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ABSTRACT. This paper considers a linear damped wave equation with dynamic bouandary
conditions where two feedback terms have a delay. In bounded domain, we first estab-
lish the question of well-posedness and uniqueness of the solution for the initial-boundary
value problem, using semigroup arguments in [13, 14, 29]. Next, by introducing suitable
Lyapunov functionals, exponential stability estimates are obtained under conditions on
the delay terms.
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1. INTRODUCTION

It is well known that the PDEs with time delay have been much studied during
the last years and their results is by now rather developed. See [5, 7, 1, 26, 24, 32, 31]

In the classical theory of delayed wave equations, several main parts are joined in
a fruitful way, it is very remarkable that the damped wave equation with two delays
occupies a similar position and arise in many applied problems, when it comes to
boundary conditions.

Dynamic boundary conditions arise in many physical applications, in particular
they occur in elastic models. These conditions appear in modelling dynamic vibra-
tions of linear viscoelastic rods and beams which have attached tip masses at their
free ends. See [2, 4, 6, 22, 10].
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In this paper, we consider n-dimensional wave equation with strong damping
and boundary conditions when two terms acting on the boundary are delayed in
the following problem

u′′ −∆u− a∆u′ = 0 in Ω× R+, (1.1)
u = 0 on Γ0 × R+, (1.2)

µu′′ + ∂(u+au′)
∂ν = −k1u

′(x, t− τ1)− k2u
′(x, t− τ2) on Γ1 × R+, (1.3)

u(x, 0) = u0(x), u′(x, 0) = u1(x) in Ω, (1.4)
u′ = f0 in Γ1 × (−max (τ1(0), τ2(0)) , 0), (1.5)

where Ω ⊂ Rn is an open bounded set with boundary Γ of class C2. We assume
that Γ is divided into two parts Γ0 and Γ1; i.e., Γ = Γ0 ∪ Γ1, with Γ0 ∩ Γ1 = ∅ and
measΓ0 ̸= 0.

The vector ν(x) denotes the outer unit normal vector to the point x ∈ Γ and
∂u
∂ν is the normal derivative. Moreover, τi = τi(t), i = 1, 2 is the time delay, µ, a, k
are real numbers, with µ ≥ 0, a > 0, and the initial datum (u0, u1, f0) belongs to a
suitable space.

We define the energy of system (1.1)–(1.5) as

E(t) :=
1

2

∫
Ω

{u′2 + |∇u|2}dx+
ξ1
2

∫ t

t−τ1

∫
Γ1

eλ(s−t)u′2(x, s)dΓds

+
ξ2
2

∫ t

t−τ2

∫
Γ1

eλ(s−t)u′2(x, s)dΓds+
µ

2

∫
Γ1

u′2dΓ, (1.6)

where ξi, λ are suitable positive constants.
To motivate our work, let us mention the major work [25], when the authors

studied well-posedness and exponential stability of the problem (1.1)–(1.5) with
structural damping and boundary delay in both cases µ > 0 and µ = 0 in a bounded
and smooth domain, where k2 = 0. The analogous problem with boundary feedback
has been introduced and studied by Xu, Yung, Li [31] in one-space dimension using
a fine spectral analysis and in higher space dimension by the authors [26]. The case
of time-varying delay has been already studied in [28] in one space dimension and
in general dimension, with a possibly degenerate delay, in [27]. Both these papers
deal with boundary feedback.

When τ1(t) ≡ τ2(t) ≡ 0 (in absence of delays), it is well-known that the above
problem is exponentially stable. See in this direction [3, 19, 18, 20, 15, 17, 16, 33,
12, 23, 8, 30, 10]. When µ = 0, k2 = 0, in presence of a constant delay, and the
condition (1.3) is substituted by

∂u

∂ν
= −kut(x, t− τ), Γ1 × (0,+∞),

the system becomes unstable for arbitrarily small delays (see [6]).
The above model without delay (e.g. τ = 0) has been proposed in one di-

mension by Pellicer and Sòla-Morales [30] as an alternative model for the classical
spring-mass damper system. In both cases, no rates of convergence are proved. In
dimension higher than 1, we refer to Gerbi and Said-Houari [10] where a nonlinear
boundary feedback is even considered and the exponential growth of the energy is
proved if the initial data are large enough. A different problem with a dynamic
boundary condition (without delay), motivated by the study of flows of gas in a
channel with porous walls, is analyzed in [8] where exponential decay is proved.
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2. Assumptions

We assume, on the time-delay functions, that there exist positive constants
τ0, τ̃0, τ , τ̃ such that

0 < τ0 ≤ τ1 ≤ τ , ∀t > 0, (2.1)
0 < τ̃0 ≤ τ2 ≤ τ̃ , ∀t > 0. (2.2)

Moreover, we assume
τi ∈ W 2,∞([0, T ]), ∀T > 0, i = 1, 2, (2.3)
max{τ ′1, τ ′2} ≤ d < 1, ∀t > 0, (2.4)

where d is the positive constant.
Under (2.3)-(2.4) we will prove that an exponential stability result holds under

a suitable assumption between the coefficients a and k1, k2.
Let C∗ be a Poincaré’s type constant defined as the smallest positive constant

such that ∫
Γ1

|v|2dΓ ≤ C∗
∫
Ω

|∇v|2dx, ∀v ∈ H1
Γ0
(Ω), (2.5)

where, as usual,
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u = 0 on Γ0}.

We will give a well-posedness result under the assumption
|k|C∗
√
1− d

≤ a

2
, k = max{k1, k2}. (2.6)

We omit the space variable x of u(x, t), u′(x, t) and for simplicity reason denote
u(x, t) = u and u′(x, t) = u′, when no confusion arises. The constants c used
throughout this paper are positive generic constants which may be different in
various occurrences also the functions considered are all real valued, here u′ =
du(t)/dt and u′′ = d2u(t)/dt2.

