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1. Introduction

In 1963, DeMarr [11] proved a common fixed point theorem for families of com-
muting nonexpansive mappings. After DeMarr, many researchers studied this sub-
ject and many results for families of nonexpansive mappings appeared; refer to
Linhart [27], Ishikawa [15], Kuhfittig [25], Kitahara and Takahashi [16], Takahashi
and Tamura [39], Suzuki [36, 35] and so on. For example, in the strictly convex
Banach space setting, Linhart [27] presented an iteration scheme for common fixed
points of infinite families of commuting nonexpansive self–mappings on a compact
convex set. Motivated by Linhart’s result, Suzuki [36] presented the following.

Theorem S. Let C be a compact convex subset of a strictly convex Banach space
E. Let {Tn} be a sequence of nonexpansive mappings on C with ∩∞

n=1F (Tn) ̸= .
Let {an} be a sequence of positive numbers such that

∑∞
n=1 an < 1 and let {In} be

a sequence of subsets of N satisfying In ⊂ In+1 for n ∈ N and ∪∞
n=1In = N . Define

a sequence {xn} in C by x1 ∈ C and

xn+1 = (1−
∑

i∈In
ai)xn +

∑
i∈In

aiTixn for n ∈ N.

Then {xn} converges strongly to a common fixed point of {Tn}.
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On the other hand, in 1975, Baillon [6] proved the first nonlinear ergodic theorem
for a nonexpansive mapping in a Hilbert space. After Baillon, many mean conver-
gence theorems appeared. Furthermore, Takahashi and Takeuchi [40] proved a mean
convergence theorem for attractive points of generalized hybrid mappings with nei-
ther closeness nor convexity of the domain. Also, Aoyama [1] and Kohsaka [19]
proved convergence theorems for quasi–nonexpansive type mappings.

In 1997, Shimizu and Takahashi [32] studied a common fixed point problem for fi-
nite families of commutative nonexpansive mappings. They introduced an iteration
scheme combined Halpern type and Baillon type, and proved a strong convergence
theorem in Hilbert spaces. In 1998, Atsushiba and Takahashi [4] introduced an
iteration scheme combined Mann type and Baillon type, and proved a weak conver-
gence theorem for commutative two nonexpansive mappings, in uniformly convex
Banach spaces. Suzuki [34] and Takeuchi [42] studied this problem in general Ba-
nach spaces.

Very recently, in the Hilbert space setting, Kohsaka [20] replaced nonexpansive
mappings by (λ)–hybrid mappings in the main theorems of [32, 4]. Kohsaka [20]
also presented the following theorem; also see Ibaraki and Takeuchi [13].

Theorem K. Let C be a bounded closed and convex subset of a Hilbert space H.
Let S and T be (λ)–hybrid self–mappings on C with λ and µ. Assume ST = TS.
Set F = F (S) ∩ F (T ). Define a sequence {xn} in C by x1 ∈ C and

xn+1 = 1
(n+1)2

∑n
i=0

∑n
j=0 S

iT jx1 for n ∈ N.

Then the following hold.
(1) {PFS

iT jx1}(i,j)∈N2
0

converges strongly to u ∈ F in the sense of net.
(2) {xn} converges weakly to u ∈ F .

Remark. Of course, we can replace the boundedness of C by F = F (S) ∩ F (T ) ̸= .

Motivated by the works as above, we hope to add something new. Then, specifi-
cally, we prove some convergence theorems for common fixed points of a wide range
of nonlinear self–mappings on a closed convex subset of a Hilbert space.

2. Preliminaries

In this article, N and N0 denote the sets of positive integers and non–negative
integers, respectively. N(i, j) denotes the set {k ∈ N0 : i ≤ k ≤ j} for i, j ∈ N0

with i ≤ j. In the case of j < i, we define N(i, j) = and
∑j

k=i(·) = 0.
H denotes a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥ derived

from ⟨·, ·⟩. C always denotes a non–empty subset of H unless otherwise noted.
Then, normally, “non–empty” is omitted. The following are basic:

(1) A closed convex subset C of H is weakly closed. A bounded sequence in H
has a weakly convergent subsequence.

(2) Let {un} be a sequence in H. Then {un} converges weakly to z ∈ H if every
weak cluster point of {un} and z are the same.

(3) H has the Opial property [30], that is, if {un} is a sequence in H which
converges weakly to u ∈ H, then, for v ∈ H with v ̸= u,

lim infn ∥un − u∥ < lim infn ∥un − v∥.

(4) Let C be a closed convex subset of H. For x ∈ H, there is the unique point
zx of C satisfying ∥x− zx∥ = inf{∥x− z∥ : z ∈ C}. zx is called the unique nearest
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point of C to x. Define a mapping PC by PCx = zx for x ∈ H. PC is called the
metric projection from H onto C. PC satisfies the following: For x ∈ H and y ∈ C,

0 ≤ ⟨x− PCx, PCx− y⟩ and ∥x− PCx∥2 + ∥PCx− y∥2 ≤ ∥x− y∥2.
Let C be a subset of H and T be a mapping from C into H. I denotes the

identity mapping on C. Sometimes we denote I by T 0. F (T ) denotes the set of
fixed points of T , that is, F (T ) = {x ∈ C : x = Tx}. A(T ) denotes the set of
attractive points of T , that is, A(T ) = {x ∈ H : ∥Ty− x∥ ≤ ∥x− y∥ for all y ∈ C};
for the notion of attractive points, see Takahashi and Takeuchi [40]. I − T is said
to be demiclosed at 0 if u ∈ F (T ) holds whenever there is a sequence {xn} in C
which converges weakly to u ∈ C and satisfies limn ∥Txn − xn∥ = 0. In the case
that C is compact and convex, I − T is demiclosed at 0 if T is continuous on C.

T is called nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for x, y ∈ C. Also T is called
quasi–nonexpansive if ̸= F (T ) ⊂ A(T ). A nonexpansive mapping T with F (T ) ̸=
is quasi–nonexpansive.

T is said to satisfy condition (N2) if there is s ∈ [0,∞) such that
∥x− Ty∥ ≤ ∥x− y∥+ s∥x− Tx∥ for x, y ∈ C. (N2)

A nonexpansive mapping satisfies (N2) as s = 1. T satisfies F (T ) ⊂ A(T ) if T
satisfies (N2). Then T is quasi–nonexpansive if T satisfies (N2) and F (T ) ̸= .

Recently, some researchers study (N2); see Suzuki [37], Falset and co–authors [12],
Takahashi and Takeuchi [40], Kubota and Takeuchi [22], and Kubota and co–
authors [21]. Also, some researchers study generalized hybrid mappings introduced
by Kocourek and co–authors [18] or (λ)–hybrid mappings introduced by Aoyama
and co–authors [2]. The class of generalized hybrid mappings is wider than the class
of (λ)–hybrid mappings. Even so, the class of (λ)–hybrid mappings contains some
important classes of nonlinear mappings.

In [2], they say as below: Let λ ∈ R. T is called λ–hybrid if
∥Tx− Ty∥2 ≤ ∥x− y∥2 + 2(1− λ)⟨x− Tx, y − Ty⟩ for x, y ∈ C. (λh)

For example, the following expression appeared in Kohsaka [20]: Let S be a λ–hybrid
self–mapping on C and T be a µ–hybrid self–mapping on C. To avoid confusion,
we call T (λ)–hybrid if there is λ ∈ R satisfying (λh). Then the expression becomes
as below: Let S and T be (λ)–hybrid self–mappings on C with λ and µ.

