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ABSTRACT. In this work, we consider the nonlinear variational inclusion problem
(NVIP) in real Hilbert spaces, which involves (A, η)-monotone mappings. We propose
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1. Introduction

Variational inequality problems (VIP) are one of the fascinating and widely stud-
ied classes of problems arising in mechanics, fluid dynamics, optimization and con-
trol, economics, transportation equilibrium, and engineering sciences. Using new
and innovative methodologies, (VIP) have been developed and extended in several
ways. A variational inclusion is a useful and crucial extension of a variational in-
equality. For solving variational inequalities, various numerical methods have been
developed, comprising projection techniques, Wiener-Hopf equations, and decompo-
sition and descent methods. Hassouni and Moudafi [5] considered and investigated
a class of variational inclusions in 1994, as well as established iterative techniques
for this class. Further extension of the results in [5] has been done by the numerous
authors, see for examples [1, 3, 7, 8, 9].

Various generalizations of the projection technique have been extensively studied
to solve variational inequalities, and their generalizations, see for example [1]-[18].
It is well established that for solving various classes of (VIP), the monotonicity of
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the primary operator is very crucial. Huang and Fang [6] developed the concept of
generalized m-accretive functions in Banach spaces in 2001. Subsequently, in 2003
[4] established and analyzed a novel kind of variational inclusions by employing
H-monotone operators in a Hilbert space. They provide an approach for solving
the associated class of variational inclusions by using the resolvent operator. The
concept of H-monotonicity has revitalized the idea of maximal monotone functions
in numerous ways. Verma [14] introduced A-monotone functions and their appli-
cations to the solution of a system of nonlinear variational inclusions. In [18], Zou
and Huang introduced and investigated H(., .)-accretive functions and used them
to solve variational inclusions and systems of variational inclusions. The maximal
monotonicity has played a crucial part in most resolvent operator techniques, but
the notions of A-monotonicity and H-monotonicity have not only extended the max-
imal monotonicity, but have given resolvent operator methods a new edge. Verma
[15] extended the concept of A-monotonicity to the case of (A, η)-monotonicity, and
used the generalized resolvent operator technique to investigate sensitivity analy-
sis for a class of nonlinear variational inclusion problems. Shafi and Mishra [13]
recently investigated a system of nonlinear variational inclusions in real Hilbert
spaces involving A-monotone functions.

Maximal monotone is a classical and powerful tool for solving variational inequal-
ities. It has a strong theoretical foundation, but it has limited applicability to only
monotone structures and cannot easily handle generalized or complex systems. H-
monotonicity extends maximal monotonicity to a broader class of operators. This
allows the application of resolvent operator methods in a wider range of settings. At
the same time, it requires additional structure (the H operator), which may not al-
ways be easily available or constructable. A-monotonicity generalizes monotonicity
and further allows solving systems of variational inclusions. While solution meth-
ods involve more complex operator calculations, more restrictive assumptions on
A may be necessary. H(., .)-accretive is flexible in modeling, and more generalized
accretive behavior is useful for solving both single and systems of variational inclu-
sions. Analytical techniques become more intricate, and resolvent formulations are
technically heavier. (A, η)-monotonicity further generalizes that A-monotonicity is
best suited for problems involving perturbations or sensitivity analysis.

Motivated and inspired by the aforesaid work, in this paper we prove the existence
and Lipschitz continuity of resolvent operators. As an application, we consider a set
of nonlinear variational inclusion problems in Hilbert spaces involving the (A, η)-
monotone operator. Furthermore, we propose a resolvent iterative algorithm for
approximating the solution of the nonlinear variational inclusion problem (NVIP),
and examine the convergence analysis of the sequence developed by the resolvent
iterative algorithm.

The remaining part of the paper is structured as follows:

Section 2, deals with some basic notions and results. Section 3 is related with
(NVIP) and resolvent iterative algorithms. In section 4, existence of solution and
convergence are analyzed using a resolvent iterative algorithm.

