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ABSTRACT. This paper attempts to introduce two new concepts of monotonicty de-
fined on semi-inner product spaces to analyse well-posedness for variational inequality
problems. These concepts are generalised α-m monotonicity and generalised α-m pseudo-
monotonicity for set maps. We also present a new concept of well-posedness, namely
β-well-posedness for set variational inequality problem (VI). We further study the rela-
tionship of these monotone maps along with (VI). Then we demonstrate a gap function
for the above (VI). Beneath the assumption of the said pseudo-monotonicity, a result is
obtained showing the relation between the solution and gap function of the said (VI) prob-
lem. Finally, with the help of this gap function, we formulate said variational inequality
problem into a corresponding mathematical programming problem (MP) and establish the
relations between the β-well-posedness of both problems.
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1. Introduction

Tykhonov [21] proposed the concept of well-posedness for unconstrained opti-
mization problems. This concept is helpful because it guarantees the convergence
of a series of approximations to the exact solution of specific optimization problems.
Different forms of well-posedness, such as Levitin-Polyak well-posedness etc have
been researched for various inequalities over the past few decades as can be seen in
references [3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23]. Jayswal
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and Shalini [10] recently published a study of the above types of problems for both
vector variational inequalities and mathematical programming problems.

In studying variational inequalities, monotone maps and their generalisations are
crucial. In the literature, mathematicians have employed various types of mono-
tonicities to generalise well-posedness and results related to variational inequality
problems, as seen in [1, 2, 11, 13, 14].

Semi-inner products are of two types, the first one is an inner product not re-
quired to be strictly positive, and the second one is an inner product not required to
be conjugate symmetric. It was formulated by Günter Lumer [18] to extend Hilbert
space-type arguments to Banach spaces in functional analysis. Fundamental prop-
erties were later explored by Giles [7]. These concepts were further explored in the
form of a book by Dragomir [6]. In this paper, we took the definition of the first type.
To analyse well-posedness for variational inequality problems, this paper primarily
aims to introduce two new concepts of monotonicity: generalised α-m monotonicity
and generalised α-m pseudo monotonicity. The paper is divided into four sections.
Sections 1 and 2 deal with the introduction and preliminaries, respectively. The
third section presents the concepts of generalised α-m monotonicity, generalised
α-m pseudo monotonicity and β-well-posedness of the problem (VI). Further, using
generalised α-m monotonicity, the β-well-posedness is investigated for the problem
(VI) and a property is derived from this well-posedness of (VI). Sufficient require-
ments are demonstrated for β-well-posedness for the set of approximate solutions
of (VI). We employ the optimization problem and provide a gap function for (VI)
in section 4. Assuming generalised α-m pseudo monotonicity of the set-valued map
F , one result is proved related to the gap function of (VI). Further, we establish
the relations of β-well-posedness of (VI) and the corresponding (MP).

2. Preliminaries

Suppose X is a linear space and p is a real valued function defined on R+.
Remember p as semi-norm on X if for all x, y belonging to X

(i) p(x) is non negative;
(ii) homogeneity property holds (“p(αx) = |α|p(x) ∀ α”);
(iii) triangle inequality holds (“p(x+ y) ≤ p(x) + p(y)”).

p is referred to as a norm provided p(x) is equal to zero implies x is equal to zero.

Definition 2.1. [18] A function s(·, ·) : X ×X → K is called a semi-inner product
on a linear space X over field K if

(i) s(λ1x1+λ2x2, y) = λ1s(x1+y)+λ2s(x2+y), ∀ x1, x2, y ∈ X and λ1, λ2 ∈ K;
(ii) s(x, x) is greater than equal to zero and it is equal to zero iff x is zero;
(iii) s(x, y) = s(y, x).

A linear space X along with s(·, ·) is known as a semi-inner product space. Fur-
thermore, X can be assigned a topology associated with the semi-inner product. A
semi-norm in X is described as

p(x) =
√

s(x, x).

Cauchy Schwarz Inequality theorem holds for (X, s(·, ·)). This means,

s(x, y) ≤
√

s(x, x)
√

s(y, y).

