J. Geno Kadwin at al., J. Nonlinear Anal. Optim. Vol. 15(2) (2024), 87-96

Journal of Nonlinear Analysis and Optimization Volume 15(2) (2024) http://ph03.tci-thaijo.org ISSN: 1906-9685

J. Nonlinear Anal. Optim.

GENERALIZED α - ψ - φ -F-CONTRACTIVE MAPPINGS IN QUASI-b-METRIC-LIKE SPACES

J. GENO KADWIN¹, S. IRUTHAYA RAJ^{2,*} AND D. MARY JINY³

- 1 Department of Mathematics, Arul Anandar College, Karumathur-625514, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, Loyola College, Chennai-600034, Tamil Nadu, India.
- 3 Department of Mathematics, Saveetha School of Engineering, SIMATS, Chennai-600077, Tamil Nadu, India.

ABSTRACT. In this paper, we introduce some new generalized mappings in quasi-b-metric-like spaces and establish some fixed point theorems with concrete examples. Our results generalize fixed point results in the literature.

KEYWORDS: Fixed point, Quasi-b-metric-like space, Generalized α - ψ -Suzuki-contractive mapping, C-class function.

AMS Subject Classification: 47H10, 54H25.

1. Introduction

In an attempt to generalize Banach's fixed point theorem, Czerwik [7] in 1993 introduced b-metric space as a generalization of metric spaces. Later, many authors proved existence of fixed points for generalized contractions under b-metric space setting. Similiarly, the notion of metric-like space was introduced by Harandi[8] in 2012 under which many fixed point results were proved. In 2014, Ansari [2] introduced the concept of C-class functions which covers a large class of contractive conditions, and many researchers derived results using C-class functions. Recently, Afshari $et\ al.\ [1]$ proved some fixed point results for generalized α - ψ -Suzuki-contractions in quasi-b-metric-like spaces. In this paper some fixed point results are derived for generalized α - ψ -Suzuki-contractions in quasi-b-metric-like spaces via C-class functions.

^{*} Corresponding author.

Email address: genomaths@gmail.com (J. Geno Kadwin), sir@loyolacollege.edu (S. Iruthaya Raj), maryjiny-maths@gmail.com (D. Mary Jiny).

Article history: Received 22/06/2024 Accepted 27/11/2024.

2. Preliminaries

Definition 2.1. [6] Let X be a nonempty set and $s \ge 1$ be a given real number. Suppose that a function $d: X \times X \longrightarrow [0, \infty)$ satisfies the following conditions:

- (i) $d(u, v) = 0 \implies u = v$, for all $u, v \in X$;
- (ii) d(u, u) = 0, for all $u \in X$;
- (iii) d(u, v) = d(v, u), for all $u, v \in X$;
- (iv) $d(u, v) \leq s[d(u, w) + d(w, v)]$, for all $u, v, w \in X$.

Then, d is a b-metric on X and the pair (X, d) is called a b-metric space, and s is its coefficient (see [5, 17] for more information on b-metric spaces).

If the conditions (i), (iii) and (iv) in Definition 2.1 are satisfied, then the space (X, d) is called a b-metric-like space. See [13] for more information on fixed points for some mappings in b-metric-like spaces.

Remark 2.2. Every b-metric space is a b-metric-like space, but the converse is not true.

Definition 2.3. [15] Let X be a nonempty set and $s \ge 1$ be a given real number. Suppose that a function $d: X \times X \longrightarrow [0, \infty)$ satisfies the following conditions:

- (i) $d(u,v) = d(v,u) = 0 \iff u = v$, for all $u,v \in X$;
- (ii) $d(u, v) \le s[d(u, w) + d(w, v)]$, for all $u, v, w \in X$.

Then, d is a quasi-b-metric on X and the pair (X, d) is called a quasi-b-metric space.

Definition 2.4. [12] Let X be a nonempty set and $s \ge 1$ be a given real number. Suppose that a function $d: X \times X \longrightarrow [0, \infty)$ satisfies the following conditions:

- (i) $d(u, v) = d(v, u) = 0 \implies u = v$, for all $u, v \in X$;
- (ii) $d(u, v) \le s[d(u, w) + d(w, v)], \text{ for all } u, v, w \in X.$

Then the pair (X, d) is called a quasi-b-metric-like space (or a dislocated quasi-b-metric space).

Remark 2.5. All *b*-metric-like spaces and quasi-*b*-metric spaces are obviously quasi-*b*-metric-like spaces, but the converse is not true.

See [9] for a generalization of b-metric-like spaces.

Example 2.6. Let $X = \{a_1, a_2, a_3\}$ be any set of three distinct elements.

