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ABSTRACT. In this paper, we present the concepts of hesitant fuzzy mapping, con-
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1. INTRODUCTION

Fixed point theory is a foundational branch of mathematical analysis with broad
applications in nonlinear analysis, optimization, differential and integral equations,
game theory, and computer science. One of the earliest contributions to this theory
was the Banach Contraction Principle (BCP), introduced by Banach [3] in 1922,
which guarantees the existence and uniqueness of fixed points for contraction map-
pings in complete metric spaces. This result has since inspired many generalizations
and extensions to accommodate more complex structures and mapping behaviors.

The classical concept of a metric space, formalized by Fréchet [13], was general-
ized over time to reflect diverse real-world phenomena. For instance, quasi-metric
spaces introduced by Wilson [30] drop the symmetry condition, while b-metric spaces
(Czerwik, 1993 [5]) relax the triangle inequality. These generalizations have moti-
vated a deeper investigation into fixed point theory in non-traditional metric-like
structures.
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One such recent development is the controlled metric-type space, introduced by
Mlaiki [20] in 2018. This framework utilizes a control function (¢, k) to modify
the standard triangle inequality, leading to a more flexible and generalized space
where:

d(¢,0) < Y(¢ R)A(C, k) +Y(k, 0)d(k, 0), V( k,0€ W.

Unlike traditional metric or even b-metric spaces, the use of a control function allows
the modeling of distance with adaptive sensitivity, particularly useful in systems
influenced by varying local dynamics, uncertainty, or partial observability. Such
extensions provide a meaningful foundation for analyzing mappings in abstract and
applied contexts.

Parallel to developments in generalized spaces, the concept of fuzziness in math-
ematical modeling has played a key role in capturing uncertainty. Since Zadeh’s
introduction of fuzzy sets in 1965 [32], many variants have emerged, including hesi-
tant fuzzy sets (HFS), proposed by Torra [29], which allow multiple possible mem-
bership values for a single element. This feature makes HF'S suitable for modeling
indecision or hesitation in complex systems, such as those found in social networks,
decision theory, and artificial intelligence.

It is important to emphasize that the proposed methodology is largely inde-
pendent of whether the underlying equations are fractional, integral, or classical
differential in nature, and is also unaffected by the specific form of nonlinearity
embedded within the integral operators. In contrast to several existing approaches
that impose stringent conditions on the input data to ensure the well-posedness of
integral equations—often through advanced fixed point theory—our framework op-
erates under more general assumptions. Numerous studies have addressed existence,
uniqueness, and optimal control of integral and fractional differential equations us-
ing such tools (see [6, 7, &, 9, 16, 24, 28, 27]). Furthermore, integral equations,
while mathematically rich, pose additional difficulties in deriving approximate or
optimal solutions, which have been extensively explored in recent literature through
the development of numerical and approximation methods. Many of these meth-
ods rely on transforming differential problems into integral forms to apply fixed
point results, with detailed convergence analyses available in the latest works (see
[ ) ’ ’ ’ ’ ) ) ) ) ])

Hesitant fuzzy mappings have recently been studied in the context of fixed point
theory. Osawaru [21] and Bamel and Sihag [2] examined fixed points of such map-
pings in various general metric settings, including b-metric spaces. However, to the
best of our knowledge, no work has yet combined hesitant fuzzy mappings with
the controlled metric-type space structure, nor linked this setting to the solution of
Fredholm integral equations, which are central to modeling a wide range of physical
systems, such as heat conduction, wave propagation, and quantum mechanics.

This paper aims to fill this gap by developing a new class of fixed point results
for hesitant fuzzy mappings within the framework of controlled metric-type spaces.
Building upon and extending the foundational ideas of Mlaiki [20] and Bamel and
Sihag [2], we introduce a novel contraction condition based on deviation degrees,
which is specifically designed to measure variations in hesitant fuzzy membership
values while incorporating control-based distance measures. Within this generalized
setting, we further establish the existence of solutions to Fredholm integral equations
by applying the proposed framework.