3. EXISTENCE OF SOLUTION

First as in [26] we introduce the new variables
z(x, ρ, t) = u′(x, t− τ1ρ) in Γ1 × (0, 1)× (0,+∞), (3.1)
w(x, ρ, t) = u′(x, t− τ2ρ) in Γ1 × (0, 1)× (0,+∞). (3.2)

Then we have
τ1z

′(x, ρ, t) + zρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞), (3.3)
τ2w

′(x, ρ, t) + wρ(x, ρ, t) = 0 in Ω× (0, 1)× (0,+∞). (3.4)
Therefore problem (1.1)–(1.5) is equivalent to

u′′ −∆u− a∆u′ = 0 in Ω× (0,+∞), (3.5)
τ1z

′(x, ρ, t) + (1− τ ′1ρ)zρ(x, ρ, t) = 0 in Γ1 × (0, 1)× (0,+∞), (3.6)
τ2w

′(x, ρ, t) + (1− τ ′2ρ)zρ(x, ρ, t) = 0 in Γ1 × (0, 1)× (0,+∞), (3.7)
u = 0 on Γ0 × (0,+∞), (3.8)

µu′′ = −∂(u+au′)
∂ν − k1z(x, 1, t)− k2w(x, 1, t) on Γ1 × (0,+∞), (3.9)

z(x, 0, t) = w(x, 0, t) = u′ on Γ1 × (0,∞), (3.10)
u(x, 0) = u0(x) and u′(x, 0) = u1(x) in Ω, (3.11)
z(x, ρ, 0) = f0(x,−ρτ1(0)) in Γ1 × (0, 1), (3.12)
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w(x, ρ, 0) = f0(x,−ρτ2(0)) in Γ1 × (0, 1). (3.13)
Let us denote

U = (u, u′, γu′, z, w)T ,

where γ is the trace operator on Γ1. Then problem (1.1)–(1.5) equivalent to

U ′ = (u′, u′′, γ1u
′′, z′, w′)

T

= (u′,∆u+ a∆u′,−µ−1(∂(u+au′)
∂ν + k1z(·, 1, ·) + k2w(·, 1, ·)), τ ′

1(t)ρ−1
τ1

zρ,
τ ′
2(t)ρ−1

τ2
wρ)

T .

Therefore, problem (1.1)–(1.5) can be rewritten as
U ′ = A(t)U,

U(0) = (u0, u1, γ1u1, f0(·,− · τ1), f0(·,− · τ2))T , (3.14)
where A(t) is defined by
A(t)(u, v, v1, z, w)

T

=
(
v,∆(u+ av),−µ−1

(
∂(u+av)

∂ν + k1z(·, 1) + k2w(·, 1)
)
,
τ ′
1(t)ρ−1
τ1(t)

zρ,
τ ′
2(t)ρ−1
τ2(t)

wρ

)T

,

with domain of A(t) given by
D(A(t)) (3.15)

=
{
(u, v, v1, z, w)

T ∈ H1
Γ0
(Ω)× L2(Ω)× L2(Γ1)

× (L2(Γ1 × (0, 1)))2 × L2(Γ1 × (0, 1)),

u+ av ∈ E
(
∆, L2(Ω)

)
, ∂(u+av)

∂ν ∈L2(Γ1), v = v1 = z (·, 0) = w (·, 0) on Γ1

}
is independent of the time t, i.e.,

D(A(t)) = D(A(0)), t > 0. (3.16)
where

E(∆, L2(Ω)) = {u ∈ H1(Ω) : ∆u ∈ L2(Ω)}.
For a function u ∈ E(∆, L2(Ω)), ∂u

∂ν belongs to H−1/2(Γ1) and the next Green
formula ∫

Ω

∇u∇qdx = −
∫
Ω

∆uqdx+ ⟨∂u
∂ν

; q⟩Γ1 , ∀q ∈ H1
Γ0
(Ω), (3.17)

is valid (see [11]), where ⟨·; ·⟩Γ1
means the duality pairing between H−1/2(Γ1) and

H1/2(Γ1).
Let us introduce a Hilbert space H̃ defined by

H̃ = H1
Γ0
(Ω)× L2(Ω)× L2(Γ1)× (L2(Γ1 × (0, 1)))2,

equipped with the standard inner product⟨
(u, v, v1, z, w)

T , (ũ, ṽ, ṽ1, z̃, w̃)
T
⟩
H̃

=

∫
Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx

+ µ

∫
Γ1

v1(x)ṽ1(x)dΓ + ξ1τ1 (t)

∫
Γ1

∫ 1

0

z(x, ρ)z̃(x, ρ)dρdΓ

+ ξ2τ2 (t)

∫
Γ1

∫ 1

0

w (x, ρ) w̃ (x, ρ) dρdΓ. (3.18)

Remark 3.1. The time varying operator A(t) is an unbounded in H̃.
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The next theorem is our main tool to prove well-posedness results, its proof is
similar in [13].

Theorem 3.1. Assume that
(i) D(A(0)) is a dense subset of H̃,
(ii) D(A(t)) = D(A(0)) for all t > 0,
(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H̃ and

the family A = {A(t) : t ∈ [0, T ]} is stable with stability constants C and m
independent of t (i.e. the semigroup (St(s))s≥0 generated by A(t) satisfies
∥St(s)u∥H̃ ≤ Cems∥u∥H̃ , for all u ∈ H̃ and s ≥ 0),

(iv) ∂tA belongs to L∞
∗ ([0, T ], B(D(A(0)), H̃)), the space of equivalent classes

of essentially bounded, strongly measurable functions from [0, T ] into the
set B(D(A(0)), H̃) of bounded operators from D(A(0)) into H̃.

