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ABSTRACT. The study of coupled fixed points of nonlinear operators, which was intro-
duced about three decades ago, got a boost in 2006 when Bhaskar and Lakshmikantham
(2006) studied the coupled fixed points of some contractive maps in partially ordered
metric spaces and applied it to solve some first order ordinary differential equations with
periodic boundary problems. Since then, coupled fixed points theorems have been proved
by several authors for certain contractive maps in both partially ordered and cone metric
spaces. The study of coupled fixed point, previously limited to quasi-contractive maps, was
recently extended to asymptotically nonexpansive mappings in uniformly convex Banach
spaces by Olaoluwa, Olaleru and Chang (2013). In this paper, their results (demiclosed
principle and existence result) are extended to asymptotically nonexpansive maps in the
intermediate sense in a wider class of spaces. The study naturally opens up new areas
of research on the study of coupled fixed points of different classes of pseudocontractive
maps.
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nach spaces.
AMS Subject Classification: 47H10, 47H09

1. INTRODUCTION

The notion of coupled fixed point was introduced by Guo and Lakshmikantham
[13] in 1987. Of recent, Gnana-Bhaskar and Lakshmikantham [2] introduced the
concept of mixed monotone property for contractive operators of the form F :
X ×X −→ X satisfying

d(F (x, y), F (u, v)) ≤ k

2
[d(x, u) + d(y, v)], k < 1,

where (X, d) is a partially ordered metric space. Their results encompassed some
coupled fixed point theorems and their applications to proving the existence and
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uniqueness of the solution for a periodic boundary value problem. Ever since, many
authors have established many results on coupled fixed points of quasi-contractive
maps in different contexts and spaces (see e.g. [9], [19], [1], [16]).
Results on fixed points of nonexpansive mappings and pseudocontractive mappings
abound in literature. The mean ergodic theorem for contractions in uniformly con-
vex Banach spaces was proved in [3] while the authors in [4] introduced the convex
approximation property of a space, proved that contractions satisfy an inequality
analogue to the Zarantonello inequality (see [22]) and then studied the asymptotic
behavior of contractions.
Given a nonempty subset K of a real linear normed space X, a self-mapping
T : K −→ K is said to be nonexpansive if the inequality ∥Tx−Ty∥ ≤ ∥x−y∥ holds
for all x, y ∈ K. Many more general classes of mappings have been considered,
including the class of asymptotically nonexpansive mappings introduced by Goebel
and Kirk [12], defined by the relation ∥Tnx− Tny∥ ≤ kn∥x− y∥ ∀n ≥ 1 ∀x, y ∈ K,
where the sequence {kn} ⊂ [1,∞) converges to 1 as n −→ ∞. Bruck, Kuczumow
and Reich [5] introduced the definition of an asymptotically nonexpansive mapping
in the intermediate sense (which is more general than an asymptotically nonexpan-
sive map) as a continuous mapping T : K −→ K such that

lim sup
n−→∞

sup
x,y∈K

(∥Tnx− Tny∥ − ∥x− y∥) ≤ 0 (1.1)

for any bounded subset K ∈ C. It has been proved by Kirk [15] that asymptoti-
cally nonexpansive mappings in the intermediate sense in a nonempty closed convex
bounded subset of a space with characteristic of convexity ϵ0(X) less than one, have
a fixed point.

Recall that the modulus of convexity of X is the function δ : [0, 2] −→ [0, 1] defined
by

δ(ϵ) = inf

{
1− 1

2
∥x+ y∥ : x, y ∈ X, ∥x∥, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
,

and the number ϵ0(X) = sup{ϵ : δ(ϵ) = 0} is called the characteristic of convex-
ity of X [11]. Spaces with characteristic of convexity less than one (ϵ0(X) < 1)
are known to be uniformly non-square (see [11]) hence reflexive [14]. Also if X is
uniformly convex [8] if δ(ϵ) > 0 whenever ϵ > 0; hence ϵ0(X) = 0. Thus spaces
with characteristic of convexity less than one, are a super-class of uniformly convex
spaces.

Yang et al. [21] proved the demiclosedness principle for the same class of asymp-
totically nonexpansive mappings in the intermediate sense using Lemma 2.2 given
in [16].

Recently, Olaoluwa et al. [18] extended –for the first time– the theory of cou-
pled fixed points to pseudo-contractive-type mappings defined on a product space
(algebraic product) by defining asymptotically nonexpansive maps in the context,
and studying their asymptotic behaviour, the demiclosedness property and the con-
ditions of existence of their coupled fixed points. Our interest and main purpose is
to extend their results to asymptotically nonexpansive mappings in the intermedi-
ate sense defined in a product space.

We now recall the definitions, in product spaces, of nonexpansive maps and asymp-
totically nonexpansive maps as introduced by Olaoluwa et al. [18] and introduce in
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the same context, asymptotically nonexpansive mappings in the intermediate sense.

Let K be a nonempty bounded subet of a real normed linear space X.