2. Preliminaries

Let V be a real Hilbert space whose norm and inner product denoted by ∥.∥ and
⟨., .⟩, respectively. Let 2V denote the family of all the nonempty subsets of V. Let
us review the following definitions and some supporting results.
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Definition 2.1. [16] A function η : V × V −→ V is called τ -Lipschitz continuous if
∃ a constant τ > 0 satisfying

∥η(a, b)∥ ≤ τ ∥a− b∥ , ∀ a, b ∈ V .

Definition 2.2. [16] A function A : V −→ V is called:
(i) monotone if

⟨A(a)−A(b), a− b⟩ ≥ 0, ∀a, b ∈ V ,
(ii) strictly monotone if A is monotone and

⟨A(a)−A(b), a− b⟩ = 0, iff a = b,

(iii) δ-strongly monotone if ∃ a constant δ > 0, satisfying
⟨A(a)−A(b), a− b⟩ ≥ δ∥a− b∥2, ∀a, b ∈ V ,

(iv) (δ, η)-strongly monotone if ∃ a constant δ > 0, satisfying
⟨A(a)−A(b), η(a, b)⟩ ≥ δ∥a− b∥2, ∀a, b ∈ V .

Definition 2.3. Let P : V ×V −→ V and p, g : V −→ V be single-valued functions.
Then P is said to be:

(i) (p, η)-monotone in the first argument if
⟨P (p(a), c)− P (p(b), c), η(a, b)⟩ ≥ 0, ∀a, b, c ∈ V ,

(ii) (p, η)-monotone with respect to A in the first argument if
⟨P (p(a), c)− P (p(b), c), η(A(a), A(b))⟩ ≥ 0, ∀a, b, c ∈ V ,

(iii) (g, η)-monotone in the second argument if
⟨P (c, g(a))− P (c, g(b)), η(a, b)⟩ ≥ 0, ∀a, b, c ∈ V ,

(iv) (g, η)-monotone with respect to A in the second argument if
⟨P (c, g(a))− P (c, g(b)), η(A(a), A(b))⟩ ≥ 0, ∀a, b, c ∈ V .

Definition 2.4. [16] Let η : V × V −→ V and A,H : V −→ V be single valued
functions. A multivalued function Q : V −→ 2V is called:

(i) monotone if
⟨u− v, a− b⟩ ≥ 0, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(ii) η-monotone if
⟨u− v, η(a, b)⟩ ≥ 0, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(iii) strictly η-monotone if
⟨u− v, η(a, b)⟩ > 0, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

except for a = b,
(iv) r-strongly monotone if ∃ a constant r > 0, satisfying

⟨u− v, a− b⟩ ≥ r∥a− b∥2, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(v) r-strongly η-monotone if ∃ a constant r > 0, satisfying
⟨u− v, η(a, b)⟩ ≥ r∥a− b∥2, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(vi) monotone with respect to A if
⟨u− v,A(a)−A(b)⟩ ≥ 0, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),
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(vii) η-monotone with respect to A if
⟨u− v, η(A(a), A(b))⟩ ≥ 0, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(viii) maximal monotone if Q is monotone and (I + ρQ)(V) = V, ∀ ρ > 0,
(ix) relaxed monotone if ∃ a constant µ > 0, satisfying

⟨u− v, a− b⟩ ≥ −µ∥a− b∥2, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(x) (µ, η)-relaxed monotone if ∃ a constant µ > 0, satisfying

⟨u− v, η(a, b)⟩ ≥ −µ∥a− b∥2, ∀a, b ∈ V , u ∈ Q(a), v ∈ Q(b),

(xi) H-monotone if Q is monotone and (H + ρQ)(V) = V, ∀ ρ > 0,
(xii) A-monotone if Q is relaxed monotone and (A+ ρQ)(V) = V, ∀ ρ > 0,
(xiii) (A, η)-monotone if Q is (µ, η)-relaxed monotone and (A+ρQ)(V) = V, ∀ ρ >

0.

(A, η)-monotone function, A-monotone function and H-monotone function have
the following relationships:
{(A, η)−monotone function} ⊃ {A−monotone function} ⊃ {H−monotone function}.

