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ABSTRACT.

In this paper we give the Hadamard and the Fejér-Hadamard type integral inequalities
for convex and relative convex functions by involving a generalization of the Riemann-
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1. PRELIMINARIES

Convex functions are very useful for diverse fields of Mathematics, a rich litera-
ture has been built since their discovery [15].

Definition 1.1. Let I be an interval of real numbers. Then a function f : I — R is
said to be convex function if for all z,y € I and 0 < A < 1 the following inequality
holds

f@d+ 1 =Ny) <Af(@)+ (1= A)f(y).

Convex functions are naturally obey the following inequality which is well known
as the Hadamard inequality

f(““’) <! /abf(x)dmﬁf(a)+f(b)

2 b—a 2

where f: I — R is a convex function on I and a,b € I,a < b.
Following definitions are given in [14].
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Definition 1.2. Let T} be a set of real numbers. This set T, is said to be relative
convex with respect to an arbitrary function g : R — R if

(1—-t)x+tg(y) € Ty,
where z,y € R such that z,g(y) € T,, 0 <t < 1.

Note that every convex set is relative convex, but the converse is not true. For
example T, = [-1, Zt]J[0,1] and g(z) = 2?2, for all z € R. This set is relative
convex but not convex set. Another possibility may be occure that a realtive covex
set is convex set for example if T, = [—1,1] and g(z) = (Jz|)7 for all z € R (see[J]).

If g = I the identity function, then the definition of relative convex set recaptures
the definition of classical convex set.

Definition 1.3. A function f : T, — R is said to be relative convex, if there exists
an arbitrary function g : R — R such that

F(A =tz +1tg(y)) < (A —1)f(x) +tf(9(y)),
holds, where z,y € R such that z,g(y) € Ty, 0 <t < 1.

Noor et al proved the following Hadamard type integral inequality in [14] for
relative convex functions via Riemann-Liouville fractional integral operators.

Theorem 1.4. Let f be a positive relative convex function and integrable on [a, g(b)].
Then the following inequality holds

f ( +zg(b)> < Q&Zf_f)a I Fo(b) + I fla)] <

fla) + f(g(b))
2

a > 0.

In the following we give some definitions and known facts about fractional integral
operators [17].

Definition 1.5. Let w € R and «, 3, k, [,y be positive real numbers. The general-
ized fractional integral operators ez";’kl wa+ and el";’li wp. for areal valued contin-

uous function f are defined as follows

(8 art) @ = [0 B e - 0 0a, ()
and '

(% 1) () = / (t = )" B (e — 2)) S0y,
where the function Eg ﬁ’ , is the generalized Mittag-LefHler function defined as

ok (
Ea5a®) Z I( an+ﬁ ) (1.2)

the Pochhammer symbol (a),, is deﬁned by (a),= a(a + 1)(a + 2)...(a + n — 1),
(Q)OZ]..

For w = 0, (1.1) produces the definition of Riemann-Liouville fractional integral

operators [17]

B x:L mx— p-1 xr>a
0@ = 55 [ @0 0 o>

and
1

b
1 1@ = 705 /x (t— )P (D)dt, = < b.
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In [17] properties of the generalized Mittag-Leffler function are discussed and
it is given that Egg’?(t) is absolutely convergent for k < I + a. Let S be the

sum of series of absolute terms of the Mittag-Leffler function E’ 5’1( ), then we

have ‘Egg’?(t)‘ < S. We use this property of Mittag-Lefler function in our results

where we need.

In [10] the following Hadamard and the Fejér-Hadamard inequalities for convex
functions via generalized fractional integral operator containing the Mittag-Leffler
function have been proved.

