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ABSTRACT. This work presents a novel class of condensing operators to explore the
possibility of solutions for the Volterra integral equation with a singular kernel and pro-
portional delay. These equations are significant in many domains, including engineering
and physics, yet conventional solution techniques face substantial difficulties due to single
kernels and delays. To solve this, we provide a more flexible method of handling such
equations by creating a class of condensing operators based on pairs of functions that sat-
isfy specific local requirements. We define these operators and also show some fixed point
theorems that expand the application of Darbo’s fixed point theorem to a broader class of
situations. At the end we provide examples to illustrate our theoretical results and show
that the suggested approach works well.
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1. Introduction

Integral and differential equations play significant roles in mathematical mod-
eling, physics, and engineering [3, 5, 4]. In Particular, the integral equation with
singular kernels having proportional delay appeared in the study of the motion of
particles in a liquid, population dynamics, and many other branches of science and
engineering [3, 8, 9, 12, 7]. On the other hand, the approach of Darbo [6] fixed
point theorem is a very effective tool to deal with such problems. Despite the ap-
plicability, the Darbo fixed point theorem generated much interest from researchers
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in this domain. The Darbo fixed point theorem has been used, generalized, and
extended in various directions. Here we list some relevant literature on this topic
[3, 5, 9, 1, 14, 10, 11].

Following this direction of research work, we define a new class of condensing
operators and establish corresponding fixed point results. The obtained results are
then applied to prove existence of the solution of nonlinear integral equation with
singular kernels having proportional delay. The integral equation discussed in our
work is a generalized form of the equation discussed in [8].

1.1. Preliminaries. Through out this paper, we will denote the family of nonempty,
closed and bounded convex sets by N .B.C.C, the term measure of non-compactness
by M.N .C, Br means the open ball with radius r, conv(.) as convex hull, RΩ means
the class of all bounded subsets of the space Ω and the symbols R, R+ & N are
used to denote the set of all real numbers, the set of all set of positive real numbers
and the set of all set of positive integers respectively.

Definition 1.1. [3] A mapping M : RΩ −→ R+ is termed as M.N .C, if it satisfy
the following condition:

i) M(Λ) = 0 ⇔ Λ̄ is compact;
ii) The family ker(M) = {Λ ∈ RΩ : M(Λ) = 0}, is non-empty and ker M ⊆

SΩ;
iii) Λ ⊂ Λ1 =⇒ M(Λ) ≤ M(Λ1);
iv) M(Λ) = M(Λ);
v) M(Λ) = M(convΛ);
vi) M

(
λ Λ + (1− α)Λ1

)
≤ λ M(Λ) + (1− λ) M(Λ1), ∀ λ ∈ [0, 1];

vii) If the non-increasing sequence of closed subsets ⟨Λn⟩ ⊂ RΩ for n ∈ N of Ω
with lim

n−→∞
M(Λn) = 0, then Λ∞ =

∞⋂
n=1

Λn is non-empty.

The family of sets kerM = {Λ ∈ RΩ : M(Λ) = 0}, mentioned in (ii) is termed
as the kernel of M. Indeed the condition (vi) validates M(Λ∞) ≤ M(Λn), for any
n thus M(Λ∞) −→ 0. This conformed that Λ∞ ∈ kerM.

The following results are some fundamental theorems in the direction of  Dardo
fixed point theorem.

Theorem 1.1. [13] Let Ξ be any arbitrary set from the family of N .B.C.C of a
Banach space Ω, then for any compact and continuous mapping on Ξ admit a fixed
point in Ξ.

Theorem 1.2. [6] Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω and a continuous map Q : Ξ −→ Ξ satisfying

M(Q(Λ)) ≤ λM(Λ),

for ϕ ̸= Λ ⊂ Ξ, where 0 ≤ λ < 1 and M is M.N .C. Then the mapping Q admit a
fixed point in Ξ.

Theorem 1.3. [1] Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω and a continuous map Q : Ξ −→ Ξ satisfying

M(Q(Λ)) ≤ ϕ(M(Λ)),

for ϕ ̸= Λ ⊂ Ξ, where ϕ : [0,∞) −→ [0,∞) is non decreasing function such that
lim

n−→∞
ϕn (t) = 0, and M is M.N .C. Then Q admit a fixed point in Ξ.



FIXED POINT ASSOCIATED WITH A NEW CLASS OF CONDENSING OPERATORS 93

Theorem 1.4. [2] Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω and a continuous map Q : Ξ −→ Ξ satisfying

M (QΛ) ⩽ α (M (Λ))M (Λ), (1.1)
for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and α : (0,∞) −→ [0, 1) such that α (tn) −→
1 ⇒ tn −→ 0, for any t > 0. Then the mapping Q admit a fixed point in Ξ.