Define
$$d: X \times X \longrightarrow [0, \infty)$$
 by $d(u, v) = \begin{cases} 0 & \text{if } (u, v) = (a_3, a_3); \\ 2 & \text{if } (u, v) \in \{(a_1, a_1), (a_2, a_1)\}; \\ 0.5 & \text{if } (u, v) \in (a_1, a_2); \\ 0.25 & \text{otherwise.} \end{cases}$

Then (X, d) is a quasi-b-metric-like space with coefficient s = 4. Since $d(a_1, a_2) \neq d(a_2, a_1)$, it is clear that (X, d) is not a b-metric-like space; and since $d(a_1, a_1) \neq 0$, and $d(a_2, a_2) \neq 0$, it is also clear that (X, d) is not a quasi-b-metric space.

Definition 2.7. [1] Let (X,d) be a quasi-b-metric-like space. Let $\{u_n\}$ be a sequence in X and $u \in X$. The sequence $\{u_n\}$ converges to u if $\lim_{n \to \infty} d(u_n, u) = d(u, u) = \lim_{n \to \infty} d(u, u_n)$.

Definition 2.8. [1] Let (X, d) be a quasi-b-metric-like space. A sequence $\{u_n\}$ in X is said to be a left-Cauchy (respectively, right-Cauchy) sequence if $\lim_{n>m\longrightarrow\infty}d(u_n,u_m)$ (respectively, if $\lim_{m>n\longrightarrow\infty}d(u_n,u_m)$) exists and is finite. A sequence $\{u_n\}$ is said to be Cauchy if it is left-Cauchy and right-Cauchy.

Definition 2.9. [1] Let (X, d) be a quasi-b-metric-like space. We say that

- (i) (X, d) is left-complete if each left-Cauchy sequence in X is convergent;
- (ii) (X, d) is right-complete if each right-Cauchy sequence in X is convergent;
- (iii) (X, d) is complete if and only if each Cauchy sequence in X is convergent.

Definition 2.10. [1] Let (X,d) be a quasi-b-metric-like space. A mapping $T: X \longrightarrow X$ is continuous if for any sequence $\{u_n\}$ in X converging to $u \in X$, the sequence $\{Tu_n\}$ converges to Tu.

For $s \geq 1$, let Ψ_s be the family of functions $\psi : [0, \infty) \longrightarrow [0, \infty)$ satisfying the following conditions:

- (i) ψ is nondecreasing;
- (ii) $\forall t > 0, \sum_{n=1}^{\infty} s^n \psi^n(t)$ is finite, where ψ^n is the n^{th} iterate of ψ . It is clear that if $\psi \in \Psi_s$, then $\psi(t) < t$, for all t > 0. For $s \ge 1$, we have

It is clear that if $\psi \in \Psi_s$, then $\psi(t) < t$, for all t > 0. For $s \ge 1$, we have $\psi^n(t) \le s^n \psi^n(t)$, and since $\sum_{n=1}^{\infty} s^n \psi^n(t) < \infty$, by comparison test, $\sum_{n=1}^{\infty} \psi^n(t) < \infty$, and so we can conclude that $\Psi_s \subseteq \Psi_1$.

Samet et al. [14] introduced the concept of α -admissible mappings as follows.

Definition 2.11. [14] Let $\alpha: X \times X \longrightarrow [0, \infty)$ be a function and $T: X \longrightarrow X$ be a mapping. Then T is α -admissible if $\alpha(u, v) \ge 1$ implies $\alpha(Tu, Tv) \ge 1$.

Afshari et al. [1] introduced the concepts of right- α -orbital admissible mappings and left- α -orbital admissible mappings.

Definition 2.12. [1] Let $\alpha: X \times X \longrightarrow [0, \infty)$ be a function and $T: X \longrightarrow X$ be a mapping.

- (i) T is right- α -orbital admissible if $\alpha(u, Tu) \ge 1 \implies \alpha(Tu, T^2u) \ge 1$.
- (ii) T is left- α -orbital admissible if $\alpha(Tu, u) \ge 1 \implies \alpha(T^2u, Tu) \ge 1$.
- (iii) T is α -orbital admissible if T is both right- α -admissible and left- α -admissible.

The notion of α - ψ -contractive mappings was defined by Samet [14] in the following way.

Definition 2.13. [14] Let (X,d) be a metric space and $T: X \longrightarrow X$ be a given mapping. Then T is an α - ψ -contractive mapping if there exist two functions $\alpha: X \times X \longrightarrow [0,\infty)$ and $\psi \in \Psi_1$ such that $\alpha(u,v)d(Tu,Tv) \leq \psi(d(u,v))$, for all $u,v \in X$.