Theorem 1.6. Let f : [a,b] — R be a positive function with 0 < a < b and
f € Li[a,b]. If f is convex on [a,b], then the following inequality for generalized
fractional integrals holds

7,0,k 7,0,k
/ (a;b> (@38 e 1(t) < St DO Coppera O
< f(a) ‘2|’ f(b)( ’Y,%Ii e 1)(a),

w

where w' = —a)

Theorem 1.7. Let f : [a,b] = R be a conver function with 0 < a < b and
f € Lila,b]. Also, let g : [a,b] — R be a function which is non-negative, integrable
and symmetric about ‘ITH’. Then the following inequality for generalized fractional
integrals holds

o,k ~v,0,k
b Zy w’,a fg [eY w’ *fg a
f (a+ )W’“ o)) < Cedier DO Cagirs 19O
2 a,B,l,w’a 2
fla)+ f(b) , 45,
< BT (st o)),
/I w
where W' = ((=EE
In [12, 14] the Hadamard and the Fejér-Hadamard type inequalities for con-

vex and relative convex functions via Riemann-Liouville fractional integral opera-
tors have been proved. In this paper we give fractional integral inequalities of the
Hadamard and the Fejér-Hadamard type for convex and relative convex functions
by using the fractional integral operators involving the generalized Mittag-LefHler
function. We also produce the results which are given in [12, 14] by setting particular
values of parameters.

2. MAIN RESULTS

Following lemmas are useful to establish new results.

Lemma 2.1. Let f : [a,b] — R be an integrable and symmetric function about ‘Hb

Then the following equality holds

vék 75,19 a
(2 as ) ) = (23 1) (@) = (C‘“““*f)()2<”**l’“”bf)<(). |
2.1

Proof. As f is symmetric about aT"'b, therefore f(a+ b —t) = f(t). By definition
we have

b
(@) = [(=0 B w0 — 00 (22)
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replacing t by a + b — t in equation (2.2) we have
b
N — 6,k
(A f) O = [ (=P B3l - ) (0
a

This implies

5,k 8,k

( 715 lw a+f) (b) = (el,ﬂ,l,w,b, f) (a). (2.3)

Therefore we get (2.1).
O

Lemma 2.2. Let f : [a.b] = R be a differentiable function on (a,b) and f’ € L[a, .
If g : [a.b] — R is integrable and symmetric about “T'H’, then we have the following

equality
(L) (2 0+ (50) 0]
(s o ad) )+ (2500 ) (@)
_ / b [ / (b 8P B (b — )7)g(s)ds
- / (s — @) B ol - a)%g(s)ds] £ (t)dt.

Proof. To prove this lemma we take terms of the right hand side, on integrating by
parts and after simplification we have

b t
L[ o= Esieo - omee] s
a a b
:f(b)/ (b= 5L EL% (w(b — 5)%)g(s)ds— / (b— 1P BT (w(b — £))gf ()t
= FO) (25 ar9) O = (2500 97) 0.

By using Lemma 2.1 we have
/ b [ / (b 8P B b s>“>g<s>ds] £ (t)dt (2.0
IO (st o) 0+ (s 0) @)] -~ (2550 0e0f) B

Similarly
/ s — @) L (s — a))g(s)ds] £/ ()t 25)
_
T Tt ea) @)+ (2% o) @] — (235, of) (@)
Adding (2.4) and (2.5) we get the left hand side. O

In the following we give our first integral inequality of the Hadamard type.

Theorem 2.3. Let f: I — R be a differentiable mapping in the interior of I with
f € Lia,b], a < b. If |f'| is conver on [a,b] and g : I — R is continuous and
symmetric function about “7%, then we have the following inequality

(W) [(67 %i w a+g) (b) + (63”%5’“’}”9) (a)}
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(e arar) O+ (2500 ) @)

89

Hg”OO (b_a)B—H 1 / /
Mol B0 (1= L) v+ rol
fork <1+ and || g o= sup lo()].

t€la,

Proof. By using Lemma 2.2 we have
‘(W) (05 9) O+ (05 00) @] (2.6)
(s ear) 0+ (255 0 08) @)
< [|[[ o~ Ezsteo - e

b
—/ (s — a)’B_lEl:g’f(W(s — a)a)g(s)ds] "(t)|dt.
t
Using the convexity of |f’ | we have
1f'@) < |f( )|+ '®)]; t € [a,b]. (2.7)

By using symmetry of function g we have
b
/ (s — a)’B_lEl:g’f(w(s —a)®)g(s)ds
t
a+b—t
:/ (b= )P EL 5k (w(b— 5)*)gla + b — s)ds

a+b—t
:/ (b— )P EL 5k (w(b — 5))g(s)ds.