Then, problem (3.14) has a unique solution U ∈ C([0, T ], D(A(0))) ∩ C1([0, T ], H̃)
for any initial datum in D(A(0)).

Let ξ1 and ξ2 are a positive constants such that
|k|√
1− d

≤ ξi ≤
a

C∗ − |k|√
1− d

, for i = 1, 2. (3.19)

In order to deduce a well-posedness result, we define on H̃ the time dependent inner
product ⟨

(u, v, v1, z, w)
T , (ũ, ṽ, ṽ1, z̃, w̃)

T
⟩
t

=

∫
Ω

{∇u(x)∇ũ(x) + v(x)ṽ(x)}dx

+ µ

∫
Γ1

v1(x)ṽ1(x)dΓ

+ ξ1τ1(t)

∫
Γ1

∫ 1

0

z(x, ρ)z̃(x, ρ)dρ dΓ

+ ξ2τ2 (t)

∫
Γ1

∫ 1

0

w (x, ρ) w̃ (x, ρ) dρdΓ. (3.20)

and using Theorem 3.1.

Theorem 3.2. Assume that (2.1)–(2.4) and (2.6) hold. Then for any initial da-
tum U0 ∈ H̃ there exists a unique solution U ∈ C([0,+∞), H̃) of problem (3.14).
Moreover, if U0 ∈ D(A(0)), then

U ∈ C([0,+∞), D(A(0))) ∩ C1([0,+∞), H̃).

We need to check assumptions of Theorem 3.1 for problem (3.14).

Lemma 3.2. D(A(0)) is dense in H̃.

Proof. Let (f, g, g1, h1, h2)
T ∈ H̃ be orthogonal to all elements of D(A(0)), that is,

0 =
⟨
(u, v, v1, z, w)

T , (f, g, g1, h1, h2)
T
⟩
H̃

=

∫
Ω

{∇u(x)∇f(x) + v(x)g(x)}dx

+

∫
Γ1

v1g1dΓ +

∫
Γ1

∫ 1

0

z(x, ρ)h1(x, ρ)dρdΓ
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+

∫
Γ1

∫ 1

0

w(x, ρ)h2(x, ρ)dρdΓ

∀(u, v, v1, z, w)T ∈ D(A(0)).
Taking u = v = 0 (then v1 = 0) , z = 0 and w ∈ D(Γ1×(0, 1)). As (0, 0, 0, 0, w)T ∈

D(A(0)), we obtain ∫
Γ1

∫ 1

0

w(x, ρ)h2(x, ρ)dρdΓ = 0.

Since D(Γ1 × (0, 1)) is dense in L2(Γ1 × (0, 1)), we deduce that h2 = 0.
In the same way, by taking u = v = 0 (then v1 = 0), w = 0 and z ∈ D(Γ1×(0, 1)).

As (0, 0, 0, z, 0)
T ∈ D(A(0)), we obtain∫

Γ1

∫ 1

0

z(x, ρ)h1(x, ρ)dρdΓ = 0.

Since D(Γ1 × (0, 1)) is dense in L2(Γ1 × (0, 1)), we deduce that h1 = 0. Also for
u = z = w = 0 and v ∈ D(Ω) (then v1 = 0) we see that g = 0. Therefore, for u = 0,
z = 0 and w = 0, we deduce also∫

Γ1

g1v1dΓ = 0, ∀v1 ∈ D(Γ1),

and so g1 = 0.
The above orthogonality condition is then reduced to

0 =

∫
Ω

∇u∇fdx, ∀(u, v, v1, z, w)T ∈ D(A(0)).

By restricting ourselves to v = z = w = 0, we obtain∫
Ω

∇u(x)∇f(x)dx = 0, ∀(u, 0, 0, 0, 0)T ∈ D(A(0)).

But we easily see that (u, 0, 0, 0, 0)T ∈ D(A(0)) if and only if u ∈ E(∆, L2(Ω)) ∩
H1

Γ0
(Ω). This set is dense in H1

Γ0
(Ω) (equipped with the inner product ⟨., .⟩H1

Γ0
(Ω)),

thus we conclude that f = 0. �

Lemma 3.3. Let Φ = (u, v, v1, z, w)
T , then

∥Φ∥t ≤ ∥Φ∥se
(

d(τ̃0+τ0)
τ0τ̃0

)
|t−s|

, ∀t, s ∈ [0, T ], (3.21)
where d is a positive constant.

Proof. For all s, t ∈ [0, T ], we have

∥Φ∥2t − ∥Φ∥2se
(

d(τ̃0+τ0)
τ0τ̃0

)
|t−s|

=

(
1− e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s|

)(∫
Ω

(|∇u(x)|2 + v2)dx+ µ

∫
Γ1

v21dΓ

)
+ ξ1

(
τ1(t)− τ1(s)e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s|

)∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ

+ ξ2

(
τ2(t)− τ2(s)e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s|

)∫
Γ1

∫ 1

0

w2(x, ρ)dρdΓ.

We notice that
e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s| ≥ 1.
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Moreover
τ1(t)− τ1(s)e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s| ≤ 0,

and
τ2(t)− τ2(s)e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s| ≤ 0,

for some d > 0.
Indeed,

τ1(t) = τ1(s) + τ ′1(a)(t− s),

and
τ2(t) = τ2(s) + τ ′2(b)(t− s),

where a, b ∈ (s, t), and thus,
τ1(t)

τ1(s)
= 1 +

|τ ′1(a)|
τ1(s)

|t− s|,

τ2(t)

τ2(s)
= 1 +

|τ ′2(b)|
τ2(s)

|t− s|.

