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ABSTRACT. The study introduces a Kantrovinch-Stancu type modification of the
modified-Bernstein operator, examining its convergence properties for Holder’s class of
functions. It evaluates the rate of convergence through the modulus of continuity and
Peetre’s K-functional, providing insights into the efficiency of the proposed operators.
Additionally, the research establishes a Vornovskaya type asymptotic result and investi-
gates weighted approximation with polynomial growth, shedding light on the behavior
of approximations under varying conditions. To illustrate the convergence behavior em-
pirically, the study employs MATLAB software to present numerical examples, offering
tangible evidence of the theoretical findings. Through this comprehensive analysis, the
study contributes to understanding the performance and applicability of the Kantrovinch-
Stancu modification in approximation theory, with implications for various fields relying
on function approximation techniques.

KEYWORDS: Modulus of continuity, Kantrovinch operator, Bernstein operator, Mo-
ment estimates.
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1. INTRODUCTION AND PRELIMINARIES

Positive linear operators are widely used in various fields of science and engineer-
ing. This widely spread area provides us the key tools for exploring the Computer-
aided geometric designs, signal processing, image compression, data analysis, nu-
merical analysis, and solution to ordinary and partial differential equations that
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arises in mathematical modeling of real word phenomena. A very famous polyno-
mial in this regards, was studied by Bernstein [1] and the Bernstein operator for
every bounded function ¢ € C[0,1], n > 1 and ¢ € [0, 1] is defined as

Ba(3t) = gpn,xtw(;),

and p,;(t) = (7)t""1(1 — t)"~*~! is Bernstein basis function. Usta [2] presented a

%

new modification for ¢ € C[0,1], n € N, ¢t € (0,1) as

n
Bait) =3 (Z) (k — nt)=1(1 - t)““w(fl). (L1)
k=0

Recently, Sofyahoglu [3] introduced a parametric generalization of (1.1). There-
after, different modification of the above operator have become interest to many
researchers. For more details on parametric generalizations, we refer the readers to
[4,5,6,7,8,9,10, 11, 12, 13]. Kantrovinch [14] introduced a modification involving
integral for the class of Lebesgue integrable functions on [0,1] given by

n %
Ka@it) = (4 )Y pustt) [ wlw)du, (12)
k=0 EEsy
where t € (0,1). Recently, [15] introduced some approximation properties of Szdsz-
Kantorovich type operators allied with d-symmetric d-orthogonal Brenke type poly-
nomials. Also, [16] considered bivariate Summation-integral type hybrid operators

and studied their approximation behavior. For applications point of view, refer

[ ? ? ? ? ]

The motivation behind the study stems from the need to enhance function ap-
proximation techniques, particularly for functions within Hoélder’s class. Traditional
Bernstein operators, while effective, may not always offer optimal convergence rates
for diverse functions. By introducing a Kantrovinch-Stancu type modification, this
research aims to improve approximation efficiency. Investigating convergence prop-
erties through modulus of continuity and Peetre’s K-functional provides a deeper
understanding of how these new operators perform. The practical application of
these theoretical insights, supported by MATLAB simulations, underscores the rel-
evance of this work in advancing approximation theory and its applications across
various fields that rely on accurate function representation.

We now introduce Kantrovinch-Stancu modification of the operator given by
equation (1.1) based on Stancu parameters 0 < oy < ag, as follows:

(E+14aq)

n (nt+ag)
Jolere2) (1) = (ntan) Z <Z> (k—nt)*tF=1(1—t)" k-1 s ’ v(u)du, t € (0,1).
k=0 (nt+ag)

(1.3)

2. MOMENT ESTIMATION

Using the preliminaries, we can prove the following identities for Modified-Bernstein-
Kantrovinch-Stancu operators :

Lemma 2.1. (see [2]) The modified-Bernstein operators B, (.;t) , forn € N, satisfy
the following identities:

(i) B.(L;t) =1;
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(i) Buly;t) = (=2) + 1;
(i) Bu(y? 1) = (“EH0) 2 + (250)t + o