Definition 1.1. [18] A mapping T : K ×K −→ K is said to be nonexpansive if

∥T (x, y)− T (u, v)∥ ≤ 1

2
[∥x− u∥+ ∥y − v∥] ∀x, y, u, v ∈ X. (1.2)

Definition 1.2. [18] A mapping T : K × K −→ K is said to be asymptotically
nonexpansive if there exists a sequence {kn} ⊂ [1,∞) with limn−→∞ kn = 1 such
that

∥Tn(x, y)− Tn(u, v)∥ ≤ kn
2
[∥x− u∥+ ∥y − v∥] ∀n ≥ 1 ∀x, y, u, v ∈ X, (1.3)

where the sequence {Tn} is defined as follows:{
T 0(x, y) = x
Tn+1(x, y) = T (Tn(x, y), Tn(y, x)) n ≥ 0.

(1.4)

The following definition is introduced as an extension of asymptotically nonex-
pansive mappings in the intermediate sense in product spaces:

Definition 1.3. T : K ×K −→ K is said to be asymptotically nonexpansive in the
intermediate sense if it is continuous and the following inequality holds:

lim sup
n−→∞

sup
x,y∈K

(∥Tn(x, y)− Tn(u, v)∥ − ∥x− u∥ − ∥y − v∥) ≤ 0 (1.5)

Remark 1.4. The sequence {Tn(x, y)} can be written as the sequence {xn} defined
(see [1]) as follows:  x0 = x; y0 = y

xn+1 = T (xn, yn), n ≥ 0
yn+1 = T (yn, xn), n ≥ 0.

(1.6)

2. Demiclosedness principle

In [7], Chang et al. recalled the definition the definition of demi-closed maps at
the origin as follows:

Definition 2.1. [7] Let X be a real Banach space and K be a closed subset of X. A
mapping T : K −→ K is said to be demi-closed at the origin if, for any sequence
{xn} in K, the conditions xn −→ q weakly and Txn −→ 0 strongly, imply Tq = 0.

The definition of demi-closed mappings in product spaces can be proposed from
the previous definition as follows:

Definition 2.2. [18] Let X be a real Banach space and K be a closed subset of K.
A mapping T : K × K −→ K is said to be demi-closed at the origin if, for any
sequence {(xn, yn)} in K × K, the conditions xn −→ q1, yn −→ q2 weakly and
F (xn, yn) −→ 0, F (yn, xn) −→ 0 strongly imply F (q1, q2) = F (q2, q1) = 0.

In order to establish the demiclosedness principle for asymptotically nonexpan-
sive mappings in the intermediate sense defined in a product space, it is important
to estimate the difference between T k (

∑n
i=1 λi(xi, yi)) and

∑n
i=1 λiT

k(xi, yi) for
λ ∈ ∆n−1, (x1, y1), . . . , (xn, yn) ∈ K ×K and k ≥ 1.
Here ∆n−1 = {λ = (λ1, · · · , λn) : λi ≥ 0 and

∑n
i=1 λi = 1}. The following lemmas

are useful.
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Lemma 2.3. Let E be a uniformly convex Banach space and K be a nonempty
closed bounded convex subset of E. For ϵ > 0, there exists an integer Nϵ ≥ 1 and
δ2,ϵ > 0 such that if k ≥ Nϵ, x1, x2, y1, y2 ∈ K and

∥x1 − x2∥+ ∥y1 − y2∥ − 2∥T k(x1, y1)− T k(x2, y2)∥ ≤ δ2,ϵ,

then
∥T k(λ1(x1, y1) + λ2(x2, y2))− λ1T

k(x1, y1)− λ2T
k(x2, y2)∥ < ϵ

for all λ = (λ1, λ2) ∈ ∆1.

Proof. Let δ be the modulus of uniform convexity of X and define d : R+ −→ R+

by

d(t) =


1

2

∫ t

0

δ(s)ds, 0 ≤ t ≤ 2

d(2) +
1

2
δ(2)(t− 2), t > 2.

It is well known (e.g. see [3],[16]) that d is strictly increasing, continuous, convex,
satisfying d(0) = 0 and

2λ1λ2d(∥u− v∥) ≤ 1− ∥λ1u+ λ2v∥ (2.1)

for all λ = (λ1, λ2) ∈ ∆1, and u, v ∈ X such that ∥u∥ ≤ 1 and ∥v∥ ≤ 1.

For ϵ > 0, choose ηϵ > 0 and DK

2
d−1

(
ηϵ
DK

)
< ϵ and put δ2,ϵ = min{ηϵ, DK}. By

(1.5), there exists an integer Nϵ ≥ 1 (depending on K) such that if k ≥ Nϵ,

2∥T k(x, y)− T k(u, v)∥ − ∥x− u∥ − ∥y − v∥ < δ2,ϵ for all x, y, u, v ∈ K.

Let k ≥ Nϵ and let (x1, y1), (x2, y2) ∈ K ×K with

∥x1 − x2∥+ ∥y1 − y2∥ − 2∥T k(x1, y1)− T k(x2, y2)∥ ≤ δ2,ϵ.

