



## SOME INTEGRAL INEQUALITIES OF THE HADAMARD AND THE FEJÉR-HADAMARD TYPE VIA GENERALIZED FRACTIONAL INTEGRAL OPERATOR

GHULAM ABBAS<sup>1</sup> AND GHULAM FARID<sup>\*2</sup>

<sup>1</sup> Department of Mathematics, Government College Bhalwal, Sargodha, Pakistan

<sup>2</sup> Department of Mathematics, COMSATS University Islamabad, Attock, Pakistan

---

### ABSTRACT.

In this paper we give the Hadamard and the Fejér-Hadamard type integral inequalities for convex and relative convex functions by involving a generalization of the Riemann-Liouville fractional integral. Also some connections with known results have been obtained.  
**KEYWORDS:** Convex function; Hadamard inequality; Fejér-Hadamard inequality; Fractional integral operators.

**AMS Subject Classification:** Primary 26A51; Secondary 26A33, 33E12.

---

### 1. PRELIMINARIES

Convex functions are very useful for diverse fields of Mathematics, a rich literature has been built since their discovery [15].

**Definition 1.1.** Let  $I$  be an interval of real numbers. Then a function  $f : I \rightarrow \mathbb{R}$  is said to be convex function if for all  $x, y \in I$  and  $0 \leq \lambda \leq 1$  the following inequality holds

$$f(x\lambda + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$$

Convex functions are naturally obey the following inequality which is well known as the Hadamard inequality

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x)dx \leq \frac{f(a) + f(b)}{2}$$

where  $f : I \rightarrow \mathbb{R}$  is a convex function on  $I$  and  $a, b \in I, a < b$ .  
Following definitions are given in [14].

---

<sup>\*</sup>Corresponding author.

Email address : prof.abbas6581@gmail.com (Ghulam Abbas), faridphdsms@hotmail.com, ghlmfarid@cuiatk.edu.pk (Ghulam Farid).

**Definition 1.2.** Let  $T_g$  be a set of real numbers. This set  $T_g$  is said to be relative convex with respect to an arbitrary function  $g : \mathbb{R} \rightarrow \mathbb{R}$  if

$$(1-t)x + tg(y) \in T_g$$

where  $x, y \in \mathbb{R}$  such that  $x, g(y) \in T_g$ ,  $0 \leq t \leq 1$ .

Note that every convex set is relative convex, but the converse is not true. For example  $T_g = [-1, \frac{-1}{2}] \cup [0, 1]$  and  $g(x) = x^2$ , for all  $x \in \mathbb{R}$ . This set is relative convex but not convex set. Another possibility may be occur that a relative convex set is convex set for example if  $T_g = [-1, 1]$  and  $g(x) = (|x|)^{\frac{1}{4}}$  for all  $x \in \mathbb{R}$  (see [9]). If  $g = I$  the identity function, then the definition of relative convex set recaptures the definition of classical convex set.

**Definition 1.3.** A function  $f : T_g \rightarrow \mathbb{R}$  is said to be relative convex, if there exists an arbitrary function  $g : \mathbb{R} \rightarrow \mathbb{R}$  such that

$$f((1-t)x + tg(y)) \leq (1-t)f(x) + tf(g(y)),$$

holds, where  $x, y \in \mathbb{R}$  such that  $x, g(y) \in T_g$ ,  $0 \leq t \leq 1$ .

Noor et al proved the following Hadamard type integral inequality in [14] for relative convex functions via Riemann-Liouville fractional integral operators.

**Theorem 1.4.** Let  $f$  be a positive relative convex function and integrable on  $[a, g(b)]$ . Then the following inequality holds

$$f\left(\frac{a+g(b)}{2}\right) \leq \frac{\Gamma(\alpha+1)}{2(g(b)-a)^\alpha} [I_{a+}^\alpha f g(b) + I_{b-}^\alpha f(a)] \leq \frac{f(a) + f(g(b))}{2}$$

$\alpha > 0$ .

In the following we give some definitions and known facts about fractional integral operators [17].

