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ABSTRACT. The study of coupled fixed points of nonlinear operators, which was intro-
duced about three decades ago, got a boost in 2006 when Bhaskar and Lakshmikantham
(2006) studied the coupled fixed points of some contractive maps in partially ordered
metric spaces and applied it to solve some first order ordinary differential equations with
periodic boundary problems. Since then, coupled fixed points theorems have been proved
by several authors for certain contractive maps in both partially ordered and cone metric
spaces. The study of coupled fixed point, previously limited to quasi-contractive maps, was
recently extended to asymptotically nonexpansive mappings in uniformly convex Banach
spaces by Olaoluwa, Olaleru and Chang (2013). In this paper, their results (demiclosed
principle and existence result) are extended to asymptotically nonexpansive maps in the
intermediate sense in a wider class of spaces. The study naturally opens up new areas
of research on the study of coupled fixed points of different classes of pseudocontractive
maps.
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1. INTRODUCTION

The notion of coupled fixed point was introduced by Guo and Lakshmikantham
[13] in 1987. Of recent, Gnana-Bhaskar and Lakshmikantham [2] introduced the
concept of mixed monotone property for contractive operators of the form F' :
X x X — X satisfying

d(F(z,y), F(u,v)) < Jd(z,u) +d(y,v)], k <1,

N |

where (X, d) is a partially ordered metric space. Their results encompassed some
coupled fixed point theorems and their applications to proving the existence and
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uniqueness of the solution for a periodic boundary value problem. Ever since, many
authors have established many results on coupled fixed points of quasi-contractive
maps in different contexts and spaces (see e.g. [9], [19], [1], [L6])-
Results on fixed points of nonexpansive mappings and pseudocontractive mappings
abound in literature. The mean ergodic theorem for contractions in uniformly con-
vex Banach spaces was proved in [3] while the authors in [4] introduced the convex
approximation property of a space, proved that contractions satisfy an inequality
analogue to the Zarantonello inequality (see [22]) and then studied the asymptotic
behavior of contractions.
Given a nonempty subset K of a real linear normed space X, a self-mapping
T : K — K is said to be nonexpansive if the inequality |7z —Ty|| < |z —y|| holds
for all z,y € K. Many more general classes of mappings have been considered,
including the class of asymptotically nonexpansive mappings introduced by Goebel
and Kirk [12], defined by the relation |77z — T"y|| < knllz —y|| Vn > 1 Vz,y € K,
where the sequence {k,} C [1,00) converges to 1 as n — oco. Bruck, Kuczumow
and Reich [5] introduced the definition of an asymptotically nonexpansive mapping
in the intermediate sense (which is more general than an asymptotically nonexpan-
sive map) as a continuous mapping T : K — K such that

limsup sup (||[T"x —T"y|| — |l —y|) <0 (1.1)

n—oo z,yeK
for any bounded subset K € C. It has been proved by Kirk [15] that asymptoti-
cally nonexpansive mappings in the intermediate sense in a nonempty closed convex
bounded subset of a space with characteristic of convexity €y(X) less than one, have
a fixed point.

Recall that the modulus of convexity of X is the function ¢ : [0,2] — [0, 1] defined
by

. 1
(0 =int {1 3lle+ul 0y € X, ol Iyl <1, ool > ef

and the number e3(X) = sup{e : d(¢) = 0} is called the characteristic of convex-
ity of X [11]. Spaces with characteristic of convexity less than one (eo(X) < 1)
are known to be uniformly non-square (see [11]) hence reflexive [14]. Also if X is
uniformly convex [8] if d(e) > 0 whenever € > 0; hence €(X) = 0. Thus spaces
with characteristic of convexity less than one, are a super-class of uniformly convex
spaces.

Yang et al. [21] proved the demiclosedness principle for the same class of asymp-
totically nonexpansive mappings in the intermediate sense using Lemma 2.2 given
in [106].