It suffices to show Lemma 2.3 in the case of 0 < λ1, λ2 < 1. Put

u = 2

[
T k(x2, y2)− T k(λ1(x1, y1) + λ2(x2, y2))

λ1(∥x1 − x2∥+ ∥y1 − y2∥+ δ2,ϵ)

]
and

v = 2

[
T k(λ1(x1, y1) + λ2(x2, y2))− T k(x1, y1)

λ2(∥x1 − x2∥+ ∥y1 − y2∥+ δ2,ϵ)

]
.

We have ∥u∥ ≤ 1, ∥v∥ ≤ 1 and

λ1u+ λ2v = 2

[
T k(x2, y2)− T k(x1, y1)

∥x1 − x2∥+ ∥y1 − y2∥+ δ2,ϵ

]
. (2.2)

Since u− v = 2

[
λ1T

k(x1, y1) + λ2T
k(x2, y2)− T k(λ1(x1, y1) + λ2(x2, y2))

λ1λ2(∥x1 − x2∥+ ∥y1 − y2∥+ δ2,ϵ)

]
and

1

DK
λ1λ2(∥x1 −x2∥+ ∥y1 − y2∥+ δ2,ϵ) ≤

1

DK
· 1
4
(2DK +DK) < 1, we have by (2.1)



COUPLED FIXED POINTS 29

and (2.2) that

d

(
2

DK

∥∥λ1T
k(x1, y1) + λ2T

k(x2, y2)− T k(λ1(x1, y1) + λ2(x2, y2))
∥∥)

≤ 1

DK
λ1λ2 (∥x1 − x2∥+ ∥y1 − y2∥+ δ2,ϵ) d(∥u− v∥)

≤ 1
DK

λ1λ2(∥x1 − x2∥+ ∥y1 − y2∥+ δ2,ϵ) · 1
2λ1λ2

{
1− 2 ∥Tk(x2,y2)−Tk(x1,y1)∥

∥x1−x2∥+∥y1−y2∥+δ2,ϵ

}
=

1

2DK
(∥x1 − x2∥+ ∥y1 − y2∥ − 2∥T k(x2, y2)− T k(x1, y1)∥+ δ2,ϵ)

≤ 2δ2,ϵ
2DK

=
δ2,ϵ
DK

≤ ηϵ
DK

.

Here we have used the fact that t 7→ d(t)
t is strictly increasing; t1 ≤ t2 =⇒ d(t1)

t1
≤

d(t2)
t2

, with t1 = 2
DK

∥λ1T
k(x1, y1) + λ2T

k(x2, y2)− T k(λ1(x1, y1) + λ2(x2, y2))∥ and
t2 = ∥u− v∥.
Consequently, from the choice of ηϵ, we obtain
∥T k(λ1(x1, y1)+λ2(x2, y2))−λ1T

k(x1, y1)−λ2T
k(x2, y2)∥ ≤ DK

2
d−1

(
ηϵ

DK

)
< ϵ. �

Lemma 2.4. Let E be a uniformly convex Banach space and K be a nonempty
closed bounded convex subset of E. For each ϵ > 0 and each integer n ≥ 2, there
exists an integer Nϵ ≥ 1 and δn,ϵ > 0 (where Nϵ is independent of n) such that if
k ≥ Nϵ, (x1, y1), (x2, y2), . . . , (xn, yn) ∈ K ×K and if

∥xi − xj∥+ ∥yi − yj∥ − 2∥T k(xi, yi)− T k(xj , yj)∥ < δn,ϵ

for 1 ≤ i, j ≤ n, then∥∥∥∥∥T k

(
n∑

i=1

λi(xi, yi)

)
−

n∑
i=1

λiT
k(xi, yi)

∥∥∥∥∥ < ϵ

for all λ = (λ1, λ2, . . . , λn) ∈ ∆n−1.

Proof. Let ϵ > 0 and let n ≥ 2 be an arbitrary integer. Choose an integer Nϵ ≥ 1
in Lemma 2.3. We shall construct δn,ϵ (n = 2, 3, . . .) inductively. Let δ2,ϵ be
as in Lemma 2.3. Suppose that all δq,ϵ are constructed for q = 2, 3, . . . , p. Let
ϵ′ = min{ 1

10δp, ϵ2 ,
ϵ
2} and put δp+1,ϵ = min{δ2,ϵ′ , ϵ′}.

Let λ ∈ ∆p, (x1, y1), . . . , (xp+1, yp+1) ∈ K ×K, k ≥ Nϵ and

∥xi − xj∥+ ∥yi − yj∥ − 2∥T k(xi, yi)− T k(xj , yj)∥ < δp+1,ϵ

for 1 ≤ i, j ≤ p+ 1.
The case λp+1 = 1 is trivial and so we assume λp+1 ̸= 1. Put for j = 1, 2, . . . , p and
i = 1, 2, . . . , p+ 1,(

uj

vj

)
= (1− λp+1)

(
xj

yj

)
+ λp+1

(
xp+1

yp+1

)
; µj =

λj

1− λp+1
,

(
u′
j

v′j

)
= (1− λp+1)

(
x′
j

y′j

)
+ λp+1

(
x′
p+1

y′p+1

)
, with

(
x′
i

y′i

)
=

(
T (xi, yi)
T (yi, xi)

)
.