Theorem 1.5. [14] Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω and a continuous map Q : Ξ −→ Ξ satisfying

β (u,Qu)M (QΛ) ≤ ϕ (M (Λ)) , (1.2)
for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and β : Ω × Ω −→ [0,+∞) & ϕ : [0,∞) −→
[0,∞), having following conditions,

(i) β (u, v) ≥ 1 ⇒ β (Qu,Qv) ≥ 1, for all u, v ∈ Ω;
(ii) ϕ is monotonic increasing such that ϕ(t) < t, for all t > 0;
(iii) There exist closed and convex Λ0 ⊂ Ξ, and u0 ∈ Λ0, such that

QΛ0 ⊂ Λ0, β(u0,Qu0) ≥ 1.

Then the mapping Q admit a fixed point in Ξ.

2. Main Results

Theorem 2.1. Let Ξ be any arbitrary set from the N .B.C.C family of Banach space
Ω. If there exists a continuous mapping Q : Ξ −→ Ξ satisfying

ϖ(M(QΛ)) ≤ ϑ(M(Λ)), (2.1)
for nonempty subset Λ of Ξ, where M is M.N .C and the functions ϖ & ϑ :
[0,∞) −→ [0,∞), assumes the following properties,

(i) ϖ is monotonic increasing and ϑ is lower semi-continuous;
(ii) ϑ(t) < ϖ(t), ∀t ∈ (0.∞).

Then Q admits a fixed point in Ξ.

Proof. We begins the proof by the construction of the sequence of sets ⟨Λn⟩ of Λ
by the following rule:

QΛn ⊂ Λn ⊂ Λn−1, ∀ n ∈ N.
Let Λ0 = Λ, we construct a sequence ⟨Λn⟩ by the rule Λn+1 = convQ (Λn) for
n ∈ {0}∪N. For n = 0, we can easily check that QΛ0 ⊂ QΛ ⊂ Λ = Λ0. Now assume
that the rule holds for k = 1, 2, 3, · · ·n. Now by the construction of ⟨Λn⟩ we deduce
that,

QΛn ⊂ Λn implies Λn+1 = conv (QΛn) ⊂ Λn,

therefore QΛn+1 ⊂ QΛn ⊂ Λn+1. If M (ΛK) = 0 for some K ∈ N, then ΛK is
pre-compact sets. Since Q (ΛK) ⊆ conv (QΛK) = ΛK+1 ⊆ ΛK , i.e. Q has a fixed
point in ΛK ⊂ Λ.
Assume that M (Λn) > 0, ∀n ≥ 1. Now , we shall prove that M (Λn) −→ 0 as
n −→ +∞. From v) of definition 1.1 and equation 2.1 we have,

ϖ (M (Λn+1)) = ϖ (M (convQΛn))

= ϖ (M (QΛn))

⩽ ϑ (M (Λn)) ,
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i.e.,
ϖ (M (Λn+1)) ≤ ϑ (M (Λn)) holds for all n. (2.2)

Note that ϖ and ϑ satisfies assumption (a). Then it follows from (2.2) that
ϖ (M (Λn+1)) ≤ ϑ (M (Λn)) < ϖ (M (Λn)) holds for all n. (2.3)

Since, the function ϖ is non-decreasing and ⟨ϖ (M (Λn))⟩ is non-increasing sequence
hence ⟨M (Λn)⟩ is non-increasing sequence of positive real numbers.
Equation (2.3) deduce that sequences ⟨ϑ (M (Λn))⟩ and ⟨ϖ (M (Λn))⟩, are non-
negative and dominating to each other, so both are bounded below and these se-
quences have sub-sequences (may or many not be identical) converges to r ≥ 0 with
the following relation

lim
k−→∞

⟨ϖ (M (Λnk
))⟩ ≤ lim

k−→∞

〈
ϑ
(
M
(
Λn

k
′

))〉
.

On the contrary assume that r > 0. Since ϖ is non decreasing function, so it has
only jump types of discontinuity and by assumption (b), the function ϑ is semi-
continuous, which leads to following expression;

ϖ (r) ≤ lim
t−→r+

supϖ (t)

≤ lim
k−→∞

⟨ϖ (M (Λnk
))⟩

≤ lim
k−→∞

〈
ϑ
(
M
(
Λn

k
′

))〉
≤ lim

t−→r+
supϑ (t)

≤ ϑ (r) .

(2.4)

Which is a contradiction to assumption (b). Therefore, we conformed that r = 0,
and the sequence M

(
Λnk

)
−→ 0 as k −→ ∞. Therefore from the assumption (vii)

of definition 1.1, the set Λ∞ =
∞⋂

n=1
Λn, is non-empty, convex, closed & relatively

compact also invariant under the mapping Q. Thus in the view of Schauder fixed
point theorem [13] on Λ∞, the mapping Q has at-least one fixed point theorem in
Λ∞. □

Example 2.1. Let us define the functions ϖ,ϑ : [0,∞) −→ [0,∞) as follows:

ϖ(t) = t, ϑ(t) =
t

1 + t
.