Recently, Olaoluwa et al. [18] extended —for the first time— the theory of cou-
pled fixed points to pseudo-contractive-type mappings defined on a product space
(algebraic product) by defining asymptotically nonexpansive maps in the context,
and studying their asymptotic behaviour, the demiclosedness property and the con-
ditions of existence of their coupled fixed points. Our interest and main purpose is
to extend their results to asymptotically nonexpansive mappings in the intermedi-
ate sense defined in a product space.

We now recall the definitions, in product spaces, of nonexpansive maps and asymp-
totically nonexpansive maps as introduced by Olaoluwa et al. [18] and introduce in
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the same context, asymptotically nonexpansive mappings in the intermediate sense.

Let K be a nonempty bounded subet of a real normed linear space X.

Definition 1.1. [18] A mapping T : K x K — K is said to be nonexpansive if

1T (2, y) = T(uw, )|l < Slllz = ull + ly = vll] Va,y,u,v € X. (1.2)

N =

Definition 1.2. [18] A mapping T : K x K — K is said to be asymptotically
nonexpansive if there exists a sequence {k,} C [1,00) with lim,,_ . k, = 1 such
that

kn
17" (2, y) = T"(w,0)[| < S llle —ul +lly - ol Vn 21 V2, y,u,v € X, (1.3)

where the sequence {T"} is defined as follows:

To(x7y) =T
{ T4 (2, y) = T(T™(z,y), T"(y,x)) n > 0. (1.4)

The following definition is introduced as an extension of asymptotically nonex-
pansive mappings in the intermediate sense in product spaces:

Definition 1.3. T : K x K — K is said to be asymptotically nonexpansive in the
intermediate sense if it is continuous and the following inequality holds:
limsup sup (|77 (z,5) — T"(u,0)| — llo —ull — Jy— o) <0 (L5)
n—oo z,yeK
Remark 1.4. The sequence {T™(z,y)} can be written as the sequence {z,} defined
(see [1]) as follows:
To =5 Yo=Y
Tp+1 = T(xruyn)a n 2 0 (16)
Yn+1 = T(yn,l’n), n > 0.

2. Demiclosedness principle

In [7], Chang et al. recalled the definition the definition of demi-closed maps at
the origin as follows:

Definition 2.1. [7] Let X be a real Banach space and K be a closed subset of X. A
mapping T : K — K is said to be demi-closed at the origin if, for any sequence
{z,} in K, the conditions x,, — ¢ weakly and Tz,, — 0 strongly, imply T'q¢ = 0.

The definition of demi-closed mappings in product spaces can be proposed from
the previous definition as follows:

Definition 2.2. [18] Let X be a real Banach space and K be a closed subset of K.
A mapping T : K x K — K is said to be demi-closed at the origin if, for any
sequence {(Z,,y,)} in K x K, the conditions x, — q1, yn —> ¢2 weakly and
F(zn,yn) — 0, F(yn, ) — 0 strongly imply F(q1,q2) = F(g2,q1) = 0.

In order to establish the demiclosedness principle for asymptotically nonexpan-
sive mappings in the intermediate sense defined in a product space, it is important
to estimate the difference between T* (327 | Ai(zi,y:)) and Y1 N T*(x;,y;) for
Ae A (z1,11), s (T, yn) € K x K and k > 1.

Here A" 1 = {XA= (A, -~ ,Ay): \; >0and >I" | A\; = 1}. The following lemmas
are useful.
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Lemma 2.3. Let E be a uniformly convex Banach space and K be a nonempty
closed bounded convex subset of E. For € > 0, there exists an integer N, > 1 and
d2,c > 0 such that if £ > N, x1,22,y1,y2 € K and

oy — z2ll + llyr = ol = 21T (21,51) — TH(22,92)|| < b2.c,
then
IT* (A1 (21, 51) + Ao (22, 92)) = MT (@1, 91) = A T* (@2, 92)[| < €
for all A = (A1, A2) € AL

