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ABSTRACT. In this paper, we introduce two new linesearch algorithms for solving a
non-monotone equilibrium proplem in a real Hilbert space. Each method can be considered
as a combination of the extragradient method with linesearch and shrinking projection
methods. Then we show that the iterative sequence generated by each method converges
strongly to a solution of the considered problem. A numerical example is also provided.
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1. INTRODUCTION

Let H be a real Hilbert space with an inner product (-, -) and the associated norm
Il - ||. The strong convergence and the weak convergence in the Hilbert space H are
denoted by ‘—’ and ‘—’, respectively.
Let €2 be an open convex subset in H containing a nonempty closed convex C, and
f: 9 xQ — R be a bifunction such that f(z,z) = 0 for every z € C.

The equilibrium problem (shortly EP(C, f)), in the sense of Blum, Muu and
Oettli [4, 21] (see also [15]), consists of finding «* € C such that

fa®,y) =20, vy € C,
and its associated equilibrium problem

Find y* € C such that f(z,y*) <0, Va € C. (1)
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Note that problem (1) is called as the Minty equilibrium problem (MEP(C, f)
for short) due to M. Castellani and M. Giuli [6]. We denote the solution set of
EP(C, f) and MEP(C, f) by Sg and Sy, respectively.

Although problem EP(C, f) has a simple formulation, it encompasses, among
its particular cases, many important problems in applied mathematics: convex
optimization problem, variational inequality problem, fixed point problem, saddle
point problem, Nash equilibrium problem in noncooperative game, and others; see,
for example, [3, 4, 21], and the references quoted therein.

Recall that a bifunction f is said to be monotone on C if

fl@y) + fly, @) <0,Va,y € C,
and pseudo-monotone on C' if
Vz,y € C, f(z,y) 20 = f(y,2) <0.

Solution methods for equilibrium problems with monotone or pseudo-monotone bi-
functions [1, 9, 12, 13, 16, 17, 19, 22, 29] have been studied extensively by many
researchers and they have been usually extended from those for variational inequal-
ity problems and other related problems [5, 14].

For obtaining a solution of a non Lipschitz type and pseudo-monotone equilib-
rium problem in Euclidean space, Tran et al. [27] proposed to combine extragradient
algorithms [18] with Armijo linesearch rule [2] to get the following algorithm.

Algorithm 1.
Initialization. Pick 2° € C, n,u € (0,1); 0 < p;
Yk € [v,79] € (0,2).
Iteration k (k = 0, 1, 2, ...). Having 2* do the following steps:
Step 1. Solve the strongly convex program

. 1
min {f(%,9) + oy =ty € O} CP(a")

to obtain its unique solutions y*.

If 4% = 2%, then stop. Otherwise, go to Step 2.

Step 2. (Armijo linesearch rule) Find my as the smallest positive inte-
ger number m such that

{Zk,m — (1 o ’I]m)l’k + ,r}myk

F(Rm k) — F(m k) > L gk — 2.

k k,mk

Set np =n™*k, 2 =2
k .k
Step 3. Select w* € Oy f (2%, 2%), take oy = %, and compute

2Pl = Po(a¥ — yp.o.w"), and go to Step 1 with k is replaced by
kE+1.

They showed that the sequence {x*} generated by the above algorithm converges
to a solution of EP(C, f) provided that Sg # 0.

In addition, to find a fixed point of a non-expansive self mapping 7" in real Hilbert
spaces, ie., T : C — C and [Tz — Ty|| < ||z —y||, Vz,y € C. Takahashi et al.
[26] introduced the following iterative method, known as the shrinking projection
method, which is the following:

Algorithm 2

Initialization. Pick 2° = 9 € C, choose parameters a € [0,1), {ax} C [0, ] and

set Cy = C.
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Iteration k (k= 0,1,2,...). Having z¥ do the following steps:
Step 1. Compute
y* = apz® + (1 — ap)Tz",
Crs1 = {z € Ot o — ¥ < [l — 2*]]}.

Step 2. Compute zFt! = Pg, ., (29), and go to Step 1 with k is replaced by k+1.

They proved that {z*} generated by Algorithm 2 converges strongly to x* =
Prpig(r)(27). In spired by above algorithms and recent works [7, 10, 25, 31], in this
paper, we introduce algorithms for solving an equilibrium problem in a real Hilbert
space without pseudo-monotonicity assumption of the bifunctions by combining
Algorithm 1 with Algorithm 2. Then, we proved that the sequences generated by
proposed algorithms strongly converges to a solution of Sg.