Theorem 2.5. Let η : V ×V −→ V be a function, A : V −→ V be an (δ, η)-strongly
monotone function and Q : V −→ 2V be an (A, η)-monotone function. If for all
(b, v) ∈ Gr(Q), ⟨u− v, η(a, b)⟩ ≥ 0 holds, where Gr(Q) = {(a, b) ∈ V × V : b ∈
Q(a)}, then (a, u) ∈ Gr(Q).

Proof. Since Q is (A, η)-monotone, we know that (A + ρQ)(V) = V holds for all
ρ > 0, and so there exists (b, u1) ∈ Gr(Q) such that

A(a) + ρu = A(b) + ρu1.

As A is (δ, η)-strongly monotone function, so
0 ≤ ⟨u− u1, η(a, b)⟩
= −⟨A(a)−A(b), η(a, b)⟩

≤ −δ∥a− b∥2 ≤ 0.

Therefore a = b and u = u1. Thus (a, u) = (b, u1) ∈ Gr(Q). □

Following theorem is a generalization of Lemma 2.1 of Agarwal and Verma [2].

Theorem 2.6. Let η : V × V −→ V be a function, A : V −→ V be a (δ, η)-
strongly monotone function and Q : V −→ 2V be an (A, η)-monotone operator.
Then (A + ρQ)−1 is single-valued for 0 < ρ < δ

µ , where ρ > 0, δ > 0, µ > 0 are
constants.

Proof. Given a∗ ∈ V , suppose a, b ∈ (A+ ρQ)−1(a∗).

So, −A(a) + a∗ ∈ ρQ(a) and −A(b) + a∗ ∈ ρQ(b).

By the (δ, η)-strongly monotonicity of A, and (A, η)-monotonicity of the operator
Q, we have

−µ∥a− b∥2 ≤ 1

ρ
⟨(−A(a) + a∗)− (−A(b) + a∗), η(a, b)⟩
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= −1

ρ
⟨A(a)−A(b), η(a, b)⟩

≤ −1

ρ
δ∥a− b∥2

= − δ

ρ
∥a− b∥2.

Which implies, µρ∥a− b∥2 ≥ δ∥a− b∥2.
If a ̸= b, then ρ ≥ δ

µ contradicts with 0 < ρ < δ
µ . Thus a = b, that is, (A+ ρQ)−1

is single-valued. □

Definition 2.7. [16] Let η : V ×V −→ V be a function, A : V −→ V be a strictly η-
monotone function and Q : V −→ 2V be an (A, η)-monotone function. The resolvent
operator RA,η

Q,λ : V −→ V is defined by

RA,η
Q,λ(a) = (A+ ρQ)−1(a), ∀a ∈ V ,

where ρ > 0 is a constant.

Next, we prove the following lemma.

Lemma 2.8. Let η : V×V −→ V be a τ -Lipschitz continuous function, A : V −→ V
be a (δ, η)-strongly monotone function and Q : V −→ 2V be an (A, η)-monotone
function. Then the resolvent operator RA,η

Q,λ : V −→ V is τ
δ−ρµ -Lipschitz continuous

for 0 < ρ < δ
µ , where ρ, δ and µ are positive constants.

Proof. For any a, b ∈ V , we have

RA,η
Q,λ(a) = (A+ ρQ)−1(a),

RA,η
Q,λ(b) = (A+ ρQ)−1(b).

This implies that
1

ρ

(
a−A(RA,η

Q,λ(a))
)
∈ Q(RA,η

Q,λ(a)),

1

ρ

(
b−A(RA,η

Q,λ(b))
)
∈ Q(RA,η

Q,λ(b)).

Since Q is (A, η)-monotone, it follows that Q is (µ, η)-relaxed monotone.

Therefore 1

ρ

〈
(a−A(RA,η

Q,λ(a)))− (b−A(RA,η
Q,λ(b))), η(R

A,η
Q,λ(a), R

A,η
Q,λ(b))

〉
≥ −µ

∥∥∥RA,η
Q,λ(a)−RA,η

Q,λ(b)
∥∥∥2.

