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ABSTRACT. The aim of this paper is to compare the convergence radii of three methods
of convergence order six under the same conditions. Moreover, we expand the applicability
of these methods using only the first derivative in contrast to earlier works using hypotheses
on derivatives up to order seven although these derivatives do not appear in the methods.
Numerical examples complete this study.
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1. INTRODUCTION

In this paper we compare the convergence radii of following three sixth order
iterative methods defined for n =0,1,2,..., by [12]:

b = = 2 F () )
tn = n— ol 4 P () F ()
2 8
3 _ _
+§F/(xn) 1F,(yn)iFl($n) 1F(xn)
1
Pagt = o= I S F () F )

) F )] F () F (),
(1.1)
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2
Yn = Tp — gF/(x7L)71F(xn)
5 3 / —1 v 2
f = = [T S (F () F )]
xF'(z,) ' F(x,)
9 15 _
Tnt+l = Zn— [_ZI—'_ gFl(yn) LF ()
11 _ _
g F ) E () () " F ),
(1.2)
and [11]
Yn = xp— F'(z,)  F(z,)
23 _ 9 _
Zn = Tn— [§I — 3F'(zn) 1F/(yn) + g(F/(xn) 1F/(yn))2]
x F'(x,) ' F(x,)
5 3 _
T+l = 2Zn — [51 - §F1($n) 1F/(yn)]
XF/(xn)ilF(xn) (1.3)
used for approximating a solution a of the equation
F(x)=0. (1.4)

Here: F': Q C & — &, is a differentiable operator in the sense of Fréchet, £ and
&, are Banach spaces and (2 is convex and open.

Earlier convergence analysis of these methods when &£ = & = R* used, assump-
tions of the Fréchet derivatives of F' of order up to seven [1, 2, 14] although these
derivatives do not appear in these methods, limiting the applicability.

Example 1.1. Let & =& =R, Q = [—%, %] Define F' on 2 by

F(z) = 2% log2? + 2° — 2*
Then
F'(x) = 32% log 2? + 5x* — 42% + 222
F"(z) = 6zlogx? + 2023 — 1222 + 10z,
F"(x) = 6log x® + 6022 = 24z + 22.
Obviously F"'(z) is not bounded on 2. So, the convergence of methods (1.1), (1.2)
and (1.3) is not guaranteed by the analysis in the earlier studies.

In this study, our analysis uses only the assumptions on the first Fréchet de-
rivative of F. Thus, we extend the applicability of these methods and in the more
general setting of Banach space valued operators. This technique can be used to
extend the applicability of other iterative methods.

Notice that, solutions methods for equation (1.4) is an important area of research,
since a plethora of problems from diverse disciplines such that Mathematics, Op-
timization, Mathematical Programming, Chemistry, Biology, Physics, Economics,
Statistics, Engineering and other disciplines can be modeled into an equation of the
form (1.4) [1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15].

The rest of the study is organized as follows. In Section 2 , the local convergence
analysis is given and numerical examples are given in the last Section 4.
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2. LOCAL CONVERGENCE

Let us introduce some real functions and parameters needed in the local conver-
gence analysis. Consider a function wy : § — S continuous and increasing with
wp(0) = 0, where S = [0, 00). Suppose that equation

wo (t) =1 (21)
has at least one positive solution. We denote by pg the smallest such solution. Set
So = [0, po). Let also w : Sy — S and w; : Sy — S be continuous and increasing
functions with w(0) = 0. Define functions g; and g; on the interval Sy by
W((1—0)t)dl + L [ (6t)d0

1-— wo (t)

q(t) =

and

Suppose that
w1(0) < 3. (2.2)

We obtain that g, (0) = wlT(O)fl < 0and g;(t) — oo ast — p, . The intermediate
value theorem guarantees the existence of at least one solution of the equation
g1(t) =01n (0, pg). Denote by Ry the smallest such solution. Suppose that equation

wo(gr(t)t) =1 (2.3)
has at least one positive solution. Denote by p; the smallest such solution. Set
S1 = [0, p2), where ps = min{pyg, p1 }. Define functions g and gs on S; by

Jo (@ =0))do | 3 [ wolgr (1) + wo(?)