The rest of paper is organized as follows. The next section contains some pre-
liminaries on the metric projection and equilibrium problems. The third section
is devoted to introduce two algorithms for EP(C, f) and their strong convergence.
In the last section, we present an application of the proposed algorithm for Nash-
Cournot equilibrium models of electricity markets and its implementation.

2. PRELIMINARIES

In this paper, we denote the metric projection operator on C' by Pg, that is
Po(z) e C: lz = Po(z)|| < |ly —=l|, Vy € C.
It is well known that the projection operator onto a closed convex has the fol-
lowing properties.
Lemma 2.1. Suppose that C' is a nonempty closed convexr subset in H. Then

(a) Pco(x) is singleton and well defined for every x;

(b) z = Po(x) if and only if (x — z,y — 2) < 0,Vy € C;

(©) [IPe(@) = Pe))?* < llz =yl = [|[Pe(z) -2 +y — Pe)|?, Yo,y € C.
Definition 2.1. A bifunction ¢ : C x C' = R is said to be jointly weakly continuous
on C x C if for all z,y € C and {x*}, {y*} are two sequences in C converging
weakly to x and y respectively, then (x*,y*) converges to p(x,y).

In the sequel, we need the following blanket assumptions

(A1) f(z,.) is convex on (Q for every x € C;
(Ay) f is jointly weakly continuous on  x Q.

For each z, z € C, by 02 f(z,x) we denote the subdifferential of the convex function
f(z,.) at z, i.e.,
Daf(z,x):={weH: f(z,y) > f(z,2) + (w,y — x), Yy € C}.
In particular,
Oof(z,2z) ={w e H: f(z,y) > (w,y — z), Yy € C}.
The next lemma can be considered as an infinite-dimensional version of Theorem

24.5 in [21]

Lemma 2.2. [28, Proposition 4.3] Let f : & x Q@ — R be a function satisfying
conditions (Ay) and (Az). Let 7,57 € Q and {z*}, {y*} be two sequences in Q
converging weakly to T,y, respectively. Then, for any € > 0, there exist n > 0 and
ke € N such that

0o f (%, y") C Ouf(2,7) + %B,

for every k > k., where B denotes the closed unit ball in H.
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Lemma 2.3. [20] Under assumptions (A1) and (Ag), a point * € C is a solution
of EP(C, f) if and only if it is a solution to the equilibrium problem:
1
Find z* GC:f(x*,y)-ﬁ-%Hy—x*HQZO, Yy € C. (AEP)
Lemma 2.4. [30] Let C' be a nonempty closed convex subset of H. Let {z*} be a

sequence in H and u € H. If any weak limit point of {z*} belongs to C' and
2% = ull < [lu = Pe(u)], k.
Then z* — Po(u).
Lemma 2.5. [10] Under assumptions (A1) and (Asz), if {zF} C C is a sequence

such that {z¥} converges strongly to z and the sequence {w*}, with w* € Oy f (2%, %),
converges weakly to w, then @ € daf (2, Z).

Lemma 2.6. [11] Let the equilibrium bifunction f satisfy the assumptions (Ay) on
Q and (Az) on C, and {z*} C C, 0< p<p, {px} C [p, p]. Consider the sequence
{y*} defined as follows

, 1
y* = argmm{w(zk,y) + ﬂ\ly —a"|?: y e C}-

Then, if {x*} is bounded, then {y*} is also bounded.

3. MAIN RESULTS

Now we are in a position to present the first algorithm for solving a non-monotone
equilibrium problem in a Hilbert space.
Algorithm 3.
Initialization. Pick 2° = 29 € C, choose parameters 1, u € (0,1),0 < p < p,
{pk} c [,0, ﬁ]v Tk € [77’_7} c (072) and set Cp = C'.
At each iteration k (k = 0,1,2,...). Having 2¥ do the following steps:
Step 1. Solve the strongly convex program

) 1
min {f(*,9) + 5 —lly ~ | s y € C} CP(a*)

to obtain its unique solution y*. If y* = z*, then stop. Otherwise, do
Step 2.

Step 2. (The first Armijo linesearch rule) Find my as the smallest
positive integer number m such that

f(zk””,xk) _ f(Zk’m,yk) > ﬁ”wk _ kaQ-

k,my

(2)

Set m, =0k, 2P =2

Step 3. Select w¥ € Oy f (2%, 2%), and compute u* = Po (2% — yopw"),
AT

where o}, = Hw,;HQ .

Step 4. Compute

ahtl = PCk+1 (xg)7

where Cjy1 = {z € C : ||z — u¥|| < ||z — 2¥||}, and go to Step 1 with
k is replaced by k + 1.