() Byt ) = (2otmgmnas oy ap((wgpss Yooy (13mc20 )y 0,

Lemma 2.2. For n € N the operator S (v(y);t) satisfies the followings:
(i) K52 (150 = 1;
(i) K5 (yit) = (22)t+
(iif) id‘“"”)(y2 t) =
012 + 2 3 }

n+a2 ( + al)

W{(n —Tn+6)t2 + (6n — 8+ 2a1(n — 2))t + (a1 +

Proof. Using the linear property of o) (v;t), we've

})Bn,a(l;t)-

K(e02) (ys £) = ——B,, 4 (yit) + 5

n+aoag n 4+ ao

(Oél +

By using preliminaries, we can see part (2) is true. In a similar manner, we can
prove other parts of above result. O

0417012)(( (a1:a2)(t).

Let us denote the 7" order moment of K y—1t)";t) by vn

Lemma 2.3. Forn € N, the r*" (r = 1,2,4) ordered moments of ng{ll’aQ)(.;t) are
given by

(1) vt (1) = —(B)t + iz (n + 3);

n+aq n+o¢z
(ii) 77(1“21’(12)@) = 7(7“;12)2 {(=3n+6+ a3+ 402)t* + (3n — 8 — 20102 — 4oy —
30&2)?5 + (O[l + ]. 3}

Proof. Using the linear property of K™ (.;¢) and lemma (2.2), above lemma can
be derived easily. O

Corollary 2.4. Forn € N, operator IC,, (a1, a2)(.;t) satisfies the followings:
. . (a1,a2) o) — 3)3
(i) lim nky ((y —t);1) 2+ )t + (oq +2)3;
(i) lim nKS ) ((y —8)%¢) = 3t(1 —t).
n—ro0
3. APPROXIMATION PROPERTIES OF K2 (,;¢)

3.1. Local Approximation.
Theorem 3.1. Let v € C(0,1), then
lim Keve2)(v:t) = (1),

n—-oQ
uniformly on (0,1).
Proof. Using lemma (2.2), we have

lim K(eve2)(yk ) =k (k =0, 1, 2),

n—ro0

uniformly on (0,1). The required result is immediately given by Korovkin type
theorem [22]. O
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3.2. Rate of Convergence. For v € C(0,1), the modulus of continuity of v is
defined as

s = s { s o) -0}
ly—t|<¢ L te(0,1)
Also from [23], we can write
(y—t)?
2

vl - vlo) < (14
By [24], 3 a constant M > 0 such that
K(v;¢) < Mws(v,\/<), ¢ >0, (3.1)

where Peetre’s functional K (v;() is given by

K(v;¢) = _inf ]{||V—f||+CHf”||}7C>0,

feczo,1

)t

with C2[0,1] = {v € C[0,1] : v/, v"" € C[0,1]} and
wa(v,\/n) = sup { sup  |v(t+2h) —2v(t+ h) + I/(t)|}
0<|h|<y/m (t,t+2h€(0,1)
is the second ordered modulus of continuity of v on (0,1).

Theorem 3.2. Lett € (0,1) and v € C[0,1]. Then we have

e i) vto)| < 2 (1 EE 0.

where ’y(o‘;’%)(t) = ICslal’M)((y—t)z; t), is the second ordered central moment of nth

n7

proposed operator.

Proof. For v € C]0,1], we obtain

n (’E+i+0;)
n+ag
e (st) = v(6)] = (n+ 02) o pua(®) [, ol) = (0] dy
k=0 (n+as)
n ('ff‘*%) ( t)2
“TiTasr y—
e Yo [, (14 U5 Nt i
k=0 (it as)
1
= (14 K (= 00 )l ).
By taking (2 = 77(1721’@2)@), we reach the required result. O

Next, we define Holder’s class of functions for a € (0, 1] as follows:
Ho(0,1) ={r € C(0,1) : [v(y) —v(t)| < My ly —t|*; y,t € (0,1)}.
The following theorem gives the rate of convergence for Hélder’s class of functions:

Theorem 3.3. Lett € (0,1) and v € Hy(0,1). Then we have

kel
2

Kl i) - vio)] < 21 (230 )

where 75721’&2)@) is the second ordered central moment of nt" proposed operator.