Now, we see that

τ ∥a− b∥
∥∥∥RA,η

Q,λ(a)−RA,η
Q,λ(b)

∥∥∥
≥

〈
a− b, η(RA,η

Q,λ(a), R
A,η
Q,λ(b))

〉
=

〈
a− b− (A(RA,η

Q,λ(a))−A(RA,η
Q,λ(b))), η(R

A,η
Q,λ(a), R

A,η
Q,λ(b))

〉
+
〈
A(RA,η

Q,λ(a))−A(RA,η
Q,λ(b)), η(R

A,η
Q,λ(a), R

A,η
Q,λ(b))

〉
≥ −ρµ

∥∥∥RA,η
Q,λ(a)−RA,η

Q,λ(b)
∥∥∥2 + δ

∥∥∥RA,η
Q,λ(a)−RA,η

Q,λ(b)
∥∥∥2
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= (δ − ρµ)
∥∥∥RA,η

Q,λ(a)−RA,η
Q,λ(b)

∥∥∥2.
Thus, ∥∥∥RA,η

Q,λ(a)−RA,η
Q,λ(b)

∥∥∥ ≤ τ

δ − ρµ
∥a− b∥ , 0 < ρ <

δ

µ
.

□

For A = I, we have the following corollary:

Corollary 2.9. Let Q : V −→ 2V be (µ, η)-relaxed monotone. Then the resolvent
operator RA,η

Q,λ = (I + ρQ)−1 : V −→ V is τ
1−ρµ -Lipschitz continuous for 0 < ρ < 1

µ ,

where ρ > 0, µ > 0 are constants and I is the identity function.

Lemma 2.10. [10] Let K be a nonempty closed and convex subset of V. Then

b = PK(t) ⇐⇒ ⟨b− t, a− b⟩ ≥ 0, ∀t ∈ V and a ∈ K,

where PK(t) is the projection satisfying

∥t− PK(t)∥ = d(t,K),

and d(t,K) is defined by
d(t,K) = inf

c∈K
∥t− c∥ .

3. (NVIP) and Resolvent Iterative Algorithm

Suppose V is a real Hilbert space with the norm ∥.∥. Let p, g : V −→ V , P :
V × V −→ V be functions, Q : V −→ 2V be (A, η)-monotone function. The nonlin-
ear variational inclusion problem (for short, NVIP) is the problem of finding a ∈ V ,
such that

0 ∈ P (p(a), g(a)) +Q(a). (3.1)

Special Cases of (NVIP)

(I) If P ≡ 0, then (NVIP) (3.1) becomes

Find a ∈ V , such that 0 ∈ Q(a), (3.2)

introduced and studied by Verma [17].
(II) If P (p(a), g(a)) = P (p(a)) − P (g(a)), ∀a ∈ V and Q(a) = ∂φ(a), ∀a ∈ V ,

where φ : V −→ R ∪ {+∞} is a proper, convex and lower semicontinuous
function and ∂φ is the subdifferential of φ. Then the problem (3.1) be-
comes the problem of finding a ∈ V , such that

⟨P (p(a))− P (g(a)), b− a⟩ ≥ φ(a)− φ(b), ∀b ∈ V , (3.3)
introduced and studied by Hassouni and Moudafi [5].

Now, we consider the following resolvent iterative algorithm for finding an ap-
proximate solution of NVIP (3.1), which consists of the following steps:

Algorithm 3.1. Resolvent Iterative Algorithm
Step 1. Initiation Step: Select s0 ∈ V and put n = 0.
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Step 2. Resolvent Step: Find sn ∈ V such that
an = RA,η

Q,λ {A(sn)− ρnP (p(an), g(an))} . (3.4)

where 0 < ρn < δ
µ .

Step 3. Projection Step: Set K = {s ∈ V : ⟨A(sn)−A(an), s−A(an)⟩ ≤ 0}.
If A(sn) = A(an), then stop, otherwise, choose sn+1 such that

A(sn+1) = PK(A(sn)). (3.5)
Step 4. Suppose n = n+ 1 and resume to Step 1.

Remark 3.2. In view of (3.4), we can have
A(sn) ∈ A(an) + ρn(P (p(an), g(an)) +Q(an)),

or
1

ρn
(A(sn)−A(an)) ∈ (P (p(an), g(an)) +Q(an)). (3.6)

4. Existence of Solution and Convergence Analysis

In this section, the existence of the solution of (NVIP) and the convergence of
the sequences generated by Algorithm 3.1 has been established.