It is easy to verify that:
• ϖ is continuous and monotonic increasing on [0,∞),
• ϑ is continuous (hence lower semi-continuous) on [0,∞),
• ϑ(t) < ϖ(t) for all t > 0.

Thus, the pair (ϖ,ϑ) satisfies all assumptions of Theorem 2.1.

Theorem 2.2. Let Ξ be any arbitrary set from the N .B.C.C family of Banach space
Ω. If there exists a continuous mapping Q : Ξ −→ Ξ satisfying the condition

ϖ(M(QΛ)) ≤ ϑ(M(Λ)), (2.5)
for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and the functions ϖ & ϑ : [0,∞) −→ [0,∞)

posses the following properties,
(i) ϖ is non-decreasing and lim sup

t−→ε+

ϑ (t) < ϖ (ε+), for any ϵ > 0.

(ii) lim sup
t−→ϵ+

ϑ (t) < lim sup
t−→ϵ+

ϖ (t) for any ϵ > 0.
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Then Q admits at least one fixed point in Ξ.

Proof. The proof follows similar lines of the proof of Theorem 2.1 up to the case,
when M (ΛK) = 0 for some K ∈ N.

So, consider the case when M (Λn) > 0, ∀ n ≥ 1 Note that ⟨M (Λn)⟩ is a sequence
of non-negative real numbers and so bounded below. Therefore, it has a convergent
sub-sequence ⟨M (Λnk

)⟩ , which converges to non-negative real number ϵ as k −→
∞.
Claim that ϵ = 0, suppose contrary ϵ > 0. Then by v) of definition 1.1 and equation
2.5 for each natural number n we have,

ϖ (M (Λn+1)) = ϖ (M (convQΛn))

= ϖ (M (QΛn))

⩽ ϑ (M (Λn)) . (2.6)

Utilizing the convergence of {M(Λnk
} to 2.6, we obtain following expressions,

ϖ (ϵ+) = lim
n−→∞

ϖ (M (Λn+1)) ⩽ lim sup
n−→∞

ϑ (M (Λn)) ⩽ lim sup
t−→ϵ+

ϑ (t) , (2.7)

and

lim inf
t−→ε

ϖ (t) ≤ lim inf
n−→∞

ϖ (M (Λn)) ≤ lim sup
n−→∞

ϑ (M (Λn)) ≤ lim sup
t−→ϵ+

ϑ (t) , (2.8)

equation 2.7 is contradiction to assumption (a) and equation 2.8 is contradiction to
assumption (b), this contradiction arises due to the wrong assumption ϵ ̸= 0. Hence
the sequence converges to zero i.e., ϵ must be zero.
Now form assumption (vi) of the definition 1.1 , the countable intersection Λ∞ =
∞⋂

n=1
Λn, is a non-empty set which is closed, convex invariant under Q and relatively

compact. In the view of Theorem 1.1 to the set Λ∞ =
∞⋂

n=1
Λn, we get required

result. □

Theorem 2.3. Let Ξ be the member of a family of N .B.C.C of Banach space Ω and
a continuous map Q : Ξ −→ Ξ, satisfies

ϖ(M(QΛ)) ≤ ϑ(M(Λ)), (2.9)

for nonempty subset Λ of Ξ, where M is M.N .C and ϖ & ϑ : [0,∞) −→ [0,∞),
are such that ϑ(t) < ϖ(t), for any t > 0 with ϖ(0) = ϑ(0) = 0, satisfying at least
one of the following conditions:

(i) ϖ & ϑ are continuous and if ⟨ϖ(tn)⟩ , be a non-increasing sequence then
⟨tn⟩ , is bounded;

(ii) ϖ is increasing, continuous and ϖ−1, ϑ are semi-continuous functions;
(iii) ϖ is increasing, continuous and ϑ is continuous at 0 with lim inf

t−→∞

(
t−ϖ−1 (ϑ (t))

)
>

0, and lim
s−→t

supϑ (s) < ϑ (t), for each t > 0.

Then Q admits at least one fixed point in Ξ.

Proof. We begins the proof by the construction of the sequence of sets ⟨Λn⟩ of Λ
having following property;

QΛn ⊂ Λn ⊂ Λn−1, for all n ∈ N.
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Let Λ0 = Λ, we define the sequence by Λn+1 = convQ (Λn) for n ∈ {0} ∪ N. If
n = 0, then we can effortlessly validate QΛ0 ⊂ QΛ ⊂ Λ = Λ0. Next, let the rule
holds for k = 1, 2, 3, · · ·n. Now , by the construction of ⟨Λn⟩ we deduce that,

QΛn ⊂ Λn implies Λn+1 = conv (QAn) ⊂ An,

i.e., QΛn+1 ⊂ QΛn ⊂ Λn. Thus in the view of mathematical induction QΛn+1 ⊂ Λn,
hold for all n ∈ N. If M (ΛK) = 0 for some K ∈ N, then ΛK is pre-compact set.
Since Q (ΛK) ⊆ conv (QΛK) = ΛK+1 ⊆ ΛK , i.e., Q is a self-mapping on ΛK . Then
Theorem 2.1 concludes that Q has a fixed point in ΛK ⊂ Λ.
On the other hand, we assume that M (Λn) > 0, ∀n ≥ 1 and prove that M (Λn) −→
0 as n −→ +∞. Now by using assumption v) of definition 1.1 and equation 2.9 we
have,