**Definition 1.5.** Let  $\omega \in \mathbb{R}$  and  $\alpha, \beta, k, l, \gamma$  be positive real numbers. The generalized fractional integral operators  $\epsilon_{\alpha, \beta, l, \omega, a+}^{\gamma, \delta, k}$  and  $\epsilon_{\alpha, \beta, l, \omega, b-}^{\gamma, \delta, k}$  for a real valued continuous function  $f$  are defined as follows

$$\left(\epsilon_{\alpha, \beta, l, \omega, a+}^{\gamma, \delta, k} f\right)(x) = \int_a^x (x-t)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(x-t)^\alpha) f(t) dt, \quad (1.1)$$

and

$$\left(\epsilon_{\alpha, \beta, l, \omega, b-}^{\gamma, \delta, k} f\right)(x) = \int_x^b (t-x)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(t-x)^\alpha) f(t) dt,$$

where the function  $E_{\alpha, \beta, l}^{\gamma, \delta, k}$  is the generalized Mittag-Leffler function defined as

$$E_{\alpha, \beta, l}^{\gamma, \delta, k}(t) = \sum_{n=0}^{\infty} \frac{(\gamma)_{kn} t^n}{\Gamma(\alpha n + \beta) (\delta)_m}, \quad (1.2)$$

the Pochhammer symbol  $(a)_n$  is defined by  $(a)_n = a(a+1)(a+2)\dots(a+n-1)$ ,  $(a)_0 = 1$ .

For  $\omega = 0$ , (1.1) produces the definition of Riemann-Liouville fractional integral operators [17]

$$I_{a+}^\beta f(x) = \frac{1}{\Gamma(\beta)} \int_a^x (x-t)^{\beta-1} f(t) dt, \quad x > a$$

and

$$I_{b-}^\beta f(x) = \frac{1}{\Gamma(\beta)} \int_x^b (t-x)^{\beta-1} f(t) dt, \quad x < b.$$

In [17] properties of the generalized Mittag-Leffler function are discussed and it is given that  $E_{\alpha,\beta,l}^{\gamma,\delta,k}(t)$  is absolutely convergent for  $k < l + \alpha$ . Let  $S$  be the sum of series of absolute terms of the Mittag-Leffler function  $E_{\alpha,\beta,l}^{\gamma,\delta,k}(t)$ , then we have  $|E_{\alpha,\beta,l}^{\gamma,\delta,k}(t)| \leq S$ . We use this property of Mittag-Leffler function in our results where we need.

In [10] the following Hadamard and the Fejér-Hadamard inequalities for convex functions via generalized fractional integral operator containing the Mittag-Leffler function have been proved.

**Theorem 1.6.** *Let  $f : [a, b] \rightarrow \mathbb{R}$  be a positive function with  $0 \leq a < b$  and  $f \in L_1[a, b]$ . If  $f$  is convex on  $[a, b]$ , then the following inequality for generalized fractional integrals holds*

$$\begin{aligned} f\left(\frac{a+b}{2}\right)(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}f)(b) &\leq \frac{(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}f)(b) + (\epsilon_{\alpha,\beta,l,\omega',b-}^{\gamma,\delta,k}f)(a)}{2} \\ &\leq \frac{f(a) + f(b)}{2}(\epsilon_{\alpha,\beta,l,\omega',b-}^{\gamma,\delta,k}f)(a), \end{aligned} \quad (1.3)$$

where  $\omega' = \frac{w}{(b-a)^\alpha}$ .

**Theorem 1.7.** *Let  $f : [a, b] \rightarrow \mathbb{R}$  be a convex function with  $0 \leq a < b$  and  $f \in L_1[a, b]$ . Also, let  $g : [a, b] \rightarrow \mathbb{R}$  be a function which is non-negative, integrable and symmetric about  $\frac{a+b}{2}$ . Then the following inequality for generalized fractional integrals holds*

$$\begin{aligned} f\left(\frac{a+b}{2}\right)(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}fg)(b) &\leq \frac{(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}fg)(b) + (\epsilon_{\alpha,\beta,l,\omega',b-}^{\gamma,\delta,k}fg)(a)}{2} \\ &\leq \frac{f(a) + f(b)}{2}(\epsilon_{\alpha,\beta,l,\omega',b-}^{\gamma,\delta,k}g)(a), \end{aligned} \quad (1.4)$$

where  $\omega' = \frac{w}{(b-a)^\alpha}$ .

In [12, 14] the Hadamard and the Fejér-Hadamard type inequalities for convex and relative convex functions via Riemann-Liouville fractional integral operators have been proved. In this paper we give fractional integral inequalities of the Hadamard and the Fejér-Hadamard type for convex and relative convex functions by using the fractional integral operators involving the generalized Mittag-Leffler function. We also produce the results which are given in [12, 14] by setting particular values of parameters.