Remark 3.1. If y* = ¥ then 2 is a solution to EP(C, f).
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Before proving the convergence of Algorithm 1, let us recall the following lemma
which was proved in [27].

Lemma 3.1. [27] Suppose that the bifunction f satisfies assumptions (A1) and
(Az), then we have:

(a) The linesearch is well-defined;

(b) f(z*,2*) > 0;

(C) 0 g 82f(zk7xk);

d) In addition, if Syr # 0, then

lu? = 2*|* < fla* —a*)|? = (2 = ) (onlwhl)?, for all z* € S (3)
Lemma 3.1 implies that the sequence {z*} generated by Algorithm 1 is well-

defined. The following theorem establishes the strong convergence of {z*} to a
solution of EP(C, f).

Theorem 3.2. Suppose that bifunction [ satisfies assumptions (A1), (A2). If
the set Sy is monempty, then the sequence {x*}, {u*} generated by Algorithm 3
converge strongly to a solution x* of EP(C, f).

Proof. Take T € Sy); C C' = Cy. From Lemma 3.1, we have
lu? —2|* < flz* = 2|I* — k(2 = ) (onl|w” ). (4)
Since v € [y,7] C (0,2), we get
1z —u*|| < |z — 2. ()
By induction, we can conclude that z € Cy, for all k.
By Step 4, ¥ = Pg, (29), we have
2% — 29| < |l — 29|, Yz € Cy, (6)
50,
¥ — 29| < ||z — 29|, Vk. (7)
Therefore, {z*} is bounded. Together with Lemma 2.2, {w*} is bounded. Combin-
ing with (5) we have {u*} is also bounded.
Since, z**1 € C}, and (6), we have

lz* — 29| < |2t — 29, Vk. (8)

Because {z*} is bounded, we get

lim ||z — 29| =7 > 0. (9)
k—o00

In addition,

2P — 2F]|2 = 2kt — 29 4 29 — 22

= [la"* = 292 + [|2? — 2F|* + 2(2" — 29,27 - 2¥)
= [la™ — @ |? + |2 — 2P+ 20— 2k 2f — aF) - 2f|a? — 2"
<l = 29)? — fla* — 292,
where the last inequality follows from the fact that 2% = Pg, (29) and z**! € Cy,
then (zFt! — 2k 29 — 2F) <0.

From (9), we obtain
lim [|zF T — 2% = 0. (10)
k— o0
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Because zFt1 € Cj1, one has
2% — || <z — 2| 4 T u
< 2l — M|
Take into account with (10) we get

lim [Juf —2*|| = 0. (11)
k—o0
Next, we show that {z*}, {u*} converge strongly to z* = Prge o (29).

It is clear that C} is nonempty, closed and convex set, it is also weakly closed.
Since Cry1 C Ck,Vk and 2% € Oy, 2F € Cy, for all £ > kg. Let & be any weak

accumulation point of the sequence {z*}, i.e., there exists {z%} C {2*} such that

xF —~ % as j — oco. Since {2%} C Cf,,Vj > i and the weak closedness of Cy,, it

implies that & € Cy,,Vi. Hence & € Cy,Vk, or € N2, Cl.
Set * = Pree ¢, (27). From (7) we have,

2% — 29| < [|la* — 29|, Vk. (12)
We can conclude that z* converges strongly to z* by Lemma 2.4. Together with
( 11) we have u* also converges strongly to x*.

Next, we show that «* solves EP(C, f).

In view of (4), it yields
(2 = 1) (okllw[)? < fl2* — u* | [lla* - 2| + |u* — 2] (13)
Since v € [y,7] C (0,2), and (11), we get from (13) that
lim oy |lw®|| = 0. (14)
k—o0
Since {z*} is bounded and Lemma 2.6, {y*} is bounded. Consequently, {z*} is
also bounded. Using Lemma 2.5, {w*} is bounded, In view of ( 14) yields
lim f(z*,2") = lim [op]|w"]|w*] = 0. (15)
k—oo k—oo
We have
0= f(=*2") = f(F, (1= m)2® +my®)
< (L =) f(2%,2%) + e f (25,5,
so, we get from (2) that
F5,a%) 2 ml (25, 2%) — f(25,y7)]
,u
> el —yF)*.
Pk
Combining with (15) one has
lim 7 ||z* — y*||> = 0. (16)
k—o00
We now consider two distinct cases:
Case 1. limsup;,_, . nr > 0.

