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1. Introduction

In this paper we compare the convergence radii of following three sixth order
iterative methods defined for n = 0, 1, 2, . . . , by [12]:
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yn = xn − F ′(xn)
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used for approximating a solution α of the equation
F (x) = 0. (1.4)

Here: F : Ω ⊂ E1 −→ E2 is a differentiable operator in the sense of Fréchet, E1 and
E2 are Banach spaces and Ω is convex and open.

Earlier convergence analysis of these methods when E1 = E2 = Rk used, assump-
tions of the Fréchet derivatives of F of order up to seven [1, 2, 14] although these
derivatives do not appear in these methods, limiting the applicability.

Example 1.1. Let E1 = E2 = R, Ω = [− 5
2 ,

3
2 ]. Define F on Ω by

F (x) = x3 log x2 + x5 − x4

Then
F ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 log x2 + 60x2 = 24x+ 22.

Obviously F ′′′(x) is not bounded on Ω. So, the convergence of methods (1.1), (1.2)
and (1.3) is not guaranteed by the analysis in the earlier studies.

In this study, our analysis uses only the assumptions on the first Fréchet de-
rivative of F. Thus, we extend the applicability of these methods and in the more
general setting of Banach space valued operators. This technique can be used to
extend the applicability of other iterative methods.

Notice that, solutions methods for equation (1.4) is an important area of research,
since a plethora of problems from diverse disciplines such that Mathematics, Op-
timization, Mathematical Programming, Chemistry, Biology, Physics, Economics,
Statistics, Engineering and other disciplines can be modeled into an equation of the
form (1.4) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The rest of the study is organized as follows. In Section 2 , the local convergence
analysis is given and numerical examples are given in the last Section 4.
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2. Local convergence

Let us introduce some real functions and parameters needed in the local conver-
gence analysis. Consider a function ω0 : S −→ S continuous and increasing with
w0(0) = 0, where S = [0,∞). Suppose that equation

ω0(t) = 1 (2.1)
has at least one positive solution. We denote by ρ0 the smallest such solution. Set
S0 = [0, ρ0). Let also ω : S0 −→ S and ω1 : S0 −→ S be continuous and increasing
functions with ω(0) = 0. Define functions g1 and ḡ1 on the interval S0 by

g1(t) =
ω((1− θ)t)dθ + 1

3

∫ 1

0
ω1(θt)dθ

1− ω0(t)

and
ḡ1(t) = g1(t)− 1.

Suppose that
ω1(0) < 3. (2.2)

We obtain that ḡ1(0) = ω1(0)
3 −1 < 0 and ḡ1(t) −→ ∞ as t −→ ρ−0 . The intermediate

value theorem guarantees the existence of at least one solution of the equation
ḡ1(t) = 0 in (0, ρ0). Denote by R1 the smallest such solution. Suppose that equation

ω0(g1(t)t) = 1 (2.3)
has at least one positive solution. Denote by ρ1 the smallest such solution. Set
S1 = [0, ρ2), where ρ2 = min{ρ0, ρ1}. Define functions g2 and ḡ2 on S1 by

g2(t) =

∫ 1

0
ω((1− θ)t)dθ

1− ω0(t)
+

3

8

[
3
ω0(g1(t)t) + ω0(t)

1− ω0(g1(t)t)

+
w0(g1(t)t) + ω0(t)

1− ω0(t)

] ∫ 1

0
ω1(θt)dθ

1− ω0(t)

and
ḡ2(t) = g2(t)− 1.

We also get ḡ2(0) = −1 and ḡ2(t) −→ ∞ as t −→ ρ−2 . Denote by R2 the smallest
solution of equation ḡ2(t) = 0 in (0, ρ2). Suppose that

ω0(g2(t)t) = 1 (2.4)
has at least one positive solution. Denote by ρ3 the smallest such solution. Set
S2 = [0, ρ), where ρ = min{ρ2, ρ3}. Define functions g3 and ḡ3 by

g3(t) =

{∫ 1

0
ω((1− θ)g2(t)t)dθ

1− ω0(g2(t)t)

+
(ω0(g2(t)t) + ω0(g1(t)t))

∫ 1

0
ω1(θg2(t)t)dθ

(1− ω0(g2(t)t))(1− ω0(g1(t)t))

1

8

[
15(ω0(g1(t)t) + ω0(t))

1− ω0(g1(t)t)

+
11(w0(g1(t)t) + ω0(t))

1− ω0(t)

] ∫ 1

0
ω1(θg2(t)t)dθ

1− ω0(g1(t)t)