A nonexpansive mapping is (λ)–hybrid as λ = 1. T satisfies F (T ) ⊂ A(T ) if T
is (λ)–hybrid. So a (λ)–hybrid mapping T is quasi–nonexpansive if F (T ) ̸= . Since
the last term in (λh) is written by inner product, it is easy to deal with.

We had better give remarks for our way of thinking in this article.

Our way of thinking. Let C be a closed convex subset of a Hilbert space H. In
later sections, we deal with a sequence {Tj} of nonlinear self–mappings on C. To
have a convergence theorem for common fixed points of {Tj}, maybe it is difficult to
ignore the condition that I − Tj is demiclosed at 0 for j ∈ N . Then we will assume
the condition to express our assertions. Also we consider the following conditions:

̸= A = ∩j∈NA(Tj), F = ∩j∈NF (Tj) ⊂ A.

We give some notes for the conditions. For simplicity, we consider {S, T} as {Tj}.
Let S and T be self–mappings on a closed convex subset C of a Hilbert space H.

We denote by F the common fixed point set F (S) ∩ F (T ) and by A the common
attractive point set A(S)∩A(T ). To have a convergence theorem finding a common
fixed point of {S, T}, usually, we assume F ̸= . In the case that both S and
T are nonexpansive, F ̸= asserts ̸= F ⊂ A in cooperation with properties of
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nonexpansive mappings. However, we should be more careful about the fact that
we do not make some beneficial results from F ̸= itself. In proofs of many such
theorems, it seems that conditions corresponding to A ̸= and F ⊂ A are essential.

We note the following:
(a) F ⊂ A implies neither F (S) ⊂ A(S) nor F (T ) ⊂ A(T ).
(b) F ̸= does not imply A ̸= without the assumption F ⊂ A.
(c) A ̸= implies F ̸= ; see Lemma 3.7.

However, A ̸= does not imply F ⊂ A.
(d) Usually, it follows from the assumption F ⊂ A that F is closed and convex.

In the case that S = T , F ⊂ A and F (S) ⊂ A(S) are equivalent.
Suppose both S and T are quasi–nonexpansive. In this case, {S, T} has so good

properties, that is, we know the following:
(e) F = F (S) ∩ F (T ) ⊂ A(S) ∩A(T ) = A.
(f) F (S), F (T ) and F are closed and convex.

It is important that, even if ̸= F ⊂ A, neither S nor T need be quasi–
nonexpansive. Furthermore, we easily find pairs of C and {S, T} such that neither
S nor T is quasi–nonexpansive, ̸= F ⊂ A and ST ̸= TS. However, in general,
we may need strict constraints on properties of {S, T} to guaranty A ̸= in theory.
Even so, to find a point of A is easier than to find directly a point of F ∩A.

Due to the reasons as above, to express our assertions connected with common
fixed points of {Tj}, we assume the following:

(i) I − Tj is demiclosed at 0 for j ∈ N .
(ii) ̸= A = ∩j∈NA(Tj) and F = ∩j∈NF (Tj) ⊂ A.

Here we present an example. For simplicity, we consider R2 with the Euclidean
norm. Maybe T1 and T2 in the example are closed to us and just ordinary mappings.
Example 2.1. Let D = {x = (s, t) ∈ R2 : s ∈ [0, 1], t ∈ [ 12s, 2s]}. Then D is
compact and convex. For x = (s, t) ∈ D, set ux = ( 12 t, t) and zx = (s, 1

2s). Let T1

and T2 be self–mappings on D defined by
T1x = 1

2 (x+ ux) =
1
2 ((s, t) + ( 12 t, t)) = ( 12s+

1
4 t, t),

T2x = 1
2 (x+ zx) =

1
2 ((s, t) + (s, 1

2s)) = (s, 1
4s+

1
2 t) for x = (s, t) ∈ D.

Then we can easily observe the following:
◦ (i) holds, that is, I − Tj is demiclosed at 0 for j = 1, 2.
◦ (ii) holds, that is, ̸= ∩2

j=1F (Tj) ⊂ ∩2
j=1A(Tj).

Also, we can easily confirm the following:
◦ Neither T1 nor T2 is quasi–nonexpansive (hemi–contractive).
◦ T1 and T2 are not commutative.
◦ B = 1

2T1 +
1
2T2 is nonexpansive and F (B) = {(0, 0)} = ∩2

j=1F (Tj).
We had better note the following: A real linear space L may have more than one

norms. Then it may depend on norm whether ̸= F ⊂ A holds or not. In some
cases, nonexpansiveness of T and A(T ) depend on norm. Quasi–nonexpansiveness
of T depends on norm and the domain of T . However, F (T ) has no connection with
norms if the formula of T does not contain any norm on L. Especially, in finite
dimensional linear spaces, we may choose a convenient norm to find a point of F .

3. Lemmas

Many researchers take the following assertion or a similar assertion in their arti-
cles; for example, see Weng [43], Xu [45], and Aoyama and co–authors [2].
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Lemma 3.1. Let {αn} be a sequence in [0, 1]. Let {an} and {cn} be sequences
of non–negative real numbers and let {bn} be a sequence of real numbers. Suppose∑∞

n=1 αn = ∞, lim supn bn ≤ 0,
∑∞

n=1 cn < ∞, and an+1 ≤ (1−αn)an+αnbn+ cn
for n ∈ N . Then limn an = 0.

In the Hilbert space setting, we present some lemmas needed in the sequel; some
of them are obtained in suitable Banach spaces. The following is well–known.
Lemma 3.2. Let c ∈ [0, 1] and x, y ∈ H. Then, the following holds:

∥cx+ (1− c)y∥2 = c∥x∥2 + (1− c)∥y∥2 − c(1− c)∥x− y∥2.
In the Hilbert space setting, the following lemma is an extension of Browder’s

demiclosed principle. This lemma was essentially proved in Suzuki [37].
Lemma 3.3. Let C be a subset of H and let S be a mapping from C into H which
satisfies (N2). Suppose {xn} is a sequence in C which converges weakly to some
u ∈ C and satisfies limn ∥Sxn − xn∥ = 0. Then u ∈ F (S).
Proof. We know that {xn} converges weakly to u, S satisfies condition (N2) for
some s ∈ [0,∞), and limn ∥Sxn − xn∥ = 0. Then the following holds:

lim infn ∥xn − Su∥ ≤ lim infn(∥xn − u∥+ s∥xn − Sxn∥)
= lim infn ∥xn − u∥. (3.1)

Arguing by contradiction, assume u ̸= Su. Then, by the Opial property, we have
lim infn ∥xn − u∥ < lim infn ∥xn − Su∥. This contradicts to (3.1). �

The following is another extension due to Aoyama and co–authors [2].
Lemma 3.4. Let C be a subset of H and let S be a (λ)–hybrid mapping with λ
from C into H. Suppose {xn} is a sequence in C which converges weakly to some
u ∈ C and satisfies limn ∥Sxn − xn∥ = 0. Then u ∈ F (S).
Proof. We know that {xn} converges weakly to u and S is (λ)–hybrid with λ. By
limn ∥Sxn − xn∥ = 0, the following hold:
lim infn ∥xn − Su∥ ≤ lim infn(∥xn − Sxn∥+ ∥Sxn − Su∥) = lim infn ∥Sxn − Su∥,
lim infn ∥xn − Su∥2 ≤ lim infn ∥Sxn − Su∥2