Proof. Let § be the modulus of uniform convexity of X and define d : R™ — R*
by

1t
5/ d(s)ds, 0<t<?2
dpy =4 "7
1
d2) + 55(2)(t -2), t>2.
It is well known (e.g. see [3],[10]) that d is strictly increasing, continuous, convex,

satisfying d(0) = 0 and
2)\1)\2d(||u—v||) <1- ||)\1u+)\2v|| (2.1)
for all A = (A1, A2) € Al, and u,v € X such that [Jul| <1 and [jv] < 1.
D e
For € > 0, choose 7, > 0 and —~d~! e
2 Dy

(1.5), there exists an integer N, > 1 (depending on K) such that if k > N,

) < € and put 3 = min{n., Dx}. By

2||Tk(;c,y) — Tk(u,v)H — |l —ul| = |ly — v|| < d2, for all x,y,u,v € K.
Let k > N, and let (z1,y1), (22,y2) € K x K with
21 — zall + llyr — w2l = 2T (21, 51) — T*(22,52)|| < b2

It suffices to show Lemma 2.3 in the case of 0 < A\, Ay < 1. Put

=2 [Tk($2ay2) - T\ (z1,01) + >\2(9027y2))]
A(llz1 — 22| + [[yr — yall + 62,)

and

v =2 |:Tk()‘1(xlay1) + Xo(22,92)) — Tk@h?h)]
A2 ([|z1 — 22| + |ly1 — yall + d2,¢) '

We have |lu]| <1, ||v|| <1 and

Tk($2,y2) —Tk(xl,yl) }
MU+ v = 2 . 2.2
' ? {931 — 2ol + lly1 — w2l + 02, (22)
Since 1 — v — 2 {MTk(ﬂ?h Y1) + X T (22, y2) — TF (A (21, 91) + Aa(a, y2)):| and
MAz([lz1 — 22| + [ly1 — y2l| + d2,¢)

1 1 1
7)\1)\2(”‘%1 — LL'QH + ||y1 — y2|| +(5276) < —- *(2DK +DK) < 1, we have by (2.1)
DK DK 4
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and (2.2) that

2
d (1)1( H/\1Tk($17y1) + )\2Tk<{1;27y2) — Tk()\l(l'l,yl) + )\2(.’1]2,y2))||>

1
< poAde (llon = 22l + [y = yoll + 62.¢) d(flu — vl])
K

T (z9,y2)—T" (z1,
< DilK)\l)\Q(Hxl — 2| + [ly1 — w2l + 02,e) - 2)\})\2 {1 - 2Nwl_(g;z”yj)uyl_;:ﬁfgl?)’ﬂe}
1

= o5z = z2ll + ly1 — w2l = 201T* (22, y2) — T*(21, 1)l + d2,0)
2Dk

202.c _ 026 o Me

< .
— 2Dk D = Dg

d(t)

Here we have used the fact that ¢ — == is strictly increasing; t; < to = d(ttll) <

M) with ty = 2 [\ T (@1, 51) + AT (w2, y2) — T*(Ai (21, 1) + Ao (22, 52))|| and
to = ||lu—wv].
Consequently, from the choice of 7., we obtain

D
1T O (1, )+ a2 y2)) =M T 1, y1) =AeT (. o) | < 7 (B ) < O

Lemma 2.4. Let E be a uniformly convex Banach space and K be a nonempty
closed bounded convex subset of E. For each € > 0 and each integer n > 2, there
exists an integer N, > 1 and 0, > 0 (where N, is independent of n) such that if
k> Néa (‘Tlayl)a ($2,y2), R (xnayn) € K x K and if

i — 25l + llyi — yill = 201T% (i, vi) — TH(xj,95) || < Gne

for 1 <i,5 <mn, then

Tk (i: i, yi)> - i NT* (4, i)
=1 =1

for all A = (A1, Aa, ..., \,) € A™7L

<€

Proof. Let € > 0 and let n > 2 be an arbitrary integer. Choose an integer N, > 1
in Lemma 2.3. We shall construct 4, (n = 2,3,...) inductively. Let d2, be
as in Lemma 2.3. Suppose that all J,. are constructed for ¢ = 2,3,...,p. Let
¢ =min{150 ¢, 5} and put 6,41 = min{dy ., €'}.