Theorem 4.1. Assume V to be real Hilbert space and A : V −→ V be continuous
and (δ, η)-strongly monotone function. Let the continuous function P : V ×V −→ V
is such that it is (p, η)-monotone and (g, η)-monotone with respect to A in the first
and second argument, respectively, and it is (p, η)-monotone and (g, η)-monotone
in the first and second argument, respectively. Assume that η : V × V −→ V be
τ -Lipschitz continuous, and (A, η)-monotone function, Q : V −→ 2V be η-monotone
with respect to A. Then the sequence {an} generated by Algorithm 3.1 converges
weakly to a solution of (NVIP).

Proof. Suppose a′ be a solution of problem (3.1). Therefore, we obtain
0 ∈ P (p(a′), g(a′)) +Q(a′). (4.1)

Now, we can have∥∥A(a′)−A(sn+1)
∥∥2

=
∥∥A(a′)−A(sn)− (A(sn+1)−A(sn))

∥∥2
= ∥A(a′)−A(sn)∥2 − 2

〈
A(a′)−A(sn), A(sn+1)−A(sn)

〉
+
∥∥A(sn+1)−A(sn)

∥∥2
= ∥A(a′)−A(sn)∥2 − 2

〈
A(sn+1)−A(sn), A(sn+1)−A(sn)

〉
− 2

〈
A(a′)−A(sn+1), A(sn+1)−A(sn)

〉
+

∥∥A(sn+1)−A(sn)
∥∥2

≤ ∥A(a′)−A(sn)∥2 − 2
〈
A(a′)−A(sn+1), A(sn+1)−A(sn)

〉
−
∥∥A(sn+1)−A(sn)

∥∥2.
This implies that∥∥A(a′)−A(sn+1)

∥∥2
≤ ∥A(a′)−A(sn)∥2 − 2

〈
A(a′)−A(sn+1), A(sn+1)−A(sn)

〉



8 J. NONLINEAR ANAL. OPTIM. VOL. 16(1) (2025)

−
∥∥A(sn+1)−A(sn)

∥∥2. (4.2)
Using (p, η) and (g, η) monotonicity of P with respect to A in the first and second
argument, respectively, we obtain

⟨P (p(a′), g(a′))− P (p(an), g(an)), η(A(a′), A(an))⟩
= ⟨P (p(a′), g(a′))− P (p(an), g(a′)), η(A(a′), A(an))⟩
+ ⟨P (p(an), g(a′))− P (p(an), g(an)), η(A(a′), A(an))⟩
≥ 0.

This implies that
⟨P (p(a′), g(a′))− P (p(an), g(an)), η(A(a′), A(an))⟩ ≥ 0. (4.3)

Also, as Q is η-monotone with respect to A, it follows that
⟨Q(a′)−Q(an), η(A(a′), A(an))⟩ ≥ 0. (4.4)

From (4.3) and (4.4), it follows that
⟨P (p(a′), g(a′)) +Q(a′)− (P (p(an), g(an)) +Q(an)), η(A(a′), A(an))⟩ ≥ 0.

If η(A(a′), A(an)) = A(a′)−A(an), using (3.6) and (4.1), it follows that〈
0− 1

ρn
(A(sn)−A(an)) , A(a′)−A(an)

〉
≥ 0

or
⟨A(sn)−A(an), A(a′)−A(an)⟩ ≤ 0. (4.5)

Therefore, for A(a′) ∈ K and A(a′) = s ∈ V , (4.5) can be rewritten as
K = {s ∈ V : ⟨A(sn)−A(an), s−A(an)⟩ ≤ 0} . (4.6)

Since by Algorithm 3.1, A(sn+1) = PK(A(sn)), and hence from Lemma 2.2, we
have 〈

A(sn+1)−A(sn), A(a′)−A(sn+1)
〉
≥ 0. (4.7)

Using (4.7) in (4.2), we have∥∥A(a′)−A(sn+1)
∥∥2 ≤ ∥A(a′)−A(sn)∥2 −

∥∥A(sn+1)−A(sn)
∥∥2. (4.8)

