

ON SOME COMMON FIXED POINT RESULTS IN HYPERBOLIC SPACES

BURASKORN NUNTADILOK¹ AND PITCHAYA KINGKAMR^{2*}

¹ Department of Mathematics, Faculty of Sciences, Maejo University, Chiangmai, Thailand

² Department of Mathematics, Faculty of Sciences, Lampang Rajabhat University, Lampang, Thailand

ABSTRACT. The aim of this manuscript is to establish a common fixed point theorem for two uniformly L -Lipschitzian and asymptotically quasi-nonexpansive non-self maps with respect to retraction \mathcal{P} via implicit algorithm and to prove common fixed point results of two weakly inward and asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} satisfying condition (\mathcal{A}) and condition (\mathcal{B}) , in a more general set up of hyperbolic space. Our results generalize, extend and improve some related results in the existing literature.

KEYWORDS: common fixed point, asymptotically quasi-nonexpansive mapping, Banach space, CAT(0) space, hyperbolic space.

AMS Subject Classification: 47H10; 54H25.

1. INTRODUCTION

Let $(\mathbb{X}, \|\cdot\|)$ be a real **normed linear space**, and let \mathbb{E} be a nonempty closed convex subset of \mathbb{X} . Let $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{E}$ be a self-mapping. Let $F(\mathbb{T})$ denote the set of fixed points of \mathbb{T} , that is, $F(\mathbb{T}) = \{x \in \mathbb{E} : \mathbb{T}x = x\}$. A self-mapping $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{E}$ is said to be

(1). asymptotically nonexpansive [8] if there exists a sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ and such that

$$\|\mathbb{T}^n x - \mathbb{T}^n y\| \leq a_n \|x - y\|, \forall x, y \in \mathbb{E}, n \geq 1. \quad (1.1)$$

(2). asymptotically quasi-nonexpansive if $F(\mathbb{T}) \neq \emptyset$ and there exists a sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ and such that

$$\|\mathbb{T}^n x - p\| \leq a_n \|x - p\|, \forall x \in \mathbb{E}, p \in F(\mathbb{T}) \text{ and } n \geq 1. \quad (1.2)$$

* Corresponding author.
Email address : orburaskn@mju.ac.th, pitchaya@g.lpru.ac.th.
Article history : Received 07/01/2025 Accepted 31/05/2025.

(3). uniformly L -Lipschitzian if there exists constant $L \geq 0$ such that

$$\|\mathbb{T}^n x - \mathbb{T}^n y\| \leq L\|x - y\|, \forall x, y \in \mathbb{E}, n \geq 1. \quad (1.3)$$

Note that an asymptotically nonexpansive mapping must be uniformly L -Lipschitzian as well as asymptotically quasi-nonexpansive but the converse does not hold true in general.

In 2003, Chidume *et al.*[7] introduced the notion of asymptotically nonexpansive non-self mappings as a generalization of asymptotically nonexpansive self-mappings as follows.

Definition 1.1. [7] Let \mathbb{E} be a nonempty subset of real normed linear space \mathbb{X} . Let $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{X}$ be a nonself mapping and $\mathcal{P} : \mathbb{X} \rightarrow \mathbb{E}$ be the nonexpansive retraction of \mathbb{X} into \mathbb{E} . \mathbb{T} is said to be

(1). asymptotically nonexpansive if there exists a sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ and such that

$$\|\mathbb{T}(\mathcal{P}\mathbb{T})^{n-1} x - \mathbb{T}(\mathcal{P}\mathbb{T})^{n-1} y\| \leq a_n\|x - y\|, \forall x, y \in \mathbb{E}, n \geq 1. \quad (1.4)$$

(2). uniformly L -Lipschitzian if there exists constant $L \geq 0$ such that

$$\|\mathbb{T}(\mathcal{P}\mathbb{T})^{n-1} x - \mathbb{T}(\mathcal{P}\mathbb{T})^{n-1} y\| \leq L\|x - y\|, \forall x, y \in \mathbb{E}, n \geq 1. \quad (1.5)$$

Chidume *et al.*[7] established a demiclosed principle, weak and strong convergence results for such mappings in a uniformly convex Banach space via the following algorithm:

$$x_1 \in \mathbb{E}, x_{n+1} = \mathcal{P}((1 - \alpha_n)x_n + \alpha_n \mathbb{T}(\mathcal{P}\mathbb{T})^{n-1} x_n), n \geq 1.$$

After Chidume *et al.*[7], a number of authors have studied the weak and strong convergence for such mappings (see [10, 11, 15, 12, 26, 29, 33] for examples).

Later, in 2007 Zhou *et al.*[34] introduced the following generalized definition.

Definition 1.2. [34] Let \mathbb{E} be a nonempty subset of real normed linear space \mathbb{X} . Let $\mathcal{P} : \mathbb{X} \rightarrow \mathbb{E}$ be the nonexpansive retraction of \mathbb{X} into \mathbb{E} . A nonself mapping $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{X}$ is said to be

(1). asymptotically nonexpansive with respect to \mathcal{P} if there exists a sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ and such that

$$\|(\mathcal{P}\mathbb{T})^n x - (\mathcal{P}\mathbb{T})^n y\| \leq a_n\|x - y\|, \forall x, y \in \mathbb{E}, n \geq 1. \quad (1.6)$$

(2). uniformly L -Lipschitzian with respect to \mathcal{P} if there exists constant $L \geq 0$ such that

$$\|(\mathcal{P}\mathbb{T})^n x - (\mathcal{P}\mathbb{T})^n y\| \leq L\|x - y\|, \forall x, y \in \mathbb{E}, n \geq 1. \quad (1.7)$$

Zhou *et al.* [34] introduced the following iterative process,

$$x_1 \in \mathbb{E}, x_{n+1} = \alpha_n x_n + \beta_n (\mathcal{P}\mathbb{T}_1)x_n + \gamma_n (\mathcal{P}\mathbb{T}_2)x_n, n \geq 1, \quad (1.8)$$

where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are three sequences in $[a, 1 - a]$ for some $a \in (0, 1)$, satisfying $\alpha_n + \beta_n + \gamma_n = 1$. And, they established some strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings with respect to \mathcal{P} in uniformly convex Banach spaces.