Let (X, s(·, ·)) be a semi-inner product space and S be a nonempty closed convex
subset of X. The below relaxed variational inequality is studied in this paper in its
set-valued form.
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Find x of S and x∗ of F (x) for which
(VI) : s(x∗, x− y) ≤ 0, ∀ y ∈ S,

where F : S → X is a set-valued map.
Remember that for every x, y of S, x∗ of F (x) and y∗ of F (y),

s(x∗ − y∗, x− y) ≥ 0, then F is referred as monotone map on S [14].
The concepts of upper semi-continuity and closedness for map F employed in

our research are below.
Definition 2.2. [14]

(i) For any x of S and for any {xn} in S 7→ x and {yn} in X 7→ y so that
yn ∈ F (xn), if y ∈ F (x); then F is referred to as Closed;

(ii) When for any x of S and for any {yn} 7→ y in X there is a {xn} in S 7→ x
with yn of F (xn) such that y ∈ F (x); then F is called as Upper Semi-
continuous on S;

(iii) F is referred to as Upper hemi-continuous on S, if it is upper semi-continuous
when restricted to S’s line segments.

3. Links between generalised α-m monotonicity and β-well posedness
of (VI)

First, we shall define a generalised α-m monotone set-valued map on S

Definition 3.1. Suppose α > 0, F : S → X is called a generalised α-m monotone
map on S provided at every x, y of S, x∗ of F (x) and y∗ of F (y)

s(x∗ − y∗, x− y) + α[p(x− y)]m ≥ 0,

or
s(y∗, x− y)− α[p(x− y)]m ≤ s(x∗, x− y).

where m > 1 is a constant.
Every monotone map is a generalised α-m monotone. However, the converse is

false as shown below.
Example 3.2. For S = [0.1, 0.5], suppose F : S → R is denoted by

F (x) = {(1− x)}, for x ∈ S.

Then for α = 1, m = 2, F is generalised α-m monotone map. However, F is not
monotone since

s(x∗ − y∗, x− y) < 0, ∀ x, y of S, x∗ of F (x) and y∗ of F (y).

Definition 3.3. Assume α > 0, map F is called generalised α-m pseudomonotone.
provided at every x, y ∈ S, s(x∗, x − y) ≤ 0 for some x∗ ∈ F (x) ⇒ s(y∗, x − y) −
α[(p(x− y)]m ≤ 0 for all y∗ ∈ F (y).

Every generalised α-m monotone map is a generalised α-m pseudo monotone
with the same α and m. however, the opposite does not hold as demonstrated
below
Example 3.4. For S = R+, F is real valued function on R+ described as

F (x) = [x2, 2x2], ∀ x ∈ R+.

Then for α = 2 and m = 3, F is generalised α-m pseudomonotone. But for x = 1,
y = 6/5, x∗ = 2 and y∗ = 36

25 .
s(x∗ − y∗, x− y) + α[p(x− y)]m is positive.
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Hence F is not generalised α-m monotone.
On the lines of Theorem 3.3 mentioned by Lalitha and Bhatia in [14], it can

be proved that “If F is a generalised α-m pseudo monotone set-valued map and
upper hemi-continuous having compact values and if there exists y ∈ S such that
p(x− y) > 0 and s(x∗, x− y) > 0.

for every x∗ ∈ F (x), then the problem (VI) is solvable.”

We will now introduce β-well-posedness for the problem (VI) on S.

Definition 3.5. Let β > 0. {xn} is said to be β-approximating for (VI) provided
(i) xn belonging to S for all natural number n;
(ii) there exist x∗

n ∈ F (xn) for all natural number n and {εn}∞n=1, εn > 0 for
each n, εn → 0 as n → ∞ at which

s(x∗
n, xn − y)− β[p(xn − y)]m ≤ εn, ∀ y ∈ S, ∀ n ∈ N.

Definition 3.6. (VI) is β-well-posed provided
(i) it has only one solution x0;
(ii) xn approaches to x0 as n tends to ∞ provided {xn} is a β-approximating

sequence.