≤ lim infn(∥xn − u∥2 + 2|1− λ|∥Sxn − xn∥∥Su− u∥) = lim infn ∥xn − u∥2.
Then we have

lim infn ∥xn − Su∥ ≤ lim infn ∥xn − u∥. (3.2)
Arguing by contradiction, assume u ̸= Su. Then, by the Opial property, we have

lim infn ∥xn − u∥ < lim infn ∥xn − Su∥. This contradicts to (3.2). �
The following lemma is useful when we consider weak convergence theorems in

the Hilbert space setting; for example, see Atsushiba and co–authors [3].
Lemma 3.5. Let D be a subset of H. Let {un} be a sequence in H such that
{∥un − w∥} converges for each w ∈ D. Suppose {uni

} and {unj
} are subsequences

of {un} which converge weakly to u, v ∈ D, respectively. Then u = v.
Proof. Let w ∈ D. Then, since {∥un−w∥} converges, any subsequence of {∥un−w∥}
converges to the same real number. Arguing by contradiction, assume u ̸= v. Then,
by u, v ∈ D and the Opial property, we have the following:

lim infi ∥uni
− u∥ < lim infi ∥uni

− v∥ = lim infj ∥unj
− v∥,

lim infj ∥unj
− v∥ < lim infj ∥unj

− u∥ = lim infi ∥uni
− u∥.



100 J. NONLINEAR ANAL. OPTIM. VOL. 9(2) (2018)

Thus we have lim infi ∥uni
− u∥ < lim infi ∥uni

− u∥. This is a contradiction. �

The following two lemmas are due to Takahashi and Takeuchi [40].

Lemma 3.6. Let C be a subset of H and let T be a mapping from C into H. Then,
A(T ) is a closed convex subset of H.

Lemma 3.7. Let C be a subset of H and let T be a self–mapping on C. Suppose
x ∈ A(T ) and zx is the unique nearest point of C to x. Then zx ∈ F (T ). In
particular, A(T )∩C ⊂ F (T ). Furthermore, A(T )∩C = F (T ) holds if F (T ) ⊂ A(T ).

We need the following lemma in the sequel.

Lemma 3.8. Let C be a subset of H and let T be a mapping from C into H. Let
a ∈ [0, 1], x ∈ C and w = ax+ (1− a)Tx. Suppose v ∈ A(T ). Then,

a(1− a)∥Tx− x∥2 ≤ ∥x− v∥2 − ∥w − v∥2. (1)

Suppose further that C is bounded. Let r > supx∈C ∥x− v∥. Then,
a(1−a)

2r ∥Tx− x∥2 ≤ ∥x− v∥ − ∥w − v∥. (2)

Proof. We show (1). By v ∈ A(T ) and Lemma 3.2, we have

∥w − v∥2 = ∥a(x− v) + (1− a)(Tx− v)∥2

= a∥x− v∥2 + (1− a)∥Tx− v∥2 − a(1− a)∥Tx− x∥2

≤ ∥x− v∥2 − a(1− a)∥Tx− x∥2.

Then we see ∥w − v∥ ≤ ∥x− v∥ and a(1− a)∥Tx− x∥2 ≤ ∥x− v∥2 − ∥w − v∥2.
There is r ∈ (0,∞) satisfying r > supx∈C ∥x− v∥ if C is bounded. We show (2).

Set s = ∥x− v∥ and t = ∥w − v∥ ≤ ∥x− v∥. Then we know 0 ≤ s+ t < 2r and

a(1− a)∥Tx− x∥2 ≤ s2 − t2 = (s− t)(s+ t).

In the case of 0 < s+ t < 2r, we immediately have
a(1−a)

2r ∥Tx− x∥2 ≤ a(1−a)
s+t ∥Tx− x∥2 ≤ ∥x− v∥ − ∥w − v∥.

In the case of s+ t = 0, it is trivial that a(1−a)
2r ∥Tx− x∥2 ≤ ∥x− v∥− ∥w− v∥. �

4. Convergence theorems

In this section, we present our main results. We begin our argument with con-
sidering the following sequences. Let {cj} be a sequence satisfying the following:

cj ∈ (0, 1) for j ∈ N,
∑∞

j=1 cj = 1. (s)

Let {cn,j} be the double sequence such that, for each n ∈ N ,

cn,j = cj for j ∈ N(1, n− 1), cn,n =
∑∞

j=n cj = 1−
∑n−1

j=1 cj . (ds)

Note N(1, 0) = ,
∑0

j=1(·) = 0 and c1,1 = 1. For j ∈ N , cn,j = cj holds for n > j.
Then the double sequence {cn,j} has the following properties:

limn cn,j = cj for j ∈ N ,
∑n

j=1 cn,j = 1 for n ∈ N .
For reference, we present a typical example of {cj} satisfying (s). Set cj = 1/2j for
j ∈ N . Then {cj} satisfies (s). For example, {c5,j}j∈N(1,5) = { 1

2 ,
1
4 ,

1
8 ,

1
16 ,

1
16}.

The following lemma is important to have our weak convergence theorems.
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Lemma 4.1. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b].
Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a convex subset of H and let {Tj} be a sequence of self–mappings
on C. Assume A = ∩j∈NA(Tj) ̸= . Let Sn =

∑n
j=1 cn,jTj for n ∈ N . Define a

sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then the following hold:
(1) {∥xn − u∥} converges for u ∈ A.
(2) limn ∥Tjxn − xn∥ = 0 for j ∈ N .

Proof. Fix any u ∈ A = ∩j∈NA(Tj). We know that, for n ∈ N and x ∈ C,
∥Snx− u∥ ≤

∑n
j=1 cn,j∥Tjx− u∥ ≤ ∥x− u∥.

So u ∈ ∩n∈NA(Sn). Then, A ⊂ ∩n∈NA(Sn). Set D = {x ∈ C : ∥x−u∥ ≤ ∥x1−u∥}.
Then D is bounded and convex. By the inequality as above, we easily see that each
Sn is a self–mapping on D. Then {xn} is a sequence in D.

We show (1). By Lemma 3.8 (1), we see that, for n ∈ N ,
0 ≤ an(1− an)∥Snxn − xn∥2 ≤ ∥xn − u∥2 − ∥xn+1 − u∥2.

Then {∥xn − u∥} is non–increasing and converges.
We show (2). Since D is bounded, let r ∈ (0,∞) satisfy r > supx∈D ∥x − u∥.

Recall properties of {cn,j}. By using Lemma 3.8 (2), we easily see that, for n ∈ N ,
∥xn+1 − u∥ = ∥anxn + (1− an)Snxn − u∥

≤
∑n

j=1 cn,j∥anxn + (1− an)Tjxn − u∥

≤
∑n

j=1 cn,j(∥xn − u∥ − an(1−an)
2r ∥Tjxn − xn∥2)

≤ ∥xn − u∥ − a(1−b)
2r

∑n
j=1 cn,j∥Tjxn − xn∥2.

From this inequality, the following follows:
a(1−b)

2r

∑n
j=1 cn,j∥Tjxn − xn∥2 ≤ ∥xn − u∥ − ∥xn+1 − u∥.

Since {∥xn − u∥} converges and a(1−b)
2r > 0, we see that, for j ∈ N ,

lim supn cn,j∥Tjxn − xn∥2 ≤ lim supn(
∑n

j=1 cn,j∥Tjxn − xn∥2) ≤ 0.

Then we have the following:
limn ∥Tjxn − xn∥ = 0 for j ∈ N.

�

4.1. Weak convergence theorems.

We present a weak convergence theorem which is one of our main results.