In 2007, Agarwal *et al.*[2] introduced the iterative algorithm:

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n)\mathbb{T}^n x_n + \alpha_n \mathbb{T}^n y_n, \\ y_n &= (1 - \beta_n)x_n + \beta_n \mathbb{T}^n x_n, n \geq 1. \end{aligned} \quad (1.9)$$

Later, in 2011 Turkmen *et al.*[32] used the following iterative process to establish common fixed point results of two asymptotically nonexpansive mappings.

$$\begin{aligned} x_1 &\in \mathbb{E}, \\ x_{n+1} &= (1 - \alpha_n)(\mathcal{P}\mathbb{T}_1)y_n + \alpha_n(\mathcal{P}\mathbb{T}_2)y_n, \\ y_n &= (1 - \beta_n)x_n + \beta_n(\mathcal{P}\mathbb{T}_1)x_n, \quad n \geq 1, \end{aligned} \quad (1.10)$$

where $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ are sequences in $[0, 1]$ satisfying certain conditions.

Inspired by the work mentioned above, Khan *et al.*[16] generalized the definition of nonself asymptotically nonexpansive mappings with respect to \mathcal{P} to nonself asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} . Thus, a nonself mapping $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{X}$ is said to be an asymptotically quasi-nonexpansive with respect to \mathcal{P} if $F(\mathbb{T}) \neq \emptyset$ and there exists a sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ such that

$$\|(\mathcal{P}\mathbb{T})^n x - p\| \leq a_n \|x - p\|, \quad \forall x \in \mathbb{E}, \quad n \geq 1. \quad (1.11)$$

Khan *et al.*[16] introduced the following iterative process. Let \mathbb{E} be a nonempty closed convex subset of a real **normed linear space** \mathbb{X} with retraction \mathcal{P} . Let $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two nonself asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} . Their iterative scheme reads as follows:

$$\begin{aligned} x_1 &\in \mathbb{E}, \\ x_{n+1} &= (1 - \alpha_n)(\mathcal{P}\mathbb{T}_1)^n x_n + \alpha_n(\mathcal{P}\mathbb{T}_2)^n y_n, \\ y_n &= (1 - \beta_n)x_n + \beta_n(\mathcal{P}\mathbb{T}_1^n)x_n, \quad n \geq 1, \end{aligned} \quad (1.12)$$

where $\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty}$ are sequences in $[0, 1]$.

Khan *et al.*[16] obtained strong convergence theorems for two asymptotically quasi-nonexpansive mappings using a general and independent two-step iterative process (1.12) assuming compactness of only one of the two mappings in smooth Banach space. They also proved a weak convergence result under Opial's condition.

Question: Can we can extend and improve those results in [16] from a uniformly convex and smooth Banach space to a more general set up of a uniformly convex hyperbolic space? The answer is affirmative.

We recall the following definition.

Definition 1.3. [6] Let $(\mathbb{X}, \mathfrak{d})$ be a metric space and \mathbb{E} be a nonempty subset of \mathbb{X} and $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{E}$ be a self-mapping. Then \mathbb{T} is said to be

(i). asymptotically nonexpansive if there exists a sequence $\{a_n\} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ such that

$$\mathfrak{d}(\mathbb{T}^n x, \mathbb{T}^n y) \leq a_n \mathfrak{d}(x, y), \quad \forall x, y \in \mathbb{E} \text{ and } \forall n \geq 1. \quad (1.13)$$

(ii). asymptotically quasi-nonexpansive if $F(\mathbb{T}) \neq \emptyset$ and there exists a sequence $\{a_n\} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ such that

$$\mathfrak{d}(\mathbb{T}^n x, p) \leq a_n \mathfrak{d}(x, p), \quad \forall x, y \in \mathbb{E}, \quad \forall p \in F(\mathbb{T}) \text{ and } \forall n \geq 1. \quad (1.14)$$

(ii). uniformly L -Lipschitzian if there exists a constant $L > 0$ such that

$$\mathfrak{d}(\mathbb{T}^n x, \mathbb{T}^n y) \leq L \mathfrak{d}(x, y), \quad \forall x, y \in \mathbb{E} \text{ and } \forall n \geq 1. \quad (1.15)$$

Note that if $F(\mathbb{T})$ is nonempty, then nonexpansive mapping, quasi-nonexpansive mapping, asymptotically nonexpansive mapping all are the special cases of asymptotically quasi-nonexpansive type mappings.

The purpose of this paper is to extend and improve the results of Khan *et al.*[16] from the setting of a real uniformly convex and smooth Banach space to the setting of a uniformly convex hyperbolic space, a more general setting.

2. PRELIMINARIES

In this section, we recall an important definition of hyperbolic space which will be crucial for our main results.

Definition 2.1. [18] Let $(\mathbb{X}, \mathfrak{d})$ is a metric space. A hyperbolic space is a triple $(\mathbb{X}, \mathfrak{d}, W)$, where $W : \mathbb{X} \times \mathbb{X} \times [0, 1] \rightarrow \mathbb{X}$ is such that

- (W1). $\mathfrak{d}(W(x, y, \alpha), z) \leq (1 - \alpha)\mathfrak{d}(z, x) + \alpha\mathfrak{d}(z, y)$,
- (W2). $\mathfrak{d}(W(x, y, \alpha), W(x, y, \beta)) = |\alpha - \beta|\mathfrak{d}(x, y)$,
- (W3). $W(x, y, \alpha) = W(y, x, (1 - \alpha))$,
- (W4). $\mathfrak{d}(W(x, z, \alpha), W(y, w, \alpha)) \leq (1 - \alpha)\mathfrak{d}(x, y) + \alpha\mathfrak{d}(z, w)$ for all $x, y, z, w \in \mathbb{X}$, where $\alpha, \beta \in [0, 1]$.

It follows from (W1) that, for each $x, y \in \mathbb{X}$ and $\alpha \in [0, 1]$,

$$\mathfrak{d}(W(x, y, \alpha), x) \leq \alpha\mathfrak{d}(x, y), \quad \mathfrak{d}(W(x, y, \alpha), y) \leq (1 - \alpha)\mathfrak{d}(x, y).$$

A subset \mathbb{E} of a hyperbolic space \mathbb{X} is convex if $W(x, y, \alpha) \in \mathbb{E}$ for all $x, y \in \mathbb{E}$ and $\alpha \in [0, 1]$. For more detail of convex structure of a metric space, see [27].

We note that the class of hyperbolic spaces also contains Hadamard manifolds [5], and Cartesian products of Hilbert balls, the Hilbert open unit ball equipped with the hyperbolic metric[9], as special cases. It is wellknown that spaces like CAT(0) spaces (in the sense of Gromov) and R -tree (in the sense of Tits) are special cases of hyperbolic spaces. Some remarkable results in CAT(0) spaces and hyperbolic spaces in [14, 19, 17, 20, 22, 23, 24, 25, 30, 31] are examples of nonlinear structures which play a major role in recent research in metric fixed point theory.