Definition 3.7. The variational inequality problem (VI) is said to be generalised
β-well-posed if

(i) X0 6= φ ;
(ii) For each β-approximating sequence {xn} there is a {xnk

} ⊆ {xn} so that
xnk

→ x0 for some x0 of X0, where X0 is the solution set for (VI).

By generalised β-well-posedness, the solution set X0 for (VI) is non-empty and
compact.

We now use F ’s generalised α-m-monotonicity to get existence findings for (VI).
An important lemma in deriving existence results for (VI) is the one that follows.

Lemma 3.8. For γ > 0, let’s study the following inequality issue of the Minty type.
(MVI) Find x0 ∈ S for which

s(y∗, x0 − y)− γ[p(x0 − y)]r ≤ 0, at every y of S and y∗ of F (y),
where X0 and M(X0) signify the corresponding solution sets of (VI) and (MVI)
respectively, then M(X0) is a subset of X0 provided F is upper hemi-continuous
and has a compact value.

Proof. Suppose y0 ∈ M(X0) but y0 /∈ X0. Then there exist y∗ ∈ S so that for all
y ∈ F (y0).

s(y, y0 − y∗) > 0.

Since F (y0) is compact therefore existence of ε > 0 is guaranteed so that at every
y ∈ F (y0).

s(y, y0 − y∗) < ε.

Let τ = {y : s(y, y0 − y∗ > ε}. Then set τ is open and F (y0) ⊆ τ . By the convexity
of S we get

yλ = λy + (1− λ)y0 ∈ S, for λ ∈ [0, 1] and yλ → y0 as λ → 0.
Also, F is upper hemi-continuous on S, so ∃ δ ∈ (0, 1) such that F (yλ) ⊆ τ , for
every λ ∈ (0, δ).

This implies for λ ∈ (0, δ) and tλ ∈ F (yλ),
s(tλ, y0 − y∗) > ε (3.1)
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Now y0 ∈ M(X0) implies for every λ ∈ (0, δ) and tλ ∈ F (yλ), s(tλ, y0 − yλ) −
γp(y0 − yλ) ≤ 0.

This leads to s(tλ, λ(y − y0))− γ[p(λ(y − y0)]
m ≤ 0 (as yλ = λy + (1− λ)y0),

which implies λs(tλ, y − y0)− γλm[p(y − y0)]
m ≤ 0,

which further implies s(tλ, y − y0)− γλm−1[p(y − y0)]
m ≤ 0.

As λ → 0, this gives us
s(tλ, y − y0) ≤ 0,

which contradicts (3.1). Hence M(X0) ⊆ X0. □

Let X0
β,ε = {x ∈ S : ∃ x∗ ∈ F (x) so that s(x∗, x−y)−β[p(x−y)]m ≤ ε, ∀ y ∈ S},

where ε is non-negative.
Using Lemma 3.8 we have X0 = X0

β,ε when ε = 0. Also, X0 ⊆ X0
β,ε ∀ ε > 0.

Remember that for the set A

diamA = sup
a,b∈A

p(a− b),

where diamA is the diameter of A.
The β-well-posedness of (VI) is considered by the behaviour of X0

βε as shown in
the following theorem.

Theorem 3.9. (VI) is β-well-posed iff
X0

β,ε 6= ϕ ∀ ε > 0 and diamX0
β,ε approaches to 0 as ε tends to 0, (3.2)

provided F is generalised α-m-monotone along with upper hemi-continuous having
compact values on S.

Proof. Let (VI) be β-well-posed. This implies there is only one solution x0 of X0.
Hence

X0
β,ε 6= ϕ, for all positive ε as X0 ⊆ X0

β,ε for all positive ε.
Let if possible diamX0

β,ε 6→ |0 as ε tends to 0. This implies a positive number r,
a natural number m, and a positive number εn exist for all n where εn → 0 as n
tends to ∞ and xn, x′

n for which
p(xn − x′

n) > r, ∀ n ≥ m. (3.3)

Because xn, x
′
n ∈ X0

β,ε, therefore there exists zn ∈ F (xn), z′n ∈ F (xn) such that
s(zn, xn − y)− β[p(xn − y)]m ≤ εn, ∀ y ∈ S

and
s(z′n, x

′
n − y)− β[p(x′

n − y)]m ≤ εn, ∀ y ∈ S.

