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ABSTRACT. In this present article, we consider the generalized equilibria accompanied
with certain multi-objective multifunctions. This class unifies numbers of problems sur-
faced in the area of optimization including the well-known mixed equilibrium problems.
Some theorems are adopted, under the conventional assumptions of continuity, convexity,
and coercivity on the objective functions, guaranteeing that these functions enjoy the ex-
istence of such equilibria. The consequences of this generalized class are of course studied
and presented as well.
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1. INTRODUCTION

The theory of optimization has always been an important subject as it evolved
through its history. Amongst the developments in this area, the formulation of an
equilibrium problem is one of the most prominent and promising advance which
provides a unification to the classical approaches of variational inequalities, fixed
point theory, saddle point theory, and several more optimization problems. More-
over, it has been a wealthy source for solving the problems frequently appeared in
economics, management science, engineering, etc. The term equilibrium problem
was coined by Blum and Oettli [1]. However, it was first discussed decades before
by Fan [2, 3], under the influences of the minimax problems in economics. The
study of equilibrium theory has then been a heavily investigated area, and it has
been extended in various aspects and directions (see e.g., [4–9]).
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After the blossom of the scalar optimization theory, the vector cases were subse-
quently introduced. These extensions are admired for their capabilities implanted
in multi-objective optimization programming. The initiation of the vector equilibria
is motivated by the foundation of the vector variational inequalities introduced by
Giannessi [10] in finite-dimensional Euclidean spaces. The enhanced versions where
the objective functions take their values in arbitrary topological vector spaces were
also inaugurated in [11]. As for the equilibrium problems, the vectorial variants
were also conprehensively studied in [12–17].

On the other hand, the combinations between two kinds of optimization prob-
lems were introduced and studied. Typical important problems in this area are the
mixed variational inequalities, which is notable for their distinguishing applications
in engineering (see e.g., [18–26]). Due to the impact and utilities of mixed varia-
tional inequalities, several notions of mixed equilibria are then adopted in [27–29].
Although lots of numerical and computational techniques have been invented to
approximate the solutions of mixed equilibrium problems (for examples, [30–37]),
only a relatively small amount of qualitative results are known.

To enrich the theory of mixed equilibrium problems, we contemplate a class
of generalized set-valued equilibrium problems, where various classes of the mixed
equilibrium problems are determined to be embedded. This new class examines
the situation where the objective functions are vectorial and multivalued in fash-
ion. A qualitative study providing some sufficient conditions which guarantee the
solvability of this class, including its significant consequences, is also conducted and
employed.

The paper is organized in the following way: In section 2, we give a recollection
of some background definitions and properties which are useful in our main results,
and also introduce the class of generalized equilibrium problem we are interested to
study. In section 3, we state and prove our main results providing the validity con-
ditions for the problems suggested in preceding section. The consequential remarks
are afterward given and studied.

2. Preliminaries

Suppose that E is a topological vector space and Y ⊂ E being nonempty. A
problem of finding a point x̂ ∈ Y with

f(x̂, y) ≥ 0, ∀y ∈ Y,

where f : Y × Y → R, seems to be a fertile area for mathematicians over the past
years. This problem is known today as the equilibrium problem and the point x̂ is
referred to as an equilibrium. The very first existence theorems for solutions to this
problem were introduced in [1, 3, 38] through the usages of continuity, convexity,
monotonicity and compactness.

To realize the vectorial formulation, recall that a nonempty subset C ⊂ E is said
to be a cone if λC ⊂ C for λ ≥ 0. If C + C ⊂ C holds, then the cone C is called
convex. By C◦, we means the interiors of C. There should be no ambiguity to
denote the zero element of any involved vector space by θ. A cone C is said to be
pointed if C ∩ −C = {θ} and is said to be solid if C◦ ̸= ∅.

With the perception of cones, we can define two partial ordering ≼ and ≪ on E
by {

x ≼ y ⇐⇒ y − x ∈ C,

x ≪ y ⇐⇒ y − x ∈ C◦.
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For instance, let f : Y × Y → L a function valued in another topological vector
space L with a cone C ⊂ L. A point x̂ ∈ Y is said to be a weak equilibrium
(equilibrium) of f if

f(x̂, y) ̸∈ −C◦ (−C \ {θ}), ∀y ∈ Y.