}
and

ḡ3(t) = g3(t)− 1.
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We have again ḡ3(0) = −1 and ḡ3(t) −→ ∞ as t −→ ρ−. Moreover, define a radius
of convergence R by

R = min{Ri}, i = 1, 2, 3. (2.5)
It follows that for each t ∈ [0, R)

0 ≤ ω0(t) < 1, 0 ≤ ω0(g1(t)t) < 1, 0 ≤ ω0(g2(t)t) < 1, (2.6)
and

0 ≤ gi(t) < 1, i = 1, 2, 3. (2.7)
We base the local convergence analysis of method (1.1) on conditions (A):

(a1) F : Ω −→ E2 is a continuously differentiable operator in the sense of Fréchet
and there exists α ∈ Ω such that F (α) = 0 and F ′(α)−1 ∈ L(E2, E1).

(a2) There exists function ω0 : S −→ S continuous and increasing with ω0(0) =
0 and for each x ∈ Ω

∥F ′(α)−1(F ′(x)− F ′(α))∥ ≤ ω0(∥x− α∥).
Set Ω0 = Ω ∩ U(α, ρ0), where ρ0 is given in (2.1).

(a3) There exist functions ω : S0 −→ S, ω1 : S0 −→ S such that for each
x, y ∈ Ω0

∥F ′(α)−1(F ′(y)− F ′(x))∥ ≤ ω(∥y − x∥)
and

∥F ′(α)−1F ′(x)∥ ≤ ω1(∥x− α∥)
where S0 and S are defined previously.

(a4) Ū(α,R) ⊂ Ω, ρ0, ρ1, ρ2 exist and are given by (2.1), (2.3) and (2.4), respec-
tively, (2.2) holds and R is given by (2.5).

(a5) There exists R1 ≥ R such that∫ 1

0

ω0(θR1)dθ < 1.

Set Ω1 = Ω ∩ Ū(α,R1).

Next, the local convergence analysis of method (1.1)is provided using the conditions
(A) and the preceding notation.

Theorem 2.1. Suppose that the conditions (A) hold. Then, sequence {xn} gener-
ated by (1.1), for x0 ∈ U(α,R)− {α} is well defined, remains in U(α,R) for each
n = 0, 1, 2, 3, . . . and converges to α. Moreover, the following estimates hold

∥yn − α∥ ≤ g1(∥x− α∥)∥x− α∥ ≤ ∥x− α∥ < R, (2.8)
∥zn − α∥ ≤ g2(∥x− α∥)∥x− α∥ ≤ ∥x− α∥ (2.9)

and
∥xn+1 − α∥ ≤ g3(∥x− α∥)∥x− α∥ ≤ ∥x− α∥, (2.10)

where functions gi are given previously and R is defined in (2.5). Furthermore, the
limit point α is the only solution of equation F (x) = 0 in the set Ω1.

Proof. We use mathematical induction to show (2.8) – (2.10). Let x ∈ U(α,R)−
{α}. Using (2.5), (a1) and (a2), we get that

∥F ′(α)−1(F ′(x)− F ′(α))∥ ≤ ω0(∥x− α∥) ≤ ω0(R) < 1. (2.11)
By the Banach perturbation lemma [6, 7, 10], F ′(x)−1 ∈ L(E2, E1),

∥F ′(x)−1F ′(α)∥ ≤ 1

1− ω(∥x− α∥)
(2.12)
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and the iterate y0 is well defined by the first substep of method (1.1) for n = 0. We
can write by (a1)that

y0 − α = x0 − α− F ′(x0)
−1F (x0) +

1

3
F ′(x0)

−1F (x0), (2.13)

so by (2.5), (2.7) (for i = 1), (2.12) (for x = x0) and (2.13), we have in turn that

∥y0 − α∥ ≤ ∥F ′(x0)
−1F ′(α)∥

∥
∫ 1

0

F ′(α)−1(F ′(α+ θ(x0 − α))− F ′(x0))dθ(x− α)∥

+
1

3
∥F ′(x0)

−1F ′(α)∥

∥
∫ 1

0

F ′(α)−1(F ′(α+ θ(x0 − α))− F ′(x0))dθ(x− α)∥

≤

[
[
∫ 1

0
ω((1− θ)∥x0 − α∥)dθ + 1

3

∫ 1

0
ω1(θ∥x0 − α∥)dθ]

1− ω0(∥x0 − α∥)