A hyperbolic space $(\mathbb{X}, \mathfrak{d}, W)$ is said to be uniformly convex [27] if for all $x, y, u \in \mathbb{X}, r > 0$ and $\epsilon \in (0, 2]$, there exists a $\delta \in (0, 1]$ such that

$$\left. \begin{array}{l} \mathfrak{d}(x, u) \leq r \\ \mathfrak{d}(y, u) \leq r \\ \mathfrak{d}(x, y) \geq \epsilon r \end{array} \right\} \Rightarrow \mathfrak{d}(W(x, y, \frac{1}{2}), u) \leq (1 - \delta)r.$$

A map $\eta : (0, \infty) \times (0, 2] \rightarrow (0, 1]$ which gives such a number $\delta = \eta(r, \epsilon)$, for a given $r > 0$ and $\epsilon \in (0, 2]$, is called **modulus of uniform convexity**. The modulus of uniform convexity η is said to be monotone if it decreases with r (for a fixed ϵ). A uniformly convex hyperbolic space is strictly convex (see [20]).

For more interesting results on hyperbolic spaces, we refer readers to [13, 20, 21]. The following lemma is essential for our main results.

Lemma 2.2. [13] Let $(\mathbb{X}, \mathfrak{d}, W)$ be a uniformly convex hyperbolic space with monotone modulus of uniform convexity η . Let $u \in \mathbb{X}$ and $\{\alpha_n\}$ be a sequence in $[b, c]$ for some $b, c \in (0, 1)$. If $\{x_n\}$ and $\{y_n\}$ are sequences in \mathbb{X} such that

$$\limsup_{n \rightarrow \infty} \mathfrak{d}(x_n, u) \leq r, \quad \limsup_{n \rightarrow \infty} \mathfrak{d}(y_n, u) \leq r$$

and

$$\lim_{n \rightarrow \infty} \mathfrak{d}(W(x_n, y_n, \alpha_n), u) = r$$

for some $r \geq 0$. Then

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, y_n) = 0.$$

Recall that a subset \mathbb{E} of \mathbb{X} is said to be retract if there exists a mapping $\mathcal{P} : \mathbb{X} \rightarrow \mathbb{E}$ which is continuous and such that $\mathcal{P}x = x$ for all $x \in \mathbb{E}$. A mapping $\mathcal{P} : \mathbb{X} \rightarrow \mathbb{X}$ is said to be a retraction if $\mathcal{P}^2 = \mathcal{P}$. Let \mathbb{K} and \mathbb{E} be subsets of a hyperbolic space \mathbb{X} . A mapping \mathcal{P} from \mathbb{K} into \mathbb{E} is called sunny if $\mathcal{P}(W(\mathcal{P}x, x, \alpha)) = \mathcal{P}x$ for $x \in \mathbb{K}$ with $W(\mathcal{P}x, x, \alpha) \in \mathbb{K}$ and $\alpha \in [0, 1]$. Note that, if \mathcal{P} is a retraction, then $\mathcal{P}z = z$ for every $z \in R(\mathcal{P})$, the range of \mathcal{P} . We note that every closed convex subset of a uniformly convex hyperbolic space is a retract.

For each $x \in \mathbb{E}$, the **inward set** $I_{\mathbb{E}}(x)$ is defined by

$$I_{\mathbb{E}}(x) = \{y \in \mathbb{X} : y = W(x, z, \lambda), z \in \mathbb{E}, \lambda \in [0, 1]\}.$$

A mapping $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{X}$ is said to satisfy the **inward condition** if $\mathbb{T}x \in I_{\mathbb{E}}(x)$ for all $x \in \mathbb{E}$. \mathbb{T} is said to be weakly inward if, for each $x \in \mathbb{E}$, $\mathbb{T}x \in cl[I_{\mathbb{E}}(x)]$, where $cl[I_{\mathbb{E}}(x)]$ is the closure of $I_{\mathbb{E}}(x)$.

A Hyperbolic space $(\mathbb{X}, \mathfrak{d}, W)$ is said to satisfy Opial's condition if, for any sequence $\{x_n\}$ in \mathbb{X} , $x_n \rightharpoonup x$ (i.e. $\{x_n\}_{n=1}^{\infty}$ converges weakly to x) implies that

$$\limsup_{n \rightarrow \infty} \mathfrak{d}(x_n, x) < \limsup_{n \rightarrow \infty} \mathfrak{d}(x_n, y),$$

for all $y \in \mathbb{X}$ with $y \neq x$.

From now on, let \mathbb{T}_1 and \mathbb{T}_2 be two maps on \mathbb{E} , we denote $F(\mathbb{T}_1) = \{x : \mathbb{T}_1x = x\}$, $F(\mathbb{T}_2) = \{x : \mathbb{T}_2x = x\}$ the set of fixed point of \mathbb{T}_1 and \mathbb{T}_2 respectively, and $\mathbb{F} = (F(\mathbb{T}_1) \cap F(\mathbb{T}_2)) \neq \emptyset$.

Recall that a sequence $\{x_n\}$ in a metric space \mathbb{X} is said to be **Fejér monotone** with respect to \mathbb{E} (a subset of \mathbb{X}) if $\mathfrak{d}(x_{n+1}, x) \leq \mathfrak{d}(x_n, x)$ for all $x \in \mathbb{E}$ and for all $n \geq 1$.

A map $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{E}$ is said to be **semi-compact** if any bounded sequence $\{x_n\}$ satisfying $\mathfrak{d}(x_n, \mathbb{T}x_n) \rightarrow 0$ as $n \rightarrow \infty$, has a convergent subsequence.

Let f be a nondecreasing selfmap on $[0, \infty)$ with $f(0) = 0$ and $f(t) > 0$ for all $t \in (0, \infty)$ and let $\mathfrak{d}(x, A) = \inf\{\mathfrak{d}(x, y) : y \in A\}$.

Let \mathbb{T}_1 and \mathbb{T}_2 be two mappings on \mathbb{E} with $\mathbb{F} \neq \emptyset$. Then the two mappings are said to satisfy:

(i). **condition (A)** on \mathbb{E} if

$$f(\mathfrak{d}(x, \mathbb{F})) \leq \mathfrak{d}(x, \mathbb{T}_1x) \text{ or } f(\mathfrak{d}(x, \mathbb{F})) \leq \mathfrak{d}(x, \mathbb{T}_2x)$$

for all $x \in \mathbb{E}$, holds for at least one $\mathbb{T}_i, i = 1, 2$.