In 2008, Suzuki [16] proved the following theorem as a generalization of Banach contraction principle that characterizes metric completeness in which $\theta : [0,1) \longrightarrow$

$$(\frac{1}{2}, 1] \text{ is a nondecreasing function defined by } \theta(r) = \begin{cases} 1 & \text{if } 0 \leq r \leq \frac{\sqrt{5}-1}{2}, \\ (1-r)r^{-2} & \text{if } \frac{\sqrt{5}-1}{2} \leq r \leq \frac{1}{\sqrt{2}}, \\ (1+r)^{-1} & \text{if } \frac{1}{\sqrt{2}} \leq r < 1. \end{cases}$$

Theorem 2.14. [16] Let (X, d) be a complete metric space. Then every mapping T on X satisfying the following:

 $\exists r \in [0,1) \text{ such that } \forall u,v \in X, \ \theta(r)d(u,Tu) \leq d(u,v) \implies d(Tu,Tv) \leq rd(u,v),$ has a unique fixed point.

Using Suzuki method, Afshari et al. [1] proved some fixed point results for generalized α - ψ -Suzuki contractive mappings in the setting of quasi-b-metric-like spaces as follows.

Definition 2.15. [1] Let (X,d) be a quasi-b-metric-like space with coefficient s. Then $T: X \longrightarrow X$ is a generalized α - ψ -Suzuki-contractive mapping of type A if there exist $\alpha: X \times X \longrightarrow [0,\infty), \ \psi \in \Psi_s$ and $r \in [0,1)$ such that

- (i) $\forall u, v \in X, \theta(r)d(u, Tu) \leq d(u, v)$ implies $\alpha(u, v)d(Tu, Tv) \leq \psi(M(u, v))$;
- (ii) $\forall u, v \in X, \theta(r)d(Tu, u) \le d(v, u) \text{ implies } \alpha(v, u)d(Tv, Tu) \le \psi(M'(u, v)),$

where

$$M(u,v) = \max \left\{ d(u,v), d(u,Tu), d(v,Tv), \frac{d(u,Tv)}{2s} \right\},$$

$$M'(u,v) = \max \left\{ d(v,u), d(Tu,u), d(Tv,v), \frac{d(Tv,u)}{2s} \right\}.$$

Example 2.16. [1] Let X = [-1, 1] and let $T: X \longrightarrow X$ be defined by T(u) = u/2. Define $d: X \times X \longrightarrow [0, \infty)$ by $d(u, v) = |u - v|^2 + 3u^2 + 2v^2$. Then (X, d) is a quasi-b-metric-like space and T is an α - ψ -Suzuki-contractive mapping of type A.

Theorem 2.17. [1] Let (X,d) be a complete quasi-b-metric-like space and $T: X \longrightarrow X$ be an α - ψ -Suzuki-contractive mapping of type A. Suppose also that T is α -orbital admissible, continuous and there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$. Then T has a fixed point $u \in X$ and d(u, u) = 0.

The following is the definition of a C-class function introduced by Ansari [2]. Many researchers then developed fixed point results and best proximity results using C-class functions. For example, see [3, 4, 10].

Definition 2.18. [2] A continuous function $F:[0,\infty)^2\to\mathbb{R}$ is called a C-class function if for any $p,q\in[0,\infty)$, the following conditions hold:

- (1) F(p,q) < p:
- (2) F(p,q) = p implies that either p = 0 or q = 0.

The family of all C-class functions is denoted by C.

Example 2.19. [2] The following are some C-class functions:

- (i) F(p,q) = p q, for all $p,q \in [0,\infty)$.
- (ii) F(p,q) = mp, for all $p,q \in [0,\infty)$ and $m \in (0,1)$.
- (iii) $F(p,q) = \frac{p}{(1+q)^r}$, for all $p,q \in [0,\infty)$ and $r \in (0,\infty)$.
- (iv) $F(p,q) = \log(q + a^p)/(1+q)$, for all $p, q \in [0, \infty)$ and a > 1.

Definition 2.20. [11] An ultra altering distance function is a continuous, nondecreasing function $\varphi:[0,\infty)\to[0,\infty)$ such that $\varphi(t)>0$, for t>0 and $\varphi(0)=0$. The set of all ultra altering distance functions is denoted by Φ_U .

3. Main results

The following definition is proposed in this paper.