]
×∥x0 − α∥

= g1(∥x0 − α∥)∥x0 − α∥ ≤ ∥x0 − α∥ < R, (2.14)

so (2.8) holds for n = 0 and y0 ∈ U(α,R). Moreover, z0 exists by (2.12) (for x = y0).
We can write

z0 − α = x0 − α− F ′(x0)
−1F (x0)

−[−3

2
I +

9

8
F ′(y0)

−1F ′(x0) +
3

8
F ′(x0)

−1F ′(y0)]F
′(x0)

−1F (x0)

= x0 − α− F ′(x0)
−1F (x0) +

3

8
[3F ′(y0)

−1(F ′(y0)− F ′(x0))

+F ′(x0)
−1(F ′(x0)− F ′(y0))]F

′(x0)
−1F (x0), (2.15)

where we used the estimations

−12

8
I +

9

8
F ′(y0)

−1F ′(x0) +
3

8
F ′(x0)

−1F ′(y0)

= −9

8
(I − F ′(y0)

−1F ′(x0))−
3

8
(I − F ′(x0)

−1F ′(y0))

= −3

8
[3F ′(y0)

−1(F ′(y0)− F ′(x0)) + F ′(x0)
−1(F ′(x0)− F ′(y0))].

Then, by (2.5), (2.7) (for i = 2, (2.12) (for x = y0), and (2.14), we have in turn that

∥z0 − α∥ ≤ ∥x0 − α− F ′(x0)
−1F (x0)∥+

3

8
[3∥F ′(y0)

−1F ′(α)∥

(∥F ′(α)−1(F (y0)− F ′(α))∥+ ∥F ′(α)−1(F ′(x0)− F ′(α))∥)
+∥F ′(x0)

−1F ′(α)∥∥F ′(α)−1(∥F ′(α)−1(F ′(y0)− F ′(α))∥
+∥F ′(α)−1(F ′(x0)− F ′(α))∥)]
∥F ′(x0)

−1F ′(α)∥∥F ′(α)−1F (x0)∥

≤

{∫ 1

0
ω((1− θ)∥x0 − α∥)dθ
1− ω0(∥y0 − α∥)

+
3

8

[
3(ω0(∥y0 − α∥) + ω0(∥x0 − α∥))

1− ω0(∥y0 − α∥)
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+
ω0(∥x0 − α∥) + ω0(∥y0 − α∥)

1− ω0(∥x0 − α∥)

]
∫ 1

0
ω1(θ∥x0 − α∥)dθ

1− ω0(∥x0 − α∥)

}
∥x0 − α∥

≤ g2(∥x0 − α∥)∥x0 − α∥ ≤ ∥x0 − α∥, (2.16)
so (2.9) holds for n = 0 and z0 ∈ U(α,R). We also have by (2.12) (for x = z0) that
F ′(z0)

−1 exists. Then, we can write by the second substep of method (1.1) that

x1 − α = z0 − α− F ′(z0)
−1F (z0)

+F ′(z0)
−1(F ′(y0)− F ′(z0))F

′(y0)
−1F (z0)

+
1

8
[15F ′(y0)

−1(F ′(y0)− F ′(x0)) + 11F ′(x0)
−1(F ′(x0)− F ′(y0))]

F ′(y0)
−1F (z0), (2.17)

where we used estimations
1

8
[−26I + 15F ′(y0)

−1F ′(x0)− 11I + 11F ′(x0)
−1F ′(y0)]

= −1

8
[15(I − F ′(y0)

−1F ′(x0)) + 11(I − F ′(x0)
−1F ′(y0))]

= −1

8
[15F ′(y0)

−1(F ′(y0)− F ′(x0)) + 11F ′(x0)
−1(F ′(x0)− F ′(y0))].

Next, by (2.5), (2.7) (for i = 3), (2.12) (for x = x0, z0), (2.16) and (2.17), we obtain
in turn that

∥x1 − α∥ ≤ ∥z0 − α− F ′(z0)
−1F (z0)∥

+[∥F ′(z0)
−1F ′(α)∥(∥F ′(α)−1(F ′(y0)− F ′(x0))∥

+∥F ′(α)−1(F ′(z0)− F ′(α))∥)
×∥F ′(y0)

−1F ′(α)∥∥F ′(α)−1F (z0)∥

+
1

8
[15∥F ′(y0)

−1F ′(α)∥(∥F ′(α)−1(F ′(y0)− F ′(α)∥

+∥F ′(α)−1(F ′(x0)− F ′(α))∥)]
+11∥F ′(x0)