This implies {xn} and {x′
n} are β-approximating sequence for (VI). Both sequences

converge to the only solution x0since (VI) is β-well-posed, which defies (3.3).
Hence diamX0

β,ε approaches to 0 as ε tends to 0
Conversely, let X0

β,ε 6= ϕ for every ε → 0 and condition (3.2) holds.
Suppose {xn} is a β-approximating for (VI). This implies x∗

n ∈ F (xn) and {εn},
εn > 0 exist for every n so that

s(x∗
n, xn − y)− β [p(xn − y)]m ≤ εn, ∀ y ∈ S, ∀ n ∈ N. (3.4)

This implies xn ∈ X0
β,εn

. Since condition (3.2) holds, so we have

diamX0
β,εn → 0, εn → 0.

This implies {xn} is a Cauchy sequence and S is compact also, so it converges to
some x0. Further x0 ∈ S as S is closed.
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Now F is generalised α-m monotone on S, so for any y∗ ∈ F (y) and y ∈ S,
s(y∗, x0 − y)− α[p(x0 − y)]m = lim[s(y∗, xn − y)− α[p(xn − y)]m]

≤ lim[s(x∗
n, xn − y)]

≤ β lim[s(x∗
n, xn − y)]m + lim εn (by (3.4))

= β[p(x0 − y)]m.

This implies
s(y∗;x0 − y)− (α+ β)[p(x0 − y)]m ≤ 0.

Here γ = α+ β > 0, so by Lemma 3.8, we have
s(y∗, x0 − y) ≤ 0 at every point y of S.

Thus x0 solves (VI). □

Corollary 3.10. If F is generalised α-m monotone, upper hemi-continuous and
compact valued on S, prove that (VI) is β-well posed iff X0 is non-empty and
diamX0

β,ε approaches to 0 as ε tends to 0.

Theorem 3.11. Let α > β > 0. Let F be generalised α-m monotone and upper
hemi-continuous with compact values on S, prove that (VI) is β-well-posed iff it has
only one solution.

Proof. Let (VI) be β-well-posed. This implies that (VI) has only one solution. On
the other hand, suppose (VI) has only one solution x0. Let if possible (VI) is not
β-well-posed. This means ∃ a β-approximating {xn} for (VI) so that xn 6→ x0. As
{xn} is a β-approximating sequence so a sequence x∗

n ∈ F (xn) and {εn}, εn → 0,
εn > 0 exist for each n so that

s(x∗
n, xn − y)− β[p(xn − y)]m ≤ εn, ∀ y ∈ S, ∀ n ∈ N. (3.5)

Claim: {xn} is bounded.
Let, if possible, {xn} be unbounded. We can presume without losing generality

that p(xn) −→ ∞ as n → ∞.
Let wn = x0 + λn(xn − x0), where λn = 1

p(xn−x0)
.

We can proceed by assuming that λn ∈ (0, 1) and wn → w 6= x0.
At every y of S and y∗ of F (y),
s(y∗, w − y) = s(y∗, w − wn) + s(y∗, wn − x0) + s(y∗, x0 − y)

= s(y∗, w − wn) + s(y∗, x0 + λn)(xn − x0)− x0) + s(y∗, x0 − y)

= s(y∗, w − wn) + λns(y
∗, xn − x0) + s(y∗, x0 − y)