(ii). **condition (B)** on \mathbb{E} if

$$f(\mathfrak{d}(x, \mathbb{F})) \leq \frac{1}{2} [\mathfrak{d}(x, \mathbb{T}_1x) + \mathfrak{d}(x, \mathbb{T}_2x)]$$

holds for all $x \in \mathbb{E}$.

Lemma 2.3. [3] Let $(\mathbb{X}, \mathfrak{d})$ be a complete metric space and \mathbb{E} be a nonempty closed subset of \mathbb{X} , and $\{x_n\}$ be Fejér monotone with respect to \mathbb{E} . Then $\{x_n\}$ converges to some $p \in \mathbb{E}$ if and only if $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{E}) = 0$.

The following lemma is very useful.

Lemma 2.4. [28] Let $\{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty}$ and $\{\delta_n\}_{n=1}^{\infty}$ be sequences of nonnegative real numbers satisfying the inequality

$$a_{n+1} \leq (1 + \delta_n)a_n + b_n, \quad n \geq 1.$$

If $\sum_{n=1}^{\infty} b_n < \infty$ and $\sum_{n=1}^{\infty} \delta_n < \infty$, then

(i). $\lim_{n \rightarrow \infty} a_n$ exists.

(ii). In particular, if $\{a_n\}_{n=1}^{\infty}$ has a subsequence which converges strongly to zero, then $\lim_{n \rightarrow \infty} a_n = 0$.

For more details of results obtained by Khan *et al.* in the context of uniformly convex and smooth Banach spaces, we refer readers to [16].

Inspired and motivated by the works of Khan *et al.*[16] and some related results, we establish common fixed point theorems for two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} in the setting of hyperbolic space, a more general set up. Our results extend and improve the results obtained by Khan *et al.*[16], as well as many related results in CAT(0) spaces and uniformly Banach spaces.

3. MAIN RESULTS

Let $\{a_n^{(1)}\}_{n=1}^{\infty} \subset [1, \infty)$ and $\{a_n^{(2)}\}_{n=1}^{\infty} \subset [1, \infty)$ be sequences satisfying the asymptotically quasi-nonexpansive mappings \mathbb{T}_1 and \mathbb{T}_2 with $\sum_{n=1}^{\infty} (a_n^{(i)} - 1) < \infty$, ($i = 1, 2$). Let $a_n = \max\{a_n^{(1)}, a_n^{(2)}\}$, and throughout this section, we will take only sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$.

Let $(\mathbb{X}, \mathfrak{d}, W)$ be a hyperbolic space and \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with retraction \mathcal{P} . Let $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two non-self asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} . We define the sequence $\{x_n\}_{n=1}^{\infty}$ in a hyperbolic space as follows:-

$$\begin{aligned} x_1 &\in \mathbb{E}, \\ x_{n+1} &= W((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n, \alpha_n), \\ y_n &= W(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n, \beta_n), \forall n \geq 1. \end{aligned} \tag{3.1}$$

We introduce the following definition.

Definition 3.1. Let $(\mathbb{X}, \mathfrak{d})$ be a metric space and \mathbb{E} be a nonempty subset of \mathbb{X} and $\mathbb{T} : \mathbb{E} \rightarrow \mathbb{X}$ be a nonself mapping with respect to retraction \mathcal{P} . Then \mathbb{T} said to be:

(i). asymptotically nonexpansive with respect to \mathcal{P} if there exists a sequence $\{a_n\} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ such that

$$\mathfrak{d}((\mathcal{P}\mathbb{T})^n x, (\mathcal{P}\mathbb{T})^n y) \leq a_n \mathfrak{d}(x, y), \forall x, y \in \mathbb{E} \text{ and } \forall n \geq 1. \tag{3.2}$$

(ii). asymptotically quasi-nonexpansive with respect to \mathcal{P} if $F(\mathbb{T}) \neq \emptyset$ and there exists a sequence $\{a_n\} \subset [1, \infty)$ with $\lim_{n \rightarrow \infty} a_n = 1$ such that

$$\mathfrak{d}((\mathcal{P}\mathbb{T})^n x, p) \leq a_n \mathfrak{d}(x, p), \forall x, y \in \mathbb{E}, \forall p \in F(\mathbb{T}) \text{ and } \forall n \geq 1. \tag{3.3}$$

(ii). uniformly L -Lipschitzian with respect to \mathcal{P} if there exists a constant $L > 0$ such that

$$\mathfrak{d}((\mathcal{P}\mathbb{T})^n x, (\mathcal{P}\mathbb{T})^n y) \leq L \mathfrak{d}(x, y), \forall x, y \in \mathbb{E} \text{ and } \forall n \in \mathbb{N}. \tag{3.4}$$

We first prove two technical lemmas.

Lemma 3.2. Let $(\mathbb{X}, \mathfrak{d}, W)$ be a hyperbolic space with monotone modulus of uniform convexity η and \mathbb{E} be a nonempty closed convex subset of \mathbb{X} which is also a nonexpansive retract of \mathbb{X} . Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1 - a]$ for some $a \in (0, 1)$. Then

- (i). $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p)$ exists, $\forall p \in \mathbb{F}$.
- (ii). There exists a constant $\mathcal{C} > 0$ such that $\mathfrak{d}(x_{n+m}, p) \leq \mathcal{C}\mathfrak{d}(x_n, p)$, $\forall m, n \in \mathbb{N}$ and $p \in \mathbb{F}$.

Proof. (i). Let $p \in \mathbb{F}$. From (3.1), we have

$$\begin{aligned}
\mathfrak{d}(y_n, p) &= \mathfrak{d}(W(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n, \beta_n), p) \\
&\leq (1 - \beta_n)\mathfrak{d}(x_n, p) + \beta_n\mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) \\
&\leq (1 - \beta_n)\mathfrak{d}(x_n, p) + \beta_n a_n \mathfrak{d}(x_n, p) \\
&= (1 + \beta_n(a_n - 1))\mathfrak{d}(x_n, p) \\
&\leq (1 + (a_n - 1))\mathfrak{d}(x_n, p) \\
&= a_n \mathfrak{d}(x_n, p).
\end{aligned} \tag{3.5}$$

From (3.1) and (3.5), we have

$$\begin{aligned}
\mathfrak{d}(x_{n+1}, p) &= \mathfrak{d}(W((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n, \alpha_n), p) \\
&\leq (1 - \alpha_n)\mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) + \alpha_n\mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, p) \\
&\leq (1 - \alpha_n)a_n \mathfrak{d}(x_n, p) + \alpha_n a_n \mathfrak{d}(y_n, p) \\
&\leq (1 - \alpha_n)a_n \mathfrak{d}(x_n, p) + \alpha_n a_n^2 \mathfrak{d}(x_n, p) \\
&= (1 + \alpha_n a_n(a_n - 1))\mathfrak{d}(x_n, p) \\
&\leq (1 + a_n(a_n - 1))\mathfrak{d}(x_n, p) \\
&\leq (1 + (a_n^2 - 1))\mathfrak{d}(x_n, p).
\end{aligned} \tag{3.6}$$

Note that $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. This implies $\sum_{n=1}^{\infty} (a_n^2 - 1) < \infty$. Thus, by Lemma 2.4, $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p)$ exists, $\forall p \in \mathbb{F}$.