Definition 3.1. Let (X, d) be a quasi-*b*-metric-like space with coefficient *s*. Then $T: X \longrightarrow X$ is a generalized α - ψ - φ -F-contractive mapping of type A if there exist $\alpha: X \times X \longrightarrow [0, \infty), \ \psi \in \Psi_s, \ \varphi \in \Phi_U, \ F \in \mathcal{C}$ and $r \in [0, 1)$ such that the following are satisfied:

(A1)
$$\forall u, v \in X, \theta(r)d(u, Tu) \leq d(u, v) \Longrightarrow \alpha(u, v) \ M_A(u, v) \leq F(\psi(d(u, v)), \varphi(d(u, v)));$$

(A2)
$$\forall u, v \in X, \theta(r)d(Tu, u) \leq d(v, u) \Longrightarrow \alpha(v, u) \ M_A(u, v) \leq F\left(\psi(d(v, u)), \varphi(d(v, u))\right),$$

where $M_A(u, v) = \max\{d(u, Tv), d(v, Tv), d(v, Tu), d(Tv, v)\}.$

We have now our first main result.

Lemma 3.2. Let (X,d) be a complete quasi-b-metric-like space with coefficient s and $T: X \to X$ be a generalized $\alpha \cdot \psi \cdot \varphi \cdot F$ -contractive mapping of type A. If T is α -orbital admissible, and if there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \geq 1$ and $\alpha(Tu_0, u_0) \geq 1$, then $\lim_{n \to \infty} d(u_n, u_{n+1}) = \lim_{n \to \infty} d(u_{n+1}, u_n) = 0$, where $u_k = T^k u_0$, for $k \in \mathbb{N}$.

Proof. If $u_{n_0} = u_{n_0+1}$ for some $n_0 \in \mathbb{N}$, then the proof is complete. If not, then $u_n \neq u_{n+1}$ for all $n \in \mathbb{N}$. Since T is right- α -orbital admissible, it can be derived that $\alpha(u_0, u_1) = \alpha(u_0, Tu_0) \geq 1 \implies \alpha(Tu_0, Tu_1) = \alpha(u_1, u_2) \geq 1$. Then by induction we get that

$$\alpha(u_{n-1}, u_n) \ge 1, \forall n \in \mathbb{N}. \tag{3.1}$$

Similarly, since T is left- α -orbital admissible, it can also be derived that $\alpha(u_1, u_0) = \alpha(Tu_0, u_0) \ge 1 \implies \alpha(Tu_1, Tu_0) = \alpha(u_2, u_1) \ge 1$.

Inductively, we get that

$$\alpha(u_n, u_{n-1}) \ge 1, \forall n \in \mathbb{N}. \tag{3.2}$$

Since T is an α - ψ - φ -F-contractive mapping of type A, by taking $u = u_{n-1}$ and $v = u_n$ in (A1) of Definition 3.1, we find that $\theta(r)d(u_{n-1}, Tu_{n-1}) \leq d(u_{n-1}, u_n)$ implies

$$d(u_{n}, u_{n+1}) \leq \alpha(u_{n-1}, u_{n}) d(u_{n}, u_{n+1}) \text{ by using } (3.1)$$

$$\leq \alpha(u_{n-1}, u_{n}) \max\{d(u_{n-1}, u_{n+1}), d(u_{n}, u_{n+1}), d(u_{n}, u_{n}), d(u_{n+1}, u_{n})\}$$

$$= \alpha(u_{n-1}, u_{n}) \max\{d(u_{n-1}, Tu_{n}), d(u_{n}, Tu_{n}), d(u_{n}, Tu_{n-1}), d(Tu_{n}, u_{n})\}$$

$$= \alpha(u_{n-1}, u_{n}) M_{A}(u_{n-1}, u_{n})$$

$$\leq F(\psi(d(u_{n-1}, u_{n})), \varphi(d(u_{n-1}, u_{n})))$$

$$\leq \psi(d(u_{n-1}, u_{n}))$$

$$\leq d(u_{n-1}, u_{n}).$$

Therefore, $d(u_n, u_{n+1}) \leq \psi(d(u_{n-1}, u_n))$ and $d(u_n, u_{n+1}) < d(u_{n-1}, u_n)$, for all $n \in \mathbb{N}$. Since $d(u_n, u_{n+1}) \leq \psi(d(u_{n-1}, u_n))$ for all $n \in \mathbb{N}$, inductively, we get $d(u_n, u_{n+1}) \leq \psi^n(d(u_0, u_1))$ for all $n \in \mathbb{N}$. Therefore, $\lim_{n \to \infty} d(u_n, u_{n+1}) \leq \lim_{n \to \infty} \psi^n(d(u_0, u_1)) = 0$, since $\psi \in \Psi_1$. Thus

$$\lim_{n \to \infty} d(u_n, u_{n+1}) = 0.$$

Similarly, by taking $u = u_{n-1}$ and $v = u_n$ in (A2) of Definition 3.1, we find that $\theta(r)d(Tu_{n-1}, u_{n-1}) \leq d(u_n, u_{n-1})$ implies

$$d(u_{n+1}, u_n) \leq \alpha(u_n, u_{n-1})d(u_{n+1}, u_n) \text{ by using } (3.2)$$