The novelty of our work lies in the integration of hesitant fuzzy logic with con-
trolled metric structures and the application to integral equations, which has not
been addressed in previous literature. Furthermore, the use of deviation degrees
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provides a new approach to comparing membership functions and analyzing con-
vergence behavior in fuzzy settings.

Our motivation is twofold: from a theoretical perspective, to enrich fixed point
theory in abstract metric-type environments; and from an applied viewpoint, to
provide tools for solving real-world problems involving ambiguity, partial knowledge,
and complex relational structures features common in control systems, data science,
and engineering models governed by integral equations.

2. PRELIMINARIES

Definition 2.1. [20] Let W(# () a set and ¢ : W x W — [1,00). A distance
function dy, : W x W — [0, 00) satisfying the following conditions, if V (,k,0 € W :
(i) d(¢, k) =0 if and only if ¢ = &,
(i) d(C, k) = d(k, (),
(ili) d(¢, @) < ¥(C, k)d(C, k) +1(k, 0)d(k, 0).
then (W, d) is known as controlled metric type space. If for all {,p € W, ¥((, 0) =
s and s > 1, then it is known as b-metric space and if ¥({, 0) = s = 1, then it is
called metric space.

Remark 2.2. (i) If, for all ¥((, k) = s > 1, then (W, d) is a b-metric space,
which leads us to conclude that every b-metric space is a controlled metric
type space. In addition, a controlled metric type space is not in general an

extended b-metric space when taking the same function.
(ii) If, for all ¥({,k) = s = 1, then (W, d) is a metric space.

Torra [29] generalized fuzzy sets due to Zadeh [32] in 1965 by introducing the
new notion of hesitant fuzzy logic and hesitant fuzzy sets.

Definition 2.3. [29] Let W(# 0) denote a set, and let S represent a collection
of finite subsets within the interval [0,1]. A hesitant fuzzy set defined on W is a
function h : W — S, where for each element ¢ in W, h(¢) belongs to S. When h is
single-valued for every ¢ in W, a hesitant fuzzy set simplifies to a fuzzy set.
Further, we represent H (W) by a collection of hesitant fuzzy set on W.

Xia and Xu [31] introduced a method for comparing hesitant fuzzy memberships
by evaluating their scores. They characterized the score of a hesitant membership

values A; € S as follows: .
S(A]) = m Z a.

where n(A;) denotes the cardinality of 4; and s(A;) € [0, 1].

Definition 2.4. [22] Let h be represent a hesitant fuzzy set on W. The a-cut of a
hesitant fuzzy set A is defined as:

hd = {¢ e W:s(h*(C)) > a} for any o € (0,1],
and
hioy = CU{¢ € E: s(h*()) > {0}}) = O(B).
with oo = {0} € S is known as a-cut (level set) of a hesitant fuzzy set, where C(B)
denotes the closure of B.

A relation on hesitant fuzzy membership values is established such that if s(A4;) >
s(Asg), then A7 > As. Moreover, A; is considered similar to Ay if s(A;) = s(As)
for all Ay, Ay € S. Liao and Xu [19] pointed out that this relationship may not
hold true in certain special cases. To address this concern, Chen [4] introduced the
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concept of deviation degree. The deviation degree of a hesitant fuzzy membership
value A; € S is defined as:

d(Ay) = \/n(ih) S (a— s(Ar)2.

ac€A,

They also proposed a comparison for sets of hesitant fuzzy membership values based
on the following criteria:
( ) Al < Ay if S(A1> < S(A2 or if S(A1> = S(Ag) and d(Al) > d(Ag),
(ii) Ay = As if s(A1) = s(As) and d(A1) = d(As),
(iii) Ay > Ag if s(A1) = s(Az) and d(A;1) < d(As2).

Example 2.5. [2] Let (Z,d) represent a b-metric space and the distance function
d is defined as d(¢, k) = |¢ — k|2 V ¢,k € Z. Suppose h' : W = {1 < (<7} — Sis
a hesitant fuzzy map, where

/ 1
h(¢) = {; € [0,1], s is a multiple of ¢, s < 12}.

Then, we prove the comparison on sets of hesitant fuzzy membership values using
deviation degrees.