## 2. MAIN RESULTS

Following lemmas are useful to establish new results.

**Lemma 2.1.** *Let  $f : [a, b] \rightarrow \mathbb{R}$  be an integrable and symmetric function about  $\frac{a+b}{2}$ . Then the following equality holds*

$$\left(\epsilon_{\alpha,\beta,l,\omega,a+}^{\gamma,\delta,k}f\right)(b) = \left(\epsilon_{\alpha,\beta,l,\omega,b-}^{\gamma,\delta,k}f\right)(a) = \frac{\left(\epsilon_{\alpha,\beta,l,\omega,a+}^{\gamma,\delta,k}f\right)(b) + \left(\epsilon_{\alpha,\beta,l,\omega,b-}^{\gamma,\delta,k}f\right)(a)}{2}. \quad (2.1)$$

*Proof.* As  $f$  is symmetric about  $\frac{a+b}{2}$ , therefore  $f(a+b-t) = f(t)$ . By definition we have

$$\left(\epsilon_{\alpha,\beta,l,\omega,a+}^{\gamma,\delta,k}f\right)(b) = \int_a^b (b-t)^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega(b-t)^\alpha) f(t) dt, \quad (2.2)$$

replacing  $t$  by  $a + b - t$  in equation (2.2) we have

$$\left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} f \right) (b) = \int_a^b (t - a)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(t - a)^\alpha) f(t) dt.$$

This implies

$$\left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} f \right) (b) = \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} f \right) (a). \quad (2.3)$$

Therefore we get (2.1).  $\square$

**Lemma 2.2.** *Let  $f : [a, b] \rightarrow \mathbb{R}$  be a differentiable function on  $(a, b)$  and  $f' \in L[a, b]$ . If  $g : [a, b] \rightarrow \mathbb{R}$  is integrable and symmetric about  $\frac{a+b}{2}$ , then we have the following equality*

$$\begin{aligned} & \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \\ & - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \\ & = \int_a^b \left[ \int_a^t (b - s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b - s)^\alpha) g(s) ds \right. \\ & \left. - \int_t^b (s - a)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(s - a)^\alpha) g(s) ds \right] f'(t) dt. \end{aligned}$$

*Proof.* To prove this lemma we take terms of the right hand side, on integrating by parts and after simplification we have

$$\begin{aligned} & \int_a^b \left[ \int_a^t (b - s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b - s)^\alpha) g(s) ds \right] f'(t) dt \\ & = f(b) \int_a^b (b - s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b - s)^\alpha) g(s) ds - \int_a^b (b - t)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b - t)^\alpha) g f(t) dt \\ & = f(b) \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) - \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b). \end{aligned}$$

By using Lemma 2.1 we have

$$\begin{aligned} & \int_a^b \left[ \int_a^t (b - s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b - s)^\alpha) g(s) ds \right] f'(t) dt \quad (2.4) \\ & = \frac{f(b)}{2} \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] - \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b). \end{aligned}$$

Similarly

$$\begin{aligned} & - \int_t^b \left[ (s - a)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(s - a)^\alpha) g(s) ds \right] f'(t) dt \quad (2.5) \\ & = \frac{f(a)}{2} \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] - \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a). \end{aligned}$$

Adding (2.4) and (2.5) we get the left hand side.  $\square$

In the following we give our first integral inequality of the Hadamard type.

**Theorem 2.3.** *Let  $f : I \rightarrow \mathbb{R}$  be a differentiable mapping in the interior of  $I$  with  $f' \in L[a, b]$ ,  $a < b$ . If  $|f'|$  is convex on  $[a, b]$  and  $g : I \rightarrow \mathbb{R}$  is continuous and symmetric function about  $\frac{a+b}{2}$ , then we have the following inequality*

$$\left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right|$$

$$\begin{aligned}
& - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \\
& \leq \frac{\| g \|_\infty S(b-a)^{\beta+1}}{\beta(\beta+1)} \left( 1 - \frac{1}{2^\beta} \right) [|f'(a)| + |f'(b)|],
\end{aligned}$$

for  $k < l + \alpha$  and  $\| g \|_\infty = \sup_{t \in [a, b]} |g(t)|$ .