By (2.3), τ ′1 and τ ′2 are bounded on [0, T ] and therefore, recalling also (2.1), (2.2),
τ1(t)

τ1(s)
≤ 1 +

d

τ0
|t− s| ≤ e

d
τ0

|t−s|,

τ2(t)

τ2(s)
≤ 1 +

d

τ̃0
|t− s| ≤ e

d
τ̃0

|t−s|,

thus
τ1(t)

τ1(s)
≤ e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s|

,

and
τ2(t)

τ2(s)
≤ e

(
d(τ̃0+τ0)

τ0τ̃0

)
|t−s|

.

This complete the proof. �

Lemma 3.4. Under condition (3.19), the operator Ã(t) = A(t)−κ(t)I is dissipative,
and

d

dt
Ã(t) ∈ L∞

∗ ([0, T ], B(D(A(0)), H̃)),

where

κ(t) =

√
τ ′21 (t) + 1

2τ1(t)
+

√
τ ′22 (t) + 1

2τ2 (t)
. (3.22)

Proof. Taking U = (u, v, v1, z, w)
T ∈ D(A(t)). Then, for a fixed t,

⟨A(t)U,U⟩t =
∫
Ω

{∇v(x)∇u(x) + v(x)∆(u(x) + av(x))}dx

− ξ1

∫
Γ1

∫ 1

0

(1− τ ′1(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ

− ξ2

∫
Γ1

∫ 1

0

(1− τ ′2(t)ρ)wρ(x, ρ)w(x, ρ)dρdΓ

−
∫
Γ1

(
∂(u+ av)

∂ν
(x) + k1z(x, 1) + k2w(x, 1)

)
v(x)dΓ.
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By Green’s formula,

⟨A(t)U,U⟩t = −k

∫
Γ1

z(x, 1)v(x)dΓ− a

∫
Ω

|∇v(x)|2dx

− ξ1

∫
Γ1

∫ 1

0

(1− τ ′1(t)ρ)zρ(x, ρ)z(x, ρ)dρdΓ

− ξ2

∫
Γ

∫ 1

0

(1− τ ′ (t) ρ)wρ (x, ρ)w (x, ρ) dρdΓ. (3.23)

Integrating by parts in ρ and ρ we obtain∫
Γ1

∫ 1

0

zρ(x, ρ)z(x, ρ)(1− τ ′1(t)ρ)dρdΓ

=

∫
Γ1

∫ 1

0

1

2

∂

∂ρ
z2(x, ρ)(1− τ ′1(t)ρ)dρdΓ

=
τ ′1(t)

2

∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ +
1

2

∫
Γ1

{z2(x, 1)(1− τ ′1(t))− z2 (x, 0)}dΓ, (3.24)

and∫
Γ1

∫ 1

0

wρ (x, ρ)w (x, ρ) (1− τ ′2 (t)) dρdΓ

=

∫
Γ1

∫ 1

0

1

2

∂

∂ρ
w2 (x, ρ) (1− τ ′2 (t)) dρdΓ

=
τ ′2 (t)

2

∫
Γ1

∫ 1

0

w2 (x, ρ) dρdΓ +

∫
Γ1

{
w2 (x, 1) (1− τ ′2 (t))− w2 (x, 0)

}
dΓ. (3.25)

Therefore, from (3.23), (3.24) and (3.25),
⟨A(t)U,U⟩t

= −k1

∫
Γ1

z(x, 1)v(x)dΓ− k2

∫
Γ1

w(x, 1)v(x)dΓ− a

∫
Ω

|∇v(x)|2dx

− ξ1
2

∫
Γ1

{z2(x, 1)(1− τ ′1(t))− z2(x, 0)}dΓ− ξ1τ
′
1(t)

2

∫
Γ1

∫ 1

0

Z2(x, ρ)dρdΓ

− ξ2
2

∫
Γ1

{w2(x, 1)(1− τ ′2(t))− w2(x, 0)}dΓ− ξ2τ
′
2(t)

2

∫
Γ1

∫ 1

0

w2(x, ρ)dρdΓ

= −k1

∫
Γ1

z(x, 1)v(x)dΓ− k2

∫
Γ1

w(x, 1)v(x)dΓ

− a

∫
Ω

|∇v(x)|2dx− ξ1
2

∫
Γ1

z2(x, 1)(1− τ ′1(t))dΓ

− ξ2
2

∫
Γ1

w2(x, 1)(1− τ ′2(t))dΓ +
ξ1
2

∫
Γ1

v2(x)dΓ− ξ1τ
′
1(t)

2

∫
Γ1

∫ 1

0

z2(x, ρ)dρdΓ

+
ξ2
2

∫
Γ1

v2(x)dΓ− ξ2τ
′
2(t)

2

∫
Γ1

∫ 1

0

w2(x, ρ)dρdΓ.