Solution: First, we find the value of the hesitant fuzzy map on the interval [1,7]
and then get the score of the hesitant fuzzy membership values and deviation degree
of a hesitant fuzzy membership on the interval [1,7]. Finally, we compare the values.

l( 1) ={1,0.5,0.33,0.25,0.2,0.17,0.14,0.13,0.11, 0.1, 0.09, 0.08},

h'(2) = {0.5,0.25,0.17,0.13,0.1,0.08},
h'(3) = {0.33,0.17,0.11,0.08},
K (4) = {0.25,0.13,0.08},
K (5) = {0.2,0.1},
1 (6) = {0.17,0.08},
K (7) = {0.14}

S(h (1)) = W S

ach’ (1)

1
12(1-1—05-1—033-1—025-1—02-1—017—%—014-1—013—%—011

0.1 +0.09 + 0.08) = 0.26,
s(h'(2) = é(0.5 +0.25 4+ 0.17 + 0.13 + 0.1 + 0.08) = 0.21,
s(h (3)) = 3(0.33 40174011+ 0.08) = 0.17,
s(h (4)) = %(0.25 +0.13 4+ 0.08) = 0.15,
s(h (5)) = %(0.2 +0.1) = 0.15,
s(h (6)) = %(0.17 +0.08) = 0.13,
s(h'(7) = 0.14.
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and

a0 W)= | 2 @mst W' e)= | e 3 st
a0 6) = | 3 (st i) = ke 3 sty
a0 6) = | 2 (@t di'©) = ) 2 (amsto®
d(h' (7)) = moiG) QEhZ/mm — s(h'(7)))2.

Let o = {0.1,0.3}, then

1 1
s(a) = Wa)za = 5(01+03) = 0.2

aco
If we take o = {0.1}, then s(0.1) = 0.2 and d(0.1) = % If we take o = {0.3}, then
5(0.3) = 0.2 and d(0.3) = ﬁ Therefore, if « = 0.1 < a =03 = d(a=0.1) >
d(a =0.3).

Definition 2.6. [21] A hesitant fuzzy subset h of W is classified as a hesitant fuzzy
approximate quantity iff its « level set is a convex subset of W, for all « € [0, 1] and

supcew {h(Q)F} = {1}.

Example 2.7. Let the pair (Z,d) denote a b-metric space, with the distance func-
tion d defined as d(¢, k) = |¢ — k]2 V¥ (,k € Z. Suppose h' : W ={1 < (¢ <4} = S
is a hesitant fuzzy map, where,

’

h(¢)= {% € [0,1], s is a multiple of ¢, s < 7}.

Then, supcew {h' ()T} = {1}.
Solution: Firstly, we compute the values of the hesitant fuzzy map over the interval
[1,4].

K (1) = {1,0.5,0.33,0.25,0.2,0.17,0.14}, h'(2) = {0.5,0.25,0.17},
K (3) = {0.33,0.17}, h'(4) = {0.25}
Then, supcew{h ({)*} = {1}.

Definition 2.8. [21] Assume s is the coefficient of the b-metric space (W, d) and h
is a hesitant fuzzy set on W. The a cut of a hesitant fuzzy set is defined as:

ho ={¢ €W :s(h(()) = a},
for any a € (0,1], and
hioy = C({¢ € W = s(h(C)) > {0}}),

with a = {0} € S is known as « cut of a hesitant fuzzy set, and C(B) denotes the
closure of B.
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Definition 2.9. [21] Let U(W) C H(W) represent a collection of hesitant fuzzy
approximate quantities on W. For h, k € U(W) and « € S, the « set-space of h and
k is defined as:

pa(h7 k) = inf{eha,meka d(C7 K/)7
p(h, k) = sups pa(h, k).
If b,k € U(W), then the fuzzy approximate quantity h is deemed more precise than
k if h C k, which is equivalent to h(¢) < k(C) for every ¢ € W.

Definition 2.10. [21] For h,k € U(W) and a = [0,1] € S, the « set-distance of h
and k is defined as:
Dy (h,k) = HD(hg, ko),
where H D signifies the Hausdorff distance.
Let h,k € U(W) and « € S. Thus overall distance between h and k is given by
D(h,k) = sups, Do(h, k).