$$\leq \alpha(u_n, u_{n-1}) \max\{d(u_{n-1}, u_{n+1}), d(u_n, u_{n+1}), d(u_n, u_n), d(u_{n+1}, u_n)\}$$

$$= \alpha(u_n, u_{n-1}) \max\{d(u_{n-1}, Tu_n), d(u_n, Tu_n), d(u_n, Tu_{n-1}), d(Tu_n, u_n)\}$$

$$= \alpha(u_n, u_{n-1}) M_A(u_{n-1}, u_n)$$

$$\leq F(\psi(d(u_n, u_{n-1})), \varphi(d(u_n, u_{n-1})))$$

$$\leq \psi(d(u_n, u_{n-1}))$$

$$\leq d(u_n, u_{n-1}).$$

Therefore, $d(u_{n+1}, u_n) \leq \psi(d(u_n, u_{n-1}))$ and $d(u_{n+1}, u_n) < d(u_n, u_{n-1}), \forall n \in \mathbb{N}$. Since $d(u_{n+1}, u_n) \leq \psi(d(u_n, u_{n-1}))$, for all $n \in \mathbb{N}$, inductively, we get that $d(u_{n+1}, u_n) \leq \psi^n(d(u_1, u_0))$, for all $n \in \mathbb{N}$.

Therefore,
$$\lim_{n \to \infty} d(u_{n+1}, u_n) \le \lim_{n \to \infty} \psi^n(d(u_1, u_0)) = 0.$$

Thus, $\lim_{n \to \infty} d(u_{n+1}, u_n) = 0.$

This completes the proof.

Theorem 3.3. Let (X,d) be a complete quasi-b-metric-like space with coefficient s, and $T: X \to X$ be a generalized $\alpha \cdot \psi \cdot \varphi \cdot F$ -contractive mapping of type A and continuous. If T is α -orbital admissible, and if there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \geq 1$ and $\alpha(Tu_0, u_0) \geq 1$, then there exists an element $u \in X$ which is a fixed point of T and d(u, u) = 0.

Proof. We have $\lim_{n \to \infty} d(u_{n+1}, u_n) = 0$ and $\lim_{n \to \infty} d(u_n, u_{n+1}) = 0$, from Lemma 3.2. Now, we prove that the sequence $\{u_n\}$ is Cauchy. For $k \in \mathbb{N}$, we have

$$d(u_n, u_{n+k}) \leq sd(u_n, u_{n+1}) + s^2 d(u_{n+1}, u_{n+2}) \cdots + s^k d(u_{n+k-1}, u_{n+k})$$

$$\leq \sum_{p=n}^{n+k-1} s^{p-n+1} \psi^p (d(u_0, u_1))$$

$$\leq \sum_{n=n}^{\infty} s^p \psi^p (d(u_0, u_1)) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Therefore, $\{u_n\}$ is right-Cauchy.

Similarly, $\{u_n\}$ is left-Cauchy, since we have

$$d(u_n, u_{n+k}) \leq sd(u_{n+k}, u_{n+k-1}) + s^2 d(u_{n+k-1}, u_{n+k-2}) \cdots + s^k d(u_{n+1}, u_n)$$

$$\leq \sum_{p=n}^{n+k-1} s^{n+k-p} \psi^p(d(u_1, u_0))$$

$$\leq \sum_{p=n}^{\infty} s^p \psi^p(d(u_1, u_0)) \longrightarrow 0 \text{ as } n \longrightarrow \infty.$$

Consequently, $\{u_n\}$ is Cauchy in (X,d) since it is both right-Cauchy and left-Cauchy. Since X is complete, there exists $u \in X$ such that

$$d(u,u) = \lim_{n,m \to \infty} d(u_m, u_n) = \lim_{n \to \infty} d(u_n, u) = \lim_{n \to \infty} d(u, u_n) = \lim_{n,m \to \infty} d(u_n, u_m) = 0.$$

By the continuity of T,

$$u = \lim_{n \to \infty} u_{n+1} = \lim_{n \to \infty} Tu_n = Tu.$$

This completes the proof.

We provide the following example as an illustration of Theorem 3.3.

Example 3.4. Let $X = \{0, 1, 2\}$ and define $d: X \times X \longrightarrow [0, \infty)$ by

$$d(u,v) = \begin{cases} 0 & \text{if } (u,v) \in \{(1,1),(2,2)\}; \\ 1 & \text{if } (u,v) = (0,1); \\ 2 & \text{if } (u,v) \in \{(0,0),(1,0)\}; \\ \frac{1}{4} & \text{elsewhere.} \end{cases}$$

Then, (X, d) is a quasi-b-metric-like space with coefficient s = 4.