We have:
p+1∑
i=1

λi

(
xi

yi

)
=

p∑
j=1

µj

(
uj

vj

)
;

p+1∑
i=1

λi

(
x′
i

y′i

)
=

p∑
j=1

µj

(
u′
j

v′j

)
.
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Therefore:

∥∥∥T k
(∑p+1

i=1 λi(xi, yi)
)
−
∑p+1

i=1 λiT
k(xi, yi)

∥∥∥
=
∥∥∥T k

(∑p
j=1 µj(uj , vj)

)
−
∑p

j=1 u
′
j

∥∥∥
≤
∥∥∥T k

(∑p
j=1 µj(uj , vj)

)
−
∑p

j=1 µjT
k(uj , vj)

∥∥∥+∑p
j=1 µj∥T k(uj , vj)− u′

j∥.
(2.3)

Since ∥xj − xp+1∥+ ∥yj − yp+1∥ − 2∥T k(xj , yj)− T k(xp+1, yp+1)∥ < δp+1,ϵ ≤ δ2.ϵ′ ,
we have by Lemma 2.3:

∥u′
j − T k(uj , vj)∥ = ∥(1− λp+1)T

k(uj , vj) + λp+1T
k(uj , vj)

−T k((1− λp+1)(xj , yj) + λp+1(xp+1, yp+1))∥
< ϵ′,

∥v′j − T k(vj , uj)∥ = ∥(1− λp+1)T
k(vj , uj) + λp+1T

k(vj , uj)
−T k((1− λp+1)(yj , xj) + λp+1(yp+1, xp+1))∥

< ϵ′,

∥uj − ul∥+ ∥vj − vl∥ − ∥u′
j − u′

l∥ − ∥v′j − v′l∥

= (1− λp+1)
{
∥xj − xl∥+ ∥yj − yl∥ − ∥T k(xj , yj)− T k(xl, yl)∥

−∥T k(yj , xj)− T k(yl, xl)∥
}

= (1− λp+1)

{
∥xj − xl∥+ ∥yj − yl∥ − 2∥T k(xj , yj)− T k(xl, yl)∥

2

+
∥yj − yl∥+ ∥xj − xl∥ − 2∥T k(yj , xj)− T k(yl, xl)∥

2

}

≤ (1− λp+1)

{
δp+1,ϵ

2
+

δp+1,ϵ

2

}
= (1− λp+1)δp+1,ϵ ≤ ϵ′

for all 1 ≤ j, l ≤ p.
Therefore we obtain by the triangle inequality:

∥uj − ul∥+ ∥vj − vl∥ − ∥T k(uj , vj)− T k(ul, vl)∥ − ∥T k(vj , uj)− T k(vl, ul)∥

≤ ∥uj − ul∥+ ∥vj − vl∥ − ∥u′
j − u′

l∥ − ∥v′j − v′l∥

+∥u′
j − T k(uj , vj)∥+ ∥u′

l − T k(ul, vl)∥

+∥v′j − T k(vj , uj)∥+ ∥v′l − T k(vl, ul)∥

≤ 5ϵ′ ≤ 1
2δp, ϵ2
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for 1 ≤ j, l ≤ p. Since
∥uj − ul∥+ ∥vj − vl∥ − ∥T k(uj , vj)− T k(ul, vl)∥ − ∥T k(vj , uj)− T k(vl, ul)∥

= 1
2

{
∥uj − ul∥+ ∥vj − vl∥ − 2∥T k(uj , vj)− T k(ul, vl)∥

}
+ 1

2

{
∥vj − vl∥+ ∥uj − ul∥ − 2∥T k(vj , uj)− T k(vl, ul)∥

}
≤ 1

2δp, ϵ2 ,

then ∥uj − ul∥ + ∥vj − vl∥ − 2∥T k(uj , vj) − T k(ul, vl)∥ ≤ δp, ϵ2 . Thus by inductive
assumption and (2.3), the desired conclusion holds. �

The following Lemma shows that the positive number δn,ϵ in Lemma 2.4 can be
chosen independently of n.

Lemma 2.5. Let E be a uniformly convex Banach space, K be a nonempty closed
bounded convex subset of E. For every ϵ > 0 and every integer n ≥ 2, there exist
an integer Nϵ ≥ 1 and δϵ > 0 (where both Nϵ and δϵ are independent of n) such
that if k ≥ Nϵ, (x1, y1), (x2, y2), . . . , (xn, yn) ∈ K ×K and if

∥xi − xj∥+ ∥yi − yj∥ − 2∥T k(xi, yi)− T k(xj , yj)∥ ≤ δϵ

for 1 ≤ i, j ≤ n, then∥∥∥∥∥T k

(
n∑

i=1

λi(xi, yi)

)
−

n∑
i=1

T k(xi, yi)

∥∥∥∥∥ < ϵ

for all λ ∈ ∆n−1.