Using Cauchy-Schwarz’s and Poincaré’s inequalities, a trace estimate, it follows that
⟨A(t)U,U⟩t

≤ −
[(

a

2
− |k|C∗

2
√
1− d

− ξ1
2
C∗

)
+

(
a

2
− |k|C∗

2
√
1− d

− ξ2
2
C∗

)]∫
Ω

|∇v(x)|2dx
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−
(
ξ1
2
(1− d)− |k|

2

√
1− d

)∫
Γ1

z2(x, 1)dΓ

−
(
ξ2
2
(1− d)− |k|

2

√
1− d

)∫
Γ1

w2 (x, 1) dΓ + κ(t)⟨U,U⟩t, (3.26)

where

κ(t) =
(τ ′21 (t) + 1)

1
2

2τ1(t)
+

(
τ ′22 (t) + 1

) 1
2

2τ2 (t)
.

then, from (3.19),
⟨A(t)U,U⟩t ≤ κ(t)⟨U,U⟩t. (3.27)

Moreover,

κ′(t) =
τ ′′1 (t)τ

′
1(t)

2τ1(t)(τ ′21 + 1)
1
2

− τ ′1(t)(τ
′2
1 (t) + 1)

1
2

2τ1(t)2

+
τ ′′2 (t)τ

′
2(t)

2τ2(t)(τ ′22 (t) + 1)
1
2

− τ ′2(t)(τ
′2
2 (t) + 1)

1
2

2τ2(t)2
,

is bounded on [0, T ] for all T > 0 (by (2.1) and (2.3) and we have
d

dt
A(t)U

= (0, 0, 0,
τ ′′1 (t)τ1(t)ρ− τ ′1(t)(τ

′
1(t)ρ− 1)

τ1(t)2
zρ,

τ ′′2 (t)τ2(t)ρ− τ ′2(t) (τ
′
2(t)ρ− 1)

τ2(t)2
wρ)

T

(3.28)

with τ ′′
1 (t)τ1(t)ρ−τ ′

1(t)(τ
′
1(t)ρ−1)

τ1(t)2
and τ ′′

2 (t)τ2(t)ρ−τ ′
2(t)(τ

′
2(t)ρ−1)

τ2(t)2
are bounded on [0, T ].

Thus
d

dt
Ã(t) ∈ L∞

∗ ([0, T ], B(D(A(0)), H̃)), (3.29)

the space of equivalence classes of essentially bounded, strongly measurable func-
tions from [0, T ] into B(D(A(0)), H̃). �

Lemma 3.5. For fixed t > 0 and λ > 0, the operator λI −A(t) is surjective.

Proof. Let (f, g, g1, h1, h2)
T ∈ H̃, we seek U = (u, v, v1, z, w)

T ∈ D(A(t)) solution
of

(λI −A(t))(u, v, v1, z, w)
T = (f, g, g1, h1, h2)

T ,

that is verifying

λu− v = f,

λv −∆(u+ av) = g,

λv1 + µ−1

(
∂ (u+ av)

∂ν
(x) + k1z (x, 1) + k2w (x, 1)

)
= g1, (3.30)

λz +
1− τ ′1 (t) ρ

τ1 (t)
zρ = h1,

λw +
1− τ ′2 (t) ρ

τ2 (t)
wρ = h2.

Suppose that we have found u with the appropriate regularity. Then

v = λu− f, (3.31)
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and we can determine z, w. Indeed, by (3.15),
z(x, 0) = v(x), for x ∈ Γ1, (3.32)

and, from (3.30),

λz(x, ρ) +
1− τ ′1(t)ρ

τ1(t)
zρ(x, ρ) = h1(x, ρ), for x ∈ Γ1, ρ ∈ (0, 1). (3.33)

Then, by (3.32) and (3.33), we obtain

z(x, ρ) = v(x)e−λρτ1(t) + τ1(t)e
−λρτ1(t)

∫ ρ

0

h1(x, σ)e
λστ1(t)dσ,

if τ ′1(t) = 0, and

z(x, ρ) = v(x)e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)ρ)

+ e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)ρ)

∫ ρ

0

h1(x, σ)τ1(t)

1− τ ′1(t)σ
e
−λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)σ)dσ,

otherwise. From (3.31),
z(x, ρ) = λu(x)e−λρτ1(t) − f(x)e−λρτ1(t)

+ τ1(t)e
−λρτ1(t)

∫ ρ

0

h1(x, σ)e
λστ1(t)dσ, (3.34)

on Γ1 × (0, 1).
If τ ′1(t) = 0, and

z(x, ρ) = λu(x)e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)ρ) − f(x)e

λ
τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)ρ)

+ e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)ρ)

∫ ρ

0

h1(x, σ)τ1(t)

1− τ ′1(t)σ
e
−λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)σ)dσ, (3.35)

on Γ1 × (0, 1) otherwise.
In particular, if τ ′1(t) = 0,

z(x, 1) = λu(x)e−λτ1(t) + z0(x), x ∈ Γ1, (3.36)
with z0 ∈ L2(Γ1) defined by

z0(x) = −f(x)e−λτ1(t) + τ1(t)e
−λτ1(t)

∫ 1

0

h1(x, σ)e
λστ1(t)dσ, x ∈ Γ1, (3.37)

and, if τ ′1(t) ̸= 0,

z(x, 1) = λu(x)e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)) + z0(x), x ∈ Γ1, (3.38)

with z0 ∈ L2(Γ1) defined by

z0(x) = −f(x)e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t))

+ e
λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t))

∫ 1

0

h1(x, σ)τ1(t)

1− τ ′1(t)σ
e
−λ

τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)σ)dσ. (3.39)

Now we will determine w, again by (3.15),

λw (x, ρ) +
1− τ ′2 (t) ρ

τ2 (t)
wρ (x, ρ) = h2 (x, ρ) ,

then
w(x, ρ) = v(x)e−λρτ2(t) + τ2(t)e

−λρτ2(t)

∫ ρ

0

h2(x, σ)e
λστ2(t)dσ,
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if τ ′2(t) = 0, and

w(x, ρ) = v(x)e
λ

τ2(t)

τ′
2

ln(1−τ ′
2(t)ρ)

+ e
λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)ρ)

∫ ρ

0

h2(x, σ)τ2(t)