= s(y∗, w − wn) + λns(y
∗, xn − y) + (1− λn)s(y

∗, x0 − y). (3.6)
Since x0 is the only solution of (VI), there exists x∗ ∈ F (x0) that

s(x∗, x0 − y) ≤ 0, ∀ y ∈ S. (3.7)
Again as F is generalised α-m monotone on S, we have

s(y∗, x0 − y)− α[p(x0 − y)]m ≤ s(x∗, x0 − y)

and
s(y∗, xn − y)− α[p(xn − y)]m ≤ s(x∗, xn − y), (3.8)

where x∗ ∈ F (x0) and y∗ ∈ F (y).
Equations (3.6) and (3.8) give us

s(y∗, w − y) ≤ s(y∗, w − wn) + λn[s(x
∗
n, xn − y) + α[p(xn − y)]m]
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+ (1− λn)[s(x
∗, x0 − y) + α[p(x0 − y)]m]

≤ s(y∗, w − wn) + λn[εn + β[p(xn − y)]m

+ α[p(xn − y)]m] + (1− λn)[α[p(x0 − y)]m]

(using (3.5) and (3.7))
= s(y∗, w − wn) + λn[εn + (α+ β)[p(xn − y)]m]

+ (1− λn)[α[p(x0 − wn + wn − y)]m]

≤ s(y∗, w − wn) + λn[εn + (α+ β)[p(xn − y)]m]

+ (1− λn)α[p(x0 − x0 − λn(xn − x0)]
m]

+ (1− λn)α[p(wn − y)]m

Upon interpreting the limit as n → ∞ on both sides of the aforementioned inequal-
ity, we get

s(y∗, w − y) ≤ α[p(w − y)]m.

That is,
s(y∗, w − y)− γ[p(w − y)]m ≤ 0,

where γ = α.
Lemma 3.8 suggests that w solves (VI), which contradicts the solution’s exclusiv-

ity. As a result, {xn} is not an unbounded sequence and hence there is {xnk
} ⊆ {xn}

with xnk
→ x̄ as k → ∞.

Now consider for all y ∈ S and for y∗ ∈ F (y).
s(y∗, x̄− y)− x[p(x− y)]m = lim

k→∞
[s(y∗, xnk

− y)− α[p(xnk
− y)]m]

≤ lim
k→∞

s(x∗
nk
, xnk

− y)

(because F is generalised α-m monotone)
≤ lim

k→∞
(εnk

+ β[p(xnk
− y)]m (from (3.5))

= β[p(x̄− y)]m.

So, we have
s(y∗, x̄− y)− (α+ β)[p(x̄− y)]m ≤ 0.

Thus by Lemma 3.8, x̄ solves (VI). Since x0 is the only one which solves (VI),
therefore x̄ = x0. It is true for any convergent {xnk

} ⊆ {xn}, since {xn} → x0 so
we deduce that (VI) is β-well-posed. □

Theorem 3.12. (VI) is generalised β-well-posed iff X0 6= φ whenever F is gener-
alised α-m-monotone and upper hemi-continuous on S and S is a compact set.

Proof. Let (VI) be generalised β-well-posed. This gives X0 6= φ. Suppose X0 6= φ.
Further, assume that {xn} is a β-approximating sequence for the problem (VI).
This means x∗

n ∈ F (xn) at every natural number n and {εn}, εn > 0, εn → 0 exist
for every n, we get

s(x∗
n, xn − y)− β[p(xn − y)]m ≤ εn, ∀ y ∈ S, ∀ n ∈ N. (3.9)

Since S is compact, therefore ∃ {xnk
} ⊆ {xn} so that {xnk

} → x0 for some x0 ∈ S.
Consider at every y of S and y∗ of F (y),
s(y∗, x0 − y)− α[p(x0 − y)]m = lim

k→∞
[s(y∗, xnk

− y)− α[p(xnk
− y)]m

≤ lim
k→∞

s(x∗
nk
, xnk

− y)

(because F is generalised α-m monotone)
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≤ lim
k→∞

(εnk
+ β[p(xnk

− y)]m) (from (3.9))

= β [p(x0 − y)]m .

Therefore
s(y∗, x0 − y)− (α+ β)[p(x0 − y)]m ≤ 0

from Lemma 3.8 this implies x0 ∈ X0. □

Theorem 3.13. If existence of some ϵ > 0 is guaranteed so that bounded set
X0

β,ε 6= φ, then (VI) is generalised β-well-posed provided F is generalised α-m-
monotone and upper hemi-continuous with compact values on S.