92(t) = 1— wo(d) T3P 1 —wo(g1(t)1)
)

W (91 (t t) —+ wo (t):| fol wl(Qt)dQ
1-— OJQ(t) 1-— wo(t)

and
ga(t) = ga(t) — 1.
We also get g2(0) = —1 and ga(t) — oo as t — p, . Denote by Ry the smallest
solution of equation g (t) = 0 in (0, p2). Suppose that
wo(g2(t)t) =1 (2.4)
has at least one positive solution. Denote by p3 the smallest such solution. Set
Sy =10, p), where p = min{p%pg} Define functions g3 and gs by

Jy @((L~ 0)ga(t)1)de
gs(t) = { . 1_w0(92( )
(wo(g2(1)t) +wo(91(1)1)) fiy i (Bal(t))do
(L~ w02 (1 = wolar ()9)

1 {15(600(91( )t) +wo(t))

8 1 — wo(g1(£)t)

| Wwo(gr () +wo(0)] Jo w1<992<t>t>de}

1 —wp(t) 1 —wo(g1(t)t)

and
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We have again g3(0) = —1 and g3(t) — oo as t — p~. Moreover, define a radius
of convergence R by

R=min{R;}, i=1,2,3. (2.5)
It follows that for each ¢ € [0, R)
0<wy(t) <1,0<wy(g1(t)t) < 1,0 <wplga(t)t) <1, (2.6)
and
0<gi(t) <1, i=1,2,3. (2.7)

We base the local convergence analysis of method (1.1) on conditions (A):

(al) F': Q — &, is a continuously differentiable operator in the sense of Fréchet
and there exists o €  such that F(a) =0 and F'(a)~! € L(E,&).

(a2) There exists function wy : S — S continuous and increasing with wy(0) =
0 and for each z € Q2

1F" ()= (F" () = F'(a))[| < wo[lz — ).

Set Qo = QN U(a, po), where pg is given in (2.1).
(a3) There exist functions w : Sy — S,w; : Sop —> S such that for each
z,y € Q

1" () T F" (y) = F'(@))]| < w(lly — 2[))
and
1F" () T F ()| < wi(flz — al])
where Sy and S are defined previously.

(a4) U(a, R) C Q, po, p1, p2 exist and are given by (2.1), (2.3) and (2.4), respec-
tively, (2.2) holds and R is given by (2.5).

(ab) There exists R; > R such that

1
/ wO(HRl)dQ < 1.
0

Set O = QNU(a, Ry).
Next, the local convergence analysis of method (1.1)is provided using the conditions
(A) and the preceding notation.

Theorem 2.1. Suppose that the conditions (A) hold. Then, sequence {x,} gener-
ated by (1.1), for o € U(a, R) — {a} is well defined, remains in U(w, R) for each

n=0,1,2,3,... and converges to c. Moreover, the following estimates hold
lyn — all < g1z — al)llz — all < flz —af| < R, (2.8)
[zn — all < g2([|z — al))]|lz — o < [l — of (29
and
[znt1 — afl < gs(llz = al)llz — af < [z —af], (2.10)

where functions g; are given previously and R is defined in (2.5). Furthermore, the
limit point « is the only solution of equation F(x) =0 in the set Q.