Definition 2.11. [21] Let W(# 0) be a set with (IW,d) be a metric space. The
collection H (W) of hesitant fuzzy sets on W have a sub-collection U (W) of hesitant
approximate quantities. The hesitant mapping is defined as Hp : W — U (W) such
that Hp(¢) € U(W) for every ¢ € W.

Definition 2.12. [21] Assume W (3 0) be a set with (W, d) a metric space. The
collection H (W) of hesitant fuzzy sets on W contains a sub-collection U(W) of
hesitant approximate quantities. The pair of hesitant fuzzy maps Hp, , Hp, : W —
U(W) is defined such that:

D(HF, (Q), Hr, (r)) < a1p(C, Hr, () + azp(, Hr, () + asp(s, Hr, ()
+ a4p(C7 HF2 (K)) + a5d(C7 ’%)a

for any ¢,k € E, where Zle a; <1, a1 = ag or ag = a4 (a; € RT).
Theorem 2.1. [21] Let (W,d) be a metric space and Hp,,Hp, : W — U(W)
hesitant maps such that
D(Hp, (), Hr, (k) < a1p(C, Hp, (C)) + azp(k, Hr, (k) + asp(s, Hr, ()
+ (L4p(<, HF2 ('%)) + a5d(C7 K’)a

for any ¢, k € W, where Zle a; < 1,and a; = as or az = a4 (a; € RT). Then there
exists ¢* € W such that {¢*} € Hp, ((*) and {{*} € Hp,(¢*) also hold.

Definition 2.13. [21] Assume W(# 0) be a set and (W, d) represents a b-metric
space. The collection H (W) of hesitant fuzzy sets on W have a sub-collection U (W)
of hesitant approximate quantities. The hesitant fuzzy mapping on b-metric space
is defined as:

Hp W — UW),
such that Hp(¢) € U(W) for every ¢ € W.
Definition 2.14. [21] Let s be the coefficient of a b-metric space (W,d). The

hesitant fuzzy map Hp : W — U(W) is known as the contraction of hesitant fuzzy
map on b-metric space. If

D(HFUHF,{) < a’d(<7 ’%)v

for any ¢,k € W, where a € (0, %) and s > 1.
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Definition 2.15. [21] Assume W (# 0) is a set and s is the coefficient of a b-metric
space (W,d). The collection H(W) of hesitant fuzzy sets on W contains a sub-
collection U (W) of hesitant approximate quantities. The generalized contraction of
hesitant fuzzy maps on b-metric space is defined as:

IT[FI,ITZ'F2 : W—)U(W),

such that
‘D(HFI (C)a HF2 (H)) < % alp((a HF1 (C)) + an(ﬁv HF2 (’i)) + a3p("€a HFI (C))
+ a4p(<a HF2 (l{)) + a5d(§, K;):| 3

for any ¢,k € W where a1 +as+s[ag+ag]+as < 1,and a; = as or ag = a4 (a; € RT).

Theorem 2.2. [14] Assume W (# () be a set and (W, d) be a complete controlled
metric space and d is a continuous functional. Assume T: W — W and 3 (, € W
such that

d(Tk,T?k) < kd(rk, Tk) for each xk € O((y) = orbit of (o,

where k € (0,1) be such that for (, € W, supmzllimiﬁm%w(gﬂ,gm) <

%, here ¢, = T"({o),n = 1,2,3,... . Then T"(y — (o € W. Therefore, ( is a fixed
point of T iff G(¢) = d(¢,T¢) is T-“orbitally lower semi-continuous” at .

3. MAIN RESULTS

In this paper, we examine the novel concept of hesitant and contractive fuzzy
mapping within the context of controlled metric-type spaces.

Definition 3.1. Let W (# 0) be a set and let (W, d,) denote a controlled metric
type space. The collection H (W) of hesitant fuzzy sets on W have a sub-collection
U (W) of hesitant approximate quantities. A hesitant fuzzy mapping on a controlled
metric type space is defined as Hp : W — U(W) such that Hr(¢) € U(W) for each
cew.

