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ABSTRACT. In this study, we compare the Laplace decomposition approach to the
variational iteration method. This research focuses on comparing methodologies to re-
solve integro-differential equations that are nonlinear.The result show how practical and
successful these methods are. We compare the results to four cases to assess the solution’s
correctness.

KEYWORDS:Nonlinear Integro-Differential Equations, Laplace decomposition method,
Variational iteration method.

AMS Subject Classification: 44A10,45D05,45J05.

1. Introduction

An Integro-Differential Equation is one that includes both the integral and de-
rivative of unknown functions. Solving Integro-differential Equations is critical in
science and engineering [1, 2]. In many scientific and technical domains, compli-
cated physical processes are described by means of nonlinear problems. Nonlinear
phenomena can be seen in a wide range of scientific domains, including chemical ki-
netics, solid state physics, fluid dynamics, mathematical biology and plasma physics.
Numerous physical processes ,including the formation of glass, heat transmission,
diffusion in general, diffusion of neutrons and coexistence of biological species with
varying rates of generation involve the use of Integro-differential equations without
linearity [1]. Integro-differential equations that are not linear fall into two cate-
gories: nonlinear Volterra equations and others nonlinear Fredholm equations. In
this paper, we look at two successful approaches regarding the resolution of Volterra
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integro-differential equations that are not linear: LDM and VIM. The following is
one kind of Volterra integro-differential equation that is not linear:

djv

dxj
= g(x) +

∫ x

0

K(x, t)G(v(t))dt, (1.1)

where G(v(t)) function that is nonlinear of v(t).
The present paper has the following structure.We define LDM and VIM in part

2, show the comparison results with four instances in section 3, and provide a
conclusion in section 4.

2. Methods description

2.1. Laplace Decomposition Method. Combining the Adomian Decomposition
and Laplace Transform techniques are also referred to as the Laplace Decomposi-
tion method (LDM).This methods main benefits is its ability to find a nonlinear
equation’s precise or approximate solution [3]. Differential equations can be suc-
cessfully solved using the Laplace Decomposition method (LDM),which was initially
presented by Suheil A. Khuri [4, 5]. When equation (1.1) is run through both sides
using the Laplace transform, the result is

sjL {v (x)} − sj−1v (0)− sj−2v
′
(0)− ...− vj−1 (0)

= L {g (x)}+ L {K (x− t)}+ L {G (v (t))}
(2.1)

and

L {v (x)} =
1

s
v (0) + v (0) +

1

s2
v

′
(0) + ...+

1

sj
v(j−1) (0)

+
1

sj
L {g (x)}+ 1

sj
L {K (x− t)}L {G (v (t))}

(2.2)

In order to accomplish this, the linear expression v(x) on the left is first expressed
using an endless succession of parts provided by,

v (x) =

∞∑
n=0

vn (x) (2.3)

recursively find the components vn(x), n ≥ 0.
For treating the non-linear component G(v(x)), the Adomian polynomial shall

be embodied by an endless series, An we apply the Adomian polynomial get around
its difficulties [1, 7, 8] in the format,

G (v (x)) =

∞∑
n=0

An(x), (2.4)

where,

An =
1

n!

dn

dλn

 n∑
j=0

λjvj


λ=0,n=0,1,2,...
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is obtained for all forms of nonlinearity types. (2.3) and (2.4) into (2.2) result in

L

 n∑
j=0

vn (x)

 =
1

s
v (0) +

1

s2
v

′
(0) + ...+

1

sj
v(j−1) (0)

+
1

sj
L {g (x)}+ 1

sj
L {K (x− t)}L

( ∞∑
n=0

An(x)

)
,

(2.5)

with the Adomian decomposition approach, the recursive connection listed below
can be used

L {v0 (x)} =
1

s
v (0) +

1

s2
v

′
(0) + ...+

1

sj
v(j−1) (0) +

1

sj
L{g(x)}, (2.6)

and

L {v (x)} =
1

sj
L {K (x− t)}L {An (x)} , n ⩾ 1. (2.7)

When the first portion of (2.6) is subjected to the inverse Laplace transform
v0(x) is obtained which defined A0.Consequently, by using second portion of (2.7)
the components of equation (2.3) will be fully determined.