1− τ ′2(t)σ
e
−λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)σ)dσ,

otherwise. From (3.31),
w(x, ρ) = λu(x)e−λρτ2(t) − f(x)e−λρτ2(t)

+ τ2(t)e
−λρτ2(t)

∫ ρ

0

h2(x, σ)e
λστ2(t)dσ, (3.40)

if τ ′2(t) = 0, and

w(x, ρ) = λu(x)e
λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)ρ) − f(x)e

λ
τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)ρ)

+ e
λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)ρ)

∫ ρ

0

h2(x, σ)τ2(t)

1− τ ′2(t)σ
e
−λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)σ)dσ, (3.41)

on Γ1 × (0, 1) otherwise.
In particular, if τ ′2(t) = 0,

w(x, 1) = λu(x)e−λτ2(t) + w0(x), x ∈ Γ1, (3.42)
with w0 ∈ L2(Γ1) defined by

w0(x) = −f(x)e−λτ2(t) + τ2(t)e
−λτ2(t)

∫ 1

0

h2(x, σ)e
λστ2(t)dσ, x ∈ Γ1, (3.43)

and, if τ ′2(t) ̸= 0,

w(x, 1) = λu(x)e
λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)) + w0(x), x ∈ Γ1, (3.44)

with w0 ∈ L2(Γ1) defined by

w0(x) = −f(x)e
λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t))

+ e
λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t))

∫ 1

0

h2(x, σ)τ2(t)

1− τ ′2(t)σ
e
−λ

τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)σ)dσ, (3.45)

for x ∈ Γ1. Then, we have to find u. In view of the equation
λv −∆(u+ av) = g,

we set s = u+ av and look at s. Now according to (3.31), we may write
v = λu− f = λs− f − λav,

or equivalently
v =

λ

1 + λa
s− 1

1 + λa
f. (3.46)

Hence once s will be found, we will get v by (3.46) and then u by u = s − av, or
equivalently

u =
1

1 + λa
s+

a

1 + λa
f. (3.47)

By (3.46) and (3.30), the function s satisfies
λ2

1 + λa
s−∆s = g +

λ

1 + λa
f in Ω, (3.48)

with the boundary conditions
s = 0 on Γ0, (3.49)
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as well as (at least formally)
∂s

∂ν
= µg1 − µλv1 − k1z(·, 1)− k2w(·, 1) on Γ1,

which becomes due to (3.46), (3.47), (3.36), (3.38), (3.40) and the requirement that
v1 = γ1v on Γ1:

∂s

∂ν
= −λ(k1e

−λτ1(t) + k2e
−λτ2(t) + µλ)

1 + λa
s+ l on Γ1, (3.50)

where

l = µg1 +
λ(µ− k1ae

−λτ1(t) − k2ae
−λτ2(t))

1 + λa
f − k1z0 − k2w0 on Γ1,

if τ ′1(t) = τ ′2(t) = 0, before τ ′1(t) ̸= 0 and τ ′2(t) ̸= 0 we obtain

∂s

∂ν
= −λ(k1e

−λ
τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)) + k2e

−λ
τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)) + µλ)

1 + λa
s+ l̃ on Γ1, (3.51)

where

l̃ = µg1+
λ(µ− k1ae

−λ
τ1(t)

τ′
1(t)

ln(1−τ ′
1(t)) − k2ae

−λ
τ2(t)

τ′
2(t)

ln(1−τ ′
2(t)))

1 + λa
f−k1z0−k2w0 on Γ1.

From (3.48), integrating by parts, and using (3.49), (3.50), (3.51) we find the vari-
ational problem∫

Ω

(
λ2

1 + λa
sq +∇s · ∇q)dx+

∫
Γ1

λ(k1e
−λτ1 + k2e

−λτ2 + µλ)

1 + λa
sqdΓ

=

∫
Ω

(g +
λ

1 + λa
f)qdx+

∫
Γ1

lqdΓ ∀q ∈ H1
Γ0
(Ω), (3.52)

if τ ′1(t) = τ ′2(t) = 0, before τ ′1(t) ̸= 0 and τ ′2(t) ̸= 0 we obtain∫
Ω

(
λ2

1 + λa
sq +∇s · ∇q)dx+

∫
Γ1

λ(k1e
−λ

τ1
τ′
1
ln(1−τ ′

1) + k2e
−λ

τ2
τ′
2
ln(1−τ ′

2) + µλ)

1 + λa
sqdΓ

=

∫
Ω

(g +
λ

1 + λa
f)qdx+

∫
Γ1

l̃qdΓ ∀q ∈ H1
Γ0
(Ω). (3.53)

If τ ′1(t) = 0 and τ ′2(t) ̸= 0 we have∫
Ω

(
λ2

1 + λa
sq +∇s · ∇q)dx+

∫
Γ1

λ(k1e
−λτ1 + k2e

−λ
τ2
τ′
2
ln(1−τ ′

2) + µλ)

1 + λa
sqdΓ

=

∫
Ω

(g +
λ

1 + λa
f)qdx+

∫
Γ1

l̃qdΓ ∀q ∈ H1
Γ0
(Ω). (3.54)

Otherwise, we get∫
Ω

(
λ2

1 + λa
sq +∇s · ∇q)dx+

∫
Γ1

λ(k1e
−λ

τ1
τ′
1
ln(1−τ ′

1) + k2e
−λτ2 + µλ)

1 + λa
sqdΓ

=

∫
Ω

(g +
λ

1 + λa
f)qdx+

∫
Γ1

l̃qdΓ ∀q ∈ H1
Γ0
(Ω), (3.55)

As the left-hand side of (3.52), (3.53), (3.54), (3.55) is coercive on H1
Γ0
(Ω), the

Lax-Milgram lemma guarantees the existence and uniqueness of a solution s ∈
H1

Γ0
(Ω) of (3.52), (3.53), (3.54), (3.55).
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If we consider q ∈ D(Ω) in (3.52), (3.53), we have that s solves (3.48) in D′(Ω)
and thus s = u+ av ∈ E(∆, L2(Ω)).