Let A € AP, (z1,y1), .-, (Tpy1,Yps1) € K x K, k> N, and

i = 25l + lys = w5l = 207" (s, 93) = T* (25, 95)l < Opsr.e

for 1 <i,j5<p+1.
The case Ap+1 = 1 1is trivial and so we assume Ap41 # 1. Put for j =1,2,...,p and
i=1,2,...,p+1,

Ui\ 4 zj Tpp1 . Aj
( ,Uj >_(1 )‘P+1)< y] >+/\P+1( yp-‘,—l )7 /’(‘J 17}\p+17

;) z; b . ) T(zi,y;)
AT e (50w (1) (2 ).
( vj ) ( pH)( Yj > pH( Ypir ) Yi T(yi, i)

~o

We have:
p+1 . p ws p+1 2z p o
— Yi — ' — Y; ! j
7 Vi K3 J
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Therefore:

HTk (Zf:ll Az(%ﬂz)) - Zf;l )‘iTk(xiayi)

= HTk (23?:1 Mj(uj’vj)) -2y

< | (0 ma ) ) = S0y T g 0)| + S0, sl T (g, 07) = ).
(2.3)

Since [|lz; — zp11ll + [1y; — Ypr1ll = 20T (25, 95) — T*(@pr1, Ypr)| < Op,e < d2.er,
we have by Lemma 2.3:

Juf — T*(uj,vy)|| = ”(1; Ap+ )T (g, 05) + Ap a1 T (uj,v5)
=TP((1 = Ap1)(25,95) + Apr1(@pt1, Y1)l
< €,
[0 = T*(vj,u5)l = ||(1k— Aot )T (v, u5) + Apa TF (v, uy)
=T ((1 - /\p+1)(yj7$j) + >‘p+1(yp+1>xp+1))”
< €,
lwj —will + llv; — vl = lluf = wll = [[v; — v

= (1= Xps1) {llzg — il + Nlyy — will = 1T* (25, 5) — T (o, )|

=1 T*(y;, 5) — T*(yi, 1) ||}

(1 Ay 4 s = il 4l = wll = 207 (25 95) = T, )
p+ 9

o My =gl 4l = 2l = 20T (g, 25) = Ty )| }
2

1) e O .
<= ap) {22 4 2 (1ot <

2
forall 1 <j,1<p.
Therefore we obtain by the triangle inequality:

g — wi|| + vy — orl] = 1 T*(uz, v5) = TF(ug, v0) | = [|T% (v, u5) = TF (v, w) |
< g —wll + flvg — vl = [Juf — wil| = [0} — v
+uf = TH(ug, v5) || + [Juj — T (g, vr) |

o = T*(vj,us) || + llv] — T (v, w)|

IN

! 1
He S 5617

€
’2
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for 1 < 4,1 < p. Since

u; — wll + [lv; — vl = 1T%(uz, v5) = TF(ug, v0) | = 175 (v, u5) = TF (v, w) |
= 3 {lluj — wll + [lv; — vl = 2/|T*(uj, v;) = T*(u, v0)| }
+3 {llv; —ull + lluy — wll = 2|T*(vy,u;) — T*(vi, w)|| }

1
< 551775’
then [Ju; — w| + [Jv; — vl = 21T (uj,v;) — T*(ug, v))|| < 6 .. Thus by inductive

assumption and (2.3), the desired conclusion holds. O

The following Lemma shows that the positive number d,, . in Lemma 2.4 can be
chosen independently of n.