*Proof.* By using Lemma 2.2 we have

$$\begin{aligned}
& \left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\
& \quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\
& \leq \int_a^b \left| \left[ \int_a^t (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s) ds \right. \right. \\
& \quad \left. \left. - \int_t^b (s-a)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(s-a)^\alpha) g(s) ds \right] \right| |f'(t)| dt.
\end{aligned} \tag{2.6}$$

Using the convexity of  $|f'|$  we have

$$|f'(t)| \leq \frac{b-t}{b-a} |f'(a)| + \frac{t-a}{b-a} |f'(b)|; t \in [a, b]. \tag{2.7}$$

By using symmetry of function  $g$  we have

$$\begin{aligned}
& \int_t^b (s-a)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(s-a)^\alpha) g(s) ds \\
& = \int_a^{a+b-t} (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(a+b-s) ds \\
& = \int_a^{a+b-t} (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s) ds.
\end{aligned}$$

This implies

$$\begin{aligned}
& \left| \int_a^t (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s) ds - \int_t^b (s-a)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(s-a)^\alpha) g(s) ds \right| \\
& = \left| \int_t^{a+b-t} (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s) ds \right| \\
& \leq \begin{cases} \int_t^{a+b-t} |(b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s)| ds, & t \in [a, \frac{a+b}{2}] \\ \int_{a+b-t}^t |(b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s)| ds, & t \in [\frac{a+b}{2}, b]. \end{cases}
\end{aligned} \tag{2.8}$$

By (2.6), (2.7), (2.8) and absolute convergence of Mittag-Leffler function, we have

$$\begin{aligned}
& \left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\
& \quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\
& \leq \int_a^{\frac{a+b}{2}} \left( \int_a^{a+b-t} |(b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s)| ds \right) \left( \frac{b-t}{b-a} |f'(a)| + \frac{t-a}{b-a} |f'(b)| \right) dt \\
& + \int_{\frac{a+b}{2}}^b \left( \int_{a+b-t}^t |(b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k}(\omega(b-s)^\alpha) g(s)| ds \right) \left( \frac{b-t}{b-a} |f'(a)| + \frac{t-a}{b-a} |f'(b)| \right) dt.
\end{aligned} \tag{2.9}$$

$$\begin{aligned} &\leq \frac{\|g\|_\infty S}{\beta(b-a)} \left[ \int_a^{\frac{a+b}{2}} ((b-t)^\beta - (t-a)^\beta)(b-t)|f'(a)| dt + \int_a^{\frac{a+b}{2}} ((b-t)^\beta - (t-a)^\beta)(t-a)|f'(b)| dt \right. \\ &\quad \left. + \int_{\frac{a+b}{2}}^b ((t-a)^\beta - (b-t)^\beta)(b-t)|f'(a)| dt + \int_{\frac{a+b}{2}}^b ((t-a)^\beta - (b-t)^\beta)(t-a)|f'(b)| dt \right]. \end{aligned}$$

Since we have

$$\int_a^{\frac{a+b}{2}} ((b-t)^\beta - (t-a)^\beta)(b-t) dt = \frac{(b-a)^{\beta+2}}{\beta+1} \left( \frac{\beta+1}{\beta+2} - \frac{1}{2^{\beta+1}} \right)$$

and

$$\int_a^{\frac{a+b}{2}} ((b-t)^\beta - (t-a)^\beta)(t-a) dt = \frac{(b-a)^{\beta+2}}{\beta+1} \left( \frac{1}{\beta+2} - \frac{1}{2^{\beta+1}} \right).$$

Using the above calculations in (2.9) we have

$$\begin{aligned} &\left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\ &\quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\ &\leq \frac{\|g\|_\infty S}{\beta(b-a)} \frac{(b-a)^{\beta+2}}{\beta+1} \left[ \left( \frac{\beta+1}{\beta+2} - \frac{1}{2^{\beta+1}} \right) + \left( \frac{1}{\beta+2} - \frac{1}{2^{\beta+1}} \right) \right] [|f'(a)| + |f'(b)|] \\ &= \frac{\|g\|_\infty S}{\beta(\beta+1)} (b-a)^{\beta+1} \left( 1 - \frac{1}{2^\beta} \right) [|f'(a)| + |f'(b)|]. \end{aligned}$$

□

A special case is stated in the following, which is inequality of the Hadamard type for Riemann-Liouville fractional integrals.