ϖ (M (Λn+1)) = ϖ (M (convQΛn))

⩽ ϖ (M (QΛn))

⩽ ϑ (M (Λn)) ,

i.e.,
ϖ (M (Λn+1)) ≤ ϖ (M (Λn)) , holds for all n. (2.10)

From equation (2.10) we conformed that ⟨ϖ (M (Λn))⟩ is non-increasing sequence
of non negative real numbers and consequently there exist a real number r ≥ 0 with

lim
n−→∞

ϖ (M (Λn)) = r. (2.11)

Claim that
lim

n−→∞
M (Λn) = 0. (2.12)

Assume that ϖ & ϑ satisfies assumption (1). From equation (2.10) the sequence
⟨ϖ (M (Λn))⟩, is non-increasing sequence therefore by the virtue of assumption (a)
the sequence ⟨M (Λn)⟩, is bounded. Hence for some sub-sequence ⟨M (Λnk

)⟩ of
⟨M (Λn)⟩ , there exist a real number s such that

lim
k−→∞

M
(
Λnk

)
= s. (2.13)

Assume the contradiction that s > 0. Using the continuity of ϖ & ϑ and equations
(2.10), (2.11) and (2.13) we will deduce the following expression

ϖ (s) = lim
k−→∞

ϖ
(
M
(
Λnk

))
≤ lim

k−→∞
ϑ
(
M
(
Λnk−1

))
= ϑ(s).

Hence we get s = 0, which is contradiction, thus equation (2.12) holds.
Now assume that the functions ϖ & ϑ satisfies assumptions (b) and (c). In
both the assumptions ϖ is increasing and continuous function hence equation
(2.9) deduce that ⟨M (Λn)⟩ , is a non-increasing sequence of positive real numbers
therefore this sequence has at least one convergent sub-sequence say ⟨M (Λnk

)⟩
i.e., lim

k−→∞
M (Λnk

) = s, for some s ≥ 0.

Now, using the continuity of functions we obtain lim
k−→∞

ϖ (M (Λnk
)) = ϖ (s) , and

subsequently we get
s ⩽ ϖ−1 (ϑ (s)) .

This is possible only when s = 0. Hence equation (2.12) holds in any case. Now
the assumption (vi) of the definition 1.1 deduce that the countable intersection
Λ∞ =

∞⋂
n=1

Λn, is a non-empty, closed, convex and invariant under Q and relatively
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compact set. In the view of Theorem 1.1 to the set Λ∞ =
∞⋂

n=1
Λn, we get required

result. □

2.1. Consequences.

Remark 2.2. Theorem 2.1 and 2.2 reduces to Theorem A (page 90) given in [6],
if we choose ϖ(t) = t and ϑ(t) = λt, where 0 ≤ λ < 1, in Theorem 2.1 and 2.2
respectively.

Remark 2.3. Theorem 2.1 and 2.2 reduces to theorem 2 of [1], if we choose ϖ(t) =
t ∀ t, in Theorem 2.1 and 2.2 respectively.

Corollary 2.1. Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω. If there exists a continuous map Q : Ξ −→ Ξ, such that

ϖ(M(QC)) ≤ φ(ϖ(M(C))), (2.14)
for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and the functions φ & ϖ : [0,∞) −→ [0,∞),
possess the following properties

(i) ϖ is monotonic increasing;
(ii) φ is continuous from right side and φ(t) < t ∀t ∈ (0,∞) such that

lim inf
t−→∞

(t− φ (t)) > 0.
Then mapping Q admits at least one fixed point in Ξ.

Proof. Define ϑ(t) = φ(ϖ(t)), where ϖ : [0,∞) −→ [0,∞) is upper semi continuous
function such that ϖ(t) < t ∀ t > 0, in Theorem 2.1. Then we assures the mapping
Q admits a fixed point in Ξ. □

Corollary 2.2. [14] Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω. If there exists a continuous map Q : Ξ −→ Ξ, such that

β (u,Qu)M (QΛ) ≤ ϑ (M (Λ)) , (2.15)
for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and the functions β : Ω× Ω −→ [0,+∞) & ϑ :
[0,∞) −→ [0,∞), satisfies following conditions,

(i) β (u, v) ≥ 1 ⇒ β (Qu,Qv) ≥ 1 for all u, v ∈ Ω.
(ii) ϑ is monotonic increasing with ϑ(t) < t ∀ t > 0.
(iii) There exist closed and convex Λ0 ⊂ Ξ and u0 ∈ Λ0, such that

QΛ0 ⊂ Λ0, β(u0,Qu0) ≥ 1.