Under many circumstances, a single action might bring more than one feasible
outcomes at a time. This is where the powerful concept of multifunctions gets
in. By the term multifunction, we shall refer to the function F : A → 2B with
nonempty values (it is to be understood that A,B are any nonempty sets). In
this context, we shall write F : A ⇒ B instead. We are now consider the multi-
objective multifunctions, which will be used mainly in this work: Suppose now that
F,G : Y × Y ⇒ L. The point x̂ ∈ Y such that

F (y, x̂)−G(x̂, y) ̸⊂ C◦ (C \ {θ}), ∀y ∈ Y (GEP)
is called a generalized weak equilibrium (generalized equilibrum) for F and G. This
class of problem contains many important special cases as one shall see as we proceed
further.

On the contrary, the KKM theory has been an astonishing area as it provides a
key tool in nonlinear analysis and optimization (see e.g. [7, 15, 39–41]). Recall that
a multifunction T : Y ⇒ L is said to be a KKM if

co(A) ⊂
∪
y∈A

T (y),

for all A ∈ ⟨Y ⟩, where co(A) denotes the convex hull of A and ⟨A⟩ denotes the
family of all finite subsets of Y . The celebrated lemma of Fan [2] asserts that
if a KKM multifunction possesses a compact value at some point x0 ∈ Y , then∩

x∈Y T (x) ̸= ∅.
A replacement for the above compactness of T (x0) is a favor for many nonlinear

analysts. In [42], the following coercivity conditions were introduced:
Definition 2.1 ([42]). Suppose that T : Y ⇒ L a multifunction. A family {(Ci,Ki)}i∈I

is said to be coercing for T if the following properties are satisfied:
(C1) for each i ∈ I, Ci ⊂ K for some compact convex set K ⊂ Y and Ki ⊂ L is

compact;
(C2) for each i, j ∈ I, there exists k ∈ I such that

Ci ∪ Cj ⊂ Ck;

(C3) for each i ∈ I, there exists k ∈ I with∩
x∈Ck

T (x) ⊂ Ki.

The following KKM principle was subsequently proposed, which shows the above
coercing conditions successfully overcome the necessity of the compactness of T (x0).
Lemma 2.2 ([42]). Let E be a topological vector space, K ⊂ E be nonempty and
convex, and X ⊂ K be nonempty. Suppose that T : X ⇒ K is a KKM multifunction
with compactly closed values (w.r.t. Y ) at each x ∈ X. If T admits a coercing
family, then

∩
x∈X T (x) ̸= ∅.

Most existence results for any general class of an equilibrium imposed some
kinds of continuity, monotonicity, convexity, and coercivity upon the objective
(multi)functions. The rest of this section is thus devoted to recall some background
definitions and properties which will be applied to the multifunctions F and G in
(GEP).
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Definition 2.3. A multifunction T : Y ⇒ L is said to be C-lower semi-continuous if
for any point y ∈ Y and any neighbourhood V of T (y), there exists a neighbourhood
U ⊂ Y of y such that T (U) ⊂ V + C. Moreover, T is said to be C-upper semi-
continuous if −T is C-lower semi-continuous.

It is proved in [43] that the following conditions characterize each others:
(i) T is C-lower semi-continuous;
(ii) for each e ∈ L, the set

T−(e+ C◦)
def
= {x ∈ E ; T (x) ∩ (e+ C◦) ̸= ∅}

is open;
(iii) for each x ∈ E and each e ∈ C◦, there exists a neighbourhood U of x such

that
T (U) ⊂ T (x)− e+ C◦.

Definition 2.4. A multifunction F : Y × Y ⇒ E is said to be C-monotone if
F (x, y) + F (y, x) ⊂ −C, for all x, y ∈ Y .

Definition 2.5. Suppose that K is nonempty and convex, a multifunction F : K ⇒ L
is said to be C-convex if

F

(
n∑

i=1

λixi

)
⊂

n∑
i=1

λiF (xi)− C.

where for each i ∈ {1, 2, · · · , n}, xi ∈ Y , λi ≥ 0 and
∑n

i=1 λi = 1. In addition, F is
C-concave if −F is C-convex.

3. Main results

Here, we shall consider the conditions under which the solvability is possible for
the problem (GEP). The section is organized into the sequence of problems known
throughout the literature in terms the generalized vector equilibria. Note that some
problems can be seen explicitly, while some are not.

3.1. Generalized equilibria.

Theorem 3.1. Let E,L be two topological vector spaces, K ⊂ E a nonempty closed
convex set and C ⊂ L a pointed closed convex cone. Suppose that F,G : K×K ⇒ L
are two multifunctions with the following properties:

(H1) F is C-monotone;
(H2) θ ∈ F (x, x) ∩G(x, x) for all x ∈ K;
(H3) F (x, ·) is C-lower semi-continuous and F (·, y) is C-concave;
(H4) G(·, y) is C-upper semi-continuous and G(x, ·) is C-convex;
(H5) there exists a collection {(Ci,Ki)}i∈I satisfying (C1), (C2) and for each

i ∈ I, there exists k ∈ I with {x ∈ K ; F (y, x)−G(x, y) ̸⊂ C◦, ∀y ∈ Ck} ⊂
Ki.