Theorem 4.2. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b].
Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of self–
mappings on C such that I − Tj is demiclosed at 0 for j ∈ N . Set F = ∩j∈NF (Tj)
and A = ∩j∈NA(Tj). Assume ̸= A. Let Sn =

∑n
j=1 cn,jTj for n ∈ N . Define a

sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then the following hold:
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(1) Every weak cluster point of {xn} is a point of F .
(2) In the case of F ⊂ A, {xn} converges weakly to some z ∈ F .

Proof. We know that C is weakly closed and {xn} is a sequence in C. By Lemma 4.1,
we also know that {∥xn − u∥} converges for u ∈ A and

limn ∥Tjxn − xn∥ = 0 for j ∈ N. (4.1)

Since {xn} is bounded, {xn} has a weakly convergent subsequence.
We show (1). Let {xnl

} be a subsequence of {xn} which converges weakly to some
z ∈ C. Since I − Tj is demiclosed at 0 for j ∈ N , by (4.1), z ∈ F = ∩j∈NF (Tj).
Thus every weak cluster point of {xn} is a point of F . We show (2). Suppose
F = ∩jF (Tj) ⊂ A. Then, {∥xn − u∥} converges for u ∈ F ⊂ A. Let z be a weak
cluster point of {xn}. Then, by Lemma 3.5 and (1), every weak cluster point of
{xn} and z ∈ F are the same. Thus {xn} converges weakly to z ∈ F . �

Remark 4.3. Let m ∈ N0. By observing proofs of Lemma 4.1 and Theorems 4.2, it
is obvious that we can replace Sn by Sn+m in the iteration scheme in Theorems 4.2.

Here we present some results derived from Theorems 4.2.

Theorem 4.4. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b]. Let
k ∈ N . Let C be a closed convex subset of H and let {Tj}j∈N(1,k) be a finite sequence
of self–mappings on C such that I − Tj is demiclosed at 0 for j ∈ N(1, k). Set
F = ∩j∈N(1,k)F (Tj) and A = ∩j∈N(1,k)A(Tj). Assume ̸= A. Let S = 1

k

∑k
j=1 Tj.

Define a sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Sxn for n ∈ N.

Then the following hold:
(1) Every weak cluster point of {xn} is a point of F .
(2) In the case of F ⊂ A, {xn} converges weakly to some z ∈ F .

Proof. Define {cj} and {Uj} by

cj =
1
k , Uj = Tj for j ∈ N(1, k − 1), cj =

1
2j−k+1 × 1

k , Uj = Tk for j ≥ k.

Then we know
∑∞

j=k cj =
1
k and

∑∞
j=1 cj = 1. Also, we easily see that each I−Uj is

demiclosed at 0, ∩j∈NA(Uj) = ∩j∈N(1,k)A(Tj) and ∩j∈NF (Uj) = ∩j∈N(1,k)F (Tj).
Let {cn,j} be the sequence satisfying (ds). Then {cn,j} and {Uj} satisfy all assump-
tions in Theorem 4.2. Fix any n ≥ k. We confirm that Sn =

∑n
j=1 cn,jUj becomes

S. By the definitions of {cn,j} and {Uj}, we have∑n
j=1 cn,jUj =

∑k−1
j=1

1
kTj +

∑n−1
j=k (

1
2j−k+1 × 1

k )Tk +
∑∞

j=n(
1

2j−k+1 × 1
k )Tk

= 1
k

∑k
j=1 Tj .

From these, by Theorems 4.2 and Remark 4.3, we have the results. �

Theorem 4.5. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b]. Let
{cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying (ds).
Let C be a closed convex subset of H and let {Tj} be a sequence of self–mappings
on C such that Tj satisfies (N2) for j ∈ N . Assume F = ∩j∈NF (Tj) ̸= . Let
Sn =

∑n
j=1 cn,jTj for n ∈ N . Define a sequence {xn} by x1 ∈ C and

xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then {xn} converges weakly to some z ∈ F .
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Proof. Since each Tj satisfies (N2), ̸= F ⊂ A = ∩j∈NA(Tj) holds. By Lemma 3.3,
I − Tj is demiclosed at 0 for j ∈ N . By Theorem 4.2, we have the result. �
Theorem 4.6. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b].
Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of (λ)–hybrid
self–mappings on C. Assume F = ∩j∈NF (Tj) ̸= . Let Sn =

∑n
j=1 cn,jTj for n ∈ N .

Define a sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then {xn} converges weakly to some z ∈ F .

Proof. Since each Tj is (λ)–hybrid, ̸= F ⊂ A = ∩j∈NA(Tj) holds. By Lemma 3.4,
I − Tj is demiclosed at 0 for j ∈ N . By Theorem 4.2, we have the result. �
Theorem 4.7. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b].
Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of quasi–
nonexpansive self–mappings on C such that I − Tj is demiclosed at 0 for j ∈ N .
Assume F = ∩j∈NF (Tj) ̸= . Let Sn =

∑n
j=1 cn,jTj for n ∈ N . Define a sequence

{xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then {xn} converges weakly to some z ∈ F .

Proof. Since each Tj is quasi–nonexpansive, ̸= F ⊂ A = ∩j∈NA(Tj) holds. By
Theorem 4.2, we have the result. �
Theorem 4.8. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b]. Let
C be a closed convex subset of H and let T be a quasi–nonexpansive self–mapping
on C such that I − T is demiclosed at 0. Define a sequence {xn} by x1 ∈ C and

xn+1 = anxn + (1− an)Txn for n ∈ N.

Then {xn} converges weakly to some z ∈ F (T ).

The following is corresponding to Theorem S due to Suzuki.

Theorem 4.9. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b]. Let
{cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying (ds).
Let C be a closed convex subset of H and let {Tj} be a sequence of nonexpansive
self–mappings on C. Assume F = ∩j∈NF (Tj) ̸= . Let Sn =

∑n
j=1 cn,jTj for n ∈ N .

Define a sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then {xn} converges weakly to some z ∈ F .

We present some convergence theorems for sequences of non–self mappings which
are derived from Theorem 4.2. In advance, we prepare a lemma.

Lemma 4.10. Let C be a closed convex subset of H and let T be a quasi–
nonexpansive mapping from C into H. Then F (T ) = F (PCT ).

Proof. Note F (T ) ̸= . In general, F (T ) ⊂ F (PCT ) holds. We show the reverse.
Let z ∈ F (PCT ) and u ∈ F (T ). Since T is quasi–nonexpansive, we have

∥Tz − z∥2 + ∥z − u∥2 = ∥Tz − PCTz∥2 + ∥PCTz − u∥2 ≤ ∥Tz − u∥2 ≤ ∥z − u∥2.
This implies Tz = z. Thus we have F (PCT ) ⊂ F (T ). �
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The following is a direct consequence of Theorem 4.2.

Theorem 4.11. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in
[a, b]. Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence
satisfying (ds). Let C be a closed convex subset of H and let {Tj} be a sequence of
mappings from C into H such that I−PCTj is demiclosed at 0 for j ∈ N . Set F ′ =
∩j∈NF (PCTj) and A′ = ∩j∈NA(PCTj). Assume A′ ̸= . Let Sn =

∑n
j=1 cn,jPCTj

for n ∈ N . Define a sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then the followings hold.
(1) Every weak cluster point of {xn} is a point of F ′.
(2) In the case of F ′ ⊂ A′, {xn} converges weakly to some z ∈ F ′.

Remark 4.12. Here we give an additional explanation for Theorem 4.11.
Set F = ∩j∈NF (Tj) and A = ∩j∈NA(Tj). We consider the case of F ′ = F .