Definition 3.2. Let (W,dy) be a controlled metric-type space characterized by a
coefficient ¢(¢, k) where ¢ : W x W — [1,00). Let D be a distance function defined
as D : W x W — [0,00). The hesitant fuzzy map Hp : W — U(W) is termed a
contraction hesitant fuzzy map on controlled metric-type space. If

D(HF(,HFN) S adw((, H)7

1
for any ¢,k € W, where a € (0, m)

Remark 3.3. (i) If ¢({,k) = s and s > 1, then a contraction hesitant fuzzy
map in a controlled metric-type space reduces to a contraction hesitant
fuzzy map in a b-metric space.

(ii) If ¥(¢,x) = s and s = 1, then a contraction hesitant fuzzy map in a
controlled metric-type space becomes a contraction hesitant fuzzy map in
a metric space.

Definition 3.4. Let W(# ¢) be a set and let ¢((, ) denote the coefficient of a
controlled metric type space (W, dy). The collection H(W) of hesitant fuzzy sets on
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W has a sub-collection U(W) of hesitant approximate quantities. The generalized
contraction of hesitant fuzzy maps is defined for Hp,, Hp, : W — U(W) such that
1

D(Hp,(¢), Hr, (r)) < ) [aw(C, Hp, (C)) + azp(k, Hr, (1)) + asp(x, Hr, ()

+ a4p(C, HFz ('%)) + a5d1b(<7 '%) )
for any ¢,k € W, where a1 + a2 + ¥((,k)[as + a4] + a5 < 1, and a; = az or ag =
ay (a; € RT).

Remark 3.5. (i) If ¥(¢,k) = s and s > 1, then the generalized contraction
hesitant fuzzy map in a controlled metric-type space becomes a generalized
hesitant fuzzy contraction in a b-metric space.

(ii) If ¢(¢,x) = s and s = 1, then the generalized contraction hesitant fuzzy
map in a controlled metric-type space transforms into a generalized hesitant
fuzzy contraction in a metric space.

Lemma 3.6. Assume W be a controlled metric type space with ¢ € W, h € U(W)
and {C} is a hesitant fuzzy set whose hesitant membership function is equal to the
hesitant characteristic function of the set {¢}. If {¢} C h then p, (¢, h) = 0 for each
a€esS.

Proof If {¢} C h then ¢ € h, for each @ € S and h is an approximate quantity.

So, pa(C,h) = infuen, d((, k) =0.
Lemma 3.7. Assume (W,dy) is a controlled metric-type space with coefficient
¥(¢, k). Then,
Pa(Ch) < (¢ R)A(C, k) + ¥ (K, 0)pa(r, h)],
for any (,k,0 € W.
Proof We know that

Pa(Ch) = infoen, d(C;0)
< infoen, [V(¢ R)A(C, k) + ¥ (k, 0)d(k, 0)]
< Y(C,R)A(C, k) + (K, 0)infoen, d(k, 0)
= ¢(C, k)d(C, k) + Y(k, 0)pa(k, h).
Lemma 3.8. Let (W, dy) be a controlled metric-type space with coefficient ¢(¢, ).
If {¢o} C hand h € U(W), then for every k € U(W), we have p, (o, k) < Do(h, k).
Proof We know that
PalC. k) = infuck, 4G )
< supceh, infrek, d(C, k)
< Da(hy k).

Lemma 3.9. Assume (W, dy) is a complete controlled metric-type space with co-
efficient ¥((, k) and h € U(W). Then,

pa(C,h) < P(C K)A(C K),
it {x} C h.
Proof: By lemma (3.7), we have:
Pa(C ) < ¥(C, K)A(C, k) + ¥(K, 0)pa(k, h).
Since k € h, by lemma (3.6), we find that p,(k, h) = 0. Therefore, we conclude:

Pa(C; h) < P(C, K)d(C, K).
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Theorem 3.1. Assume W (# ) is a complete controlled metric type space. Let
Hp, and Hp, be hesitant fuzzy mapping from W into U(W). If 3 a constant a €
[0,1), such that for each (,k € W,

D(HF1 (C)?HFQ(K)) <a max{d(év“)7pa(C7HF1 (g))vpa(anFz(H))7
pa(<7HF2(K/)) +pa(H7HF1(C))
L+9(¢,R) ' (31)
then 3 ¢* € W such that ¢* C Hp, (C*) and ¢* C Hp, (C*).