Proof. Fix ϵ > 0 and an integer n ≥ 2 arbitrarily. Denote by N1,ϵ the integer Nϵ/4

in Lemma 2.4. By (1.5) there is an integer N2,ϵ ≥ 1 such that if k ≥ N2,ϵ, then we
have

2∥T k(x, y)− T k(u, v)∥ − ∥x− u∥ − ∥y − v∥ <
ϵ

4
for all x, y, u, v ∈ K (2.4)

Put Nϵ = max{N1,ϵ, N2,ϵ}. Let δn,ϵ (n = 2, 3, . . .) be positive numbers determined
in Lemma 2.4. Since X is uniformly convex, X is B-convex (see [4]) and since the
product of B-convex spaces is also B-convex (see [10]), X3 is B-convex, hence has
the convex approximation property (C.A.P.) (see [4]) so we can choose an integer
p = p(ϵ) ≥ 1 (independent of n) such that coM ⊂ copM + Bϵ/4 × Bϵ/4 × Bϵ/4 for
all subsets M ⊂ X3 whose diameters are uniformly bounded, where Br is the open
sphere centered at the origin and with r as radius, coM is the convex hall of M and

copM =

{
p∑

i=1

tiXi; t ∈ ∆p−1;Xi ∈ M for all i ∈ {1, . . . , p}, p fixed
}
.

Put δϵ = δp, ϵ4 . Let k ≥ Nϵ, (x1, y1), . . . , (xn, yn) ∈ K ×K and

∥xi − xj∥+ ∥yi − yj∥ − 2∥T k(xi, yi)− T k(xl, yl)∥ ≤ δϵ (1 ≤ i, j ≤ n).
Consider M = {[xi, yi, T

k(xi, yi)] ∈ X3 : i = 1, 2, · · · , n}. Note that there exists
r > 0 (independent from k and n) such that sup(x,y,z)∈M ∥(x, y, z)∥X3 ≤ r.
Then for each λ ∈ ∆n−1, there exist µ ∈ ∆p−1 and i1, · · · , ip ∈ {1, · · · , n} such that∥∥∥∥∥∥

n∑
i=1

λixi −
p∑

j=1

µjxij

∥∥∥∥∥∥ <
ϵ

4
,

∥∥∥∥∥∥
n∑

i=1

λiyi −
p∑

j=1

µjyij

∥∥∥∥∥∥ <
ϵ

4
, and
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n∑

i=1

λiT
k(xi, yi)−

p∑
j=1

µjT
k(xij , yij )

∥∥∥∥∥∥ <
ϵ

4
.

By (2.4) and the choice of δϵ we have

2
∥∥∥T k (

∑n
i=1 λi(xi, yi))− T k

(∑p
j=1 µj(xij , yij )

)∥∥∥
≤
∥∥∥∑n

i=1 λixi −
∑p

j=1 µjxij

∥∥∥+ ∥∥∥∑n
i=1 λiyi −

∑p
j=1 µjyij

∥∥∥+ ϵ
4 ≤ 3ϵ

4 < ϵ

and ∥∥∥T k
(∑p

j=1 µj(xij , yij )
)
−
∑p

j=1 µjT
k(xij , yij )

∥∥∥ < ϵ
4 .

Therefore ∥∥T k (
∑n

i=1 λi(xi, yi))−
∑n

i=1 T
k(xi, yi)

∥∥
≤
∥∥∥T k (

∑n
i=1 λi(xi, yi))− T k

(∑p
j=1 µj(xij , yij )

)∥∥∥
+
∥∥∥T k

(∑p
j=1 µj(xij , yij )

)
−
∑p

j=1 µjT
k(xij , yij )

∥∥∥∥∥∥∑p
j=1 µjT

k(xij , yij )−
∑n

j=1 λiT
k(xi, yi)

∥∥∥
< ϵ.

�

Lemma 2.5 is an extension of Lemma 1.5 of Yang et al. [21] to asymptotically
nonexpansive maps in the intermediate sense defined on product spaces. From
Lemma 2.5, we can now state the following theorem which is likewise an extension
of their Lemma 1.6:

Theorem 2.1. (Demiclosedness Principle): Let X be a real uniformly convex Banach
space and K a nonempty bounded closed convex subset of X. Let T : K×K −→ K
be a mapping which is asymptotically nonexpansive in the intermediate sense. If
{xn} and {yn} are sequences in K converging weakly to x∗ and y∗ and if lim

k−→∞
(lim sup

n
∥xn − T k(xn, yn)∥) = 0

lim
k−→∞

(lim sup
n

∥yn − T k(yn, xn)∥) = 0

then p1 − T is demiclosed at zero, i.e., for each sequences {xn}, {yn} ∈ K, if they
converge weakly to x∗ ∈ K and y∗ ∈ K respectively and {xn − T (xn, yn)} and
{yn − T (yn, xn)} converge strongly to 0, then x∗ = T (x∗, y∗) and y∗ = T (y∗, x∗).

Proof. The sequences {xn} and {yn} are bounded so there exists r > 0 such that
{xn}, {yn} ⊂ C := K ∩ Br, where Br is the closed ball in X with center 0 and
radius r. So C is a nonempty bounded closed convex subset in K. Let us prove
that T k(x∗, y∗) −→ x∗ and T k(y∗, x∗) −→ y∗.
For ϵ > 0, choose an integer N1(ϵ) such that if k ≥ N1(ϵ), then
2∥T k(x, y) − T k(u, v)∥ − ∥x − u∥ − ∥y − v∥ < ϵ

5 for (x, y), (u, v) ∈ C × C and
lim supn ∥xn − T k(xn, yn)∥+ lim supn ∥yn − T k(yn, xn)∥ < 1

4δ ϵ
5
.