Define
$$T: X \longrightarrow X$$
 by $Tu = \begin{cases} 0 & \text{if } u = 0; \\ 2 & \text{if } u \in \{1, 2\}. \end{cases}$

Let

•
$$\alpha: X \times X \longrightarrow [0, \infty)$$
 be defined by $\alpha(u, v) = \begin{cases} 1 & \text{if } (u, v) = (2, 2); \\ \frac{1}{128} & \text{elsewhere,} \end{cases}$

- $\psi \in \Psi_4$ be defined by $\psi(t) = \frac{t}{8}, \forall t \geq 0$,
- $\varphi \in \Phi_U$ be defined by $\varphi(t) = t$, $\forall t \geq 0$,
- $F \in \mathcal{C}$ be defined by $F(p,q) = \frac{p}{2}, \forall p,q \in [0,\infty)$, and
- r = 0.

Then, T becomes a generalized α - ψ - φ -F-contractive mapping of type A. Here, all the conditions of Theorem 3.3 are satisfied, and 2 is a fixed point of T and d(2,2)=0.

Now, let us define a generalized α - ψ - φ -F-contractive mapping of type B.

Definition 3.5. Let (X,d) be a quasi-*b*-metric-like space with coefficient *s*. Then $T: X \longrightarrow X$ is a generalized α - ψ - φ -F-contractive mapping of type B if there exist $\alpha: X \times X \longrightarrow [0,\infty), \ \psi \in \Psi_s, \ \varphi \in \Phi_U, \ F \in \mathcal{C}$ and $r \in [0,1)$ such that the following conditions are satisfied:

(B1)
$$\forall u, v \in X, \theta(r)d(u, Tu) \leq d(u, v) \Longrightarrow \alpha(u, v)d(Tu, Tv) \leq F(\psi(M_B(u, v)), \varphi(M_B(u, v)));$$

(B2)
$$\forall u, v \in X, \theta(r)d(Tu, u) \leq d(v, u) \Longrightarrow \alpha(v, u) \ d(Tv, Tu) \leq F\left(\psi(M'_B(u, v)), \varphi(M'_B(u, v))\right),$$

where

$$M_B(u, v) = \max \left\{ d(u, v), d(u, Tu), d(v, Tv), \frac{d(u, Tv)}{2s} \right\},$$

$$M'_B(u, v) = \max \left\{ d(v, u), d(Tu, u), d(Tv, v), \frac{d(Tv, u)}{2s} \right\}.$$

Lemma 3.6. Let (X,d) be a complete quasi-b-metric-like space and $T: X \to X$ be a generalized α - ψ - φ -F-contractive mapping of type B. If T is α -orbital admissible and if there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$, then $\lim_{n \to \infty} d(u_n, u_{n+1}) = \lim_{n \to \infty} d(u_{n+1}, u_n) = 0$, where $u_k = T^k u_0$, for $k \in \mathbb{N}$.

Proof. If $u_{n_0} = u_{n_0+1}$ for some $n_0 \in \mathbb{N}$, then the proof is complete. If not, then $u_n \neq u_{n+1}$ for all $n \in \mathbb{N}$. Then by Lemma 3.2, $d(u_{n-1}, u_n) \geq 1$ and $d(u_n, u_{n-1}) \geq 1$ for all $n \in \mathbb{N}$. Since T is an α - ψ - φ -F-contractive mapping of type B, by taking $u = u_{n-1}$ and $v = u_n$ in (B1) of Definition 3.5, we find that $\theta(r)d(u_{n-1}, Tu_{n-1}) \leq d(u_{n-1}, u_n)$ implies

$$d(u_{n}, u_{n+1}) \leq \alpha(u_{n-1}, u_{n})d(u_{n}, u_{n+1}) \text{ by } (3.1)$$

$$= \alpha(u_{n-1}, u_{n})d(Tu_{n-1}, Tu_{n})$$

$$\leq F(\psi(M_{B}(u_{n-1}, u_{n})), \varphi(M(u_{n-1}, u_{n})))$$

$$\leq \psi(M_{B}(u_{n-1}, u_{n}))$$

$$= \psi\left(\max\left\{d(u_{n-1}, u_{n}), d(u_{n-1}, u_{n}), d(u_{n}, u_{n+1}), \frac{d(u_{n-1}, u_{n}) + d(u_{n}, u_{n+1})}{2s}\right\}\right)$$

$$= \psi\left(\max\left\{d(u_{n-1}, u_{n}), d(u_{n}, u_{n+1}), \frac{d(u_{n-1}, u_{n}) + d(u_{n}, u_{n+1})}{2}\right\}\right)$$

$$= \psi\left(\max\left\{d(u_{n-1}, u_{n}), d(u_{n}, u_{n+1})\right\}\right).$$

Thus,
$$d(u_n, u_{n+1}) \le \psi \left(\max \left\{ d(u_{n-1}, u_n), d(u_n, u_{n+1}) \right\} \right).$$
 (3.3)