Then mapping Q admits at least one fixed point in Ξ.

Proof. Let us define the function ϖ(t) = β(u, v)t, then using the properties (1) of
the function β : Ω×Ω −→ [0,+∞), we say that ϖ is non-decreasing for t ∈ [0,∞).
Hence by Theorem 2.1 we assures that the mapping Q admits a fixed point in Ξ. □

Corollary 2.3. Let Ξ be any arbitrary set from the N .B.C.C family of Banach
space Ω. If there exists a continuous map Q : Ξ −→ Ξ, such that

ϖ (M (QΛ)) ⩽ α (M (Λ))ϖ (M (Λ)) , (2.16)
for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and the M(Λ) > 0, and the functions

ϖ : (0,∞) −→ (0,∞), and α : (0,∞) −→ (0, 1), are such that;
(i) ϖ is monotonic increasing;
(ii) α (tn) −→ 1 ⇒ tn −→ 0.

Then mapping Q admits at least one fixed point in Ξ.
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Proof. Define a function ϑ as α as ϑ(t) = α(t)ϖ(t), in Theorem 2.1 then the given
conditions produces following equivalences;

• ϖ is monotonic increasing implies ϖ is upper semi continuous;
• Since α(t) < 1 ∀ t hence ϑ(t) = α(t)ϖ(t) < ϖ(t).

Hence by Theorem 2.1 the mapping Q admits a fixed point in Ξ. □

Remark 2.4. In the corollary 2.3 if we take ϖ(t) = t, then it reduces to a fixed
point theorem in [2].

Corollary 2.4. [1] Let Ξ be any arbitrary set of the family N .B.C.C of Banach
space Ω and a continuous map Q : Ξ −→ Ξ, satisfies

ϖ (M (QΛ)) ⩽ ϖ (M (Λ))− ϑ (M (Λ)) , (2.17)

for ϕ ̸= Λ ⊂ Ξ, where M is M.N .C and ϑ & ϖ : [0,∞) −→ [0,∞), satisfying
the following conditions;

(i) ϖ is continuous function;
(ii) ϑ is a continuous from left and ϖ(t) = 0 ⇔ t = 0.

Then mapping Q admits at least one fixed point in Ξ.

Proof. Let us define ϑ : [0,∞) −→ [0,∞) by ϑ = ϖ − ϑ, in Theorem 2.3 then all
the conditions are satisfied and we assure fixed point of mapping Q : Ξ −→ Ξ. □

3. Application

From the last few decades many researchers showed that the concept of M.N .C
brings into play a sparkling role in the study of existence and uniqueness of solution
of an integral equations [4].
In this section, we will use the M.N .C in the space C([0, a]) contains all continuous
functions x : [0, a] −→ R having the norm,

||x|| = max {|x (r)| : r ∈ [0, a]} ;x ∈ C ([0, a]) ,

Let Λ ̸= ϕ be any subset of C([0, a];R). Now for ϵ > 0 we define modulus of
continuity ω(x, ϵ) of x on [0, a] as;

ω (x, ε) = max {|x (r)− x (s)| ; r, s ∈ [0, a] , |r − s| ≤ ε} ,

and further we define the term ω (W, ε) as follows;

ω (Λ, ε) = sup {ω (x, ε) ;x ∈ Λ} .

Note that modulus of continuity ω (Λ, ε), is non-negative and increasing, hence we
assure that there exists a finite limit of lim

ε−→0
ω (Λ, ε), and finally we obtain the

expression for the term M(Λ) in the form of limit as;

M(Λ) = lim
ε−→0

ω (Λ, ε). (3.1)

In [4, 3] it is proved that the term M mentioned in equation (3.1) is M.N .C in the
Banach space C([0, a]).



FIXED POINT ASSOCIATED WITH A NEW CLASS OF CONDENSING OPERATORS 99

3.1. On existence of solutions of non-linear proportional delay Volterra
integral equation with singular kernel in the space C[0, 1]. In this section,
we use the results form section 2 to prove a theorem which ensure the solutions
of nonlinear proportional delay Volterra integral equation. The integral equation
considered in this section generalizes the integral equation given in [8].

u(t) = ℜ

t, u(t),

qt∫
0

K(t, τ, u (τ))

(qt− τ)
γ dτ

 , (3.2)

t ∈ I = [0, 1], 0 < q ≤ 1, 0 < γ < 1 & γ ∈ Q.

i) ℜ : I × R× R −→ R, is continuous function satisfies following inequality;

|ℜ (t, x1, y1)−ℜ (t, x2, y2)| ≤
√
ξ (|x1 − x2|) + |y1 − y2| ,

where ξ : [0,∞) −→ [0,∞), is a function of real numbers satisfies ξ (t) < t2.
ii) K : I × [0, A] × R −→ R, is continuous function and a there exist non-

decreasing ζ : R −→ R+, such that;

|K(t, τ, u (τ))| ≤ ζ (||u||) .

iii) there is at lest one real number r0 > 0, which sacrifices the inequality

(1− γ)
√
ξ (r0) + ζ (r0) + (1− γ)M ≤ (1− γ) r0.

where M ≥ 0, is constant which satisfies the relation |ℜ (t, 0, 0)| ≤ M ∀ t ∈
I.