CONVERGENCE BEHAVIOR OF ... 69

Proof. For v € Hy(0,1), consider

(ktitay)

n
(ar,az)(,,. B . (ntag) _
e 030) —v0)] =0 Y puslt) [0 Io(w) = (0] dy.
k=0 (nfasg)
On applying Holder’s inequality with p = %, q= ﬁ twice, we are led to
(etitay) a
(@1,02) (1, 4) e _ o
o (i) — ()] < { ank / i) = (0] ay |
(nt+ag)
(kt1tay) a
Z (nFoaz) t‘zd 2
Page®) [y Y
(ntaz)

= M’Cff”’o‘z)((y —1)%1)%,
which completes the result. O

Theorem 3.4. Let v € C[0,1] and t € (0,1). Then for all n € N, 3 a positive
constant M such that

KL 0it) = v(0)] < Mo (1 ;\/;{Wé‘,’s""% 020 | )+ (v

Proof. Firstly, we define an auxiliary operator

A0 (1) = KL0192) (s 1) — w( n-2,, 1 <a1 + Z’)) o). (3.2)

n + oo n + oo

).

Then, we have A%QI’QZ)(I; t)=1and A%QI’O‘Z)(Q/ —t;t) = 0. Now Taylor’s expansion
for ¢ € C?[0,1] is given by

Bly) = () + (g — (1) + / "y — g (u)du, £ € (0,1).

Applying auxiliary operator to both sides of above expansion, we obtain

Aler2) (i 1) — o (t) = Klero2) (/ﬂy —w)g" (uw)du; t)

sttt (n43) £ o 1 3
— t - — "(w)du.
/t (n+a2 +n+a2(a1+2> U>¢ (u)du
(3.3)
Now,
Y 12 1 " 2
(y— Wy (wdu| < 3 [9"] (v~ 1
t
and

n2 it (0nt3)
ntag ”Jraz 2 n—2 1 3 "
t -] = d
/t <n+a2 +n+a2<a1+2> U>1/) (u)du

] (e Y Y PR 2
n + oo n + g D)

2
L) ( (o0

N——
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Rewriting equation (3.3), we obtain
1 2
A wit) = 0(0)] < g IR (= 0%+ 5 107 (70
1 g, g,
=31 {300+l 2><t>2}.

Also,
Al i) < 3] (3.5)

In the view of equations (3.4) and (3.5), we get

Klera2) (1: 4) — u(t)‘ —| Alere2) (4 p) 1 1/( n-2,, 1 <a1 + 3)) —u(t) — v(t) + o)

n —+ oo n + oo
—p(t) + A0 (s t) — AL (i t) |
< |l = it - (v - 0)(0)|

Al i) — ()| +

SHINC

n—2
v
n—i—ag n+a2

<aly =l + 5 101 {5 0+ 40 }

1|-2—as 1
w(v,C)(Hg n+a2t+n+a2< )‘

Taking infimum to RHS of above equation over ¢ € C?[0,1] and ¢ = fyfl‘?‘f’”)(t) ,
we are led to

]- a1, a1, a1,
Kl i) v(o)] < 48 (g [ 0 0 a2 (0] ).

We reach the required result immediately by using equation (3.1).

3.3. Voronovskaya-type Asymptotic Result. In this subsection, we derive an
asymptotic formula for the proposed operator as follows:

Theorem 3.5. Let v € C%[0,1]. and t € (0,1). Then, we have

n—:oQ

lim n(K10) (vit) — v(t)) = {(—2 — )t + <a1 + ‘;’) }v’(t) + gt(l =t ().
Proof. From Peano form of remainder of Taylor’s expansion, we can write