Lemma 2.5. Let E be a uniformly convex Banach space, K be a nonempty closed
bounded convex subset of E. For every ¢ > 0 and every integer n > 2, there exist
an integer N > 1 and . > 0 (where both N, and J. are independent of n) such
that if & > N, (z1,y1), (2,92)s -« -, (Tn,yn) € K x K and if

s = 1| + [lys = yill = 20 T* (@i, 9:) = T* (2, 95)|| < 6
for 1 <i,j <mn, then
n

Tk (Z )\i(wi,yi)> - ZTk(ﬂfi,yi)

i=1

<e€

for all A € An—1L,

Proof. Fix € > 0 and an integer n > 2 arbitrarily. Denote by Nj . the integer N 4
in Lemma 2.4. By (1.5) there is an integer Ny > 1 such that if & > Ny, then we
have

2Tk (z,y) — T*(u,v)|| — ||z — u| — ly — v < i for all z,y,u,v € K (2.4)

Put N, = max{Ny ¢, Na}. Let 0, (n =2,3,...) be positive numbers determined
in Lemma 2.4. Since X is uniformly convex, X is B-convex (see [1]) and since the
product of B-convex spaces is also B-convex (see [10]), X3 is B-convex, hence has
the convex approximation property (C.A.P.) (see [1]) so we can choose an integer
p = p(€) > 1 (independent of n) such that coM C co,M + By X Bejg x B4 for
all subsets M C X3 whose diameters are uniformly bounded, where B, is the open
sphere centered at the origin and with r as radius, coM is the convex hall of M and

p
copM = {ZtiXi; te AP X € M foralli € {1,...,p}, p fixed } .
i=1
Put . = 0y . Let k> Ne, (21,91),- -+, (Tn,yn) € K x K and

i = x| + llye = yill = 21T* (@i, 93) = T* (@, )| < 6 (1 <i,5 <n).

Consider M = {[z;,v;, T*(xi,v:)] € X® :i = 1,2,--- ,n}. Note that there exists
7 > 0 (independent from k and n) such that sup(, , .yen [[(2, 9, 2)[[xs < 7.
Then for each A € A™~1, there exist u € AP~! and iy, ,i, € {1,--- ,n} such that

n P n p

€ €
E Nii — E HiTi; < Z, E )\iyi — E H5Yi; < Z, and
i=1 j=1 i=1 j=1
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€
ZAT T, Yi) ZUT(zzjayzj) <Z'
=1
By (2.4) and the choice of §. we have

QHTk = 1)\(xwy1))7Tk( j=1Hj xz7ayz )H

sz 1)‘xz_Z§:1 HjLi; ‘Zz 1 zZ/z_Z?:l 1Y || + 1 < % <€

and

HTk ( j=1 Nj(xij,yij)> =3 T (i, i) ‘ <c.
Therefore
T (20 Ml we)) = Sry T (. s) |
<[ (o ) = T (S o ) |
+HTk< j= 1”]'(951']»%]-)) - jzl,uJT (xzﬂylj)

Hzp L 1T (i ;) — Z}Ll NT* (i, i)
< €.

O

Lemma 2.5 is an extension of Lemma 1.5 of Yang et al. [21] to asymptotically
nonexpansive maps in the intermediate sense defined on product spaces. From
Lemma 2.5, we can now state the following theorem which is likewise an extension
of their Lemma 1.6:

Theorem 2.1. (Demiclosedness Principle): Let X be a real uniformly convex Banach
space and K a nonempty bounded closed convex subset of X. Let T: K x K — K
be a mapping which is asymptotically nonexpansive in the intermediate sense. If
{z,} and {y,} are sequences in K converging weakly to z* and y* and if

lim (limsup ||z, — T*(@n, ya)|]) = 0
k—> 00 n

lim (limsup ||yn — T%(yn, x,)||) = 0
k—s o0 n

then p; — T is demiclosed at zero, i.e., for each sequences {z,},{y,} € K, if they
converge weakly to x* € K and y* € K respectively and {x, — T(z,,yn)} and
{Yn — T(yn,xn)} converge strongly to 0, then x* = T'(z*,y*) and y* = T(y*, z*).