Thus there exists nϵ,k such that ∥xn − T k(xn, yn)∥+ ∥yn − T k(yn, xn)∥ < 1
4δϵ/5 for

n ≥ nϵ,k.
Set ϵ′ = min{ 1

4δ ϵ
5
, ϵ
5}. Then we have N1(ϵ

′) ≥ 1. Let N2(ϵ) = max{N ϵ
5
, N1(ϵ), N1(ϵ

′)}
and let j ≥ N2(ϵ). Since {xn} and {yn} converge weakly to x∗ and y∗, by
Mazur’s theorem, for each positive integer n ≥ 1, there exist convex combinations
An =

∑m(n)
i=1 λ

(n)
i xi+n and Bn =

∑m(n)
i=1 λ

(n)
i yi+n with λ

(n)
i ≥ 0 and

∑m(n)
i=1 λ

(n)
i = 1
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such that ∥An − x∗∥ −→ 0 and ∥Bn − y∗∥ −→ 0 as n −→ ∞.
Since

∥xi+n − xj+n∥+ ∥yi+n − yj+n∥
−∥T k(xi+n, yi+n)− T k(xj+n, yj+n)∥
−∥T k(yi+n, xi+n)− T k(yj+n, xj+n)∥

 ≤


∥xi+n − T k(xi+n, yi+n)∥
+∥yi+n − T k(xi+n, yi+n)∥
+∥xj+n − T k(xj+n, yj+n)∥
+∥yj+n − T k(yj+n.xj+n)∥

 ≤ 1

2
δ ϵ

5

and
∥xi+n − xj+n∥+ ∥yi+n − yj+n∥
−∥T k(xi+n, yi+n)− T k(xj+n, yj+n)∥
−∥T k(yi+n, xi+n)− T k(yj+n, xj+n)∥

 =


1
2 [∥xi+n − xj+n∥+ ∥yi+n − yj+n∥]
−∥T k(xi+n, yi+n)− T k(xj+n, yj+n)∥
+ 1

2 [∥yi+n − yj+n∥+ ∥xi+n − xj+n∥]
−∥T k(yi+n, xi+n)− T k(yj+n, xj+n)∥

 ≤ 1

2
δϵ/5,

we therefore have

∥xi+n − xj+n∥+ ∥yi+n − yj+n∥ − 2∥T k(xi+n, yi+n)− T k(xj+n, yj+n)∥ ≤ δϵ/5

for 1 ≤ i, j ≤ m(n); by Lemma 2.5, we have∥∥∥∥∥∥T k(An, Bn)−
m(n)∑
i=1

λ
(n)
i T k(xi+n, yi+n)

∥∥∥∥∥∥ <
ϵ

5
,

∥∥∥∥∥∥T k(Bn, An)−
m(n)∑
i=1

λ
(n)
i T k(yi+n, xi+n)

∥∥∥∥∥∥ <
ϵ

5
.

There is Lk,ϵ ≥ 1 such that ∥An − x∗∥+ ∥Bn − y∗∥ < ϵ
5 for all n ≥ Lk,ϵ.

Since x∗, y∗ ∈ K,

∥T k(x∗, y∗)− x∗∥ ≤ ∥T k(x∗, y∗)− T k(An, Bn)∥

+

∥∥∥∥∥∥T k(An, Bn)−
m(n)∑
i=1

λ
(n)
i T k(xi+n, yin)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
m(n)∑
i=1

λ
(n)
i (T k(xi+n, yi+n)− xi+n)

∥∥∥∥∥∥+ ∥An − x∗∥

< ϵ

for n ≥ Lk,ϵ and k ≥ N2(ϵ). Thus ∥T k(x∗, y∗) − x∗∥ < ϵ for k ≥ N2(ϵ) and so
∥T k(x∗, y∗)−x∗∥ −→ 0 as k −→ ∞. Similarly, ∥T k(y∗, x∗)−y∗∥ −→ 0 as k −→ ∞.
By the continuity of T , we have{

x∗ = lim
k−→∞

T k+1(x∗, y∗) = lim
k−→∞

T (T k(x∗, y∗), T k(y∗, x∗)) = T (x∗, y∗)

y∗ = lim
k−→∞

T k+1(y∗, x∗) = lim
k−→∞

T (T k(y∗, x∗), T k(x∗, y∗)) = T (y∗, x∗)

This completes the proof. �

Theorem 2.1 extends Theorem 2.1 of Olaoluwa et al. [18] to asymptotically nonex-
pansive maps in the intermediate sense defined on a product space.
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3. Existence of coupled fixed points

The following theorem relative to the existence of coupled fixed points of asymp-
totically nonexpansive maps in the intermediate sense extends the results of Kirk
[15] to product spaces. The spaces considered have a characteristic of convexity less
than one. Thus the result remain valid for uniformly convex Banach spaces and
consequently generalize Theorem 3.1 of Olaoluwa et al. [18] on existence of cou-
pled fixed points of asymptotically nonexpansive maps in uniformly convex Banach
spaces.