Proof. We use mathematical induction to show (2.8) — (2.10). Let z € U(«, R)—
{a}. Using (2.5), (al) and (a2), we get that
1F" ()™ (F' () = F'(a))|| < wo(llz — o]) < wo(R) < 1. (2.11)
By the Banach perturbation lemma [6, 7, 10], F'(z)~! € L(&2, &),
1

[F () F' ()| < T—w(lz—a])

(2.12)
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and the iterate yo is well defined by the first substep of method (1.1) for n = 0. We
can write by (al)that

Yo —a =20 —a — F'(x0) " F(x0) + %F’(mo)_lF(a:O), (2.13)
so by (2.5), (2.7) (for i = 1), (2.12) (for x = x¢) and (2.13), we have in turn that
lyo — < [[F' (o) F'(a)]|
I / F(a) " (F'(a+ 0(z0 — @) — F'(0))d0(z — o]
+*HF'($ )THF (o)
H / F/(a+ 8(ao — @) - F'(z0))d0(x — )|
- [, w 0)l|zo — al)dd + & f wi(6]|zo0 — a]))db]
- 1—wo(||9€o—6¥||)
X [|zo — al
= gi(llzo — al)llzo — af < [lzo —all < R, (2.14)

s0 (2.8) holds for n = 0 and yo € U(«a, R). Moreover, zj exists by (2.12) (for x = yo).
We can write
2—a = xg—a—F(x0)  F(xo)
3

“l=gl+ gF’(yo)‘lF’(xo) + gF'(wo)_lF’(yo)]F'(%)_IF(%)

= zg—a—F'(z0) " F(zo) + 2[317'(1/0)_1(17/(?/0) — F'(20))
+F' (o) M (F' (w0) — F'(yo))|F' (o)~ F (), (2.15)

where we used the estimations

12 9 3
—§I+ 8F/( yo) ' F'(w0) + gF/(xo)_lF/(yo)

= S Flyo) " (w0)) — S(T— F/(ao) ™ F (o)

= B0 F o) — F (o)) + F(a0) ™ (P 20) — F ()]
Then, by (2.5), (2.7) (for i = 2, (2.12) (for x = yo) and (2.14), we have in turn that
lz0 —all < llzo — @ — F'(wo) ™ Fao)| + 3 [3||F (o) F'(a)]

(IIF’(a)’l(F( 0) — (a))II+IIF( )~ (F (x0) = F'())])
HIF (o) F () [ F () T (IF () ™1 (F (o) — F' ()]
HIF () TN (w0) = F'(@))I1)]

IIF'(mo)‘lF’( MIIE" (o)~ F (o)

Jo w((1 = )|z — a))d8
1 - wO(Hyo —af)

3 [3(wolllyo — all) + wo(llzo — o))
*3 { 1 —wo(llyo — all)

IN
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wo([lzo — al) + wo(llyo — Oéll)]
1 —wo([|lzo — alf)

1

w1 (0]|zo — «||)db

Jo — — |zo — o
1 —wo(l|lzo — alf)

< gallzo — al)llzo — af < [lzo — af, (2.16)

0 (2.9) holds for n = 0 and 2y € U(a, R). We also have by (2.12) (for = = zg) that
F'(2)~! exists. Then, we can write by the second substep of method (1.1) that

r1—a = z0—a—F'(2)  F(z)

+F' (20) "M (F" (y0) — F'(20))F" (y0) " F (20)
L5 (40) " (F'(00) — F/(@0)) + 11F(w0) " (F'(w0) = F'(30))]
F'(y0) ™ F(20), (2.17)

where we used estimations

1
g[—261 + 15F" (yo) " F' (w0) — 111 + 11F" (z0) "  F' (o))

- _é[ls(l — F'(yo) "' F'(0)) + 11(I = F'(0) " F'(y0))]

— S [15F (50) ™ (" (4o) — F'(z0)) + 11F (z0) ™ (F'(z0) — F'(yo))].