Theorem 3.1. If assumptions (i)− (iii) satisfied by the Volterra integral equation
(3.2) then it has at least one solution in the space C([0, 1]).

Proof. For u ∈ C(I) define an mapping Q on the Banach space C(I) in the following
manner;

Q (u(t)) = ℜ

t, u(t),

qt∫
0

K(t, τ, u (τ))

(qt− τ)
γ dτ

 . (3.3)

Here, we can easily show that Q, is a self-mapping on the space C(I). To do this
fix, ϵ > 0, and choose random numbers t, s ∈ I such that |t− s| < ϵ, without loss of
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generality, we take s < t, and obtain following expression;
|Q (u(t))−Q (u(s))|

=

∣∣∣∣∣ ℜ

(
t, u(t),

qt∫
0

K(t,τ,u(τ))
(qt−τ)γ dτ

)
−ℜ

(
s, u(s),

qs∫
0

K(s,τ,u(τ))
(qs−τ)γ dτ

) ∣∣∣∣∣
≤

∣∣∣∣∣∣ℜ
t, u(t),

qt∫
0

K(t, τ, u (τ))

(qt− τ)
γ dτ

−ℜ

t, u(s),

qt∫
0

K(s, τ, u (τ))

(qt− τ)
γ dτ

∣∣∣∣∣∣
+

∣∣∣∣∣∣ℜ
t, u(s),

qt∫
0

K(s, τ, u (τ))

(qt− τ)
γ dτ

−ℜ

s, u(s),

qs∫
0

K(s, τ, u (τ))

(qs− τ)
γ dτ

∣∣∣∣∣∣
≤
√
ξ (|u(t)− u(s)|) +

∣∣∣∣∣∣
qt∫
0

K(t, τ, u (τ))

(qt− τ)
γ dτ −

qt∫
0

K(s, τ, u (τ))

(qt− τ)
γ dτ

∣∣∣∣∣∣
+ ωℜ (I, ε) +

∣∣∣∣∣∣
qt∫
0

K(s, τ, u (τ))

(qt− τ)
γ dτ −

qs∫
0

K(s, τ, u (τ))

(qs− τ)
γ dτ

∣∣∣∣∣∣
≤
√
ξ (|u(t)− u(s)|) +

qt∫
0

|K(t, τ, u (τ))−K(s, τ, u (τ))|
(qt− τ)

γ dτ

+ ωℜ (I, ε) +

∣∣∣∣∣∣∣∣
qt∫
0

|K(s, τ, u (τ))|
(

1
(qt−τ)γ − 1

(qs−τ)γ

)
dτ

+
qt∫
0

K(s,τ,u(τ))
(qs−τ)γ dτ −

qs∫
0

K(s,τ,u(τ))
(qs−τ)γ dτ

∣∣∣∣∣∣∣∣
≤
√
ξ (|u(t)− u(s)|) + ωK (I, ε)

∣∣∣∣∣∣
qt∫
0

1

(qt− τ)
γ dτ

∣∣∣∣∣∣+ ωℜ (I, ε)

+ ζ (||u||)

∣∣∣∣∣∣
qt∫

qs

(
1

(qs− τ)
γ

)
dτ

∣∣∣∣∣∣+
∣∣∣∣∣∣

qt∫
0

(
1

(qt− τ)
γ − 1

(qs− τ)
γ

)
dτ

∣∣∣∣∣∣


≤
√

ξ (ω (u, ε)) + ωK (I, ε)

(
1

1− γ

)
+ ωℜ (I, ε) + ζ (||u||)

(
ε1−γ

1− γ
+

ε1−γ

1− γ
− ε1−γ

1− γ

)
,

(3.4)
where,

ωℜ (I, ε) = sup {|ℜ (t, x, y)−ℜ (s, x, y)| : t, s ∈ I, |t− s| ≤ ε} ,
ωK (I, ε) = sup {|K(t, x, y)−K(s, x, y)| : t, s ∈ I, |t− s| ≤ ε} ,
ω (u, ε) = sup {|u (t)− u (s)| : t, s ∈ I, |t− s| ≤ ε} .

(3.5)

From the above estimate and assumptions (i) & (ii) we ensure that Qu, is a contin-
uous function on the interval I. Now, considering above established expression and
assumption (iii), we ensure that the mapping Q maps the space C(I) into itself.
For r0 > 0, consider

Br0 = {u ∈ C ([0, 1]) ||u|| ≤ r0} ,
be the closed ball centered at origin.
We claim Q is a continuous map from Br0 into itself. Indeed for a random but fixed
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element u ∈ C(I) and t ∈ I, we secure following inequality;

|Q (u(t))| =

∣∣∣∣∣∣ℜ
t, u(t),

qt∫
0

K(s, τ, u (τ))

(qt− τ)
γ dτ

−ℜ (t, 0, 0,) + ℜ (t, 0, 0,)

∣∣∣∣∣∣
≤
√

ξ (||u||) + ζ (||u||)

∣∣∣∣∣∣
qt∫
0

1

(qt− τ)
γ dτ

∣∣∣∣∣∣+M

≤
√

ξ (||u||) + ζ (||u||)
(

1

1− γ

)
+M.