Using Green’s formula (3.17) in (3.52) and using (3.48), we obtain∫
Γ1

λ(k1e
−λτ1 + k2e

−λτ2 + µλ)

1 + λa
sqdΓ + ⟨ ∂s

∂ν
; q⟩Γ1

=

∫
Γ1

lq dΓ,

leading to (3.50) and then to the third equation of (3.30) due to the definition of l
and the relations between u, v and s. We find the same result if τ ′i(t) ̸= 0, i = 1, 2.

In conclusion, we have found (u, v, v1, z, w)
T ∈ D(A), which verifies (3.30), and

thus λI−A(t) is surjective for some λ > 0 and t > 0. Again as κ(t) > 0, this proves
that

λI − Ã(t) = (λ+ κ(t))I −A(t) is surjective, (3.56)
for any λ > 0 and t > 0. �

Proof. (of Theorem 3.2) Then, (3.21), (3.27) and (3.56) imply that the family Ã =

{Ã(t) : t ∈ [0, T ]} is a stable family of generators in H̃ with stability constants
independent of t. Therefore, all assumptions of Theorem 3.1 are satisfied by (3.16),
Lemma3.2– Lemma3.5, and thus, the problem

Ũ ′ = Ã(t)Ũ ,

Ũ(0) = U0,

has a unique solution Ũ ∈ C([0,+∞), D(A(0)))∩C1([0,+∞), H̃) for U0 ∈ D(A(0)).
The requested solution is then given by

U(t) = e
∫ t
0
κ(s)dsŨ(t).

This concludes the proof. �

4. STABILITY RESULT

Now, we show that problem (1.1)–(1.5) is uniformly exponentially stable under
the assumption

a

2
>

C∗|k|√
1− d

. (4.1)

We fix ξi, (given in (1.6)) such that
|k|√
1− d

< ξi <
a

C∗ − |k|√
1− d

, i = 1, 2. (4.2)

Moreover, the parameter λ (given in (1.6)) is fixed to satisfy

λ < min

{
1

τ

∣∣∣∣log |k|
ξ1
√
1− d

∣∣∣∣ , 1τ̃
∣∣∣∣log |k|

ξ2
√
1− d

∣∣∣∣} . (4.3)

We start with giving an explicit formula for the derivative of the energy.

Lemma 4.1. Assume (2.1)–(2.4) and (4.1). Then, for any regular solution of
problem (1.1)–(1.5) the energy is decreasing and, for a suitable positive constant C,
we have

E′(t) ≤ −C

{∫
Ω

|∇u′|2 dx+

∫
Γ1

u′2(x, t− τ1 (t))dΓ +

∫
Γ1

u′2 (x, t− τ2 (t)) dΓ

}
− C

{∫ t

t−τ1(t)

∫
Γ1

eλ(s−t)u′2(x, s)dΓds+

∫ t

t−τ2(t)

∫
Γ1

eλ(s−t)u′2 (x, s) dΓds

}
.

(4.4)
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Proof. Differentiating (1.6), we obtain

E′(t) =

∫
Ω

{u′u′′ +∇u∇u′}dx+
ξ1 + ξ2

2

∫
Γ1

u′2dΓ + µ

∫
Γ1

u′u′′ dΓ

− ξ1(1− τ ′1)

2

∫
Γ1

e−λτ1u′2(x, t− τ1)dΓ− ξ2(1− τ ′2)

2

∫
Γ1

e−λτ2u′2(x, t− τ2)dΓ

− λ
ξ1
2

∫ t

t−τ1

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds− λ
ξ2
2

∫ t

t−τ2

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds,

and then, applying Green’s formula,

E′(t) =

∫
Ω

au′∆u′dx+

∫
Γ1

u′ ∂u

∂ν
dΓ

+
ξ1 + ξ2

2

∫
Γ1

u′2 (x, t) dΓ− ξ1 (1− τ ′1 (t))

2

∫
Γ1

e−λτ1(t)u′2(x, t− τ1 (t))dΓ

− ξ2 (1− τ ′2 (t))

2

∫
Γ1

e−λτ2(t)u′2 (x, t− τ2 (t)) dΓ

− λ
ξ1
2

∫ t

t−τ1(t)

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds

− λ
ξ2
2

∫ t

t−τ2(t)

∫
Γ1

e−λ(t−s)u′2 (x, s) dΓds+ µ

∫
Γ1

u′u′′dΓ. (4.5)

Integrating once more by parts and using the boundary conditions we obtain

F ′(t) = −a

∫
Ω

∣∣∣∇u
′
∣∣∣2 dx− k1

∫
Γ1

u′u′(x, t− τ1 (t))dΓ

− k2

∫
Γ1

u′ (x, t)u′ (x, t− τ2 (t)) dΓ

− ξ1 (1− τ ′1 (t))

2

∫
Γ1

e−λτ1u′2(x, t− τ1 (t))dΓ

− ξ2 (1− τ ′2 (t))

2

∫
Γ1

e−λτ2(t)u′2 (x, t− τ2 (t)) dΓ

+
ξ1 + ξ2

2

∫
Γ1

u′2dΓ− λ
ξ1
2

∫ t

t−τ1(t)

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds

− λ
ξ2
2

∫
t−τ2(t)