Proof Let (o € W and {; C Hp,({p). Then 3 (o € W C Hp,((1),
and

d(C1,¢2)

< I(HF1(<O)7HF2(C1))
< (HFI(CO) HFz(Cl))
<

'(/)(CQ,C ) mall'{d(C()aCl);pa(co,le(co))vpa(chHFQ(Cl))’

(<07 HFz (Cl)) J'_pa(glv HFI (CO))
1+ 9(Co, 1)

maz{d(o, 1), d(Co,¢1), d(Ca, C2),

}

d(COa CZ) + d(<17 Cl)
1+ /(/)(4-07 Cl)
d(COvCZ)

" 14 1p(Co, Cl)}
¥(Co, €1)d(Co, C1) + ¥ (C1, €2)d(Ca, Cz)]}
1+ 9(Co,C1) .

%
~ ¥(Co,¢1)

< m maz{d(Co, ¢1),d(C1, C2)

max{d((m Cl)a d(Cla C2)7

%
= ¥(Co,G1)
But we know that
¥(Co, C1)a + (¢, )b
1+ (o, C1)

<a+b, Va,beR" and ¥((, ) > 1

Set,
D(CisCigr) = (¢ R) YV i=0,1,2,3, ...

(<17CQ)_¢(C7 )mai?{d(Co,Q) d(C1,C2)}

< 1/’(( P d(Co, C1)-
Also, since ¢; € W and (2 C Hp,(¢1). Then 3 {5 € W such that (3 C Hp, ({2) and

d(C2,(3) < Di(Hp,(G), Hr, (C2))
< D( Fz(Cl) Hp, (C2))
<

max{d(Ci, (2), pal(C1, Hr, (C1)), Pa(C2, Hr, (C2)),

¢(C C2)
(§17HF1(C2))+pa(C2,HF2(C1))}
1+ 9(C1,C2)
a d(C1,¢3)
< ¢(<17C2) max{d(CLCZ)vd(ClvCQ)vd(CQvC3)7 1+¢(<17C2)}
< qﬁ((,n)d(Cl’Cz)
a2
S Qd(COaC1)'
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Continue this process, {(, € W} be a sequence with n > 0 such that

Cont1 C Hp, (Con),

and
Cont2 C Hp,(Gant1)-
such that
(CnaCn+1) < 1(HF2(<7L 1) HF1(<7L))
< ( Fz(cnfl)’HFl(Cn))
< m max{d(Cn—lvgn)apa(CnaHFl(Cn))ypa(Cn—lvHFz(Cn—l))v

pa(CnflvHFl (Cn)) +pOé(Cn7 HFZ (Cnfl))}
1+ w(gn—la Cn)

< h maz{d(Co1,Cn)y d(Cns Cr1)s d(Cn1, Cn)s
d(Cnfl’ CnJrl) + d(Cn; Cn) }
1 + '(/J(Cn—la Cn)

(g o G, Go), G Gur)}

(47 K)

a

P(¢s k)

IA

<=

IN

<=

(Cn 1 Cn)
)" d(Co, 1)

IN

(

To prove that every sequence in W is Cauchy. Let p,q € N with (p is less than q).