(ii). From (3.6), we have

$$\mathfrak{d}(x_{n+1}, p) \leq (1 + (a_n^2 - 1))\mathfrak{d}(x_n, p). \tag{3.7}$$

We know that $1 + x \leq e^x$ for all $x \geq 0$. Using it for the above inequality (3.7), we have

$$\begin{aligned}
\mathfrak{d}(x_{n+m}, p) &\leq (1 + (a_{n+m-1}^2 - 1))\mathfrak{d}(x_{n+m-1}, p) \\
&\leq e^{a_{n+m-1}^2 - 1} \mathfrak{d}(x_{n+m-1}, p) \\
&\leq [e^{a_{n+m-1}^2 - 1}] (1 + (a_{n+m-2}^2 - 1))\mathfrak{d}(x_{n+m-2}, p) \\
&\leq [e^{(a_{n+m-1}^2 - 1) + (a_{n+m-2}^2 - 1)}] \mathfrak{d}(x_{n+m-2}, p) \\
&\vdots \\
&\leq [e^{\sum_{j=n}^{n+m-1} (a_j^2 - 1)}] \mathfrak{d}(x_n, p) \\
&= \mathcal{C}\mathfrak{d}(x_n, p),
\end{aligned} \tag{3.8}$$

where $\mathcal{C} = e^{\sum_{j=n}^{n+m-1} (a_j^2 - 1)}$. That is, $\mathfrak{d}(x_{n+m}, p) \leq \mathcal{C}\mathfrak{d}(x_n, p)$ for all $n, m \in \mathbb{N}$ and $p \in \mathbb{F}$. \square

Lemma 3.3. *Let $(\mathbb{X}, \mathfrak{d}, W)$ be a hyperbolic space with monotone modulus of uniform convexity η and \mathbb{E} be a nonempty closed convex subset of \mathbb{X} which is also a nonexpansive retract of \mathbb{X} . Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose*

that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1-a]$ for some $a \in (0, 1)$. Then

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n) = 0 = \lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)^n x_n)$$

and also

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n) = 0 = \lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)x_n).$$

Proof. By Lemma 3.2, $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p)$ exists. Assume that $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p) = \zeta$. Taking \limsup on both sides in the inequality (3.5), we obtain

$$\limsup_{n \rightarrow \infty} \mathfrak{d}(y_n, p) \leq \limsup_{n \rightarrow \infty} \mathfrak{d}(x_n, p) = \zeta. \quad (3.9)$$

Next, $\mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) \leq a_n \mathfrak{d}(x_n, p)$ for all $n \in \mathbb{N}$ implies that

$$\limsup_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) \leq \zeta. \quad (3.10)$$

Also, by (3.9) we get

$$\limsup_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, p) \leq \limsup_{n \rightarrow \infty} \mathfrak{d}(y_n, p) \leq \zeta. \quad (3.11)$$

Moreover, from (3.6) we have

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_{n+1}, p) = \lim_{n \rightarrow \infty} \mathfrak{d}(W((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n, \alpha_n), p) = \zeta. \quad (3.12)$$

From (3.10), (3.11), (3.12), and Lemma 2.2, we have

$$\lim_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n) = 0. \quad (3.13)$$

Observe that

$$\begin{aligned} \mathfrak{d}(x_{n+1}, p) &= \mathfrak{d}(W((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n, \alpha_n), p) \\ &\leq (1 - \alpha_n) \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) + \alpha_n \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, p) \\ &\leq (1 - \alpha_n) \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) + \alpha_n [\mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, (\mathcal{P}\mathbb{T}_1)^n x_n) \\ &\quad + \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p)]. \end{aligned}$$

Taking the limit inf. as $n \rightarrow \infty$ in the above inequality, and applying (3.13) we get

$$\zeta \leq \liminf_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p). \quad (3.14)$$

From (3.10) and (3.14), we get

$$\lim_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) = \zeta.$$

Furthermore,

$$\begin{aligned} \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, p) &\leq \mathfrak{d}(\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n) + \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, p) \\ &\leq \mathfrak{d}(\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n) + a_n \mathfrak{d}(y_n, p). \end{aligned} \quad (3.15)$$

This implies

$$\zeta \leq \liminf_{n \rightarrow \infty} \mathfrak{d}(y_n, p). \quad (3.16)$$

By (3.9) and (3.16), we obtain

$$\lim_{n \rightarrow \infty} \mathfrak{d}(y_n, p) = \zeta. \quad (3.17)$$

Therefore,

$$\begin{aligned}
\zeta &= \lim_{n \rightarrow \infty} d(y_n, p) = \lim_{n \rightarrow \infty} \mathfrak{d}(W(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n, \beta_n), p) \\
&\leq \lim_{n \rightarrow \infty} \{(1 - \beta_n)\mathfrak{d}(x_n, p) + \beta_n a_n \mathfrak{d}(x_n, p)\} \\
&= \lim_{n \rightarrow \infty} [1 + \beta_n(a_n - 1)]\mathfrak{d}(x_n, p) \\
&\leq \lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p) = \zeta.
\end{aligned} \tag{3.18}$$

That is,

$$\lim_{n \rightarrow \infty} \mathfrak{d}(W(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n, \beta_n), p) = \zeta. \tag{3.19}$$

We know that $\limsup_{n \rightarrow \infty} \mathfrak{d}(x_n, p) \leq \zeta$, together with (3.10), (3.19) and Lemma 2.2, we obtain

$$\lim_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, x_n) = 0. \quad (*) \tag{3.20}$$

In addition, we have

$$\begin{aligned}
\lim_{n \rightarrow \infty} \mathfrak{d}(y_n, x_n) &= \lim_{n \rightarrow \infty} \mathfrak{d}(W(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n, \beta_n), x_n) \\
&\leq \lim_{n \rightarrow \infty} [\beta_n \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, x_n)].
\end{aligned} \tag{3.21}$$