Next, by (2.5), (2.7) (for i = 3), (2.12) (for x = x0, 20), (2.16) and (2.17), we obtain
in turn that

lzr —all < Jlzo — o= F'(20) " F(20)]|

HIE (20) T E (@) [ (I1F" () ™ (E" (y0) — F' (o))

HIEF" (@) 7 (F' (20) = F'(@))I])
|| E" (yo) L E' (@) [ F" (@) T F (20|
+%[15|\F/(y0)_1F/(0f)||(||F'(0é)_1(F'(yo) = F'(a)]|
HE () THE (z0) — F'(a))]])]
1L F' (o) T F () [ (1 F" (@) = (F (o) — F'(a))
HIE (@) (F (yo — F' (@) [D]
X||F" (yo) T F () [ [1F () THF (20) |
{ﬁw«lemmamw

1 —wo(|[z0 — al])

IN

(@o(llz0 = al}) +wollyo — all)) Jy w1(B]lz0 — @]} )dé
(1 = wo(llz0 = ) (1 = wo(llyo — a]))

. [15(wo(|xo — o)) + wo(llyo — )

8 1 —wo(llyo —all)

11 (wo(flzo — ) + wolllyo — Oéll)]
1 —wo([|lzo — alf)

1
0|20 — af|)do
@Oz o)

t=wo(llyo —al
(k0 = alDllzo — al < 120 (215)

IN
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so (2.10) holds for n = 0 and 7 € U(a, R). The induction for (2.8)— (2.10) is com-
pleted, if xo,¥0, 20, 1 are replaced by z;,y;, z;, £;j41 respectively, in the preceding
estimations. It then follows from

241 = af < allz; —af <R, a = gs(llzo — o)) €[0,1) (2.19)

that lim;_ o, x; = and ;41 € U(e, R). Finally, for the uniqueness part, let oy € 3
with F(p1) = 0 with F(a;) = 0. Then, by (a2) and (a5), we get in turn that for
T = fol F'(a1 + 0(a — aq))db for

1
IF" ()™ (T = F'(a))]| < /Owo(9||a—a1ll)d9

1
< / wo(OR*)d6 < 1 (2.20)
0

leading to T~ € £(&;,&1). Then, by the identity
0=F(a)— F(a1) =T(a — 1),

we deduce that a1 = a.

O
Remark 2.1. The convergence order of method (1.1) can be determined using
computing the computational order of convergence (COC) [7, 8, 11] given by
|02 —all
— ln( Hx7l+1_all) (2 21)
|znt1—oll ’
(=)
or the approximate computational order of convergence (ACOC) [7, 8, 11] given by

In( ||90n+2—1’n+1|\)

* Hzn+1_zn‘|
= ——"r— "0 (2.22)
In( H-Tn+1—fn\|)

lzn—2n—1]l

It turns out that the local convergence of method (1.2) (or method(1.3)) are
given under the conditions (A) by modifying the definition of g; functions to fit
these methods as follows:

gt = M +§ ((wo(gl(f)t)+w0(t))>2
T—wo®) 8|\ T wola®?)
2(wo(g1(t)t) + wolt } )] Sy wi(6)d6
(1 —wolg1()t))? 1 —wo(t) ’
gg(t) = 92( ) - 1a
and g3 and g3 as previously. The corresponding (2.15) Ostrowski-type representa-
tion in method (1.2) is:

Zyn—a = xp,—a—F'(x,)  F(x,)
3 _
S ()™ (F () — F ()2
+2F/(yn)_1<F/(yn) - F/(xn))F/(yn)_lFl(xn)]
< F' () F (), (2.23)
where the representations for functions ¢g; and g3 are the same. Moreover, the
corresponding to (2.15) and (2.17) representations for method (1.3) are:

Zn—a = xp,—a—F'(z,) ' F(z,)

+
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45 [5F (@) (P (w0) — F'(32)
HOF () F ) ') (F () = F' ()

X F'(x,)  F(2p). (2.24)
and
Tyl — @ = 2zp—o—F'(2,) " F(z,)
2P ) () — P )
X F'(2,) L F(2,,). (2.25)

The g functions are:

Jo w((L=0))do | 1 [ 15(wo(g1(£)1) +wo(t))
1-— wo(t) 8 1-—- wo(t)
(

L (O @o(91 (1)) +wo() Jy wl(et)dﬂ

g2(t) =

(1 —wo(t))?