**Corollary 2.4.** *Setting  $\omega = 0$  in Theorem 2.3 we have the following inequality for Riemann-Liouville fractional integral operators*

$$\begin{aligned} &\left| \left( \frac{f(a) + f(b)}{2} \right) \left[ I_{a^+}^\beta g(b) + I_{b^-}^\beta g(a) \right] - \left[ I_{a^+}^\beta f g(b) + I_{b^-}^\beta f g(a) \right] \right| \quad (2.10) \\ &\leq \frac{\|g\|_\infty (b-a)^{\beta+1}}{\Gamma(\beta+2)} \left( 1 - \frac{1}{2^\beta} \right) [|f'(a)| + |f'(b)|]. \end{aligned}$$

**Remark 2.5.** The above inequality (2.10) is proved in [12].

**Theorem 2.6.** *Let  $f : I \rightarrow \mathbb{R}$  be a differentiable function in the interior of  $I$ , also let  $f' \in L[a, b]$ ,  $a < b$ . If  $|f'|^q$ ,  $q > 0$  is convex on  $[a, b]$  and  $g : I \rightarrow \mathbb{R}$  is continuous and symmetric function about  $\frac{a+b}{2}$ , then we have the following inequality*

$$\begin{aligned} &\left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\ &\quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\ &\leq \frac{2\|g\|_\infty S (b-a)^{\beta+\frac{1}{p}}}{\beta(\beta+1)} \left( 1 - \frac{1}{2^\beta} \right) (|f'(a)|^q + |f'(b)|^q)^{\frac{1}{q}}, \end{aligned} \quad (2.11)$$

for  $k < l + \alpha$  and  $\|g\|_\infty = \sup_{t \in [a, b]} |g(t)|$  and  $\frac{1}{p} + \frac{1}{q} = 1$ .

*Proof.* From Lemma 2.2, Hölder inequality, inequality (2.8) one can has

$$\left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right| \quad (2.12)$$

$$\begin{aligned}
& - \left| \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right| \\
& \leq \left[ \int_a^b \left| \int_t^{a+b-t} (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b-s)^\alpha) g(s) ds \right| dt \right]^{1-\frac{1}{q}} \\
& \quad \left[ \int_a^b \left| \int_t^{a+b-t} (b-s)^{\beta-1} E_{\alpha, \beta, l}^{\gamma, \delta, k} (\omega(b-s)^\alpha) g(s) ds \right| |f'(t)|^q dt \right]^{\frac{1}{q}}.
\end{aligned}$$

Using absolute convergence of Mittag-Leffler function and  $\|g\|_\infty = \sup_{t \in [a, b]} |g(t)|$  we have

$$\begin{aligned}
& \left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\
& \quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\
& \leq \|g\|_\infty^{1-\frac{1}{q}} S^{1-\frac{1}{q}} \left[ \int_a^{\frac{a+b}{2}} \left( \int_t^{a+b-t} (b-s)^{\beta-1} ds \right) dt + \int_{\frac{a+b}{2}}^b \left( \int_{a+b-t}^t (b-s)^{\beta-1} ds \right) dt \right]^{1-\frac{1}{q}} \\
& \quad \times \|g\|_\infty^{\frac{1}{q}} S^{\frac{1}{q}} \left[ \int_a^{\frac{a+b}{2}} \left( \int_t^{a+b-t} (b-s)^{\beta-1} ds \right) |f'(t)|^q dt \right. \\
& \quad \left. + \int_{\frac{a+b}{2}}^b \left( \int_{a+b-t}^t (b-s)^{\beta-1} ds \right) |f'(t)|^q dt \right]^{\frac{1}{q}}.
\end{aligned}$$

By some calculation we have

$$\begin{aligned}
& \left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\
& \quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\
& \leq \|g\|_\infty S \left[ \frac{(b-a)^{\beta+1}}{\beta+1} \left( 1 - \frac{1}{2^\beta} \right) + \frac{(b-a)^{\beta+1}}{\beta+1} \left( 1 - \frac{1}{2^\beta} \right) \right]^{1-\frac{1}{q}} \\
& \quad \times \left[ \int_a^{\frac{a+b}{2}} ((b-t)^\beta - (t-a)^\beta) |f'(t)|^q dt + \int_{\frac{a+b}{2}}^b ((b-t)^\beta - (t-a)^\beta) |f'(t)|^q dt \right]^{\frac{1}{q}}.
\end{aligned}$$

Since  $|f'|^q$  is convex on  $[a, b]$ , therefore we have

$$|f'(t)|^q \leq \frac{b-t}{b-a} |f'(a)|^q + \frac{t-a}{b-a} |f'(b)|^q. \quad (2.13)$$