Then there exists 77 > 0 and a subsequence {n, } C {nx} such that n, > 7, Vi, and

from (16), one has
ki

lim ||z% — % | = 0. (17)
71— 00
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Remember that z* — x* and (17), it implies that y* — z* as i — oo.
By definition of y*¢ we have

2 wyecC. (18)

1 1
ki ki|2 ki . ki k; ki
1 7” + —_— — > f x ’7 z + _— L —

Without loss of generality, we assume that lim; , pr, = p*. Letting i« — oo, by
jointly weak continuity of f and 2* — 2*, y¥* — z*, we obtain in the limit that

1 «
—|ly —2*||* > 0.

fl@™,y) + 5

By Lemma 2.3, we conclude that
flz*,y) >0, ¥y e C.

Therefore, z* is a solution of EP(C, f).

Case 2. limg_oo n = 0.
Since {y*} is bounded, it implies that there exists {y"} C {y*} such that y* — 7
as ¢ — oo.

By the definition of y*i, we have

Fah ) + o —lly* = 2™ * <. (19)
2Pki
In the other hand, by the Armijo linesearch rule (2), for mg, — 1, we have
f(Zki’mki_l,{I}ki) _ f(zki’mki_17yki) < 2M Hykl _ xki||2. (20)
Pk;

Combining with (19) we get
— 1 .
Flakiyh) < ——|ly™

According to the linesearch rule, 2%k =1 = (1—pme: =1y ghi fpmis =Lyki i =1
0. Since z* converges strongly to x*, y* converges weakly to 7, it implies that

Zkomei =1 converges strongly to z* as i — oo. In addition, {p%Hl/ki — 2Fi||?} is

bounded, without loss of generality, we may assume that lim;_, ﬁ”y’“ — gk |2

, 1 e =1 e L, —1 ks
P PRy < et e)

exists. Hence, we get in the limit from (21) that

1
* = < _ 3 k}i _ k‘i
flz*,y) < iiumoo Y ly™ —

2 < if(x*,y)-

Therefore, f(z*,7) = 0 and lim;_, ;o ||y — 2¥||2 = 0. By the Case 1, we get that

x* is a solution of EP(C, f).

d
Replacing the linesearch rule 2 by the other one, we get the following algorithm.
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Algorithm 4.
Initialization. Pick 2° = 29 € C, choose parameters , u € (0,1),0 < p < p,

{pr} Clp, Pl, v € [7,7] € (0,2). and set Cy = C.
At each iteration k (k = 0,1,2,...). Having ¥ do the following steps:
Step 1. Solve the strongly convex program

. 1
min { /(@) + 5 -y =4 s y € C} CP(a*)

to obtain its unique solution y*. If y¥ = z*, then stop. Otherwise, do
Step 2.

Step 2. (The second Armijo linesearch rule) Find my, as the smallest
positive integer number m such that

2o = (1 — ™)k Mk
{fw o yH <0 22
’ 2pk =
Set mp = n™*, 2k = KM If 0 € Oy f(2F, 2%), then Stop. Otherwise,
go to Step 3.
Step 3. Select wk € Dy f(2*, 2¥), and compute u* = Pg(2F — yropw"),
where o), = %

Step 4. Compute
R — Pe,,, (z9),

where Cjy1 = {z € Oy : ||z — v*|| < ||z — 2*||}, and go to Step 1 with
k is replaced by k + 1.

Remark 3.2. o Ify* =2 then x* is a solution to EP(C, f);
o If0 € Oyf(2F,2F), then ¥ is a solution to EP(C, f).

Lemma 3.3. [27] Suppose that the bifunction f satisfies assumptions (A1) and
(A2), then we have:

(a) The linesearch is well-defined;
(b) f(z*,y*) <0;
c) If Syr # 0, then

Juk = a*|2 < [l2* — 2|2 = 32 = ) (onllw¥ )%, forall o € Sar. (23)

Lemma 3.3 implies that the sequence {z*} generated by Algorithm 4 is well-
defined.
The following theorem show us the convergence of Algorithm 4.

Theorem 3.4. Suppose that bifunction [ satisfies assumptions (A1), (Asz). If
the set Sy is nonempty, then the sequence {x*}, {u*} generated by Algorithm
converge strongly to a solution x* of EP(C, f).

Proof. This theorem can be proved by the same arguments as in Theorem 3.2 so
we obmit it.