((1—0)t)do
1 — o.)o(t)
+

3 (ot + wnlon ) 1) Jo w1(992(t)t)d9}gg(t)_

and

(1 —WO(f))Q

With the above changes and following the proof of Theorem 2.1, we arrive at the
corresponding results for method (1.2) and method (1.3).

Theorem 2.2. Suppose that the conditions (A) hold. Then, the conclusions of
Theorem 2.1 hold for method (1.2) or method (1.3) with the above indicated changes.

3. NUMERICAL EXAMPLES

Example 3.1. Let By = By = R*,Q = U(0,1),z* = (0,0,0)7. Define function F
on (2 for u = (z,y,2)T by

-1
Flu) = (" =1, =" +4,2)".

Then, the Fréchet-derivative is given by

e’ 0 0
F'lvy=1] 0 (e—1Ly+1 0
0 0 1

Notice that using the (2.8)-(2.12), conditions, we get wo(t) = (e — 1)t,w(t) =
eﬁt,wl(t) =eeT.
Then using the definition of r, we have that
R, = 0.15440695135715407082521721804369
Ry = 0.08374478937177408377490195334758 = R
R3 = 0.11332932017032089355712543010668.
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Example 3.2. Let B; = By = C]0, 1], the space of continuous functions defined on
[0,1] and be equipped with the max norm. Let Q2 = U(0,1). Define function F on
Q by

F(¢)(@) = p(z) - 5 / 0p(0)db. (3.1)
We have that

1
F'(p(6))(x) = &(x) — 15/0 0o (0)%€(0)dh, for each & € Q.

Then, we get that ™ = 0, wo(t) = 7.5t,w(t) = 15¢,w1(t) = 2. This way, we have
that

R1 = 0.022222222222222222222222222222222

Ry = 0.015951698098429258065866775950781 = R

R3 = 0.021955106317595653175889225394712.

Example 3.3. Let & =& =R, Q = [-2, 1]. Define F on Q by

F(z) = 2®log2? + 2° — 2*
Then

F'(z) = 32% log 2 + 5z* — 42® + 222
Then, we get that po(t) = ¢(t) = 147¢,4(t) = 2. So, we obtain
Ry, =0.0015117157974300831443688586545729
Ry =0.00088140170616351218649264787075026 = R
R3 = 0.0012234803047134626755032549283442.

Example 3.4. Let By = By = C[0,1],Q = U(z*,1) and consider the nonlinear
integral equation of the mixed Hammerstein-type [1, 2, 3, 5, 11] defined by

2 4 l’(t)Q
/G t)3/ + =)t

where the kernel G is the Green’s function defined on the interval [0, 1] x [0, 1] by

G(s’t):{ (1—s)t, t<s

s(1—1t), s<t.

The solution x*(s) = 0 is the same as the solution of equation (1.4), where F' :
C0,1] — C[0,1]) is defined by

F(z)(s / G(s, t)(z(t)3/? + (;)2)dt.
|| / G(s, )] <

e / Gls, ) ()72 + 2())dt,

Notice that

ool =

Then, we have that

so since F'(xz*(s)) =1,

1E (@) (F (@)~ F@) < £ Clle — 92 + [l — ).

|_82
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Then, we get that wy(t) = w(t) = 2(3t1/2 + 1), w1 (t) = 1+ wo(t). So, we obtain

=12
= 0.60784148620540678908952259007492 = R
= 0.77695598964350998105743428823189.

4. CONCLUSION

A very important aspect in the study of iterative methods is the convergence

region, since it determines the choices of the initial point. That is why we studied
the convergence of three popular sixth order methods for solving nonlinear equations
under the same set of conditions. The radii of convergence were evaluated on three
test examples showing that in each example a different method has the largest
radius of convergence.
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