Then,
d(Cpy Ca)

We also know that 0 < (

Then,

(Cpa CP-H)d C;m Cp+1
(va CP-H)d Cp: <p+1

G + w(Cp-&-th)d(Cpﬂ—lva)
P +

Y (Cpr1, Cg)¥

P d

G

Y

( )

( ) w((p—&-la Cq)d’((p—&-la <p+2)d(4p+17 <p+2)
(Cp+2,Cq)d(Cpr2, Gq)

(Cp? Cp+1) + ¢(Cp+1a Cq)¢(§p+la Cp+2)d(<p+17 Cp+2)
(Cp+2a Cq)l/)(Cer% Cp+3)d(Cp+27 Cp+3)

(<p+27 Cq)¢(<p+3’ Cq)d(<p+3a Cq)

(Cpa Cp+1)
(Cerlv Cq)
(<p+17 Cq)

+ + IAF+ IANIA

"
"
< (Gps Gpi1) (G Gprn) + Z ( H (G Go) ) (G Gis1) (G Gi)

i=p+1 j=p+1

q—1
+ H Y(Cuws Cq)d(Cg—1,Cq)

w=p+1

)Pd(Co, C1) + H ¥ (Cuw, G )( )4 d(Co, 1)

Sw(CPaCP+1)(,¢)(C’ K) wept1 d’(c K)

+ > ( 11 ¢(<j’<k)>w(<i7<i+l)(w(<’ )) d(Co, C1)-

i=p+1 J=p+1

¢+7) < 1. So, for the nth term (

_a a__\n
P(Ck PGk

d(CpsCq) <€
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Consequently, the sequence {(,} in W is a Cauchy sequence. This implies that

there exists ¢* € W, such that {¢,} — (* as n approaches co. Thus, (W,d) is a
complete space. Now,

Po(C*, HE, (CF)) < U(CF, Cany1)d(CT, Cangr) + ¥ (Cont1, ¢ ) HE, (Cong1, Hr, (CF))

<P(C, Cont1)d(C, Cong1) + U(Cont1, ) D(Cony Hr, (CF)). (3.2)

D(Can, Hr, (")) < a maz{d((an, ("), Pa(Con, HF, (C2n)), Pa (¢, HE, (7)),
Pa(Con, HE, (C¥)) +pa(C*>HF1(C2n))}
L+ 9(Can, C*)
< a maz{d(C2n, ("), d(C2n, C2nt1),
V(" Cant1)d(C™ s Cant1) + ¥(Cant1, CF) D (Cany HE, (CF))

Y (Cans Cont1)d(Cons Cont1) + ¥ (Cant1, CF) D (Cony Hr, (CF)) + d(CF, Cont1)

1 +77Z1(C2n7<*) }
<a max{d(Can C*)v d(c*’ C2n+1)}

S a d(CQna C*)

By the above inequality and equation (3.2), we write

po(C*, HE, (CF)) < (C7, Cant1)d(CT, Cany1) + ¥ (Cant1,¢)a d(Can, CF)

po(C*, Hr, (C*)) — 0 as n — oo.
Therefore, from lemma (3.6), {¢*} C Hg,(C*) .
Similarly, we can prove {¢*} C Hp, (¢*), and the proof is complete.

Remark 3.10. (i) If we put ¥((,x) = s and s > 1 in Theorem (3.1), then
this result also holds for the hesitant fuzzy map on b-metric space.

(ii) If we put ¥({,k) = s and s = 1 in Theorem (3.1), then this result also
holds for the hesitant fuzzy map on metric space.

4. APPLICATION
In this section, we apply the fixed point theorem to a Fredholm-type integral
equation of the form:
J
() = [ Nlaso, (o) o+ hw), v e i) (41)

Let W = C([i, j], R) be the space of all continuous real-valued functions on [, j].
Define the metric d : W x W — [0,00) and the auxiliary function ¢ : W x W —
[1,00) by:

(¢, k) = > [C(u) = (W), (¢, k) = [C(w)] + [r(w)] + 4.

It is easy to verify that (W, d) forms a complete controlled metric-type space.
Now define an operator T : W — W by

TO) = [ Mo, c@) v+ hw), vueliil

Hence, the integral equation (4.1) has a solution if and only if 7" has a fixed point.
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Existence and Uniqueness Statement. Assume the following conditions are
satisfied:

(i) N:[i,j] x [i,j] x R = R and h: [i,j] — R are continuous functions.
(ii) There exists a € (0,1) such that

‘N(ua v, C(U)) - N(U‘?U?TC(U)” <a |C(U) - TC(U)L Vu,v € [i7j]a < ew.