Theorem 3.1. Let X be a Banach space for which ϵ0 = ϵ0(X) < 1 and let K ⊂ X be
nonempty, bounded, closed and convex. Suppose T : K×K −→ K is asymptotically
nonexpansive in the intermediate sense. Then T has a fixed point in K ×K.

Proof. Let (x, y) ∈ K ×K be fixed. Define the set R(x, y) as follows:

R(x, y) =

ρ ∈ R / ∃kρ ∈ N : (K ×K)
∩ ∞∩

i=kρ

B(T i(x, y), ρ)×B(T i(y, x), ρ)

 ̸= ∅

 .

where B(x, r) is the open sphere in X, of center x and radius r. K is bounded, so,
if DK := diamK (diameter of K), DK ∈ R(x, y), hence R(x, y) ̸= ∅. Let ρ∗ be the
g.l.b. of R(x, y).
For any ϵ > 0, define the sets Cϵ =

∪∞
k=1

(∩∞
i=k B

(
T i(x, y), ρ∗ + ϵ

))
and

Dϵ =
∪∞

k=1

(∩∞
i=k B

(
T i(y, x), ρ∗ + ϵ

))
. The sets Cϵ and Dϵ are nonempty, bounded

and convex hence by the reflexivity of X the closures C̄ϵ and D̄ϵ are weakly compact
and C =

∩
ϵ>0(C̄ϵ ∩K) ̸= ∅ and D =

∩
ϵ>0(D̄ϵ ∩K) ̸= ∅.

Let (u, v) ∈ C ×D and let d(u, v) = lim supi−→∞ ∥u− T i(u, v)∥+ ∥v − T i(v, u)∥.
Suppose ρ∗(x, y) = 0. Then Tn(x, y) −→ u and Tn(y, x) −→ v as n −→ ∞. Let
η > 0 and using (1.5), choose L such that i ≥ L implies

sup
(u,v),(z,t)∈K×K

[2∥T i(u, v)− T i(z, t)∥ − ∥u− z∥ − ∥v − t∥] ≤ 1

3
η.

Given i ≥ L, since Tn(x, y) −→ u and Tn(y, x) −→ v, there exists l > i such that
∥T l(x, y)− u∥+ ∥T l(y, x)− v∥ ≤ 1

3η and ∥T l−i(x, y)− u∥+ ∥T l−i(y, x)− v∥ ≤ 1
3η.
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Thus if i ≥ L,
∥u− T i(u, v)∥+ ∥v − T i(v, u)∥

≤ ∥u− T l(x, y)∥+ ∥T l(x, y)− T i(u, v)∥+ ∥v − T l(x, y)∥+ ∥T l(x, y)− T i(u, v)∥

≤ ∥u− T l(x, y)∥+ ∥T i(u, v)− T i(T l−i(x, y), T l−i(y, x))∥ − ∥u− T l−i(x, y)∥
+∥u− T l−i(x, y)∥+ ∥v − T l(y, x)∥+ ∥T i(v, u)− T i(T l−i(y, x), T l−i(x, y))∥
−∥v − T l−i(y, x)∥+ ∥v − T l−i(y, x)∥

≤ 2

3
η

+
1

2

[
2∥T i(T l−i(x, y), T l−i(y, x))− T i(u, v)∥ − ∥u− T l−i(x, y)∥ − ∥v − T l−i(y, x)∥

]
+
1

2

[
2∥T i(T l−i(y, x), T l−i(x, y))− T i(v, u)∥ − ∥u− T l−i(x, y)∥ − ∥v − T l−i(y, x)∥

]
≤ 2

3
η + sup

[
2∥T i(u, v)− T i(z, t)∥ − ∥u− z∥ − ∥v − t∥

]
≤ η.

This proves that Tn(u, v) −→ u and Tn(v, u) −→ v as n −→ ∞, that is, d(u, v) = 0.
But d(u, v) = 0 implies TNi(u, v) −→ u and TNi(v, u) −→ v as i −→ ∞ and with
the continuity of TN this yields TN (u, v) = u and TN (v, u) = v. Thus, as i −→ ∞, T (u, v) = T

(
TNi(u, v), TNi(v, u)

)
= TNi+1(u, v) −→ u

T (v, u) = T
(
TNi(v, u), TNi(u, v)

)
= TNi+1(v, u) −→ v

so T (u, v) = u and T (v, u) = v.
Now we assume that ρ∗(x, y) > 0 and d(u, v) > 0. In fact, we may assume this for
any x, y, u, v ∈ K.
Let ϵ > 0, ϵ ≤ d(u, v). By definition of ρ∗ there exists an integer N∗ such that if
i ≥ N∗ then

∥u− T i(x, y)∥+ ∥v − T i(y, x)∥ ≤ ρ∗ + ϵ, (3.1)
and by (1.5) there exists N∗∗ such that if i ≥ N∗∗ then

sup
[
2∥T i(u, v)− T i(z, t)∥ − ∥u− z∥ − ∥v − t∥

]
≤ ϵ.