Proof. Suppose the bounded set X0
β,ε 6= φ for some ε > 0. Further, assume {xn} ia

a β-approximating for (VI). This means ∃ a natural number m for which xn ∈ X0
β,ε

∀ n > m. This gives {xn} is a bounded sequence. Therefore ∃ {xnk
} ⊆ {xn} so

that xnk
→ x0 where x0 ∈ S. Using the same steps as given in Theorem 3.12, it

may be shown thatx0 ∈ X0. □

4. Link between β-well-posedness of associated mathematical
programming problem (MP) and (VI)

This section presents our gap function proposal for (VI) and examines the con-
nection between (VI)’s β-well-posedness and that of a related (MP) problem.

Suppose F from S to R is a set-valued map with compact values and φ 6= S ⊆ X
is a convex closed set.

For each x ∈ S, gβ is a real valued function defined on F (x) by
gβ(x

∗) = sup
y∈S

{s(x∗, x− y)− β[p(x− y)]m}

and h is a real valued function defined on S by
h(x) = inf

x∗∈F (x)
gβ(x

∗). (4.1)

The function h(x) is valid as F (x) is a compact set for each x ∈ S.

Lemma 4.1. If h is described by (4.1), then it is the gap function for (VI).

Proof. It is known that h has to meet the following criteria to become a gap function
of (VI):

(i) h(x) is non-negative at every point of S;
(ii) h(x0) = 0 iff x0 solves (VI).

At every point x ∈ Sand x∗ ∈ F (x), we have
gβ(x

∗) = sup
y∈S

{s(x∗, x− y)− β[p(x− y)]m}

≥ s(x∗, x− y)− β[p(y − y)]m = 0 (4.2)
Thus

gβ(x
∗) ≥ 0, ∀ x ∈ S.

Hence
h(x) ≥ 0, ∀ x ∈ S.

Therefore (i) holds.
Let h(x0) be equal to 0. Then ∃ y0 ∈ F (x0) so gβ(y0) = 0. Thus s(y0, x0 − y)−

β[p(x − y)]m ≤ 0, for all y ∈ S. Hence x0 ∈ M(X0). So by Lemma 3.8, x0 is a
solution of (VI).
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Conversely: Let x0 be a solution of (VI). Then we have that for some y0 ∈
F (x0), gβ(y0) = 0. Also, from (4.2), we have at every y ∈ F (x0), gβ(y) ≥ 0.

Now
h(x0) = inf

y∈F (x0)
gβ(y)

= gβ(y0)

= 0.

Therefore, (ii) also holds. Thus h is a gap function for (VI). □
Theorem 4.2. At every x ∈ S,

h(x) ≥ −r[p(x− x0)]
m,

whenever x0 ∈ S solves (VI) and F is a generalised α −m, pseudo monotone map
on S, where r > 0.

Proof. For x ∈ S then for any x∗ ∈ F (x).
gβ(x

∗) = sup
y∈S

{s(x∗, x− y)− β[p(x− y)]m}

≥ s(x∗, x− y)− β[p(x− y)]m . (4.3)
Because x0 ∈ S is a solution of (VI), there exists y0 ∈ F (x0) such that

s(y0, x0 − x) ≤ 0.

Using the generalised α-m pseudo-monotonicity of F , we get that at each x∗ ∈ F (x).
s(x∗, x0 − x)− α[p(x− x0]

m ≤ 0

⇒ − s(x∗, x− x0)− α[p(x− x0]
m ≤ 0

⇒ s(x∗, x− x0) ≥ −α[p(x− x0]
m (4.4)

Equations (4.3) and (4.4) give
gβ(x

∗) ≥ −(a+ β)[β(x− x0)]
m, x∗ ∈ F (x).

This implies
h(x) ≥ −γ[p(x− x0)]

m, for all x ∈ S,

where γ = α+ β. □
The gap function mentioned above aids in the formulation of (VI) into an anal-

ogous mathematical programming problem denoted as follows:
(MP) : min

x∈S
h(x).