If $\max\{d(u_{n-1}, u_n), d(u_n, u_{n+1})\} = d(u_n, u_{n+1})$, then (3.3) implies that $d(u_n, u_{n+1}) \le \psi(d(u_n, u_{n+1})) < d(u_n, u_{n+1})$, which is a contradiction. So $\max\{d(u_{n-1}, u_n), d(u_n, u_{n+1})\} = d(u_{n-1}, u_n)$. Then we have

$$d(u_n, u_{n+1}) \le \psi(d(u_{n-1}, u_n)) < d(u_{n-1}, u_n), \forall n \in \mathbb{N}.$$

Therefore, $\{d(u_n, u_{n+1})\}$ is a decreasing sequence and $d(u_n, u_{n+1}) \leq \psi(d(u_{n-1}, u_n))$, for all $n \in \mathbb{N}$. Then inductively we get that

$$d(u_n, u_{n+1}) \le \psi^n(d(u_0, u_1)), \forall n \in \mathbb{N}.$$

Hence $\lim_{n \to \infty} d(u_n, u_{n+1}) \le \lim_{n \to \infty} \psi^n(d(u_0, u_1)) = 0$, since $\psi \in \Psi_1$. So

$$\lim_{n \to \infty} d(u_n, u_{n+1}) = 0.$$

Similarly, by taking $u = u_{n-1}$ and $v = u_n$ in (B2) of Definition 3.5, we find that $\theta(r)d(Tu_{n-1}, u_{n-1}) \leq d(u_n, u_{n-1})$ implies

$$d(u_{n+1}, u_n) \leq \alpha(u_n, u_{n-1})d(u_{n+1}, u_n) \text{ by using } (3.2)$$

$$= \alpha(u_n, u_{n-1})d(Tu_n, Tu_{n-1})$$

$$\leq F(\psi(M'_B(u_{n-1}, u_n)), \varphi(M'(u_{n-1}, u_n)))$$

$$\leq \psi(M'_B(u_{n-1}, u_n))$$

$$= \psi\left(\max\left\{d(u_n, u_{n-1}), d(u_n, u_{n-1}), d(u_{n+1}, u_n), \frac{d(u_n, u_{n-1}) + d(u_{n+1}, u_n)}{2s}\right\}\right)$$

$$= \psi\left(\max\left\{d(u_n, u_{n-1}), d(u_{n+1}, u_n), \frac{d(u_n, u_{n-1}) + d(u_{n+1}, u_n)}{2}\right\}\right)$$

$$= \psi\left(\max\left\{d(u_n, u_{n-1}), d(u_{n+1}, u_n)\right\}\right).$$

So,
$$d(u_{n+1}, u_n) < \psi \left(\max \left\{ d(u_n, u_{n-1}), d(u_{n+1}, u_n) \right\} \right).$$
 (3.4)

If $\max\{d(u_n, u_{n-1}), d(u_{n+1}, u_n)\} = d(u_{n+1}, u_n)$, then (3.4) implies that $d(u_{n+1}, u_n) \le \psi(d(u_{n+1}, u_n)) \le d(u_{n+1}, u_n)$, which is a contradiction.

Therefore, $\max\{d(u_n,u_{n-1}),d(u_{n+1},u_n)\}=d(u_n,u_{n-1}).$ Thus we have $d(u_{n+1},u_n)\leq \psi(d(u_n,u_{n-1}))< d(u_n,u_{n-1})$ for all $n\in\mathbb{N}$. Therefore, $\{d(u_{n+1},u_n)\}$ is a decreasing sequence and $d(u_{n+1},u_n)\leq \psi(d(u_n,u_{n-1})),$ for all $n\in\mathbb{N}$. Then inductively we get that

$$d(u_{n+1}, u_n) \le \psi^n(d(u_1, u_0)), \forall n \in \mathbb{N}.$$

Therefore, $\lim_{n \to \infty} d(u_{n+1}, u_n) \le \lim_{n \to \infty} \psi^n(d(u_1, u_0)) = 0$, since $\psi \in \Psi_1$. So

$$\lim_{n \to \infty} d(u_{n+1}, u_n) = 0.$$

This completes the proof.

The following theorem can easily be proved as that of Theorem 3.3.