Hence, by (3.20) we get

$$\lim_{n \rightarrow \infty} \mathfrak{d}(y_n, x_n) = 0. \tag{3.22}$$

Also

$$\mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, x_n) \leq \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, (\mathcal{P}\mathbb{T}_1)^n x_n) + \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, x_n)$$

which implies, by (3.13) and (3.20), that

$$\lim_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, x_n) = 0. \tag{3.23}$$

And, from (3.22) and (3.23) we have

$$\begin{aligned}
\mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n x_n, x_n) &\leq \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n) + \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, x_n) \\
&\leq L\mathfrak{d}(x_n, y_n) + \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, x_n) \rightarrow 0, \text{ as } n \rightarrow \infty.
\end{aligned} \tag{3.24}$$

That is,

$$\lim_{n \rightarrow \infty} \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n x_n, x_n) = 0. \quad (*) \tag{3.25}$$

Using (3.20) and (3.23), we obtain that

$$\begin{aligned}
\mathfrak{d}(x_{n+1}, x_n) &= \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_2)^n y_n, \alpha_n), x_n) \\
&\leq (1 - \alpha_n)\mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, x_n) + \alpha_n \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n y_n, x_n) \\
&\rightarrow 0, \text{ as } n \rightarrow \infty.
\end{aligned} \tag{3.26}$$

Therefore, by (3.22) and (3.26) we obtain

$$\begin{aligned}
\mathfrak{d}(x_{n+1}, y_n) &\leq \mathfrak{d}(x_{n+1}, x_n) + d(x_n, y_n) \\
&\rightarrow 0, \text{ as } n \rightarrow \infty.
\end{aligned} \tag{3.27}$$

Consider

$$\begin{aligned}
\mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_1)^n y_n) &\leq \mathfrak{d}(x_{n+1}, x_n) + \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n) \\
&\quad + \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_1)^n y_n) \\
&\leq \mathfrak{d}(x_{n+1}, x_n) + \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n) \\
&\quad + L\mathfrak{d}(x_n, y_n).
\end{aligned} \tag{3.28}$$

This implies, by (3.20), (3.22) and (3.26), that

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_1)^n y_n) = 0. \tag{3.29}$$

Next, consider

$$\begin{aligned}
\mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n) &\leq \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n) + \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n x_n, (\mathcal{P}\mathbb{T}_1)^n y_{n-1}) \\
&\quad + \mathfrak{d}((\mathcal{P}\mathbb{T}_1)^n y_{n-1}, (\mathcal{P}\mathbb{T}_1)x_n) \\
&\leq \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)^n x_n) + L\mathfrak{d}(x_n, y_{n-1}) \\
&\quad + L\mathfrak{d}((\mathcal{P}\mathbb{T}_1)^{n-1} y_{n-1}, x_n).
\end{aligned} \tag{3.30}$$

Using (3.20), (3.27) and (3.29), we obtain

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n) = 0. \quad (**)$$

Now,

$$\mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_2)^n x_n) \leq \mathfrak{d}(x_{n+1}, x_n) + \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)^n x_n). \tag{3.31}$$

This implies, by (3.25), (3.26) that

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_2)^n x_n) = 0. \tag{3.32}$$

Next, we consider

$$\begin{aligned}
\mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_2)x_{n+1}) &\leq \mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_2)^{n+1} x_{n+1}) \\
&\quad + \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^{n+1} x_{n+1}, (\mathcal{P}\mathbb{T}_2)^{n+1} x_n) \\
&\quad + \mathfrak{d}((\mathcal{P}\mathbb{T}_2)^{n+1} x_n, (\mathcal{P}\mathbb{T}_2)x_{n+1}) \\
&\leq \mathfrak{d}(x_{n+1}, (\mathcal{P}\mathbb{T}_2)^{n+1} x_{n+1}) + L\mathfrak{d}(x_{n+1}, x_n) \\
&\quad + L\mathfrak{d}((\mathcal{P}\mathbb{T}_2)^n x_n, x_{n+1}))
\end{aligned} \tag{3.33}$$

Again, this implies, by (3.25), (3.26) and (3.32), that

$$\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)x_n) = 0. \quad (**)$$

Our proof is finished. \square

Theorem 3.4. *Let $(\mathbb{X}, \mathfrak{d}, W)$ be a uniformly convex hyperbolic space. Let \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with monotone modulus of uniform convexity η and \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$.*

Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1-a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and one of \mathbb{T}_1 and \mathbb{T}_2 is compact, then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 .

Proof. By Lemma 3.2, $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p)$ exists for any $p \in \mathbb{F}$. It is sufficient to show that $\{x_n\}_{n=1}^{\infty}$ has a subsequence which converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 . By Lemma 3.3, $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n) = 0 = \lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)x_n)$. Suppose that \mathbb{T}_1 is compact. Since \mathcal{P} is nonexpansive, there exists a subsequence $\{(\mathcal{P}\mathbb{T}_1)x_{n_j}\}$ of $\{(\mathcal{P}\mathbb{T}_1)x_n\}$ such that $(\mathcal{P}\mathbb{T}_1)x_{n_j} \rightarrow p$. Thus

$$\mathfrak{d}(x_{n_j}, p) \leq \mathfrak{d}(x_{n_j}, (\mathcal{P}\mathbb{T}_1)x_{n_j}) + \mathfrak{d}((\mathcal{P}\mathbb{T}_1)x_{n_j}, p) \rightarrow 0, \quad \text{as } j \rightarrow \infty.$$

This means $x_{n_j} \rightarrow p$ as $j \rightarrow \infty$. Again $\lim_{j \rightarrow \infty} \mathfrak{d}(x_{n_j}, (\mathcal{P}\mathbb{T}_1)x_{n_j}) = 0$ yields by continuity of \mathcal{P} and \mathbb{T}_1 that $p = (\mathcal{P}\mathbb{T}_1)p$. Similarly, $p = (\mathcal{P}\mathbb{T}_2)p$. Noting that $F(\mathcal{P}\mathbb{T}) = F(\mathbb{T})$. Therefore $p = F(\mathbb{T}_1) = F(\mathbb{T}_2)$, and so $p \in \mathbb{F}$. Thus $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point p of \mathbb{T}_1 and \mathbb{T}_2 . \square

Corollary 3.5. *Let \mathbb{X} be a complete CAT(0) space and \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1-a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and one of \mathbb{T}_1 and \mathbb{T}_2 is compact, then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 .*

Theorem 3.6. *Let $(\mathbb{X}, \mathfrak{d}, W)$ be a uniformly convex hyperbolic space. Let \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with monotone modulus of uniform convexity η and \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1-a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and satisfy condition (\mathcal{B}) , then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 .*

Proof. By Lemma 3.2 $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, p)$ exists and so $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F})$ exists for all $p \in \mathbb{F}$. Again, by Lemma 3.3, $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n) = 0 = \lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)x_n)$. It follows from condition (\mathcal{B}) and Lemma 3.3 that

$$\lim_{n \rightarrow \infty} f(\mathfrak{d}(x_n, \mathbb{F})) \leq \lim_{n \rightarrow \infty} \left(\frac{1}{2} [\mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n)) + \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)x_n)] \right) = 0.$$

That is,

$$\lim_{n \rightarrow \infty} f(\mathfrak{d}(x_n, \mathbb{F})) = 0.$$

Since f is nondecreasing with $f(0) = 0$, it follows that $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F}) = 0$.