Therefore, from (4.8), we have∥∥A(a′)−A(sn+1)
∥∥ ≤ ∥A(a′)−A(sn)∥ , ∀n ≥ 0. (4.9)

From (4.9), it follows that {∥A(a′)−A(sn)∥} is a convergent sequence. Again, since
A is δ-strongly monotone, we have

⟨A(a′)−A(sn), η(a′, sn)⟩ ≥ δ∥a′ − sn∥2

or
∥a′ − sn∥ ≤ τ

δ
∥A(a′)−A(sn)∥ . (4.10)

Thus, it follows from (4.10) and {sn} is a bounded sequence. From (4.8), it follows
that

0 ≤
∥∥A(sn+1)−A(sn)

∥∥2
≤ ∥A(a′)−A(sn)∥2 −

∥∥A(a′)−A(sn+1)
∥∥2.

Applying limits n −→ ∞, we obtain

lim
n−→∞

∥∥A(sn+1)−A(sn)
∥∥2

≤ lim
n−→∞

{
∥A(a′)−A(sn)∥2 −

∥∥A(a′)−A(sn+1)
∥∥2} = 0.
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So, limn−→∞
∥∥A(sn+1)−A(sn)

∥∥ = 0.

Now, from A(sn+1) = PK(A(sn)) ∈ K and A(an) ∈ K, we have〈
A(sn)−A(an), A(sn+1)−A(an)

〉
≤ 0,

and

∥A(an)−A(sn)∥2 = ⟨A(an)−A(sn), A(an)−A(sn)⟩
=

〈
A(an)−A(sn+1), A(an)−A(sn)

〉
+
〈
A(sn+1)−A(sn), A(an)−A(sn)

〉
≤

〈
A(sn+1)−A(sn), A(an)−A(sn)

〉
.

Hence
lim

n−→∞
∥A(sn)−A(an)∥ = 0. (4.11)

Further, using (δ, η)-strongly monotonicity of A, it follows that

τ ∥A(an)−A(sn)∥ ∥an − sn∥ ≥ ⟨A(an)−A(sn), η(an, sn)⟩

≥ δ∥an − sn∥2.

Therefore lim
n−→∞

∥sn − an∥ = 0, and hence lim
n−→∞

(sn − an) = 0. Thus, it follows
from the boundedness of {sn} that {an} is also a bounded sequence.
Hence, both sequences {an} and {sn} have same weak limit points.
Next, we claim that each limit point of the sequence {an} is a solution of NVIP
(3.1).
Let lim

n−→∞
an = l (weakly).

It follows that lim
n−→∞

sn = l (weakly).
Suppose for the fixed element v ∈ V , we consider an arbitrary element u ∈ V such
that

u ∈ P (p(v), g(v)) +Q(v). (4.12)
Therefore, we can find an element w ∈ Q(v) such that

u = P (p(v), g(v)) + w. (4.13)

Since, P is (p, η)-monotone in the first argument and (g, η)-monotone in the second
argument, we have

⟨η(an, v), S(p(an), g(an))− S(p(v), g(v))⟩
= ⟨η(an, v), S(p(an), g(an))− S(p(v), g(an))⟩
+ ⟨η(an, v), S(p(v), g(an))− S(p(v), g(v))⟩
≥ 0.

Therefore, we have

⟨η(an, v), S(p(an), g(an))− S(p(v), g(v))⟩ ≥ 0. (4.14)

Moreover, as Q is (A, η)-monotone, it follows that Q is (µ, η)-relaxed monotone.
Therefore

⟨η(an, v), Q(an)−Q(v)⟩ ≥ −µ∥an − v∥2.
Using (3.6) and since w ∈ Q(v), it follows that〈

η(an, v),

{
1

ρn
(A(sn)−A(an))− S(p(an), g(an))

}
− w

〉
≥ −µ∥an − v∥2. (4.15)
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On adding (4.14) and (4.15), we have〈
η(an, v),

1

ρn
(A(sn)−A(an))− (S(p(v), g(v)) + w)

〉
≥ −µ∥an − v∥2. (4.16)