Suppose {Tj} is a sequence of quasi–nonexpansive mappings with ≠ F . By
Lemma 4.10, F ′ = F . Then, ̸= F ′ = F ⊂ A ∩A′ holds because F ⊂ A and

∥PCTjy − u∥ = ∥PCTjy − PCu∥ ≤ ∥Tjy − u∥ ≤ ∥y − u∥ for y ∈ C, u ∈ F.

We note the following: For j ∈ N , PCTj (TjPC) is nonexpansive if Tj is
nonexpansive; I − PCTj is demiclosed at 0. Furthermore, for example, we know
the following: Let T be a k–strictly pseudo–contractive mapping from C into H,
where k ∈ [0, 1). Then, we can easily find a nonexpansive mapping S satisfying
A(T ) = A(S) and F (T ) = F (S); see Zhou [46], and Atsushiba and co–authors [3].

Suppose further that C is compact and every Tj is continuous. Then PCTj is
continuous; I − PCTj is demiclosed at 0. Such pairs of C and {Tj} are typical
examples. So, ̸= F ′ = F ⊂ A ∩A′ and assumptions in Theorem 4.11 are satisfied.

Theorem 4.13. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b].
Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of mappings
from C into H satisfying the following:

(a) T1 is a self–mappings on C, and TjT1 are self–mappings on C for j ≥ 2.
(b) I − Tj is demiclosed at 0 for j ∈ N .

Let V1 = T1 and Vj = TjT1 for j ≥ 2. Set F = ∩j∈NF (Tj) and A′ = ∩j∈NA(Vj).
Assume A′ ̸= . Let Sn =

∑n
j=1 cn,jVj for n ∈ N . Define a sequence {xn} by x1 ∈ C

and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then the following hold:
(1) Every weak cluster point of {xn} is a point of F .
(2) In the case of F ⊂ A′, {xn} converges weakly to some z ∈ F .

Proof. By Lemma 4.1, we know that {∥xn − u∥} converges for u ∈ A′. Also we
know limn ∥Vjxn − xn∥ = 0 for j ∈ N . Then we have

(i) limn ∥T1xn − xn∥ = 0, (ii) limn ∥TjT1xn − xn∥ = 0 for j ≥ 2.

Since {xn} is bounded, {xn} has a weakly convergent subsequence.
We show (1). Let {xnl

} be a subsequence of {xn} which converges weakly to
some z ∈ C. Since I − T1 is demiclosed at 0, by (i), we see z ∈ F (T1). Also, by (i),
{T1xnl

} converges weakly to z. Furthermore, by (i) and (ii), we see
liml ∥TjT1xnl

− T1xnl
∥ = 0 for j ≥ 2. (4.2)
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From these, since I−Tj is demiclosed at 0 for j ∈ N , we have z ∈ F = ∩j∈NF (Tj).
Thus every weak cluster point of {xn} is a point of F .

We show (2). Suppose F ⊂ A′. Then {∥xn − u∥} converges for u ∈ F ⊂ A′. Let
z be a weak cluster point of {xn}. By Lemma 3.5 and (1), every weak cluster point
of {xn} and z ∈ F are coincide. Thus {xn} converges weakly to z ∈ F . �

Remark 4.14. In Theorem 4.13, set A = ∩j∈NA(Tj). For reference, we show
A ⊂ A′. Let u ∈ A. Then, since T1 is a self–mapping on C, we see

∥Vjx− u∥ = ∥TjT1x− u∥ ≤ ∥T1x− u∥ ≤ ∥x− u∥ for x ∈ C.

Note that we do not claim A ̸= . For the theorem, we only present the following
typical example: Let C = [−1, 1] ⊂ R and let T1 and T2 be mappings defined by
T1x = x/2 and T2x = 2x for x ∈ [−1, 1]. Then it is obvious that A(T1) = {0},
A(T2) = , F (T2) = F (T1) = {0}, T2T1 = I, A(T2T1) = R and F (T2T1) = C.
Furthermore, T2 is not a self–mapping on C, I − T1 and I − T2 are demiclosed at
0, A = A(T1) ∩A(T2) = and

{0} = F = F (T1) ∩ F (T2) = F (T1) ∩ F (T2T1) = A(T1) ∩A(T2T1) = A′ = {0}.

4.2. Strong convergence theorems.

We present a strong convergence theorem which is our another main result. This
theorem is connected with works of Aoyama [1], and Atsushiba and co–authors [3];
also see Maingé and Măruşter [28].

Theorem 4.15. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of self–
mappings on C such that I − Tj is demiclosed at 0 for j ∈ N . Set F = ∩j∈NF (Tj)
and A = ∩j∈NA(Tj). Assume ̸= A and F ⊂ A. Let Sn =

∑n
j=1 cn,jTj and

Un = bI + (1− b)Sn for n ∈ N . Define a sequence {un} by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PAq = PF q ∈ F .

Proof. Since C is convex, each Sn, each Un and each anq + (1 − an)Un are self–
mappings on C. Then {un} is a sequence in C. By Lemma 3.6, A is closed and
convex. Then we can consider the metric projection PA. Set v = PAq ∈ A and
D = {x ∈ C : ∥x−v∥ ≤ ∥u1−v∥+∥q−v∥}. Then D is bounded closed and convex.
We know q, u1 ∈ D and v ∈ A ⊂ ∩n∈NA(Sn). Then, for x ∈ D and n ∈ N , we have

∥Unx− v∥ ≤ b∥x− v∥+ (1− b)∥Snx− v∥ ≤ ∥x− v∥ ≤ ∥u1 − v∥+ ∥q − v∥,
∥anq + (1− an)Unx− v∥

≤ an∥q − v∥+ (1− an)∥Unx− v∥ ≤ ∥u1 − v∥+ ∥q − v∥.

We confirmed that each Un and each anq+(1−an)Un are self–mappings on D, that
is, we confirmed that {un} and {Unun} are sequences in D.

We show that {un} converges strongly to v = PAq. We easily see that, for n ∈ N ,
∥Unun − un∥ = ∥(bun + (1− b)Snun)− un∥ = (1− b)∥Snun − un∥. (4.3)

By Lemma 3.8, we also see that, for n ∈ N ,
∥Unun − v∥2 ≤ ∥un − v∥2 − b(1− b)∥Snun − un∥2. (4.4)
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Furthermore, it follows from (4.4) that, for n ∈ N ,

∥un+1 − v∥2 = ∥anq + (1− an)Unun − v∥2

= ∥(1− an)(Unun − v) + an(q − v)∥2

≤ (1− an)∥Unun − v∥2 + a2n∥q − v∥2 + 2an(1− an)⟨Unun − v, q − v⟩
≤ (1− an)

(
∥un − v∥2 − b(1− b)∥Snun − un∥2

)
+ a2n∥q − v∥2 + 2an(1− an)⟨Unun − v, q − v⟩

= (1− an)∥un − v∥2 + anKn, (4.5)

where Kn = an∥q − v∥2 + 2(1− an)⟨Unun − v, q − v⟩

− (1−an)
an

b(1− b)∥Snun − un∥2. (4.6)

By an, b ∈ (0, 1) and (4.6), we easily see

Kn ≤ an∥q − v∥2 + 2(1− an)⟨Unun − v, q − v⟩
≤ ∥q − v∥2 + 2∥Unun − v∥∥q − v∥. (4.7)

Then, since D is bounded, we know lim supn Kn < ∞. We show lim supn Kn ≤ 0.
Since D is weakly compact, there is a subsequence {nl} of {n} such that {unl

}
converges weakly to some u ∈ D and lim supn Kn = liml Knl

.
Consider the case of lim inf l ∥Snl

unl
− unl

∥2 > 0. Then there is M > 0 and a
subsequence {nli} of {nl} satisfying ∥Snli

unli
− unli

∥2 > M > 0. By an, b ∈ (0, 1),
limn an = 0 and (4.6), we know Knli

< 0 for sufficiently large i ∈ N . Thus we have

lim supn Kn = liml Knl
= limi Knli

≤ 0.