2.2. Variational Iteration Method. Ji-Huan He developed the Variational iter-
ation technique (VIM) [9, 10].If there is a closed form solution, VIM offers quickly
converging successive approximations of the precise answer. Without requiring any
special limitations, the VIM manages both linear and nonlinear issues are treated
similarly [1]. It is necessary to specify the starting conditions in order to fully de-
termine the precise solution. For the equation for integro-differential that is not
linear (1.1) the correction functional is,

vn+1(x) = vn(x)+

∫ x

0

λ(ψ)

[
v(j)n (ψ)− f(ψ)−

∫ ψ

0

[K(ψ, r)G(ṽn(r))dr]dψ

]
. (2.8)

There are two key phases involved in using the Variational iteration method. Prior
to anything else, the Lagrange multiplier λ [11, 12, 13] must be found. This can
be done best by utilizing a constrained variation and integration by parts. Either a
function or constant can be the Lagrange multiplier λ. After λ has been established,
the following approximations v(n+1)(x), for n ⩾ 0 of the answer v(x), should be
computed using an iteration formula that is not constrained in any way. Any
selected function can serve as the zeroth approximation v0. However ,for the selective
zeroth approximation v0, it is preferable to utilize the initial values v(0), v

′
(0), · · ·

v
′
+ g

(
v (ψ) , v

′
(ψ)
)
= 0, λ = - 1,

v0 (x) = v (0) , for first order v
′

n

v
′′
+ g

(
v (ψ) , v

′
(ψ) , v

′′
(ψ)
)
= 0, λ = ψ − x

v0 (x) = v (0) + xv
′
(0) , for second order v

′′

n,

v
′′′
+ g

(
v (ψ) , v

′
(ψ) , v

′′
(ψ) , v

′′′
(ψ)
)
= 0, λ = − 1

2!
(ψ − x)2,

v0 (x) = v (0) + xv
′
(0) +

1

2!
x2v

′′
(0), for third order v

′′′

n ,

(2.9)

So on. As a consequence, the answer is provided by

v (x) = lim
n−→∞

vn(x). (2.10)
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3. Main Result

Example 3.1. Take the integro-differential equation that is nonlinear,

dv

dx
=

9

4
− 5

2
x− 1

2
x.x− 3

ex
− 1

4e2x
+

∫ x

0

(x− t) v2 (t) dt, v (0) = 2, (3.1)

Using Laplace Decomposition Method. Using the provided initial condition
and the Laplace transforms of equation (3.1) ,we have

sv (s) = 2 +
9

4s
− 5

2s2
− 1

s3
− 3

s+ 1
− 1

4 (s+ 2)
+

1

s2
L
{
v2 (x)

}
,

v (s) =
2

s
+

9

s(4s)
− 5

s(2s2)
− 1

s(s3)
− 3

s (s+ 1)
− 1

4s (s+ 2)
+

1

s3
L
{
v2 (x)

}
(3.2)

Using the reverse Laplace transformation of the equation (3.2),we get

v (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . . + L−1

[
1

s3
L
{
v2 (x)

}]
(3.3)

The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =

∞∑
n=0

vn (x) and v2 (x) =

∞∑
n=0

An (3.4)

substitute equation (3.4) into equation (3.3) we get ,

∞∑
n=0

vn (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . .+ L−1

[
1

s3
L

[ ∞∑
n=0

An

]]
. (3.5)

When we compare the equation above’s two sides, we obtain

v0 (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . .

v1 (x) = L−1

[
1

s3
L [A0]

]
,

v2 (x) = L−1

[
1

s3
L [A1]

]
,

.

.

.

.

where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2 + v21 · · · . and so on we get the following
recursive relation

v0 (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . . ,

v1 (x) =
2

3
x3 − 1

6
x4 +

1

20
x5 + . . . .

.

.

.

.
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According to (3.4), the series solution is supplied by,

v(x) = 2− x+
x2

2!
− x3

3!
+
x4

4!
− x5

5!
+ . . . ,

that arrives to the precise solution,

v (x) = 1 + e−x

This is the precise solution to equation (3.1).

Using Variational Iteration Technique.

vn+1 (x) = vn (x)−
∫ x

0

[
v

′

n (t)−
9

4
+

5

2
t+

1

2
t2 + 3e−t +

1

4
e−2t −

∫ t

0

(
(t− r) v2n (r)

)
dr

]
dt

(3.6)
In the case of the first-order integro-differential equation, we utilized λ= -1. Us-
ing the above initial condition let’s choose v0 (x) = v (0) = 2.Following are the
consecutive estimations obtained by including the correction functional with this
selection.

v0 (x) = 2,

v1 (x) = 2− x+
x2

2!
− 5

x3

3!
+ 5

x4

4!
− 7

x5

5!
+ . . . ,

v2 (x) = 2− x+
x2

2!
− x3

3!
+ 5

x4

4!
− x5

5!
+ . . . ,

.

.

.