This implies

t b
/ (b= )L EY% (w(b — 5))g(s)ds — / (s — )P BT (w(s — a)*)g(s)ds

(2.8)

a+b—t

/t (b= 5)~LEL (w(b — 5))g(5)ds
<{ SO = )P B (@ (b — 8)*)g(s)|ds, t € [a, 5]
T S 1= )P BT (w(b — 5)*)g(s)|ds, t € [0, b).

(

¢

By (2.6), (2.7), (2.8) and absolute convergence of Mittag-Leffler function, we have

‘(7f (@] (b>) (0t o aa) O+ (255, 9) @] (2.9)
(5 haror) O+ (Z5hs9f) @]

<[ ([ om0 o - el ) (i@l o o) a

b—a
+/ab+b (/aib—t‘(bis)ﬂ LET SR (w(b— ) )g(s)\ds> (%\f’(a) Z:Z / )‘) ”
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a+b a+b

gl S 2 0B —(t—a)B(h— "(a 2 OB —(t—a) Bt —a)lf
<5@@{A (=07 = o=0lf @)+ [ 7 (0= = (=) (- a)lf @)

a+b
2

b b
+/ «taWwN%wwmmﬁ+ﬁy«tawwﬁ%@ﬁ@nﬂ.

Since we have

GQ(@Uﬁ@aWwaﬁ_(b®m2<ﬂ+l 1 )

. B+1 \Br2 277

and
a+b
2

a f+1 \B+2
Using the above calculations in (2.9) we have

(L IO) (30 00+ (255 o) @)
(B al) O+ (2350 0f) @)

<5 5 () + (g J @l £ 0

LS - 0 (1= 55 ) 11+ 1

_ )2
«bfﬂﬁf@faW)@faﬂkzw S ( ! 2;4).

O

A special case is stated in the following, which is inequality of the Hadamard
type for Riemann-Liouville fractional integrals.

Corollary 2.4. Setting w = 0 in Theorem 2.3 we have the following inequality for
Riemann-Liouville fractional integral operators

(W) |1290) + 1 g@)| = |17 F9(®) + 1} f9(a)] \ (2.10)

19 ]l (b—a)*

]' !/ !
Mol Lo (1= 55 ) U@l + 17 o,

Remark 2.5. The above inequality (2.10) is proved in [12].

Theorem 2.6. Let f: I — R be a differentiable function in the interior of I, also
let f' € Lla,b], a <b. If |f'|?, ¢ > 0 is convezx on [a,b] and g : I — R is continuous
and symmetric function about %b, then we have the following inequality

(L0 (8 ) 0+ (@ n) @] 1
(o) O+ (s of) @]

20 SO-" (1 1\ (i s e
< 2ol SO (1o DY i+ o

fork <l+a and | gllco= sup |g(t)] and%Jr%:l.
t€la,b]

Q=

Proof. From Lemma 2.2, Holder inequality, inequality (2.8) one can has

(2020 (a5t 0+ (s )] e
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G OB Ch R [0]|
r
i

Using absolute convergence of Mittag-Leffler function and || g ||co= sup |g(t)] we
t€la,b]

=
a

If’(t)lthl

a+b—t
/t (b= 5)P LB (w(b — 5)°)g(s)ds

aq

a+b—t
/t (b— 5~ LEY 3 (w(b — 5)%)g(s)ds

have

(P [(8he0) 0+ (2a0) @]

()0 (2 0) @)

( a+b_t(b—s)ﬂ_1ds> dt+/b (/t b (b—s)ﬂ—lds) dt}
aft \Ja+b—t

<l gL st [ / ( / - s)ﬁ-lds> £ b))t

+/b+ (/aibt(b — s)f“ds) |f’(t)|thr

By some calculation we have
(G| (G ORI C I 0)
(i al) O+ (2300 o) @)

b— a)f+1 1 b—a)f+1 1"
<ol s | P52 g+ 0 a- )

1—1
q

<lgl s [
i

Q=

= b a
x [ [T @0 ——a)iropas [ (0-0- -0 If’(t)th] .
Since |f’|? is convex on [a, b], therefore we have
b— _
PO < 5 @)+ | B, (213)
Hence
b
’<f(a);f()) [(el‘;klw(ﬁg) (b) + (6';’7%7]3,%1),9) (a)}
k
!