Proof. The sequences {z,} and {y,} are bounded so there exists r > 0 such that
{zn},{yn} C C := K N B,, where B, is the closed ball in X with center 0 and
radius . So C is a nonempty bounded closed convex subset in K. Let us prove
that T%(z*,y*) — 2* and T*(y*,z*) — y*.

For € > 0, choose an integer Ny (€) such that if k¥ > Nj(¢), then

2|7, y) — TH(u )|l = llo — ull = [ly — ]| < £ for (z,y),(u,v) € C x C and
limsup,, ||z, — Tk(wna Yn) | + limsup,, [lyn — Tk(ymxn)” < i(s%

Thus there exists nc,; such that ||z, — T* (2, yn) || + |yn — T*(yn, 2n)|| < $0¢/5 for
n = Nek.

Set ¢ = min{}d¢, £}. Then we have Ny(¢') > 1. Let Ny(€) = max{Ne, Ny(e), N1(€)}
and let j > Ny(e). Since {z,} and {y,} converge weakly to z* and y*, by
Mazur’s theorem, for each positive integer n > 1, there exist convex combinations
A =AM g and B, = S Ay, with A > 0 and AN = 1
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such that ||A, — 2*|| — 0 and || B, — y*|| — 0 as n — 0.
Since

||xi+n - Tk(xiJrna yiJrn)”

[ Yitn — Tk(xiJrnvyiJrn)H
g = TH(@jns Yjn) |
+Yj4n — Tk(yj+n-xj+n)”

Hxl-‘rz - xj-i-nll + ||yi-&-7lzc - yj-i-nll
_”T ($i+n7yi+n) =T (mj+nayj+n)||
~NT*(Witns Tin) = TH(Yjrns Tjn) |

IN
IN
DN | =

il

and

HIHZ — Tjpnll + ||yz‘+r;C — Yjtnll
_HT (l‘i—i-nvyi-‘rn) =T (xj-l-nayj-‘rn)n =
—||Tk(yz‘+m an) - Tk(yj+7’b? $j+n)||

[”xz-f—n - xj-‘rn” + |Yign — yj-i—n”]

”Tk(xi-i-na Yitn) — Tk(xj+n7 Yj+n)l| < 15

5 %itn = Yinll + |Zign — zjnll] (= 2°9%
IT*(Yitn Titn) = TH(Yjins Tjgn) |

| | i

we therefore have
[Zitn = Zjanll + 1Yitn = Yienll = 20T (@itns Yirn) — T (@jms Yjan) || < 0ess
for 1 <4,5 <m(n); by Lemma 2.5, we have

T*(An, Bo) = 3 AT (440, yi40)|| <
=1

m(n)

Tk(BmAn) - Z )‘z('n)Tk(yHnaan) <

i=1

(18 e)

There is Ly, > 1 such that [[A, —2*| + [|B, —y*|| < £ forall n > Ly .

Since z*,y* € K,

IT*(z,y*) —a*[| < [IT™(2*,y*) — T*(An, By

m(n)
i=1
m(n)
+ Z MY (T* (@i, Yign) = Tipn)|| + A — 27|
i=1

< €

for n > Li. and k > Na(e). Thus ||T*(z*,y*) — 2*|| < € for k > Na(e) and so
|T*(z*,y*) — 2*|| — 0 as k —> oo. Similarly, ||T%(y*, z*) —y*|| — 0 as k — co.
By the continuity of T', we have

¥ = lim TF Yz y*) = lim T(T*(z*,y*), T"(y*, z%)) = T(z*,y")
k—> 00 k—s00
y* = lim TF(y* 2*) = lim T(T*(y*, "), T*(z*,y*)) = T(y*, z*)
k—> 00 k—> 00
This completes the proof. O
Theorem 2.1 extends Theorem 2.1 of Olaoluwa et al. [18] to asymptotically nonex-

pansive maps in the intermediate sense defined on a product space.
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3. Existence of coupled fixed points

The following theorem relative to the existence of coupled fixed points of asymp-
totically nonexpansive maps in the intermediate sense extends the results of Kirk
[15] to product spaces. The spaces considered have a characteristic of convexity less
than one. Thus the result remain valid for uniformly convex Banach spaces and
consequently generalize Theorem 3.1 of Olaoluwa et al. [18] on existence of cou-
pled fixed points of asymptotically nonexpansive maps in uniformly convex Banach
spaces.