Next, we show that x_n is a Cauchy sequence. Let $\epsilon > 0$. Since $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F}) = 0$, there exists a positive number n_0 such that for all $n \geq n_0$, we have

$$\mathfrak{d}(x_n, \mathbb{F}) < \frac{\epsilon}{2C},$$

where $C > 0$ is the constant in Lemma 3.2(ii). So we can find $p' \in \mathbb{F}$ such that

$$\mathfrak{d}(x_n, p') < \frac{\epsilon}{2C}.$$

Using Lemma 3.2(ii), we have for all $n \geq n_0$ and $m \in \mathbb{N}$ that

$$\begin{aligned} \mathfrak{d}(x_{n+m}, x_n) &\leq \mathfrak{d}(x_{n+m}, p') + \mathfrak{d}(p', x_n) \\ &\leq C\mathfrak{d}(x_n, p') + \mathfrak{d}(x_n, p') \\ &\leq C\mathfrak{d}(x_n, p') + C\mathfrak{d}(x_n, p') \\ &= 2C\mathfrak{d}(x_n, p') < \epsilon. \end{aligned} \tag{3.34}$$

Hence, $\{x_n\}$ is a Cauchy sequence in a closed convex subset \mathbb{E} of a hyperbolic space \mathbb{X} , therefore, it must converge to a point in \mathbb{E} . Let $\lim_{n \rightarrow \infty} x_n = q$. Now, $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F}) = 0$ yields that $\mathfrak{d}(q, \mathbb{F}) = 0$. Since the set of fixed points of asymptotically quasi-nonexpansive mappings is closed, we have $q \in \mathbb{F}$. \square

Corollary 3.7. *Let \mathbb{X} be a complete CAT(0) space and \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive*

mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1 - a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and satisfy **condition (B)**, then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 .

We shall use condition **(A)** to prove strong convergence of the algorithm (3.1). Before that, we prove the following technical lemma.

Lemma 3.8. *Let $(\mathbb{X}, \mathfrak{d}, W)$ be a uniformly convex hyperbolic space. Let \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with monotone modulus of uniform convexity η and \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1 - a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and satisfy condition **(A)**. Then the sequence $\{x_n\}$ converges strongly to $p \in \mathbb{F}$ if and only if $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F}) = 0$.*

Proof. We know from Lemma 3.2 that $\mathfrak{d}(x_{n+1}, p) \leq \mathfrak{d}(x_n, p)$. It follows that $\{x_n\}$ is Fejér monotone with respect to \mathbb{F} and $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F})$ exists. Hence, the result follows from Lemma 2.3. \square

Applying Lemma 3.8, we obtain following strong convergence theorem.

Theorem 3.9. *Let $(\mathbb{X}, \mathfrak{d}, W)$ be a uniformly convex hyperbolic space. Let \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with monotone modulus of uniform convexity η and \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1 - a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and satisfy condition **(A)**, then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 .*

Proof. It follows from Lemma 3.2 that $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F})$ exists. Moreover, by Lemma 3.3 we have that $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_1)x_n) = \lim_{n \rightarrow \infty} \mathfrak{d}(x_n, (\mathcal{P}\mathbb{T}_2)x_n) = 0$. Applying condition **(A)**, we obtain

$$\lim_{n \rightarrow \infty} f(\mathfrak{d}(x_n, \mathbb{F})) = 0.$$

Since f is nondecreasing with $f(0) = 0$, it follows that $\lim_{n \rightarrow \infty} \mathfrak{d}(x_n, \mathbb{F}) = 0$. Therefore, Lemma 3.8 implies that $\{x_n\}$ converges strongly to a point $p \in \mathbb{F}$. \square

Corollary 3.10. *Let \mathbb{X} be a complete $CAT(0)$ space and \mathbb{E} be a nonempty closed convex subset of \mathbb{X} with \mathcal{P} as a sunny nonexpansive retraction. Let $\mathbb{F} \neq \emptyset$ and $\mathbb{T}_1, \mathbb{T}_2 : \mathbb{E} \rightarrow \mathbb{X}$ be two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} with sequence $\{a_n\}_{n=1}^{\infty} \subset [1, \infty)$, $\lim_{n \rightarrow \infty} a_n = 1$ satisfying $\sum_{n=1}^{\infty} (a_n - 1) < \infty$. Suppose that $\{x_n\}_{n=1}^{\infty}$ is defined by (3.1), where $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are sequences in $[a, 1 - a]$ for some $a \in (0, 1)$. If \mathbb{T}_1 and \mathbb{T}_2 are weakly inward and satisfy **condition (A)**, then $\{x_n\}_{n=1}^{\infty}$ converges strongly to a common fixed point of \mathbb{T}_1 and \mathbb{T}_2 .*

4. CONCLUSION

In this manuscript, we have established new common fixed point results for two uniformly L -Lipschitzian asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} and two weakly inward and asymptotically quasi-nonexpansive mappings with respect to \mathcal{P} satisfying condition (\mathcal{A}) and condition (\mathcal{B}) , in a more general set up of hyperbolic space. Our results significantly extend and improve the results obtained by Khan et al.[16], as well as many related results in $CAT(0)$ spaces and uniformly Banach spaces. As consequences of our main results, we obtain the corresponding corollaries which are valid in $CAT(0)$ spaces.

5. ACKNOWLEDGEMENTS

The authors are grateful to the referee(s) for helpful comments for the improvement of this manuscript and to Maejo University, Lampang Rajabhat University for moral support.