4. NUMERICAL EXAMPLES

To illustrate the proposed algorithms, in this section, we consider an equilibrium
problem arising in Nash-Cournot oligopolistic electricity market equilibrium model
[8, 27]. In this model, there are n¢ companies, each company i may possess I;
generating units. Let nY be number of all generating units and = be the vector



STRONG CONVERGENCE ALGORITHMS FOR EPS WITHOUT MONOTONICITY 147

whose entry z; stands for the power generating by unit ¢ and o = E?:gl x;. We
assume that the price p is a decreasing affine function of o, that is

pla) =3784 -2 x; = p(o).
i=1

Then the profit made by company 7 is given by
fix) =p(o) D ws =D ej(xy),
Jjel; Jjel;
where c¢;(x;) is the cost for generating z; given by
cj(a;) = max{c)(x;), cj (x;)}
with

a? Bi  —1s 1 1
djlay) = 5rag + Bjwi 47y o) = gy + o1 S )
J

where o, 85 4% (k = 0,1) are given parameters.

Denote x;»nin and x** is the lower and upper bounds for the power generating
by the unit j. Then the strategy set of the model takes the form

C:={z=(x1,....2"")": x];nin <z; <™, Vit

By setting ¢* := (qi,...,¢%,s)T with

.1 ifjel
= Yo itjer’

and define

ne

A=2> (1-¢) )", B:=2> ¢, (24)
i=1 i=1
a:= —387.4Zqi,and c(x) := ch(xj). (25)
i=1 j=1
Then this oligopolistic equilibrium model can be written by the following equilib-
rium problem EP(C, f) (see [23, Page 155]):

Find z* € C: f(a*,y) = [(A+ B)z* + By +a]" (y —2*) + c(y) — c(z*) > 0, Yy € C.

It can be seen that, the matrix A is not positive semidefinite and f(z,y)+ f(y,x) =
—(y — x)T A(y — ), hence the bifunction f is nonmonotone and nonsmooth.

We test Algorithm 3 for this problem with corresponds to the first model in [8]
where n¢ = 3, and the parameters are given in the following tables:

We implement Algorithm 1 in Matlab R2014a running on a Laptop with Intel(R)
Core(TM) i5-3230M CPU@2.60 GHz with 4 GB Ram. To terminate the Algorithm,

k+1_ Kk .
we use the stopping criteria m < € with a tolerance € = 1073. The com-

putation results are reported in Table 3 with some starting points and regularized
parameters.
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Com.

Gen.

C

Thin | Thax | Thin | Tiax
1 1 0 80 0 80
2 2 0 80 0 130
2 3 0 50 0 130
3 4 0 55 0 125
3 5 0 30 0 125
3 6 0 40 0 125

The lower and upper bounds of the power generation of the

Gen. | o) By | Y % Bj Y]
1 0.0400 | 2.00 | 0.00 | 2.0000 | 1.0000 | 25.0000
2 0.0350 | 1.75 | 0.00 | 1.7500 | 1.0000 | 28.5714
3 0.1250 | 1.00 | 0.00 | 1.0000 | 1.0000 | 8.0000
4 0.0116 | 3.25 | 0.00 | 3.2500 | 1.0000 | 86.2069
) 0.0500 | 3.00 | 0.00 | 3.0000 | 1.0000 | 20.0000
6 0.0500 | 3.00 | 0.00 | 3.0000 | 1.0000 | 20.0000

TABLE 2. The parameters of the generating unit cost functions.

Iter(k) | p ok zk ok zk ¥ zk Cpu(s)
0 0.1 0 0 0 0 0 0
691 46.6583 | 32.0728 | 15.0832 | 21.9862 | 12.3870 | 12.4071 | 136.0017
0 0.5 0 0 0 0 0 0
1166 46.6541 | 32.0750 | 15.0845 | 21.9224 | 12.4209 | 12.4389 | 151.3664
0 0.9 0 0 0 0 0 0
847 46.6440 | 31.9437 | 15.2014 | 21.6995 | 12.5953 | 12.4952 | 162.2410
0 0.1 30 20 10 15 10 10
629 46.6531 | 32.1041 | 15.0509 | 22.0089 | 12.4180 | 12.3606 | 122.1176
0 0.5 30 20 10 15 10 10
711 504 46.6416 | 31.9645 | 15.1811 | 21.6667 | 12.5630 | 12.5629 | 135.5798
0 0.9 30 20 10 15 10 10
711 46.6482 | 32.0263 | 15.1150 | 21.6827 | 12.5460 | 12.5657 | 147.0316

TABLE 3. Results computed with some starting points and regu-

larized parameters.

5. CONCLUSION

. We have introduced two projection algorithms for finding a solution of a non-
monotone equilibrium problem in a real Hilbert space. The strong convergence of
the proposed algorithms are obtained. We then have applied a proposed algorithm

for a Nash-Cournot oligopolistic equilibrium model of electricity market.

Some
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computation results are reported.
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