Theorem 3.1. Let X be a Banach space for which eg = ¢p(X) < 1 and let K C X be
nonempty, bounded, closed and convex. Suppose T : K x K — K is asymptotically
nonexpansive in the intermediate sense. Then T has a fixed point in K x K.

Proof. Let (z,y) € K x K be fixed. Define the set R(z,y) as follows:

R(z,y)={p€eR/Ik, eN : (K xK)[) B(T'(x,y),p) x B(T"(y, ), p)

5 _®

Nl

where B(z,r) is the open sphere in X, of center x and radius r. K is bounded, so,
if Dk := diamK (diameter of K), Di € R(z,y), hence R(z,y) # 0. Let p* be the
g.lb. of R(z,y).

For any € > 0, define the sets Cc = Up—; (Nic), B (T"(z,y), p* +¢€)) and
De=Up; (N2 B(T(y,2),p* +€)). The sets Cc and D, are nonempty, bounded
and convex hence by the reflexivity of X the closures C, and D, are weakly compact
and C =(.o(CcNK) #0and D = o(D.NK) # 0.

Let (u,v) € C x D and let d(u,v) = limsup,__, ||u — T (u,v)|| + [[v — T (v,u)||.
Suppose p*(z,y) = 0. Then T"(x,y) — w and T"™(y,z) — v as n — co. Let
7 > 0 and using (1.5), choose L such that i > L implies

sup 2T (u,0) = T (2, 8)[| = [lu = 2|] = lo = ¢]]] <
(u,v),(z,t) EKXK

n.

Wl =

Given ¢ > L, since T"(z,y) — uw and T™(y,x) — v, there exists > ¢ such that
1T (2, y) — ull + [T (y, 2) — v|| < g0 and [T (2,y) — ull + [T (y, 2) — v[| < 5.
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Thus if i > L,
lu = T*(w, )| + [lv = T* (v, u)]|

< flu =Tyl + T (2, y) = T'(w,0)]| + o = T' (2, 9)]| + 1T (2, y) = T (w, )]
< =T @, y) | + [T (u,0) = TH T, 9), Ty, )| = Ju— T, )|

z,y)|
FHlu =T (@, y) | + v = Ty, )| + [T (v,u) = THT " (y, =), T (z,y))
—[lv = T (y, 2)[| + [[v = T (y, z)|

<2
_377

b RITH T4 ,), T () = T, 0)| = u = T g)] — o — T (9, )]
b [T T4 2), T, 9) = T (0, w)| = u = T )]~ o — T (g, )]

2 ) )
< g7+ sup 20T (u, v) = T* (2, )| = [Ju = 2l = [lv = t]]

<1.
This proves that T™(u,v) — u and T"(v,u) — v as n — 00, that is, d(u,v) = 0.
But d(u,v) = 0 implies TV (u,v) — u and TV (v,u) — v as i — co and with
the continuity of TV this yields TV (u,v) = u and T" (v, u) = v. Thus, as i — oo,

T(u,v) =T (TN (u,v), TV (v,u)) = TV (u,v) — u

T(v,u) =T (TN (v,u), TV (u,v)) = TV (v,u) — v

so T(u,v) = w and T(v,u) = v.
Now we assume that p*(z,y) > 0 and d(u,v) > 0. In fact, we may assume this for
any x,y,u,v € K.
Let € > 0, ¢ < d(u,v). By definition of p* there exists an integer N* such that if
i > N* then

lu =T*(z, )| + lo = T*(y, 2)[ < p" + ¢, (3.1)
and by (1.5) there exists N** such that if ¢ > N** then

sup [2]|7" (u,v) = T*(z, )] — [lu — 2|l = lv — t]] <.
Select j so that j > N** and so that
|u — T (u,v) +v — T (v,u)|| > d(u,v) — . (3.2)
Thus if i — j > N**,
177 (u, v) = T (2, y) | + 177 (v, w) — T*(y, )|