(3.6)

By the virtue of assumption (iii) and equation (3.6), we conformed Q maps form
the Br0 into itself.
Now, in order to show the continuity of Q on B, fix ϵ > 0 and choose δ > 0, at
the same time select an arbitrary pair u, v ∈ B, such that ||u − v|| < δ. With this
consideration, for a random t ∈ I, we obtain;

|Q (u(t))−Q (v(t))|

=

∣∣∣∣∣ ℜ

(
t, u(t),

qt∫
0

K(s,τ,u(τ))
(qt−τ)γ dτ

)
−ℜ

(
t, v(t),

qt∫
0

K(s,τ,v(τ))
(qt−τ)γ dτ

) ∣∣∣∣∣
≤
√
ξ (|u(t)− v(t)|) +

∣∣∣∣∣qt∫0 K(t,τ,u(τ))−K(t,τ,v(τ))
(rt−τ)γ dτ

∣∣∣∣∣
≤
√
ξ (|u(t)− v(t)|) + (ωK (I, ε) (1/1− γ)) .

(3.7)

The expression (3.7) confirm that the mapping Q enjoys continuity property on
Br0 . Let B be a collection of all the functions from closed ball u ∈ Br0 , having
the property that u(t) ≥ 0 for t ∈ I. Obviously B is non-empty since r0 > 0. Let
D ̸= ϕ, be a non-empty subset of B and u ∈ D. For a fixed real number ϵ > 0,
choose the pair t, s ∈ I, such that |t − s| ≤ ϵ. Without loss of generality, assume
s < t, equation (3.4), produces the following expression;

ω (Qu, ε) ≤
√

ξ (ω (u, ε)) +
(
ωK (I, ε)

(
1

1−γ

)
+ ζ (||u||)

(
ε1−γ

1−γ

))
+ ωℜ (I, ε) .

(3.8)
By the virtue of assumptions (i) and (ii) the term ωK (I, ε) −→ 0 & ωℜ (I, ε) −→ 0
as ϵ −→ 0 also ζ is bounded function on its domain, hence applying ϵ −→ 0 and
from 3.1, equation (3.8 ) remain with the following inequality;

M (Q (D)) ≤
√
ξ (M (D)),

where M is M.N .C. Now, define the functions ϖ & ϑ : [0,∞) −→ [0,∞), by
ϖ (t) = t2 and ϑ (t) = ξ (t), where the map ξ is mentioned in assumption (i).
Considering above functions we get the following estimate;

ϖ (M (Q (D))) ≤ ϑ (M (D)) . (3.9)

Utilizing theorem (2.1) of Section (2) with above estimation we confirm that the
map Q admits a fixed point in B ⊂ C([0, 1]). This proves the integral equation
(3.3) admit at-least one solution in Banach space C([0, 1]). □

3.2. Example.
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Example 3.1. Consider the non-linear functional integral equation:

u(t) = cos(t)− 1

6
t
1
3 +

t

4(t+ 1)
cos (u(t)) +

1

18

qt∫
0

sin2 (τ) + u2 (τ)

(qt− τ)
γ dτ, (3.10)

where t ∈ I = [0, 1], 0 < q ≤ 1, 0 < γ < 1 .

Eq. (3.10) is obtained from (3.2) by the following substitution

ℜ (t, u, v) = cos(t)− 1

6
t
1
3 +

t

4(t+ 1)
cos (u(t)) +

1

18

qt∫
0

sin2 (τ) + u2 (τ)

(qt− τ)
γ dτ,

where

K (t, τ, u(τ)) =
sin2 (τ) + u2 (τ)

18
.

For t, τ ∈ I and u ∈ C(I), we estimate following expression;

|K (t, τ, u(τ))| =
∣∣∣∣ sin2 (τ) + u2 (τ)

18

∣∣∣∣
≤ 1 + ||u||2

18
= ζ (u) .

Consider ℜ (t, u, v) = cos(t) − 1
6 t

1
3 + t

4(t+1) cos (u(t)) + v, in (3.10). For t ∈ I, and
u, v ∈ C(I), we have the following expression;

|ℜ (t, u, v)−ℜ (t, x, y)| =
∣∣∣∣ t

4(t+ 1)
cos (u(t))− t

4(t+ 1)
cos (x(t))

∣∣∣∣+ |v − y|

≤
√

ξ |u− x|+ |v − y| ,

where,
√

ξ |u− x| = 1
8 |u− x|. Moreover, M = max {|ℜ (t, 0, 0)| : t ∈ [0, 1]} ≈

1.048.
Now, using the above functions viz. ζ (s) = 1+s2

18 ,
√

ξ |s| = 1
8s and M = 1.048, in

the existing inequality of assumption (iii), we get

(1− γ)
√
ξ (r0) + ζ (r0) + (1− γ)M ≤ (1− γ) r0

⇒ (1− γ)
(r0
8

)
+

1 + r0
2

18
+ (1− γ) (1.048) ≤ (1− γ) r0.