In the case of lim inf l ∥Snl
unl

− unl
∥2 = 0, by passing to subsequences, we may

consider that {unl
} converges weakly to u ∈ D and satisfies the following:

lim supn Kn = liml Knl
, liml ∥Snl

unl
− unl

∥2 = 0.

By (4.3), liml ∥Unl
unl

− unl
∥2 = 0, that is, {Unl

unl
} also converges weakly to u.

Since D is bounded, there is r ∈ (0,∞) satisfying r > supx∈D ∥x − v∥. Recall
properties of {cn,j}. Then, by Lemma 3.8 (2), we see that, for l ∈ N ,

∥Unl
unl

− v∥ = ∥bunl
+ (1− b)Snl

unl
− v∥

≤
∑nl

j=1 cnl,j∥bunl
+ (1− b)Tjunl

− v∥

≤
∑nl

j=1 cnl,j(∥unl
− v∥ − b(1−b)

2r ∥Tjunl
− unl

∥2)

= ∥unl
− v∥ − b(1−b)

2r

∑nl

j=1 cnl,j∥Tjunl
− unl

∥2.

From this inequality, the following follows:
b(1−b)

2r

∑nl

j=1 cnl,j∥Tjunl
− unl

∥2 ≤ ∥unl
− v∥ − ∥Unl

unl
− v∥ ≤ ∥Unl

unl
− unl

∥.

By liml ∥Unl
unl

− unl
∥ = 0 and b(1−b)

2r > 0, we see that, for j ∈ N ,

lim supl cnl,j∥Tjunl
− unl

∥2 ≤ lim supl(
∑nl

j=1 cnl,j∥Tjunl
− unl

∥2) ≤ 0.

Then we have
liml ∥Tjunl

− unl
∥ = 0 for j ∈ N.

Since I − Tj is demiclosed at 0 for j ∈ N , we have u ∈ F ⊂ A.
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Reconfirm that liml anl
= 0, v = PAq, and {Unl

unl
} converges weakly to u ∈ A.

Then, by (4.7), we have the following:
liml Knl

≤ liml

(
anl

∥v − q∥2 + 2(1− anl
)⟨Unl

unl
− v, q − v⟩

)
= 2⟨u− PAq, q − PAq⟩ ≤ 0.

Thus we have lim supn Kn = liml Knl
≤ 0.

We know that (4.5) holds. Then, by properties of {an} and lim supn Kn ≤ 0,
Lemma 3.1 asserts limn ∥un− v∥2 = 0, that is, {un} converges strongly to v = PAq.

Finally, we show v = PAq = PF q ∈ F . Since D is closed and {un} ⊂ D, we know
that v = PAq ∈ A ∩D. By Lemma 3.7 and F ⊂ A ∩ C, we can easily see that

A ∩ C = (∩j∈NA(Tj)) ∩ C = ∩j∈N (A(Tj) ∩ C) ⊂ ∩j∈NF (Tj) = F ⊂ A ∩ C.

Then v = PAq ∈ A ∩ D ⊂ A ∩ C = F . We know that F = A ∩ C is closed and
convex. Then we can consider the metric projection PF . By v ∈ F ⊂ A, we know

∥q − v∥ = miny∈A ∥q − y∥ ≤ infy∈F ∥q − y∥ ≤ ∥q − v∥.

This implies ∥q−v∥ = miny∈F ∥q−y∥ and v = PF q. Thus v = PAq = PF q ∈ F . �

We present some results follow from Theorem 4.15; refer to previous subsection.

Theorem 4.16. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let k ∈ N . Let C be a closed convex subset of H and let {Tj}j∈N(1,k) be a finite
sequence of self–mappings on C such that I − Tj is demiclosed at 0 for j ∈ N(1, k).
Set F = ∩j∈N(1,k)F (Tj) and A = ∩j∈N(1,k)A(Tj). Assume ̸= F ⊂ A. Let
S = 1

k

∑k
j=1 Tj and U = bI + (1− b)S. Define a sequence {un} by q, u1 ∈ C and

un+1 = anq + (1− an)Uun for n ∈ N.

Then {un} converges strongly to v = PAq = PF q ∈ F .

Theorem 4.17. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of self–
mappings on C such that Tj satisfies (N2) for j ∈ N . Assume F = ∩j∈NF (Tj) ̸= .
Let Sn =

∑n
j=1 cn,jTj and Un = bI + (1− b)Sn for n ∈ N . Define a sequence {un}

by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PF q ∈ F .

Theorem 4.18. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of (λ)–hybrid
self–mappings on C. Assume F = ∩j∈NF (Tj) ≠ . Let Sn =

∑n
j=1 cn,jTj and

Un = bI + (1− b)Sn for n ∈ N . Define a sequence {un} by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PF q ∈ F .
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Theorem 4.19. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of quasi–
nonexpansive self–mappings on C such that I − Tj is demiclosed at 0 for j ∈ N .
Assume F = ∩j∈NF (Tj) ̸= . Let Sn =

∑n
j=1 cn,jTj and Un = bI + (1 − b)Sn for

n ∈ N . Define a sequence {un} by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PF q ∈ F .

Theorem 4.20. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let C be a closed convex subset of H and let T be a quasi–nonexpansive self–mapping
on C such that I − T is demiclosed at 0. Define a sequence {un} by q, u1 ∈ C and

un+1 = anq + (1− an)(bun + (1− b)Tun) for n ∈ N.

Then {un} converges strongly to v = PF (T )q ∈ F (T ).

Theorem 4.21. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of nonexpansive
self–mappings on C. Assume F = ∩j∈NF (Tj) ̸= . Let Sn =

∑n
j=1 cn,jTj and

Un = bI + (1− b)Sn for n ∈ N . Define a sequence {un} by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PF q ∈ F .

Here we present strong convergence theorems for sequences of non–self mappings
which are corresponding to Theorems 4.11 and 4.13; also see Remarks 4.12 and 4.14.

The following is a direct consequence of Theorem 4.15.

Theorem 4.22. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence sat-
isfying (ds). Let C be a closed convex subset of H and let {Tj} be a sequence
of mappings from C into H such that I − PCTj is demiclosed at 0 for j ∈ N .
Set F ′ = ∩j∈NF (PCTj) and A′ = ∩j∈NA(PCTj). Assume ̸= F ′ ⊂ A′. Let
Sn =

∑n
j=1 cn,jPCTj and Un = bI + (1− b)Sn for n ∈ N . Define a sequence {un}

by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PF ′q ∈ F ′.

Theorem 4.23. Let b ∈ (0, 1) and let {an} be a sequence in (0, 1) satisfying
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a closed convex subset of H and let {Tj} be a sequence of mappings
from C into H satisfying the following:
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(a) T1 is a self–mappings on C and TjT1 are self–mappings on C for j ≥ 2.
(b) I − Tj is demiclosed at 0 for j ∈ N .

Let V1 = T1 and Vj = TjT1 for j ≥ 2. Set F = ∩j∈NF (Tj) and A′ = ∩j∈NA(Vj).
Assume ̸= F ⊂ A′. Let Sn =

∑n
j=1 cn,jVj for n ∈ Nand Un = bI + (1 − b)Sn for

n ∈ N . Define a sequence {un} by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PF q ∈ F .