Remark on Nonlinear Condition: The above condition is a relaxed version
of the classical Lipschitz condition. It does not require a uniform Lipschitz constant
for the function ¢ — N (u,v, (), but rather compares the function evaluated at ¢(v)
and T¢(v). This form accommodates a wider class of nonlinearities, particularly
those where the dependence is operator-based rather than pointwise.

Condition on h: Since h € C([i,j],R), it ensures the inhomogeneous part
of the integral equation remains smooth and bounded, contributing to the overall
continuity and solvability of the equation. For uniqueness, the boundedness and
continuity of h play a role in keeping the mapping 7" within the function space W.

Smoothness of Solution: Due to the continuity of both N and h, and the
integral operator preserving continuity, the resulting fixed point (solution) ¢ € W
is continuous. Further smoothness (e.g., differentiability) would require additional
smoothness assumptions on N and h, such as partial differentiability.

Extension to Integro-Differential Operators: The current framework can
be extended to more generalized forms such as Volterra-type or integro-differential
equations by incorporating derivative terms in the operator T, e.g.,

7tw) = 40 ([ Kl oco)as) + o)

provided that the modified operator still maps a complete metric-type space into
itself and satisfies a suitable contractive or generalized contractive condition. Such
extensions have been rigorously studied in recent literature, including fixed point-
based approaches for fractional and integro-differential equations.

Proof. Since (W, d) is a complete controlled metric-type space and T : W — W is
defined by

T¢(u) = /] N(u,v,{(v))dv+ h(u),
we use the given assumption:
[N (u,v,((v)) = N(u,v,T¢(v))] < %Ié(v) — T¢(v)]-

Then, for any ( € W,
2

T¢(w)=T(T¢(u)* < (/J [N (u,v,¢(v)) = N(u,vyTC(v))dv> <

That is,

[C(v)=T¢(v) .

=

(T¢(w) — T(TC)] < 31¢(w) ~ T¢w)] (42)

Further, from the contraction mapping condition in controlled metric-type spaces
(Theorem 2.2), we also have:

D(HF(C)vHF(K)) < ad(@’i)a (43)

for any ¢,k € W, with a € (O, m) and (¢, k) > 1.
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Combining inequalities (4.2) and (4.3), it follows that T" has a unique fixed point
in W, and hence the integral equation (4.1) has a unique solution.

Remark 4.1. (i) If we put ¥(¢,x) = s and s > 1 in inequality (4.3), then
this result also holds for the hesitant fuzzy map on b-metric space.
(ii) If we put ¢(¢,k) = s and s = 1 in inequality (4.3), then this result also
holds for the hesitant fuzzy map on metric space.

5. CONCLUSION

In this article, we presented new results concerning hesitant fuzzy mappings,
their contractions, and generalized contractions within the framework of controlled
metric-type spaces—a generalization that includes b-metric spaces and classical met-
ric spaces as particular cases. By choosing ¥((,x) = s with s = 1, our results
naturally reduce to known fixed point theorems in b-metric and metric spaces.

The methodology established here has promising potential for further extension.
In particular, it can be generalized to systems involving multiple integral and dif-
ferential operators, where each operator acts on a component of a vector-valued
function. Such systems arise naturally in coupled physical, biological, and engi-
neering models. In these cases, the controlled metric-type space can be replaced
with a suitable product space equipped with a vector-valued metric structure, and
the contraction conditions can be extended component-wise or in a coupled form.

Moreover, initial or boundary conditions associated with differential or integral
operators play a crucial role in ensuring the uniqueness and smoothness of solutions.
In the methodology developed in Section 3, these conditions influence the structure
of the operator T and ensure it maps into a function space where fixed point results
are applicable. Specifically, the inclusion of initial or boundary conditions is often
encoded within the kernel or structure of the operator itself and must be reflected
in the selection of the function space W and the definition of the control function
.

Future work will involve adapting the current framework to handle integro-
differential and boundary value problems in fractional and nonlocal contexts, using
appropriate modifications of the contraction principle in more generalized functional
spaces.
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