=T (u,v) = T(T" (2,y), T (y,2)) | = lu =T (@, y)|| + |lu = T (2, y)]|
77 (v, u) =TT (y, ), T (@, y)l| = llo =T (y, )| + [l = T (y, 2|

= 5 {20177 (u,v) =TT (2, ), T (y, )| = lu = T (2, y)|| = [lo = T (y, )| }
+3 {2177 (v, u) = THT (y,2), T (2, )| = flu = T (2, y)l| = v = T (y, 2) |}
Fllu =T (2, y)[| + o =T (y, )|

<

+ o+ () =2e+p*,

NG e
DN ™
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1 . .
Letting m = i[u + T (u,v) + v+ T7(v,u)], by (3.3) we have:

s (d(u,v) -

i i € * . % .
I — T (z,y) — T (g, )]l < (1 . ))<p 20, i3 N4

By the minimality of p* this implies that

(825 o

Letting e — 0, p ( ( )) p*. This implies that 1 — ¢ (%) >1and
d(u,v)

< €¢9. Hence

(y,2)|

d(ua U) < €0d(9€7 y) (34)
Also notice that |lu — 2| + [lv — y[| < d(z,y) + po(z,y) < 2d(z,y).
Fix (xg,y0) € K x K and define the sequence {(z,,yn)} for all n € N by

Tnt+1 = u(xn, yn)
Yn+1 = U(y'mxn)a

where u(z,,y,) is obtained from x,, and y, in the same manner as u(x,y) from z
and y.

If for any n we have p(x,,y,) = 0 and p(y,, z,) = 0 then, as seen above,
T(Tn+1,Ynt1) = Tpt1 and T(Ynt1, Tnt1) = Ynt1. Otherwise, by 3.4 we have
lZne1 — ol + lynt1 — ynll < 2d(@n,yn) < 2€™d(zg,yo) and since ey < 1, {x,}
and {y,} are Cauchy sequences. Therefore there exists (x,y) € K x K such that
Tp, — x and ¥y, — y as n — oo. Also:

|z =Tz, y)l| + ly — T*(y, )| A _
<z —znll + lzn = T (@0, y) | + 1T (@0, yn) — T (2, y)||
Hy = ynll + lyn = T (Yo, z) || + 1T (Yn, 20) — T*(y, )|
<z =zl + ly = yull + |20 — T (20, yn) |
Hyn = Ty, @) | + 20 — [ + llyn — ¥l
+3 21T (@0, yn) — Tz, w) | = 20 — 2] = llyn — yll]
+3 20T (yns 2n) = Ty, 2)|| = |0 — Il = lyn — yll]

hence ¢ (d L U)) 0. It follows from the definition of ¢y that

d(u,v) < egp*(z,y) and letting d(z,y) = limsup,__, . || —T"(z, y)
we have pg(z) < d(zx,y) so

Thus
d(z,y) = limsup |z — T"(z,y)|| + lly — T"(y, 2)||
11— 00
< limsup?[”x — Zpll + |y — ynll]

i—>00 ) )

+h‘msup[Hxn =T (@n, yo)ll + [[yn — T (yns zn) ]
11— 00 . .

+ limsup[sup 2[|T*(z, y) — T*(w, v)|| — [z — u| = [ly — v|]
i—>00 T,y

< d(@n,yn) + 2|7 = znll + ly = ynll

Since x, — x, Yy, — y and d(z,,y,) — 0 as n —> oo, this implies that
d(z,y) = 0. But as seen before, it implies that T'(x,y) =« and T(y,x) = y. O
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