Proof. Fix any j ≥ 2. Then, TjT1u = Tju = u for u ∈ F (T1) ∩ F (Tj) and Tjw =
TjT1w = w for w ∈ F (T1) ∩ F (TjT1). So, F (T1) ∩ F (TjT1) = F (T1) ∩ F (Tj) for
j ≥ 2. Set F ′ = ∩j∈NF (Vj). Then we have

F ′ = ∩j∈NF (Vj) = F (T1) ∩ (∩j≥2F (TjT1))

= ∩j≥2(F (T1) ∩ F (TjT1)) = ∩j≥2(F (T1) ∩ F (Tj)) = ∩j∈NF (Tj) = F.

By our assumption, we see ̸= F = F ′ = ∩j∈NF (Vj) ⊂ A′ = ∩j∈NA(Vj).
Then, replace Tj by Vj in the proof of Theorem 4.15. So, the rest of our proof

and the proof of Theorem 4.15 are the same without the part below.
Let {unl

} be a sequence in C. Suppose {unl
} converges weakly to u ∈ C and

liml ∥Vjunl
− unl

∥ = 0 for j ∈ N . However, from this, u ∈ F ′ = ∩j∈NF (Vj) does
not follows directly. Because we do not know whether I − Vj is demiclosed at 0 for
j ≥ 2. Instead, we know that I − Tj is demiclosed at 0 for j ∈ N .

We show u ∈ F ′ = ∩j∈NF (Vj). Since liml ∥Vjunl
− unl

∥ = 0 for j ∈ N , we know
(i) liml ∥T1unl

− unl
∥ = 0, (ii) liml ∥TjT1unl

− unl
∥ = 0 for j ≥ 2.

Furthermore, by (i) and (ii), we see
liml ∥TjT1unl

− T1unl
∥ = 0 for j ≥ 2. (4.8)

Thus, by (i) and (4.8), we see u ∈ F = ∩j∈NF (Tj) = ∩j∈NF (Vj) = F ′.
�

5. Existence theorems and convergence theorems

The authors think that Theorems 4.2 and 4.15 are interesting. The theorems may
have many useful applications because they are expressed in so wide setting. How-
ever, to guaranty ≠ A in theory, maybe {Tj} need satisfy some strict constraints.
Even so, we are interested in finding such {Tj} and having related results.

We begin our argument with presenting two lemmas: for details, see Takahashi
and Takeuchi [40], and Ibaraki and Takeuchi [13].

Lemma 5.1. Let x, v, w ∈ H. Then the following equality holds:
⟨(x− v) + (x− w), v − w⟩ = ∥x− w∥2 − ∥x− v∥2.

Remark 5.2. Let v, w ∈ H and let {zi} be a sequence in H. Set sn = 1
n

∑n
i=1 zi

for n ∈ N . Then, by Lemma 5.1, the following is immediate: For each n ∈ N ,
⟨(sn − v) + (sn − w), v − w⟩ = 1

n

∑n
i=1 ∥zi − w∥2 − 1

n

∑n
i=1 ∥zi − v∥2.

Lemma 5.3. Let C be a subset of H and let T be a mapping from C into H. Let
{un} be a sequence in H which satisfies

lim supn supy∈C⟨(un − y) + (un − Ty), y − Ty⟩ ≤ 0.

Suppose {un} converges weakly to u ∈ H. Then, u ∈ A(T ).
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In the rest of this section, we deal with (λ)–hybrid mappings. We prepare the
following lemma. For the lemma, there are previous studies; refer to Kohsaka [20],
Brézis and Browder [7], Shimizu and Takahashi [32], and Takahashi and Takeuchi [40].
Lemma 5.4. Let k ∈ N . Let C be a bounded subset of H. Set L = supx,y∈C ∥x−y∥.
Let {Tj}j∈N(1,k) be a finite sequence of self–mappings on C. Assume that T1 is (λ)–
hybrid with λ. For n ∈ N , define a mapping Sn from C into H by

Sn = 1
nk

∑n−1
i1=0 · · ·

∑n−1
ik=0 T

i1
1 · · ·T ik

k .

Then, for n ∈ N , the following holds:

supx,y∈C⟨(Snx− y) + (Snx− T1y), y − T1y⟩ ≤ 1+2|1−λ|
n L2.

Remark. Each Sn need not be a self–mapping on C.

Proof. Fix any x, y ∈ C and n ∈ N . We easily have

|
∑n−1

i1=1⟨T
i1−1
1 x− T i1

1 x, y − T1y⟩| = |⟨x− Tn−1
1 x, y − T1y⟩|

≤ ∥x− Tn−1
1 x∥∥y − T1y∥ ≤ L2.

Then, since T1 is (λ)–hybrid with λ, we have
1
n

∑n−1
i1=0∥T

i1
1 x− T1y∥2 = 1

n∥x− T1y∥2 + 1
n

∑n−1
i1=1 ∥T

i1
1 x− T1y∥2

≤ 1
nL

2 + 1
n

∑n−2
i1=0 ∥T

i1
1 x− y∥2

+ 2(1−λ)
n

∑n−1
i1=1⟨T

i1−1
1 x− T i1

1 x, y − T1y⟩

≤ 1
nL

2 + 2|1−λ|
n × L2 + 1

n

∑n−1
i1=0 ∥T

i1
1 x− y∥2. (5.1)

In Remark 5.2, set zi = T i1−1
1 x ∈ C, w = T1y and v = y. Then, by (5.1), we have

⟨( 1n
∑n−1

i1=0 T
i1
1 x− y) + ( 1n

∑n−1
i1=0 T

i1
1 x− T1y), y − T1y⟩

= 1
n

∑n−1
i1=0 ∥T

i1
1 x− T1y∥2 − 1

n

∑n−1
i1=0 ∥T

i1
1 x− y∥2 ≤ 1+2|1−λ|

n L2. (5.2)

Fix any i2, · · · , ik ∈ N(0, n− 1). By replacing x by T i2
2 · · ·T ik

k x in (5.2), we have

⟨( 1n
∑n−1

i1=0 T
i1
1 T i2

2 · · ·T ik
k x− y) + ( 1n

∑n−1
i1=0 T

i1
1 T i2

2 · · ·T ik
k x− T1y), y − T1y⟩

≤ 1+2|1−λ|
n L2. (5.3)

Since i2, · · · , ik ∈ N(0, n− 1) are arbitrary, the following holds:
1

nk−1

∑n−1
i2=0 · · ·

∑n−1
ik=0(

1
n

∑n−1
i1=0 T

i1
1 T i2

2 · · ·T ik
k x)

= 1
nk

∑n−1
i1=0

∑n−1
i2=0 · · ·

∑n−1
ik=0 T

i1
1 T i2

2 · · ·T ik
k x = Snx. (5.4)

By (5.3) and (5.4), we have

⟨(Snx− y) + (Snx− T1y), y − T1y⟩ ≤ 1+2|1−λ|
n L2.

Finally, since x, y, n are arbitrary, we see that, for n ∈ N ,

supx,y∈C⟨(Snx− y) + (Snx− Sy), y − Sy⟩ ≤ 1+2|1−λ|
n L2.