∫
Γ1

e−λ(t−s)u′2 (x, s) dΓds. (4.6)

Applying Cauchy-Schwarz’s and Poincaré’s inequalities, a trace estimate and recall-
ing the assumptions (2.1)–(2.4), we obtain

E′(t) ≤ −a

∫
Ω

|∇u′|2 dx+
ξ1 + ξ2

2

∫
Γ1

u′2dΓ

+
|k|

2
√
1− d

∫
Γ1

u′2dΓ +
|k|

2
√
1− d

∫
Γ1

u′2dΓ

+
|k|
2

√
1− d

∫
Γ1

u′2(t− τ1)dΓ +
|k|
2

√
1− d

∫
Γ1

u′2(t− τ2)dΓ

− ξ1
2
(1− d1)e

−λτ

∫
Γ1

u′2(x, t− τ1)dΓ− ξ2
2
(1− d2)e

−λτ̃

∫
Γ1

u′2(x, t− τ2)dΓ
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− λ
ξ1
2

∫ t

t−τ1

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds− λ
ξ2
2

∫ t

t−τ2

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds

≤ −
(
a

2
− |k|C∗

2
√
1− d

− ξ1
2
C∗

)∫
Ω

|∇u′|2 dx

−
(
a

2
− |k|C∗

2
√
1− d

− ξ2
2
C∗

)∫
Ω

|∇u′|2 dx

−
(
e−λτ ξ1

2
(1− d)− |k|

2

√
1− d

)∫
Γ1

u′2(x, t− τ1)dΓ

−
(
e−λτ̃ ξ2

2
(1− d)− |k|

2

√
1− d

)∫
Γ1

u′2(x, t− τ2dΓ

−λ
ξ1
2

∫ t

t−τ1

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds− λ
ξ2
2

∫ t

t−τ2

∫
Γ1

e−λ(t−s)u′2(x, s)dΓds.

Therefore, (4.4) immediately follows recalling (4.2) and (4.3). �
We will use an appropriate Lyapunov functional. For this purpose, let us define

the Lyapunov functional

F (t) = E(t) + ε

[∫
Ω

uu′dx+ µ

∫
Γ1

uu′dΓ

]
, (4.7)

where ε is a positive small constant that we will choose later on.
Remark 4.2. From Poincaré’s inequality, it is easy to verify that the functional F
is equivalent to the energy E, that is, for ε small enough, there exist two positive
constant ε1, ε2 such that

ε1F (t) ≤ E(t) ≤ ε2F (t), ∀t ≥ 0. (4.8)
Lemma 4.3. For any regular solution (u, z, w) of problem (1.1)–(1.5), we have

d

dt

{∫
Ω

uu′dxdt+ µ

∫
Γ1

uu′dΓ

}
≤ C

{∫
Ω

|∇u′|2 dx+

∫
Γ1

u′2(x, t− τ1(t))dΓ +

∫
Γ1

u′2 (x, t− τ2 (t)) dΓ

}
− 1

2

∫
Ω

|∇u|2dx, (4.9)

for a suitable positive constant C.
Proof. Differentiating and integrating by parts we have

d

dt

∫
Ω

uu′dx =

∫
Ω

u′2dx+

∫
Ω

u(∆u+ a∆u′)dx

=

∫
Ω

u′2dx−
∫
Ω

|∇u|2dx− a

∫
Ω

∇u · ∇u′dx

+

∫
Γ1

u(t)
∂(u+ au′)

∂ν
(t)dΓ. (4.10)

From (4.10), using the boundary condition on Γ1, we obtain
d

dt

{∫
Ω

uu′dx+ µ

∫
Γ1

uu′dΓ

}
=

∫
Ω

u′2dx+

∫
Ω

u(∆u+ a∆u′)dx+ µ

∫
Γ1

u′2dΓ + µ

∫
Γ1

uu′′dΓ
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=

∫
Ω

u′2dx−
∫
Ω

|∇u|2dx− a

∫
Ω

∇u · ∇u′dx

− k1

∫
Γ1

u(t)u′(t− τ1(t))dΓ− k2

∫
Γ1

u (t)u′ (t− τ2 (t)) dΓ + µ

∫
Γ1

u′2dΓ. (4.11)

We can conclude by using Young’s, Poincaré’s inequalities and a trace estimate. �

Now we can deduce our last result.

Theorem 4.1. Assume (2.1)–(2.4) and (4.1). Then there exist positive constants
C1, C2 such that for any solution of problem (1.1)-(1.5),

F (t) ≤ C1F (0)e−C2t, ∀t ≥ 0. (4.12)

Proof. From Lemma 4.3, taking ε sufficiently small in the definition of the Lyapunov
functional F , we have
d

dt
F (t) ≤ −C

{∫
Ω

|∇u′|2 dx+

∫
Γ1

u′2(x, t− τ1(t))dx+

∫
Γ1

u′2 (x; t− τ2 (t)) dx

}
− C

∫ t

t−τ1(t)

e−λ(t−s)

∫
Γ1

u′2(x, s)dΓds− C

∫ t

t−τ2(t)

e−λ(t−s)

∫
Γ1

u′2(x, s)dΓds

− ε

2

∫
Ω

|∇u|2dx, (4.13)

for a suitable positive constant C. Poincaré’s inequality implying∫
Ω

|u′|2 dx+

∫
Γ1

|u′|2 ds ≤ C∗
1

∫
Ω

|∇u′|2 dx,

for some C∗
1 > 0, we obtain

d

dt
F (t) ≤ −C ′E(t), (4.14)

for a suitable positive constant C ′. (4.8) permits us to conclude our result. �
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