−1F ′(α)∥(∥F ′(α)−1(F ′(x0)− F ′(α))∥
+∥F ′(α)−1(F ′(y0 − F ′(α))∥)]
×∥F ′(y0)

−1F ′(α)∥∥F ′(α)−1F (z0)∥

≤

{∫ 1

0
ω((1− θ)∥z0 − α∥)dθ
1− ω0(∥z0 − α∥)

+
(ω0(∥z0 − α∥) + ω0(∥y0 − α∥))

∫ 1

0
ω1(θ∥z0 − α∥)dθ

(1− ω0(∥z0 − α∥))(1− ω0(∥y0 − α∥))

+
1

8

[
15(ω0(∥x0 − α∥) + ω0(∥y0 − α∥)

1− ω0(∥y0 − α∥)

+
11(ω0(∥x0 − α∥) + ω0(∥y0 − α∥)

1− ω0(∥x0 − α∥)

]
×

∫ 1

0
ω1(θ∥z0 − α∥)dθ

1− ω0(∥y0 − α∥)

}
∥z0 − α∥

≤ g3(∥x0 − α∥)∥x0 − α∥ ≤ ∥x0 − α∥, (2.18)
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so (2.10) holds for n = 0 and x1 ∈ U(α,R). The induction for (2.8)– (2.10) is com-
pleted, if x0, y0, z0, x1 are replaced by xj , yj , zj , xj+1 respectively, in the preceding
estimations. It then follows from

∥xj+1 − α∥ ≤ a∥xj − α∥ < R, a = g3(∥x0 − α∥) ∈ [0, 1) (2.19)
that limj−→∞ xj = and xj+1 ∈ U(α,R). Finally, for the uniqueness part, let α1 ∈ Ω1

with F (p1) = 0 with F (α1) = 0. Then, by (a2) and (a5), we get in turn that for
T =

∫ 1

0
F ′(α1 + θ(α− α1))dθ for

∥F ′(α)−1(T − F ′(α))∥ ≤
∫ 1

0

ω0(θ∥α− α1∥)dθ

≤
∫ 1

0

ω0(θR
∗)dθ < 1 (2.20)

leading to T−1 ∈ L(E2, E1). Then, by the identity
0 = F (α)− F (α1) = T (α− α1),

we deduce that α1 = α.
�

Remark 2.1. The convergence order of method (1.1) can be determined using
computing the computational order of convergence (COC) [7, 8, 11] given by

ξ =
ln(∥xn+2−α∥

∥xn+1−α∥ )

ln(∥xn+1−α∥
∥xn−α∥ )

(2.21)

or the approximate computational order of convergence (ACOC) [7, 8, 11] given by

ξ∗ =
ln(∥xn+2−xn+1∥

∥xn+1−xn∥ )

ln( ∥xn+1−xn∥
∥xn−xn−1∥ )

. (2.22)

It turns out that the local convergence of method (1.2) (or method(1.3)) are
given under the conditions (A) by modifying the definition of gi functions to fit
these methods as follows:

g2(t) =

∫ 1

0
ω((1− θ)t)dθ

1− ω0(t)
+

3

8

[(
(ω0(g1(t)t) + ω0(t))

1− ω0(g1(t)t)

)2

+
2(w0(g1(t)t) + ω0(t))

(1− ω0(g1(t)t))2

] ∫ 1

0
ω1(θt)dθ

1− ω0(t)
,

ḡ2(t) = g2(t)− 1,

and g3 and ḡ3 as previously. The corresponding (2.15) Ostrowski-type representa-
tion in method (1.2) is:

zn − α = xn − α− F ′(xn)
−1F (xn)

+
3

8
[(F ′(yn)

−1(F ′(yn)− F ′(xn)))
2

+2F ′(yn)
−1(F ′(yn)− F ′(xn))F

′(yn)
−1F ′(xn)]

×F ′(xn)
−1F (xn), (2.23)

where the representations for functions g1 and g3 are the same. Moreover, the
corresponding to (2.15) and (2.17) representations for method (1.3) are:

zn − α = xn − α− F ′(xn)
−1F (xn)
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+
1

8
[15F ′(xn)

−1(F ′(xn)− F ′(yn))

+9F ′(xn)
−1F ′(yn)F

′(xn)
−1(F ′(yn)− F ′(xn))]

×F ′(xn)
−1F (zn). (2.24)

and

xn+1 − α = zn − α− F ′(zn)
−1F (zn)

−3

2
F ′(xn)

−1(F ′(xn)− F ′(yn))

×F ′(xn)
−1F (zn). (2.25)

The g functions are:

g2(t) =

∫ 1

0
ω((1− θ)t)dθ

1− ω0(t)
+

1

8

[
15(ω0(g1(t)t) + ω0(t))

1− ω0(t)

+
9w1(g1(t)t)(ω0(g1(t)t) + ω0(t))

∫ 1

0
ω1(θt)dθ

(1− ω0(t))3

]
and

g3(t) =

{∫ 1

0
ω((1− θ)t)dθ

1− ω0(t)

+
3

2

(ω0(t) + ω0(g1(t)t))
∫ 1

0
ω1(θg2(t)t)dθ

(1− ω0(t))2

}
g2(t).