Using (4.13) in (4.15), we have〈
η(an, v),

1

ρn
(A(sn)−A(an))− u

〉
≥ −µ∥an − v∥2,

Since ⟨a, b+ c⟩ = ⟨a, b⟩+ ⟨a, c⟩, we have

⟨η(an, v),−u⟩ ≥ −
〈
η(an, v),

1

ρn
(A(sn)−A(an))

〉
− µ∥an − v∥2. (4.17)

Using (4.11) and the boundedness of {an}, {ρn}, we have〈
η(an, v),

1

ρn
(A(sn)−A(an))

〉
−→ 0. (4.18)

Combining (4.17) and (4.18), we have

⟨η(an, v),−u⟩ ≥ −µ∥an − v∥2.
Therefore, by taking limits as n −→ ∞, we have

⟨η(l, v), 0− u⟩ = lim
n−→∞

⟨η(an, v), 0− u⟩ ≥ −µ∥an − v∥2. (4.19)

Since by (4.12), (v, u) ∈ Gr(P (p(.), g(.)) + Q(.)). Applying Theorem 2.5, (4.19)
shows that (l, 0) ∈ Gr(P (p(.), g(.)) +Q(.)), which means

0 ∈ P (p(l), g(l)) +Q(l).

Hence, l is a solution of (3.1).
Lastly, we show that there is a unique weak limit point of {an}.
If possible, let s1, s2 be two weak limit points of {sn}, and {snj}, {sni} be two
subsequences of {sn} that converges weakly to s1, s2, respectively.
Then, it follows that

{
∥A(sn)−A(s1)∥2

}
,
{
∥A(sn)−A(s2)∥2

}
are convergent se-

quences.
Suppose that

κ1 = lim
n−→∞

∥A(sn)−A(s1)∥2, (4.20)

κ2 = lim
n−→∞

∥A(sn)−A(s2)∥2, (4.21)

κ3 = lim
n−→∞

∥A(s1)−A(s2)∥2. (4.22)

Therefore, we can have
∥A(snj )−A(s2)∥2 =∥A(snj )−A(s1)∥2 + ∥A(s1)−A(s2)∥2

+ 2 ⟨A(snj )−A(s1), A(s1)−A(s2)⟩ . (4.23)

∥A(sni)−A(s1)∥2 =∥A(sni)−A(s2)∥2 + ∥A(s1)−A(s2)∥2

+ 2 ⟨A(sni)−A(s2), A(s2)−A(s1)⟩ . (4.24)
Taking the limit j −→ ∞ in (4.23) and i −→ ∞ in (4.24), by continuity of A and
the fact that s1, s2 are two weak limit points of {snj}, {sni} , we see that third term
on right of (4.23) and (4.24) converges to zero.
In view of (4.20), (4.21) and (4.22), it follows that

κ1 − κ2 = κ3, (4.25)
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and
κ2 − κ1 = κ3. (4.26)

On adding (4.25) and (4.26), we have κ3 = 0. It follows that A(s1) = A(s2).
Further, in view of (δ, η)-strongly monotonicity of A and τ -Lipschitz continuity of
η, we obtain

δ∥s1 − s2∥2 ≤ ⟨A(s1)−A(s2), η(s1, s2)⟩
≤ ∥A(s1)−A(s2)∥ ∥η(s1, s2)∥
≤ τ ∥A(s1)−A(s2)∥ ∥s1 − s2∥ . (4.27)

Since A(s1) = A(s2), then from (4.27), we have s1 = s2.
Thus, it follows that all the weak limit points of {sn} are equal. That is, {an} is
weakly converges to a solution of (3.1). □

Conclusion

In this paper, we have made significant contributions to the field of nonlinear
variational inclusion problems (NVIP) in real Hilbert spaces, specifically focusing
on (A, η)- monotone mappings. Our proposed iterative algorithm, which utilizes
the resolvent operator technique, offers an effective approach for approximating so-
lutions to (NVIP) with improved convergence rates. Moreover, we have thoroughly
investigated the convergence criteria for the sequence generated by this algorithm
under certain conditions, providing valuable insights into its practical implemen-
tation. With these findings, researchers can build upon our work to develop more
efficient and robust methods for solving nonlinear variational inclusion problems.
We hope that our research will inspire further exploration and innovation in this
area of study.
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