(@ earaf) O+ (205
_q)PH! 1-2
e 1)}

<yl 5[2° g
. V (0-0° ~ =) (Felf @F + g=alr o) d
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b _ 4 %
JF/LH ((b—t)ﬂf(tfa)ﬁ) ([l))_:b /(a>|q+2_a|f/(b)|q> dt] .

2

From which one can have (2.11). O

Corollary 2.7. Setting w = 0 in Theorem 2.6 we have the following result for
Riemann-Liowville fractional integral operators

‘ <W> 112, 9(b) + 1) g(a)] — 12, fg(b) + I} fg(a))

2 gl (b—a)’*'"3
= r'(B+2) (1

- 53 ) (F @I+ 17O
B> 0.

In the following we give the Hadamard inequality for relative convex functions
via generalized fractional integral operators.

Theorem 2.8. Let f : [a,g(b)] — R be a positive relative conver function and
f € Lla,g(b)]. Then the following inequalities for gemeralized fractional integral
operators hold

() (3 1) @)

IN

L e ) GO+ (25 ) ) (@)

a b
W (GZL’%i,w/,g(b)_ 1) (a),

IN

! __ w
where w' = (CIOEDEE

Proof. Since f is relative convex on [a, g(b)], we have

P2 = p | (tea+ - 090) + (1= 5) (@ - Da+ 1)

< o (ta (1= 0)g(0) + 37 (1~ t)a + tg(0)).

Multiplying both sides by 2t6*1El’g’]§(wt‘l) and integrating over [0, 1] we have

1
2f (*;’“”) | e By < / B ) f (tfa+ (1= g(0) dt

+/1t51Eg;g=§(wta)f((1t)a+tg(b))dt. (2.14)
0

Setting ta + (1 —t)g(b) = x that is t = ?;Ebg = and (1 —t)a + tg(b) = y that is

t = 2" we have
o (5 ) ) e (e (=) ) (o) e
= /g(b> @(b) _zy—l Easi ( .

UG m e Gl) ) o G-
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After simplification we get

a+9M)\ ( yok 76k 8k
o (D) (@5 e1) (00 <[ (5 ) 0O (D 5 1) @)
(2.16)
By using the relative convexity of f on [a, g(b)] one can has

flta+(1=t)g(b))+f((1=t)a+1tg(b)) < tf(a)+(1—1)f(9(b))+(1—1)f(a)+tf(g(b))-
Multiplying tﬁflE;:g’f; (wt®) on both sides and integrating over [0, 1] we have

/ 1 P BT Ok (i) f(ta + (1 — t)g(b))dt + / 1 P ET R (@t (1 — t)a + tg(b))dt
0 ” 0 "

1 1
< /0 LB (wt)(tf (@) + (1 — ) f(g(b)))dt + /0 P (W) (1= 1) f(a) + tf(g(b)))dt.

Setting ta + (1 — t)g(b) = = that is t = ggzg:z and (1 — t)a + tg(b) = y that is
t=_ya

= 30—a and after simple calculation we have

—~

(E5hrar ) GO+ (25 g0 F) @] < U@+ GO (25 g0 L) @

(2.1

o2

Combinig (2.16) and (2.17) we get the result.

Remark 2.9. (i) If we put w = 0 and & = 1 in Theorem 2.8 we obtain Theorem
1.4.
(i) If we put w =0 and 3 = ¢ in Theorem 2.8, then we get [11, Theorem 3].

In the upcoming theorem we give the generalization of previous result.

Theorem 2.10. Let f : [g(a),g(b)] = R be a positive relative convex function and
f € Lig(a),g(b)]. Then the following inequalities for generalized fractional integral

operator holds
g(a) + g(b) Sk
! (2 (GZ,B,l,w',g(a)Jr]') (9(b))

(% ) O + (238 iy £) @]

2
SO HH0OD) (a 1) (e,

IA

IN

/I w
where W' = G gtans -
Proof. Proof of this theorem is on the same lines of the proof of Theorem 2.8. [

Corollary 2.11. Forw = 0 we obtain the following inequality for Riemann-Liouville
integral operator from Theorem 2.10

; <g<a> ;g(b)) . T+

|

[N~}

—
R}

IN

with 8 > 0.

Remark 2.12. In Theorem 2.10 if we take w = 0, 8 = ¢, then we get [I 1, Theorem
5].
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