Hence

$$\begin{aligned}
& \left| \left( \frac{f(a) + f(b)}{2} \right) \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g \right) (a) \right] \right. \\
& \quad \left. - \left[ \left( \epsilon_{\alpha, \beta, l, \omega, a^+}^{\gamma, \delta, k} g f \right) (b) + \left( \epsilon_{\alpha, \beta, l, \omega, b^-}^{\gamma, \delta, k} g f \right) (a) \right] \right| \\
& \leq \|g\|_\infty S \left[ 2 \frac{(b-a)^{\beta+1}}{\beta+1} \left( 1 - \frac{1}{2^\beta} \right) \right]^{1-\frac{1}{q}} \\
& \quad \times \left[ \int_a^{\frac{a+b}{2}} ((b-t)^\beta - (t-a)^\beta) \left( \frac{b-t}{b-a} |f'(a)|^q + \frac{t-a}{b-a} |f'(b)|^q \right) dt \right]^{\frac{1}{q}}.
\end{aligned}$$

$$+ \int_{\frac{a+b}{2}}^b ((b-t)^\beta - (t-a)^\beta) \left( \frac{b-t}{b-a} |f'(a)|^q + \frac{t-a}{b-a} |f'(b)|^q \right) dt \right]^{\frac{1}{q}}.$$

From which one can have (2.11).  $\square$

**Corollary 2.7.** *Setting  $\omega = 0$  in Theorem 2.6 we have the following result for Riemann-Liouville fractional integral operators*

$$\begin{aligned} & \left| \left( \frac{f(a) + f(b)}{2} \right) [I_{a^+}^\beta g(b) + I_{b^-}^\beta g(a)] - [I_{a^+}^\beta f g(b) + I_{b^-}^\beta f g(a)] \right| \\ & \leq \frac{2 \|g\|_\infty (b-a)^{\beta+1-\frac{1}{q}}}{\Gamma(\beta+2)} \left( 1 - \frac{1}{2^\beta} \right) (|f'(a)|^q + |f'(b)|^q)^{\frac{1}{q}}, \end{aligned}$$

$$\beta > 0.$$

In the following we give the Hadamard inequality for relative convex functions via generalized fractional integral operators.

**Theorem 2.8.** *Let  $f : [a, g(b)] \rightarrow \mathbb{R}$  be a positive relative convex function and  $f \in L[a, g(b)]$ . Then the following inequalities for generalized fractional integral operators hold*

$$\begin{aligned} f\left(\frac{a+g(b)}{2}\right) \left( \epsilon_{\alpha,\beta,l,\omega',a^+}^{\gamma,\delta,k} 1 \right) (g(b)) & \leq \frac{1}{2} \left[ \left( \epsilon_{\alpha,\beta,l,\omega',a^+}^{\gamma,\delta,k} f \right) (g(b)) + \left( \epsilon_{\alpha,\beta,l,\omega',g(b)_-}^{\gamma,\delta,k} f \right) (a) \right] \\ & \leq \frac{f(a) + f(g(b))}{2} \left( \epsilon_{\alpha,\beta,l,\omega',g(b)_-}^{\gamma,\delta,k} 1 \right) (a), \end{aligned}$$

$$\text{where } \omega' = \frac{\omega}{(g(b)-a)^\alpha}.$$

*Proof.* Since  $f$  is relative convex on  $[a, g(b)]$ , we have

$$\begin{aligned} f\left(\frac{a+g(b)}{2}\right) & = f \left[ \left( \frac{1}{2}(ta + (1-t)g(b)) \right) + \left( 1 - \frac{1}{2} \right) ((1-t)a + tg(b)) \right] \\ & \leq \frac{1}{2} f(ta + (1-t)g(b)) + \frac{1}{2} f((1-t)a + tg(b)). \end{aligned}$$

Multiplying both sides by  $2t^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha)$  and integrating over  $[0, 1]$  we have

$$\begin{aligned} 2f\left(\frac{a+g(b)}{2}\right) \int_0^1 t^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha) dt & \leq \int_0^1 t^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha) f(ta + (1-t)g(b)) dt \\ & \quad + \int_0^1 t^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha) f((1-t)a + tg(b)) dt. \quad (2.14) \end{aligned}$$