1
v(y) = v(t) + (y = ' (t) + Sy — )*V"(t) + (y — t)*e(y, 1), (3.6)

where €(y,t) = M for some z lying between ¢ and y. Also, lii>n75 e(y,t) = 0.
y
Now, operating the equation (3.6) by IC,,(.;t), we get
R (05) = (1) = K ((y = 0500/ (0) + K (g = 02500 ()
+ RS ey, )y — )% 1)
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Using corollary (2.4) and Cauchy-Schwartz inequality, we can deduce

lim n(KE092) (vit) —v(t) = /(1) lim k@092 ((y —t);t)
n—o0

n—o0

1 " . (o1,002) 2.
+ v (t) nh_I>Iloo7’L’Cn ((y_t) at)

2
+ nlgloo (RS2 ((y = 1)2e(y, t): 1))
3 /! 3 11
<q(2—m)t+ a1 + 3) (v )+ 5t(l — )" (t)
2 (ahaz ar,az) 2(
—&—nh_I)noo\/nlC \/IC e (y, ),t))
(3.7)

By theorem (3.1), we have

(a1,02) — 2 _

lim K ((y,1);t) = €(t,t) = 0.

Using above equation in (3.7), we are led to the required result. (]

3.4. Weighted Approximation. Consider a weight function o(t) = 1+ t? on
(0,1). Let B,(0,1) denotes the space of all functions ¢ on (0,1) such that
lo(t)] < Myo(t)
and C,(0,1) be the subspace of all continuous functions in B, (0, 1) endowed with
norm ||| given by
p(t)
lell, = sup —=<.
t€(0,1) U(t)
Next, we prove an inequality and convergence for the operator K, (.; ) in weighted
space as follows:

Lemma 3.1. Let v € C,(0,1). Then following inequality holds for K, (v;t)

eredwit)| <M,

Proof. By using definition of proposed operator, we may write

e )

ICff“’o‘z) vt = sup
H (v:1) o te(0,1) o(t)
n (kE+1+a)1)
n ntag
<ol s 3 bu() (14 u?)du
o) 1+ kzzo e
= |lv|l, sup {1+ K02 (20} < M|y,

7 te(o) 1+

U

Theorem 3.6. For v € C,(0,1), the newly modified operator IC;QI’QZ)(.; t) satisfies
lim ‘ICSlal"”)(u;t) — V(t)H =

n—>oo

Proof. From lemma (2.2), we obtain

’IC%““”)(y; t) — t’ 1
= su <
o tG(OI,)l) 14 ¢2 T n+as

H’Cﬁfl’o‘z)(y; t)—t

] — Qg — —|.
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Also,

ko2 w3 1) — v(t)
= sup
T te(0,1) 1+1¢2

HICglal,az)(yQ; t) _ t2

1
(2041—2042—1)4—04%—04%—0414—}.

1
< -
- (n+a2)2{n 3

Thus, in limiting condition, we can write

lim_ ||l (y7se) — || = 03 = 0,12,

n—>oQ

Then, the weighted convergence holds for all v € C,(0,1) from the results given by
Gadjiev [25]. O

4. GRAPHICAL ANALYSIS

Now, we introduce some simulation results in order to substantiate the conver-
gence behavior of 1655“*0‘2)(@&; t) for continuous function i by using MATLAB.

To test the approximation behavior of newly defined operators, let us consider
a polynomial function ¢(t) = t* —t* + {5 + 0.1. As the new sequence of operators
is defined on (0,1), so for that we will consider approximation over equally spaced
grids in [0.0005,0.9995]. Figure (1) and (2) shows the approximation and error in
the approximation by proposed operator to ¥(t) respectively for n = 20,50 and 100
at a1 = ag = 0.

0.25

0.2

0.1 o=y

0.05

F1cURE 1. Approximation by proposed operator K00 (;t) to 9
at different values of n.
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0.08

0.07} |-~~~ n=20 ]
e n=50 *

0.06 |—o—n=100 / N

0.05 ! o

0.04

0.03

0.02

0.01

FIGURE 2. Error in the approximation by proposed operator
IC%O’O)@/); t) to ¢ at different values of n.

5. CONCLUSION

In this manuscript, we presented modified-Bernstein-Kantrovinch-Stancu oper-

ators. We discussed their rate of convergence, asymptotic formula, and weighted
approximation of these operators with polynomial growth. Also, we included some
numerical simulations in order to test the newly defined operators.
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