.

further approximations follow in this manner.
Admittedly, the VIM uses

v (x) = lim
n−→∞

vn (x) . (3.7)

This provides a precise solution by,

v (x) = 1 + e−x.

We validated through substitution.

Example 3.2. Take the integro-differential equation that is nonlinear
dv

dx
= 1− 1

3
ex +

1

3
e−2x +

∫ x

0

ex−tv2 (t) dt, v (0) = 0. (3.8)

Using Laplace Decomposition Method. Using the provided initial condition
and the Laplace transforms of equation (3.8) ,we have

sv (s) =
1

s
− 1

3 (s− 1)
+

1

3 (s+ 2)
+

1

s− 1
L
[
v2 (x)

]
v (s) =

1

s.s
− 1

3s (s− 1)
+

1

3s (s+ 2)
+

1

s (s− 1)
L
[
v2 (x)

]
(3.9)

Using the reverse Laplace transformation of the equation (3.9),we get,

v (x) = x− x2

2!
+
x3

3!
− 1

8
x4 − . . .+ L−1

[
1

S (S − 1)
L
[
v2 (x)

]]
(3.10)
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The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =

∞∑
n=0

vn (x) and v2 (x) =

∞∑
n=0

An (3.11)

substitute equation (3.11) into equation (3.10) we get ,

∞∑
n=0

vn (x) = x−x
2

2!
+
x3

3!
− 1

8
x4 − ...+ L−1

[
1

s (s− 1)
L

[ ∞∑
n=0

An

]]
. (3.12)

When we compare the equation above’s two sides, we obtain

v0 (x) = x− x2

2!
+
x3

3!
− 1

8
x4 − . . .

v1 (x) = L−1

[
1

s (s− 1)
L [A0]

]
,

v2 (x) = L−1

[
1

s (s− 1)
L [A1]

]
,

.

.

.

.

where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2 + v21 . . . . and so on
We get the following recursive relation ,

v0 (x) = x− x2

2!
+
x3

3!
− 1

8
x4 − . . .

v1 (x) =
x4

12
− x5

30
+
x6

72
− x7

126
+ . . .

.

.

.

.

According to (3.11), the series solution is supplied by,

v (x) = 1−
(
1− x+

x2

2!
− x3

3!
+
x4

4!
− . . .

)
.

that arrives to the precise solution,
v (x) = 1− e−x.

Using Variational Iteration Technique. For (3.8), the correction functional is
provided by

vn+1 (x) = vn (x) −
∫ x

0

[
v

′

n (t)− 1 +
1

3
et − 1

3
e−2t −

∫ t

0

(
et−rv2n (r)

)
dr

]
dt

(3.13)
In the case of the first-order integro-differential equation, we utilized λ= -1.

Using the above initial condition let’s choose v0 (x) = v (0) = 0.Following are the
consecutive estimations obtained by including the correction functional with this
selection.

v0 (x) = 0,

v1 (x) = x− x2

2!
+
x3

3!
− x4

8
+ . . . ,



LDM AND VIM FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS. 81

v2 (x) = x− x2

2!
+
x3

3!
− x4

4!
+ . . . ,

.

.

.

.

further approximations follow in this manner.
Admittedly, the VIM uses,

v (x) = lim
n−→∞

vn (x) , (3.14)

This provides a precise solution by,

v (x) = 1− e−x.

We validated through substitution.

Example 3.3. Take the integro-differential equation that is nonlinear,

dv

dx
= −1 +

∫ x

0

(x− t) v2 (t) dt, v (0) = 0 (3.15)

Using Laplace Decomposition Method:
Using the provided initial condition and the Laplace transforms of equation (3.15)
,we have

sv (s) = −1

s
+

1

s2
L
[
v2 (x)

]
(3.16)

v (s) = − 1

s.s
+

1

s.s2
L
[
v2 (x)

]
(3.17)

Using the reverse Laplace transformation of the equation (3.17),we get,

v (x) = −x+ L−1

[
1

s3
L
[
v2 (x)

]]
. (3.18)

The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =
∞∑
n=0

vn (x) and v2 (x) =
∞∑
n=0

An (3.19)

substitute equation (3.19) into equation (3.18) we get ,

∞∑
n=0

vn (x) = −x+ L−1

[
1

s3
L

[ ∞∑
n=0

An

]]
. (3.20)

When we compare the equation above’s two sides, we obtain
v0 (x) = −x,

v1 (x) = L−1

[
1

s3
L [A0]

]
,

v2 (x) = L−1

[
1

s3
L [A1]

] ,
.
.
.
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Where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2 + v21 . . . . and so on
We get the following recursive relation ,

v0 = −x,

v1 =
x5

60
,

v2 =
−x9

15120
,

.