Setting  $ta + (1-t)g(b) = x$  that is  $t = \frac{g(b)-x}{g(b)-a}$  and  $(1-t)a + tg(b) = y$  that is  $t = \frac{y-a}{g(b)-a}$  we have

$$\begin{aligned} 2f\left(\frac{a+g(b)}{2}\right) \int_{g(b)}^a \left( \frac{g(b)-x}{g(b)-a} \right)^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k} \left( \omega \left( \frac{g(b)-x}{g(b)-a} \right)^\alpha \right) \left( \frac{-dx}{g(b)-a} \right) & \quad (2.15) \\ & \leq \int_{g(b)}^a \left( \frac{g(b)-x}{g(b)-a} \right)^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k} \left( \omega \left( \frac{g(b)-x}{g(b)-a} \right)^\alpha \right) f(x) \left( \frac{-dx}{g(b)-a} \right) \\ & \quad + \int_a^{g(b)} \left( \frac{y-a}{g(b)-a} \right)^{\beta-1} E_{\alpha,\beta,l}^{\gamma,\delta,k} \left( \omega \left( \frac{y-a}{g(b)-a} \right)^\alpha \right) f(y) \left( \frac{dy}{g(b)-a} \right). \end{aligned}$$

After simplification we get

$$2f\left(\frac{a+g(b)}{2}\right)\left(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}1\right)(g(b))\leq\left[\left(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}f\right)(g(b))+\left(\epsilon_{\alpha,\beta,l,\omega',g(b)-}^{\gamma,\delta,k}f\right)(a)\right]. \quad (2.16)$$

By using the relative convexity of  $f$  on  $[a, g(b)]$  one can has

$$f(ta+(1-t)g(b))+f((1-t)a+tg(b))\leq tf(a)+(1-t)f(g(b))+(1-t)f(a)+tf(g(b)).$$

Multiplying  $t^{\beta-1}E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha)$  on both sides and integrating over  $[0, 1]$  we have

$$\begin{aligned} & \int_0^1 t^{\beta-1}E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha)f(ta+(1-t)g(b))dt+\int_0^1 t^{\beta-1}E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha)f((1-t)a+tg(b))dt \\ & \leq \int_0^1 t^{\beta-1}E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha)(tf(a)+(1-t)f(g(b)))dt+\int_0^1 t^{\beta-1}E_{\alpha,\beta,l}^{\gamma,\delta,k}(\omega t^\alpha)((1-t)f(a)+tf(g(b)))dt. \end{aligned}$$

Setting  $ta+(1-t)g(b)=x$  that is  $t=\frac{g(b)-x}{g(b)-a}$  and  $(1-t)a+tg(b)=y$  that is  $t=\frac{y-a}{g(b)-a}$  and after simple calculation we have

$$\left[\left(\epsilon_{\alpha,\beta,l,\omega',a+}^{\gamma,\delta,k}f\right)(g(b))+\left(\epsilon_{\alpha,\beta,l,\omega',g(b)-}^{\gamma,\delta,k}f\right)(a)\right]\leq[f(a)+f(g(b))]\left(\epsilon_{\alpha,\beta,l,\omega',g(b)-}^{\gamma,\delta,k}1\right)(a). \quad (2.17)$$

Combinig (2.16) and (2.17) we get the result.  $\square$

**Remark 2.9.** (i) If we put  $\omega=0$  and  $k=1$  in Theorem 2.8 we obtain Theorem 1.4.

(ii) If we put  $\omega=0$  and  $\beta=\frac{\alpha}{k}$  in Theorem 2.8, then we get [11, Theorem 3].

In the upcoming theorem we give the generalization of previous result.

**Theorem 2.10.** Let  $f:[g(a),g(b)]\rightarrow\mathbb{R}$  be a positive relative convex function and  $f\in L[g(a),g(b)]$ . Then the following inequalities for generalized fractional integral operator holds

$$\begin{aligned} & f\left(\frac{g(a)+g(b)}{2}\right)\left(\epsilon_{\alpha,\beta,l,\omega',g(a)+}^{\gamma,\delta,k}1\right)(g(b)) \\ & \leq\frac{1}{2}\left[\left(\epsilon_{\alpha,\beta,l,\omega',g(a)+}^{\gamma,\delta,k}f\right)(g(b))+\left(\epsilon_{\alpha,\beta,l,\omega',g(b)-}^{\gamma,\delta,k}f\right)(a)\right] \\ & \leq\frac{f(g(a))+f(g(b))}{2}\left(\epsilon_{\alpha,\beta,l,\omega',g(b)-}^{\gamma,\delta,k}1\right)(g(a)), \end{aligned}$$

where  $\omega'=\frac{\omega}{(g(b)-g(a))^\alpha}$ .