Select j so that j ≥ N∗∗ and so that
∥u− T j(u, v) + v − T j(v, u)∥ ≥ d(u, v)− ϵ. (3.2)

Thus if i− j ≥ N∗∗,
∥T j(u, v)− T i(x, y)∥+ ∥T j(v, u)− T i(y, x)∥

= ∥T j(u, v)− T j(T i−j(x, y), T i−j(y, x))∥ − ∥u− T i−j(x, y)∥+ ∥u− T i−j(x, y)∥
+∥T j(v, u)− T j(T i−j(y, x), T i−j(x, y))∥ − ∥v − T i−j(y, x)∥+ ∥v − T i−j(y, x)∥

= 1
2

{
2∥T j(u, v)− T j(T i−j(x, y), T i−j(y, x))∥ − ∥u− T i−j(x, y)∥ − ∥v − T i−j(y, x)∥

}
+ 1

2

{
2∥T j(v, u)− T j(T i−j(y, x), T i−j(x, y))∥ − ∥u− T i−j(x, y)∥ − ∥v − T i−j(y, x)∥

}
+∥u− T i−j(x, y)∥+ ∥v − T i−j(y, x)∥

≤ ϵ

2
+

ϵ

2
+ (ρ∗ + ϵ) = 2ϵ+ ρ∗.

(3.3)
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Letting m =
1

2
[u+ T j(u, v) + v + T j(v, u)], by (3.3) we have:

∥m− T i(x, y)− T i(y, x)∥ ≤
(
1− δ

(
d(u, v)− ϵ

ρ∗ + 2ϵ

))
(ρ∗ + 2ϵ), i ≥ N∗ + j.

By the minimality of ρ∗ this implies that

ρ∗ ≤
(
1− δ

(
d(u, v)− ϵ

ρ+ 2ϵ

))
(ρ∗ + 2ϵ).

Letting ϵ −→ 0, ρ∗ ≤
(
1− δ

(
d(u,v)
ρ∗

))
ρ∗. This implies that 1− δ

(
d(u,v)
ρ∗

)
≥ 1 and

hence δ
(

d(u,v)
ρ∗

)
= 0. It follows from the definition of ϵ0 that d(u,v)

ρ∗ ≤ ϵ0. Hence
d(u, v) ≤ ϵ0ρ

∗(x, y) and letting d(x, y) = lim supi−→∞ ∥x−T i(x, y)∥+∥y−T i(y, x)∥
we have ρ0(x) ≤ d(x, y) so

d(u, v) ≤ ϵ0d(x, y) (3.4)
Also notice that ∥u− x∥+ ∥v − y∥ ≤ d(x, y) + ρ0(x, y) ≤ 2d(x, y).
Fix (x0, y0) ∈ K ×K and define the sequence {(xn, yn)} for all n ∈ N by{

xn+1 = u(xn, yn)
yn+1 = v(yn, xn),

where u(xn, yn) is obtained from xn and yn in the same manner as u(x, y) from x
and y.
If for any n we have ρ(xn, yn) = 0 and ρ(yn, xn) = 0 then, as seen above,
T (xn+1, yn+1) = xn+1 and T (yn+1, xn+1) = yn+1. Otherwise, by 3.4 we have
∥xn+1 − xn∥ + ∥yn+1 − yn∥ ≤ 2d(xn, yn) ≤ 2ϵnd(x0, y0) and since ϵ0 < 1, {xn}
and {yn} are Cauchy sequences. Therefore there exists (x, y) ∈ K × K such that
xn −→ x and yn −→ y as n −→ ∞. Also:

∥x− T i(x, y)∥+ ∥y − T i(y, x)∥
≤ ∥x− xn∥+ ∥xn − T i(xn, yn)∥+ ∥T i(xn, yn)− T i(x, y)∥

+∥y − yn∥+ ∥yn − T i(yn, xn)∥+ ∥T i(yn, xn)− T i(y, x)∥
≤ ∥x− xn∥+ ∥y − yn∥+ ∥xn − T i(xn, yn)∥

+∥yn − T i(yn, xn)∥+ ∥xn − x∥+ ∥yn − y∥
+ 1

2

[
2∥T i(xn, yn)− T i(x, y)∥ − ∥xn − x∥ − ∥yn − y∥

]
+ 1

2

[
2∥T i(yn, xn)− T i(y, x)∥ − ∥xn − x∥ − ∥yn − y∥

]
Thus

d(x, y) = lim sup
i−→∞

∥x− T i(x, y)∥+ ∥y − T i(y, x)∥

≤ lim sup
i−→∞

2[∥x− xn∥+ ∥y − yn∥]

+ lim sup
i−→∞

[∥xn − T i(xn, yn)∥+ ∥yn − T i(yn, xn)∥]

+ lim sup
i−→∞

[sup
x,y

2∥T i(x, y)− T i(u, v)∥ − ∥x− u∥ − ∥y − v∥]

≤ d(xn, yn) + 2[∥x− xn∥+ ∥y − yn∥]
Since xn −→ x, yn −→ y and d(xn, yn) −→ 0 as n −→ ∞, this implies that
d(x, y) = 0. But as seen before, it implies that T (x, y) = x and T (y, x) = y. �
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