Suppose τ0 is the set of all those points of S which solve (MP).
The concept of β-well-posedness for (OP) is now introduced.

Definition 4.3. Let β ≥ 0. {xn} is called a β-minimizing sequence for (MP)
provided

(i) xn ∈ S, ∀ n ∈ N ;
(ii) there is x∗

n ∈ h(xn) at every n in N , {εn}∞n=1, εn > 0 ∀ n, εn → 0 for which
s(x∗

n, xn − y)− β[p(xn, y)]
m ≤ εn, ∀ y ∈ S, ∀ n ∈ N.

Definition 4.4. The (MP) would be β-well-posed provided
(i) if (MP) has only solution x0;
(ii) every β-minimizing sequence {xn} for (MP) approaches to x0 as n tends

to ∞.
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Definition 4.5. (MP) is called generalised β-well-posed provided:
(i) τ0 6= φ ;
(ii) every β-minimizing sequence {xn} for (MP) ∃ {xnk

} ⊆ {xn}so that xnk
→

x0 for some x0 of τ0.

The association between the β-well-posedness of (MP) and (VI) is as follows.

Theorem 4.6. (VI) is β-well-posed iff (MP) is β-well-posed.

Proof. Let (VI) be β-well-posed. Then there exists a unique solution x0 for (VI).
Since h is a gap function, therefore h(x0) = 0. Further, h(x) is non-negative at
every x of S. So x0 minimizes the point for h. To prove that (OP) has a unique
solution, consider x′ ∈ S be so that h(x′) = h(x0) = 0.

To every y ∈ S, consider the point w = λx′ + (1− λ)y, λ ∈ [0, 1].
The point w belongs to S as S is a convex set.

s(x∗, x′ − w)− β[p(x′ − w)]m

= s(x∗, x′ − [λx′ + (1− λ)y])− β[p(x′ − (λx′ + (1− λ)y]m

= s(x∗, (1− λ)x′ + (1− λ)y)− β[p(x′ − λx′ − (1− λ)y]m

= (1− λ)s(x∗, x′ − y)− β[p(x′ − λx′ − (1− λ)y)]m

= s(x∗, x′ − y)− (1− λ)m−1β[p(x′ − y′)]m

≤ 0 (because h(x′) = 0 so gβ(x
′) = 0).

This implies
(1− λ)s(x∗, x′ − y)− β(1− λ)m[p(x′ − y′)]m ≤ 0, ∀ λ ∈ [0, 1].

So when λ → 1, this implies
〈x∗, x′ − y〉 ≤ 0, ∀ y ∈ S.

Thus x′ solves (VI). Therefore x′ = x0 as x0 solves (VI) and is unique. The first
part is proved because the family of β-minimizing sequences for (MP) coincides
with the family of β-approximating sequences for (VI).

Conversely: Let (MP) be β-well-posed then ∃ only one solution x0 of (MP).
Therefore x0 minimizes h and it is unique also. As h is the gap function it means
h(x) ≥ 0 for all y ∈ S. This gives h(x0) = 0. Thus x0 is a solution of (VI) also. To
establish x0 is the only solution of (VI), let x′ be another solution to (VI). Since h
is a gap function so we have h(x′) = 0. Thus x′ should be the solution of (MP).
But (MP) has the only solution x0, so x′ must be equal to x0. Thus, the result can
be established as in the first part. □

Theorem 4.7. (VI) is generalised β-well-posed if and only if (MP) is generalised
β-well-posed in the sense.

5. Conclusion

In this paper, we established the relationship of α-m monotone and generalised
α-m pseudo monotone maps with set variational inequality problem (VI). Then
we constructed a gap function for (VI) problem and used this gap function to
formulate (VI) problem into a corresponding Mathematical Programming Problem
(MP). Finally, we established the relations between the β-well-pseudoness of both
problems. In future, one can explore new well-posedness concepts for spaces with a
semi-inner product.
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