�

We denote by λ(C) the set of all (λ)–hybrid self–mappings on a subset C of a
Hilbert space H. Also, we denote by λ1(C) the subset of λ(C) such that a (λ)–
hybrid self–mapping on C with λ is an element of λ1(C) if and only if |1− λ| ≤ 1.
Then λ1(C) is the principal part of λ(C); refer to Aoyama and co–authors [2].
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Remark 5.5. Let C be a bounded convex subset of H. Under this setting, consider
(5.2) in the proof of Lemma 5.4. Fix any S ∈ λ1(C) and x ∈ C. Set T1 = S and
y = 1

n

∑n−1
i=0 Six ∈ C. Then, (5.2) becomes

⟨ 1n
∑n−1

i=0 Six− S( 1n
∑n−1

i=0 Six), 1
n

∑n−1
i=0 Six− S( 1n

∑n−1
i=0 Six)⟩ ≤ 3

n L2.

Then we easily see that the following equality holds without closeness of C:

limn supS∈λ1(C), x∈C

∥∥∥S (
1
n

∑n−1
i=0 Six

)
− 1

n

∑n−1
i=0 Six

∥∥∥ = 0.

We know that nonexpansive self–mappings on C are elements of λ1(C). So, in the
Hilbert space setting, we obtained an extension of Bruck’s well known lemma [10].
Lemma 5.6. Let k ∈ N . Let C be a bounded subset of H. Set L = supx,y∈C ∥x−y∥.
Let {Tj}j∈N(1,k) be a finite sequence of self–mappings on C. Assume that T1 is (λ)–
hybrid with λ. For n ∈ N , define a mapping Sn from C into H by

Sn = 1
nk

∑n−1
i1=0 · · ·

∑n−1
ik=0 T

i1
1 · · ·T ik

k .

Then, the following hold:
(1) lim supn supx,y∈C⟨(Snx− y) + (Snx− T1y), y − T1y⟩ ≤ 0.
(2) For x1 ∈ C, {Snx1} is bounded.
(3) For x1 ∈ C, every weak cluster point of {Snx1} is a point of A(T1).
(4) A(T1) is non–empty closed and convex.

Suppose further that C is closed and convex. Then the following hold:
(5) For x1 ∈ C, every weak cluster point of {Snx1} is a point of F (T1).
(6) F (T1) is non–empty bounded closed and convex.

Proof. By lim supn
1+2|1−λ|

n L2 = 0 and Lemma 5.4, we immediately see that (1)
holds. We show (2)–(4). Fix any x1 ∈ C and consider {Snx1}.

Fix any y ∈ C. Then, by T i1
1 · · ·T ik

k x1 ∈ C for i1, · · · , ik ∈ N0, we see that

∥Snx1 − y∥ ≤ 1
nk

∑n−1
i1=0 · · ·

∑n−1
ik=0 ∥T

i1
1 · · ·T ik

k x1 − y∥ ≤ L.

Then {Snx1} is bounded and has a weakly convergent subsequence. Let {Snl
x1}

be a subsequence of {Snx1} which converges weakly to u ∈ H. By (1), we know
lim supl supy∈C⟨(Snl

x1 − y) + (Snl
x1 − T1y), y − T1y⟩ ≤ 0.

Then, by Lemma 5.3, we know u ∈ A(T1). We confirmed that (3) holds. We also
confirmed A(T1) ̸= . By Lemma 3.6, A(T1) is closed and convex. Then (4) holds.

Suppose further that C is closed and convex. We show (5) and (6). In the same
way as in the proof of (3), we know u ∈ A(T1). Also {Snl

x1} is in the weakly closed
set C. Then, u ∈ A(T1) ∩ C. By Lemma 3.7, we see u ∈ A(T1) ∩ C ⊂ F (T1). So,
we confirmed that (5) holds. Also we confirmed F (T1) ̸= . Since T1 is (λ)–hybrid,
by Lemma 3.7, we have ̸= F (T1) = A(T1) ∩ C. Then, (6) follows from (4). �

The following is a direct consequence of Lemma 5.6.
Lemma 5.7. Let k ∈ N . Let C be a bounded subset of H and let {Tj}j∈N(1,k) be a
finite family of commuting (λ)–hybrid self–mappings on C. Set F = ∩j∈N(1,k)F (Tj)
and A = ∩j∈N(1,k)A(Tj). Then, A is non–empty closed and convex. Suppose further
that C is closed and convex. Then F is non–empty bounded closed and convex.

Proof. Since {Tj}j∈N(1,k) is commuting, for example, T i1
1 T i2

2 · · ·T ik
k = T i2

2 T i1
1 · · ·T ik

k .
Since each Tj is (λ)–hybrid with λj , by Lemma 5.6 (4)–(6), the proof is trivial. �

In the Hilbert space setting, by using Lemma 5.7, we can have an extension of
DeMarr’s well–known common fixed point theorem; see DeMarr [11].
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Theorem 5.8. Let C be a bounded closed convex subset of H and let {Tj}j∈J be
a family of commuting (λ)–hybrid self–mappings on C. Then F = ∩j∈JF (Tj) is
non–empty bounded closed and convex.

Proof. Since each Tj is (λ)–hybrid, we already know that F (Tj) is closed and convex
for j ∈ J . So {F (Tj)}j∈J consists of weakly closed subsets of C. By Lemma 5.7,
{F (Tj)}j∈J has the finite intersection property. Thus, since C is weakly compact,
we see F = ∩j∈JF (Tj) ̸= . It is obvious that F is bounded closed and convex. �

By Theorems 4.2 and 5.8, we have the following weak convergence theorem.

Theorem 5.9. Let a, b ∈ (0, 1) satisfy a ≤ b and let {an} be a sequence in [a, b].
Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a bounded closed convex subset of H and let {Tj} be a sequence
of commuting (λ)–hybrid self–mappings on C. Let Sn =

∑n
j=1 cn,jTj for n ∈ N .

Define a sequence {xn} by x1 ∈ C and
xn+1 = anxn + (1− an)Snxn for n ∈ N.

Then {xn} converges weakly to some z ∈ F = ∩j∈NF (Tj).

Proof. Set A = ∩j∈NA(Tj). By Lemma 3.4, I − Tj is demiclosed at 0 for j ∈ N .
Since Tj is (λ)–hybrid for j ∈ N , by Theorem 5.8, we know

̸= F = ∩j∈NF (Tj) ⊂ ∩j∈NA(Tj) = A.

Thus, by Theorems 4.2 (2), {xn} converges weakly to some z ∈ F . �

By Theorems 4.15 and 5.8, we have the following strong convergence theorem.

Theorem 5.10. Let b ∈ (0, 1) and let {an} be a sequence such that an ∈ (0, 1),
limn an = 0,

∑∞
n=1 an = ∞.

Let {cj} be a sequence satisfying (s) and let {cn,j} be the double sequence satisfying
(ds). Let C be a bounded closed convex subset of H and let {Tj} be a sequence
of commuting (λ)–hybrid self–mappings on C. Set F = ∩j∈NF (Tj) and A =
∩j∈NA(Tj). Let Sn =

∑n
j=1 cn,jTj and Un = bI + (1 − b)Sn for n ∈ N . Define a

sequence {un} by q, u1 ∈ C and
un+1 = anq + (1− an)Unun for n ∈ N.

Then {un} converges strongly to v = PAq = PF q ∈ F .

Proof. By Lemma 3.4, for j ∈ N , I − Tj is demiclosed at 0. Since Tj is (λ)–hybrid
for j ∈ N , by Theorem 5.8, we know

̸= F = ∩j∈NF (Tj) ⊂ ∩j∈NA(Tj) = A.

Thus, by Theorem 4.15, {un} converges strongly to v = PAq = PF q ∈ F . �
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