*Proof.* Proof of this theorem is on the same lines of the proof of Theorem 2.8.  $\square$

**Corollary 2.11.** For  $\omega=0$  we obtain the following inequality for Riemann-Liouville integral operator from Theorem 2.10

$$\begin{aligned} f\left(\frac{g(a)+g(b)}{2}\right) & \leq\frac{\Gamma(\beta+1)}{2(g(b)-g(a))^\beta}[I_{g(a)+}^\beta f(g(b))+I_{g(b)-}^\beta f(g(a))] \\ & \leq\frac{f(g(a))+f(g(b))}{2}, \end{aligned}$$

with  $\beta>0$ .

**Remark 2.12.** In Theorem 2.10 if we take  $\omega=0$ ,  $\beta=\frac{\alpha}{k}$ , then we get [11, Theorem 5].

## 3. ACKNOWLEDGMENTS

The research work of Ghulam Farid is supported by Higher Education Commission of Pakistan under NRPU 2016, Project No. 5421.

## REFERENCES

1. M. Adil Khan, Y. Khurshid, T. Ali, and N. Rehman, Inequalities for three times differentiable functions, *Punjab Univ. J. Math.*, 2016, **48**(2), 35-48.
2. M. Adil Khan, T. Ali, S. S. Dragomir, Hermite-Hadamard type inequalities for conformable fractional integrals, *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.*, (2017), DOI 10.1007/s13398-0170408-5.
3. M. Adil Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals Via  $\eta$ -convex functions, *Acta Math. Univ. Comenian.*, **86**(1) (2017), 153-164.
4. M. Adil Khan, Yu-Ming Chu, A. Kashuri, R. Liko, G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, *Journal of Function spaces*, to appear.
5. M. Adil Khan, T. Ali, M. Z. Sarikaya, and Q. Din, New bounds for Hermite-Hadamard type inequalities with applications, *Electronic Journal of Mathematical Analysis and Applications*, to appear.
6. Y. M. Chu, M. Adil Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, *J. Nonlinear Sci. Appl.*, **9** (2016), 4305-4316.
7. Y. M. Chu, M. Adil Khan, T. Ali, S. S. Dragomir, Inequalities for  $\alpha$ -fractional differentiable functions, *J. Inequal. Appl.*, **2017** (2017), Article ID 93, 12 pages.
8. Y. M. Chu, M. Adil Khan, T. U. Khan, and J. Khan, Some new inequalities of Hermite-Hadamard type for  $s$ -convex functions with applications, *Open Math.*, **15** (2017) 1414-1430.
9. D. I. Duca, L. Lupa, Saddle points for vector valued functions: existence, necessary and sufficient theorems, *J. Glob. Optimization* **53** (2012), 431-440.
10. G. Farid, Hadamard and Fejér-Hadamard inequalities for generalized fractional integrals involving special functions, *Konuralp J. Math.* **4**(1) (2016), 108-113.
11. G. Farid, A. U. Rehman and M. Zahra, On Hadamard inequalities for relative convex functions via fractional integrals, *Nonlinear Anal. Forum* **21**(1) (2016) 77-86.
12. I. Iscan, Hermite Hadamard Fejér type inequalities for convex functions via fractional integrals, *Stud. Univ. Babes-Bolyai Math.* **60**(3) (2015), 355-366.
13. M. A. Noor, Differential non-convex functions and general variational inequalities, *Appl. Math. Comp.*, **199**(2) (2008), 623-630.
14. M. A. Noor, K. I. Noor and M. U. Awan, *Generalized convexity and integral inequalities*, *Appl. Math. Inf. Sci.*, **9** (1) (2015), 233-243.
15. J. Pečarić, F. Proschan and Y. L. Tong, Convex funtions, partial orderings and statistical applications, Academic Press, New York, 1992.
16. T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, *Yokohama Math. J.* **19** (1971), 7-15.
17. L. T. O. Salim and A. W. Faraj, A Generalization of Mittag-Leffler function and integral operator associated with integral calculus, *J. Frac. Calc. Appl.* **3**(5) (2012), 1-13.
18. E. Set, S. S. Karatas and M. Adil Khan, Hermite-Hadamard type inequalities obtained via fractional integral for differentiable  $m$ -convex and  $(\alpha, m)$ -convex function, *International Journal of Analysis*, **2016**, Article ID 4765691, 8 pages.
19. H. M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel, *Appl. Math. Comput.* **211**(1) (2009), 198-210.