.

.

According to (3.19), the series solution is supplied by,

v (x) = −x+
x5

60
− x9

15120
+ . . .

Using Variational Iteration Technique:
For (3.15), the correction functional is provided by,

vn+1 (x) = vn (x)−
∫ x

0

[
v

′

n (t) + 1−
∫ t

0

(
(t− r) v2n (r)

)
dr

]
dt

(3.21)
In the case of the first-order integro-differential equation, we utilized λ= -1.
Using the above initial condition let’s choose v0 (x) = v (0) = 0.Following are the
consecutive
estimations obtained by including the correction functional with this selection.

v0 (x) = 0

v1 (x) = −x,

v2 (x) = −x+
x5

60
,

v3 (x) = −x+
x5

15
− x9

15120
+ . . .

(3.22)

.

.

.

.

further approximations follow in this manner.
Admittedly, the VIM uses

v (x) = lim
n−→∞

vn (x) , (3.23)

This gives solution

v (x) = −x+
x5

60
− x9

15120
+ . . .

We validated through substitution.

Example 3.4. Take the integro-differential equation that is nonlinear,

dv

dx
= x+

∫ x

0

v2 (t) dt, v (0) = 0 (3.24)

Here kernel K (x, t) = 1



LDM AND VIM FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS. 83

Using Laplace Decomposition Method. Using the provided initial condition
and the Laplace transforms of equation (3.24),we have

sv (s) =
1

s2
+

1

s
L
[
v2 (x)

]
(3.25)

v (s) =
1

s.s2
+

1

s.s
L
[
v2 (x)

]
. (3.26)

Using the reverse Laplace transformation of the equation (3.26),we get,

v (x) =
x2

2
+ L−1

[
1

s2
L
[
v2 (x)

]]
. (3.27)

The solution is decomposed as an infinite sum and nonlinear term by Adomian
polynomial as given below

v (x) =

∞∑
n=0

vn (x) and v2 (x) =

∞∑
n=0

An (3.28)

substitute equation (3.28) into equation (3.27) we get ,

∞∑
n=0

vn (x) =
x2

2
+ L−1

[
1

s2
L

[ ∞∑
n=0

An

]]
. (3.29)

When we compare the equation above’s two sides, we obtain

v0 (x) =
x2

2
,

v1 (x) = L−1

[
1

s2
L [A0]

]
,

v2 (x) = L−1

[
1

s2
L [A1]

]
,

.

.

.

Where, A0 = v20 , A1 = 2v0v1, A2 = 2v0v2+v
2
1 . . . . and so on We get the following

recursive relation

v0 =
x2

2
,

v1 =
x6

120
,

v2 =
x10

10080
,

.

.

.

According to (3.28), the series solution is supplied by,

v (x) =
x2

2
+

x6

120
+

x10

10080
+ . . .

Using Variational Iteration Tecnique:
For (3.24), the correction functional is provided by,

vn+1 (x) = vn (x)−
∫ x

0

[
v

′

n (t)− t−
∫ t

0

(
v2n (r)

)
dr

]
dt (3.30)

In the case of the first-order integro-differential equation, we utilized λ= -1.
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Using the above initial condition let’s choose v0 (x) = v (0) = 0.Following are the
consecutive estimations obtained by including the correction functional with this
selection.

v0 (x) = 0,

v1 (x) =
x2

2
,

v2 (x) =
x2

2
+

x6

120
,

v3(x) =
x2

2
+

x6

120
+

x10

10800
+ . . . ,

(3.31)

.

.

.

.

further approximations follow in this manner. Admittedly, the VIM uses

v (x) = lim
n−→∞

vn (x) , (3.32)

This gives solution

v (x) =
x2

2
+

x6

120
+

x10

10800
+ . . . .

We validated through substitution.

4. Conclusion

This work presents the successful application of Lagrangian multiplier (VIM) and
Lagrangian differentiation (LDM) techniques for solving integro-differential nonlin-
ear equations. Both methods yield approximations with greater accuracy or closed
forms of solutions when available. The LDM is a powerful tool that can deal with
both nonlinear and linear integro-differential equations, and for nonlinear opera-
tors, the VIM does not have any specific criteria, such as linearization or Adomian
polynomials. While VIM requires the evaluation of the Lagrangian multiplier λ,
both methods yield the same solution for the aforementioned examples. These two
methods are strong and righteous. Based on the comparison of these two powerful
methods, therefore, it may be said that VIM is simpler for finding the nonlinear
integro-differential equations.
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