Theorem 3.7. Let (X,d) be a complete quasi-b-metric-like space and $T: X \to X$ be a generalized α - ψ - φ -F-contractive mapping of type B and continuous. If T is α -orbital admissible and if there exists $u_0 \in X$ such that $\alpha(u_0, Tu_0) \ge 1$ and $\alpha(Tu_0, u_0) \ge 1$, then there exists an element $u \in X$ which is a fixed point of T and d(u, u) = 0.

We illustrate Theorem 3.7 with the following examples.

Example 3.8. The function $T: X \longrightarrow X$ defined on the quasi-b-metric-like space $X = \{0, 1, 2\}$ given in Example 3.4 is also a generalized α - ψ - φ -F-contractive mapping of type B, for the same α , ψ , φ , F and r given in Example 3.4. Here, all the conditions of Theorem 3.7 are satisfied, and 2 is a fixed point of T and d(2, 2) = 0.

Example 3.9. Let $T: X \longrightarrow X$ be the same function defined on the quasi-b-metric-like space $X = \{0, 1, 2\}$ given in Example 3.4. Let

- $\alpha: X \times X \longrightarrow [0, \infty)$ be defined by $\alpha(u, v) = \begin{cases} 1 & \text{if } (u, v) = (2, 2); \\ \frac{1}{16} & \text{elsewhere,} \end{cases}$
- $\psi \in \Psi_4$ be defined by $\psi(t) = \frac{t}{8}, \forall t \geq 0$,
- $\varphi \in \Phi_U$ be defined by $\varphi(t) = t$, $\forall t \geq 0$,
- $F \in \mathcal{C}$ be defined by $F(p,q) = \frac{p}{2}, \forall p,q \in [0,\infty), \text{ and }$
- r = 0.

Then, T becomes a generalized α - ψ - φ -F-contractive mapping of type B, and not of type A. Here, all the conditions of Theorem 3.7 are satisfied, and 2 is a fixed point of T and d(2,2)=0.

4. Acknowledgement

The authors thank reviewers for their valuable comments and suggestions to improve the quality of this paper.

References

- 1. H. Afshari, S. Kalantari, H. Aydi, Fixed point results for generalized α - ψ -Suzuki-contractions in quasi-b-metric-like spaces, Asian Euro. J. Math. 11 (2018), no. 1, Article ID 1850012.
- A. H. Ansari, Note on φ-ψ-contractive type mappings and related fixed point, 2nd Regional Conference on Mathematics and Applications, Payame Noor University, 2014, pp. 377–380.
- A. H. Ansari, G. K. Jacob, D. Chellapillai, C-Class functions and pair (F,h) upper class on common best proximity point results for new proximal C-contraction mappings, Filomat 31 (2017), no. 11, 3459–3471.
- A. H. Ansari, G. K. Jacob, M. Marudai, P. Kumam, On the C-class functions of fixed point and best proximity point results for generalised cyclic-coupled mappings, Cogent Math. 3 (2016), no. 1, Article ID 1235354.
- A. Arabnia Firozjah, H. Rahimi, G. Soleimani Rad, Fixed and periodic point results in cone b-metric spaces over Banach algebras: A survey, Fixed Point Theory 22 (2021), no. 1, 157–168.
- 6. I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal. 30 (1989), 26–37.
- S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav. 1 (1993), 5–11.
- A. A. Harandi, Metric like spaces, partial metric spaces and fixed points, Fixed Point Theory Appl. 2012 (2012), Paper No. 204.
- H. Işik, B. Mohammadi, V. Parvaneh, C. Park, Extended quasi b-metric-like spaces and some fixed point theorems for contractive mappings, Appl. Math. E-Notes 20 (2020), 204–214.
- G. K. Jacob, A. H. Ansari, C. Park, N. Annamalai, Common fixed point results for weakly compatible mappings using C-class functions, J. Comput. Anal. Appl. 25 (2018), no. 1, 184– 194.
- 11. M. S. Khan, M. Swaleh, S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), 1–9.
- C. Klin-eam, C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory Appl. 2015 (2015), Paper No. 74.
- 13. Z. D. Mitrović, A. Chanda, L. K. Dey, H. Garai, V. Parvaneh, Some fixed point theorems involving α -admissible selp-maps and Geraghty functions in b-metric-like spaces, Appl. Math. E-Notes 22 (2022), 566–584.
- 14. B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ -contractive type mappings, Nonlinear Anal. 75 (2012), 2154–2165.

- 15. M. H. Shah, N. Hassani, Nonlinear contractions in partially ordered quasi b-metric spaces, Commun. Korean Math. Soc. 27 (2012), no. 1, 117–128.
- T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), no 5, 1861–1869.
- 17. O. Yamaod, W. Sintunavarat, Discussion of hybrid JS-contractions in b-metric spaces with applications to the existence of solutions for integral equations, Fixed Point Theory 22 (2021), no. 2, 899–912.