REFERENCES

1. R. P. Agarwal, D. O'Regan, D. R. Sahu, *Fixed point theory for Lipschitzian-type mappings with applications*, Topological Fixed Point Theory Appl., Vol. 6, Springer, New York, 2009.
2. R. P. Agarwal, D. O'Regan, D. R. Sahu, *Iterative construction of fixed points of nearly asymptotically nonexpansive mappings*, J. Nonlinear Convex Anal. **8** (2007), 61–79.
3. H. H. Bauschke, P. L. Combettes, *Convex Analysis and Monotone Operator Theory in Hilbert Spaces*, Springer, New York, 2011.
4. S. C. Bose, S. K. Laskar, *Fixed point theorems for a certain class of mappings*, J. Math. Phys. Sci. **19** (1985), 503–509.
5. H. Busemann, *Spaces with non-positive curvature*, Acta Math. **80** (1948), 259–310.
6. S. S. Chang, J. K. Kim, D. S. Jin, *Iterative sequences with errors for asymptotically quasi-nonexpansive type mappings in convex metric spaces*, Arch. Inequal. Appl. **2** (2004), 365–374.
7. C. E. Chidume, E. U. Ofoedu, H. Zegeye, *Strong and weak convergence theorems for asymptotically nonexpansive mappings*, J. Math. Anal. Appl. **280** (2003), 364–374.
8. K. Goebel, W. A. Kirk, *A fixed point theorem for asymptotically nonexpansive mappings*, Proc. Amer. Math. Soc. **35** (1972), 171–174.
9. K. Goebel, S. Reich, *Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings*, Monographs Textbooks Pure Appl. Math., Vol. 83, Dekker, New York, 1984.
10. S. Huang, *Common fixed points of a finite family of nonself generalized asymptotically quasi-nonexpansive mappings*, Taiwanese J. Math. **15** (2011), 745–772.
11. S. H. Khan, *An iteration process for common fixed points of two nonself asymptotically nonexpansive mappings*, Bull. Math. Anal. Appl. **3** (2011), 165–176.
12. A. R. Khan, H. Fukhar-ud-din, *Weak and strong convergence of Ishikawa iterates for nonself asymptotically quasi-nonexpansive mappings*, J. Nonlinear Sci. Appl. **50** (2010), 23–39.
13. A. R. Khan, H. Fukhar-ud-din, M. A. A. Khan, *An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces*, Fixed Point Theory Appl. **2012** (2012), Article 54.
14. A. R. Khan, M. A. Khamsi, H. Fukhar-ud-din, *Strong convergence of a general iteration scheme in $CAT(0)$ spaces*, Nonlinear Anal. **74** (2011), 783–791.
15. S. H. Khan, N. Hussain, *Convergence theorems for nonself asymptotically nonexpansive mappings*, Comput. Math. Appl. **55** (2008), 2544–2553.
16. S. H. Khan, M. Ozdemir, S. Akbulut, *Some common fixed point results for nonself asymptotically quasi-nonexpansive mappings by a two-step iterative process*, Indian J. Math. **56** (2014), 1–20.
17. P. Kingam, J. Nantadilok, *Iterative process for finding fixed points of quasi-nonexpansive multimap in $CAT(0)$ spaces*, Korean J. Math. **31** (2023), 35–48.
18. U. Kohlenbach, *Some logical metatheorems with applications in functional analysis*, Trans. Amer. Math. Soc. **357** (2005), 89–128.
19. W. A. Kirk, *A fixed point theorem in $CAT(0)$ spaces and \mathbb{R} -trees*, Fixed Point Theory Appl. **2004** (2004), 309–316.
20. L. Leuştean, *A quadratic rate of asymptotic regularity for $CAT(0)$ spaces*, J. Math. Anal. Appl. **325** (2007), 386–399.

21. L. Leuştean, *Nonexpansive iterations in uniformly convex W -hyperbolic spaces*, Contemp. Math., Vol. 513, Amer. Math. Soc., 2010, 193–209.
22. B. Nuntadilok, P. Kingkam, J. Nantadilok, *Common fixed point theorems of two finite families of asymptotically quasi-nonexpansive mappings in hyperbolic spaces*, J. Nonlinear Funct. Anal. **2023** (2023), Article 27.
23. B. Nuntadilok, P. Kingkam, J. Nantadilok, K. Samanmit, *On some common fixed point results for two infinite families of uniformly L -Lipschitzian total asymptotically quasi-nonexpansive mappings*, Fixed Point Theory Algorithms Sci. Eng. **2024** (2024), Article 12.
24. P. Paimsang, T. Thianwan, *Mixed-type SP-iteration for asymptotically nonexpansive mappings in hyperbolic spaces*, Demonstratio Math. **56** (2023), 1–13.
25. K. Rattanaseeha, S. Imnang, P. Inkrong, T. Thianwan, *Novel Noor iterative methods for mixed-type asymptotically nonexpansive mappings from the perspective of convex programming in hyperbolic spaces*, Int. J. Innov. Comput. Inf. Control **19** (2023), 1717–1734.
26. G. S. Saluja, *Strong convergence theorems for two finite families of asymptotically quasi-nonexpansive type mappings in Banach spaces*, Fixed Point Theory **14** (2013), 213–225.
27. T. Shimizu, W. Takahashi, *Fixed points of multivalued mappings in certain convex metric spaces*, Topol. Methods Nonlinear Anal. **8** (1996), 197–203.
28. K. K. Tan, H. K. Xu, *Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process*, J. Math. Anal. Appl. **178** (1993), 301–308.
29. S. Temir, H. KizilTunç, *On the convergence of three-step iterative sequences with errors for nonself asymptotically quasi-nonexpansive type mappings in Banach spaces*, Filomat **25** (2011), 127–136.
30. T. Thianwan, *Mixed-type algorithms for asymptotically nonexpansive mappings in hyperbolic spaces*, Eur. J. Pure Appl. Math. **14** (2021), 650–665.
31. T. Thianwan, *A new iteration scheme for mixed-type asymptotically nonexpansive mappings in hyperbolic spaces*, J. Nonlinear Funct. Anal. **2021** (2021), Article 21.
32. E. Türkmen, S. H. Khan, M. Ozdemir, *Iterative approximation of common fixed points of two nonself asymptotically nonexpansive mappings*, Discrete Dyn. Nat. Soc. **2011** (2011), Article ID 487864, 16 pp.
33. L. Wang, *Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings*, J. Math. Anal. Appl. **323** (2006), 550–557.
34. H. Y. Zhou, Y. J. Cho, S. M. Kang, *A new iterative algorithm for approximating common fixed points for asymptotically nonexpansive mappings*, Fixed Point Theory Appl. **2007** (2007), Article ID 64874.