by (3.1), where {αn}∞n=1 and
{βn}∞n=1 are sequences in [a, 1 − a] for some a ∈ (0, 1). If T1 and T2 are weakly
inward and satisfy condition (A), then {xn}∞n=1 converges strongly to a common
fixed point of T1 and T2.
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4. Conclusion

In this manuscript, we have established new common fixed point results for two
uniformly L-Lipschitzian asymptotically quasi-nonexpansive mappings with respect
to P and two weakly inward and asymptotically quasi-nonexpansive mappings with
respect to P satisfying condition (A) and condition (B), in a more general set up of
hyperbolic space. Our results signifigantly extend and improve the results obtained
by Khan et al.[16], as well as many related results in CAT(0) spaces and uniformly
Banach spaces. As consequences of our main results, we obtain the corresponding
corollaries which are valid in CAT(0) spaces.
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