(3.11)

It is easily seen that the above inequality have a positive solution for suitable
choice of 0 < γ < 1. In particular, if we choose γ = 0.5 and r0 = 1.8, then
the inequality (3.11) is satisfied. Moreover, we define a function A(γ, r) using the
inequality (3.11) for 0 < γ < 1 and 1 ≤ r ≤ 5, by

A(γ, r) = 7 (1− γ)
(r
8

)
+

1 + r2

18
+ (1− γ) (1.048) (3.12)

and plot is given in the following figure 1 for γ = 0.2, 0.4, 0.6, 0.8 & 1. Figure 1,
shows that the values of A(γ, r), lies in first quadrent for 0 ≤ r ≤ 5, and 0 < γ ≤ 1.
Consequently, we can easily verfies that there are some mores of γ and r that satisfies
the inequality (3.11). Thus from all the above observations we see that the integral
equation (3.10) satisfies all the assumptions of Theorem 3.1. Hence by Theorem
3.1, we ensures that the integral (3.10) has atleast one solution.
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Plot of equation (3.12) in the view of assumption (iii).
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Figure 1.

Example 3.2.

u(t) = f (t) + χu(t) + t

qt∫
0

eτ arcsin (u (τ))

(qt− τ)
γ dτ, (3.13)

where χ ∈ R, f : [0, 1] −→ R is continuous function and t ∈ I = [0, 1], 0 < q ≤
1, & 0 < γ < 1.

If we take following substitutions in (3.2) we obtain equation (3.13),

ℜ (t, u, v) = f (t) + χu(t) +

qt∫
0

u3 (τ)

(qt− τ)
γ dτ.

where
K (t, τ, u(τ)) = u3 (τ) .

Now, for t, τ ∈ I and u ∈ C(I), we estimate following expression;

|K (t, τ, u(τ))| =
∣∣u3 (τ)

∣∣
⩽
∥∥u3
∥∥ = ζ (u) (say),

Consider ℜ (t, u, v) = f (t) + χu(t) + v, in (3.13). For t ∈ I, and u, v ∈ C(I), we
have the following expression;

|ℜ (t, u, v)−ℜ (t, x, y)| = χ |u(t)− x(t)|+ |v − y|

⩽
√
ξ |u− x|+ |v − y| ,
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Plot of equation (3.15) in the view of assumption (iii) for χ = 0.1.
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Figure 2.

where,
√
ξ |u− x| = χ |u(t)− x(t)|. Moreover, M = max {|ℜ (t, 0, 0)| : t ∈ [0, 1]} ≈

1.048.
Now, using the above functions viz. ζ (s) = s3,

√
ξ (|s|) = χs and M = 0, in the

existing inequality of assumption (iii), we get
(1− γ)

√
ξ (r0) + ζ (r0) + (1− γ)M ⩽ (1− γ) r0

⇒ (1− γ)χr0 + r0
3 ⩽ (1− γ) r0.

(3.14)

It is easily seen that the above inequality have a positive solution for suitable
choice of 0 < γ < 1. In particular, if we choose γ = 0.2 and r0 = 0.8 and χ = 0.1,
then the inequality (3.11) is satisfied. Moreover, we define a function A(γ, r) using
the inequality (3.11) for 0 < γ < 1 and 0 ≤ r < 1, by

A(γ, r) = (1− γ) (1− χ)− r0
2, (3.15)

and plot is given in the following figure 2.
Figure 2, shows that the values of A(γ, r) for χ = −10 lies in first quadrent for 0 <

r < 1, and γ = 0.1, 0.3, 0.5, 0.7 & 0.9. Consequently, we will easily check that there
are more combinations for values of γ, r and χ that satisfies the inequality (3.14).
Thus from all the above discussion we see that the integral equation (3.13) satisfies
all the assumptions of Theorem 3.1. Hence Theorem 3.1, ensures the existance of
solution for integral equation (3.13).

4. Conclusion

In this work we proved Volterra integral equation with weakly singular kernel
having proportional delay is solvable under certain conditions. The solvability is
proved by the Darbo type fixed point theorem defined with the help of new class
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of condensing operators. The Darbo type fixed point theorem derived in this paper
generalizes many of the existing results. To support our reslts we discussed two
problems and proved existance conditions. The exact solution of 3.2 is given in [8].
The problem discussed in [8] will be obtain by substituting χ = 0 in (3.13). In
future, we expect to study the stability behavior to the solutions (3.13).
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