With the above changes and following the proof of Theorem 2.1, we arrive at the
corresponding results for method (1.2) and method (1.3).

Theorem 2.2. Suppose that the conditions (A) hold. Then, the conclusions of
Theorem 2.1 hold for method (1.2) or method (1.3) with the above indicated changes.

3. Numerical examples

Example 3.1. Let B1 = B2 = R3,Ω = Ū(0, 1), x∗ = (0, 0, 0)T . Define function F
on Ω for u = (x, y, z)T by

F (u) = (ex − 1,
e− 1

2
y2 + y, z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that using the (2.8)-(2.12), conditions, we get ω0(t) = (e − 1)t, ω(t) =

e
1

e−1 t, ω1(t) = e
1

e−1 .
Then using the definition of r, we have that

R1 = 0.15440695135715407082521721804369
R2 = 0.08374478937177408377490195334758 = R
R3 = 0.11332932017032089355712543010668.
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Example 3.2. Let B1 = B2 = C[0, 1], the space of continuous functions defined on
[0, 1] and be equipped with the max norm. Let Ω = U(0, 1). Define function F on
Ω by

F (φ)(x) = φ(x)− 5

∫ 1

0

xθφ(θ)3dθ. (3.1)

We have that

F ′(φ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθφ(θ)2ξ(θ)dθ, for each ξ ∈ Ω.

Then, we get that x∗ = 0, ω0(t) = 7.5t, ω(t) = 15t, ω1(t) = 2. This way, we have
that
R1 = 0.022222222222222222222222222222222
R2 = 0.015951698098429258065866775950781 = R
R3 = 0.021955106317595653175889225394712.

Example 3.3. Let E1 = E2 = R, Ω = [− 5
2 ,

1
2 ]. Define F on Ω by

F (x) = x3 log x2 + x5 − x4

Then
F ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

Then, we get that φ0(t) = φ(t) = 147t, ψ(t) = 2. So, we obtain
R1 = 0.0015117157974300831443688586545729
R2 = 0.00088140170616351218649264787075026 = R
R3 = 0.0012234803047134626755032549283442.

Example 3.4. Let B1 = B2 = C[0, 1],Ω = Ū(x∗, 1) and consider the nonlinear
integral equation of the mixed Hammerstein-type [1, 2, 3, 5, 11] defined by

x(s) =

∫ 1

0

G(s, t)(x(t)3/2 +
x(t)2

2
)dt,

where the kernel G is the Green’s function defined on the interval [0, 1]× [0, 1] by

G(s, t) =

{
(1− s)t, t ≤ s
s(1− t), s ≤ t.

The solution x∗(s) = 0 is the same as the solution of equation (1.4), where F :
C[0, 1] −→ C[0, 1]) is defined by

F (x)(s) = x(s)−
∫ 1

0

G(s, t)(x(t)3/2 +
x(t)2

2
)dt.

Notice that

∥
∫ 1

0

G(s, t)dt∥ ≤ 1

8
.

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0

G(s, t)(
3

2
x(t)1/2 + x(t))dt,

so since F ′(x∗(s)) = I,

∥F ′(x∗)−1(F ′(x)− F ′(y))∥ ≤ 1

8
(
3

2
∥x− y∥1/2 + ∥x− y∥).
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Then, we get that ω0(t) = ω(t) = 1
8 (

3
2 t

1/2 + t), ω1(t) = 1 + ω0(t). So, we obtain
R1 = 1.2
R2 = 0.60784148620540678908952259007492 = R
R3 = 0.77695598964350998105743428823189.

4. Conclusion

A very important aspect in the study of iterative methods is the convergence
region, since it determines the choices of the initial point. That is why we studied
the convergence of three popular sixth order methods for solving nonlinear equations
under the same set of conditions. The radii of convergence were evaluated on three
test examples showing that in each example a different method has the largest
radius of convergence.
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