Then, F and G possess at least one generalized weak equilibrium.

As for the proof, we shall consider this theorem through the following sequence
of lemmas.

Lemma 3.2. The multifunction
H(y)

def
= {x ∈ K ; F (y, x)−G(x, y) ̸⊂ C◦}

has closed values at each y ∈ K.
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Proof. Suppose that y ∈ K and (xn) ⊂ H(y) with xn −→ x. Assume that x ̸∈ H(y).
Thus, it follows from (H3) and (H4) that

F (y, xn)−G(xn, y) ⊂ F (y, x)−G(x, y)− 2d+ C◦

⊂ −2d+ C◦,

for all d ∈ C◦. For each m ∈ N, 1
md ∈ C◦. Hence, F (y, xn) − G(xn, y) ⊂∩

m∈N(−
2
md+ C◦) = C◦. This yields a contradiction. � �

Lemma 3.3. H is a KKM multifunction.

Proof. Let A
def
= {yj ; j ∈ J} ∈ ⟨K⟩ and z ∈ co(A). Thus, z can be expressed by

z =
∑

j∈J λjyj with λj ≥ 0 and
∑

j∈J λj = 1. Assume that H is not KKM so that
z ̸∈

∪
j∈J H(yj). It means that∩

j∈J

(F (yj , z)−G(z, yj)) ⊂ C◦.

From (H3) and (H4), we may deduce that{
θ ∈ F (z, z) ⊂

∑
k∈J λkF (yk, z) + C,

θ ∈ G(z, z) ⊂
∑

k∈J λkG(z, yk)− C.

We subsequently have

θ ∈ F (z, z)−G(z, z) ⊂
∑
k∈J

[F (yk, z)−G(z, yk)] + C ⊂ C◦ + C ⊂ C◦,

which leads to a contradiction (otherwise the cone cannot be pointed). � �

Lemma 3.4. For each i ∈ I, we can find k ∈ I with∩
y∈Ck

H(y) ⊂ Ki.

Proof. The desired result follows immediately from (H5). � �

With the lemmas above, we may obtain a simple proof of Theorem 3.1.

of Theorem 3.1. Since E is Hausdorff, Lemma 3.2 implies that H has compactly
closed values for each y ∈ K. Now, from Lemmas 3.3, 3.4 and 2.2, resp., we have∩

y∈K

H(y) ̸= ∅.

Take any x̂ ∈
∩

y∈K H(y), it follows directly that x̂ is a generalized weak equilibrium
for F and G. � �

As initial consequences, we might consider the following corollaries.

Corollary 3.5. Let E,L be two topological vector spaces, K ⊂ E a nonempty closed
convex set and C ⊂ L a pointed closed convex cone. Suppose that G : K ×K ⇒ L
is a multifunction with the following properties:

(1) θ ∈ G(x, x) for all x ∈ K;
(2) G(·, y) is C-upper semi-continuous and G(x, ·) is C-convex;
(3) there exists a collection {(Ci,Ki)}i∈I satisfying (C1), (C2) and for each

i ∈ I, there exists k ∈ I with
{x ∈ K ; G(x, y) ̸⊂ −C◦, ∀y ∈ Ck} ⊂ Ki.
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Then, there exists a point x̂ ∈ K with
G(x̂, y) ̸⊂ −C◦, for all y ∈ Y .

Proof. Consider Theorem 3.1 as F = θ. � �

Corollary 3.6. Let E,L be two topological vector spaces, K ⊂ E a nonempty closed
convex set and C ⊂ L a pointed closed convex cone. Suppose that the multifunction
H : K ×K ⇒ L possesses the following properties:

(1) H(x, ·) is C-upper semi-continuous and C-concave;
(2) and H(·, y) is C-lower semi-continuous and C-convex;
(3) there exists a collection {(Ci,Ki)}i∈I satisfying (C1), (C2) and for each

i ∈ I, there exists k ∈ I with
{x ∈ K ; H(y, x)−H(x, y) ̸⊂ −C◦, ∀y ∈ Ck} ⊂ Ki.

Then, there exists a point x̂ ∈ K with
H(y, x̂)−H(x̂, y) ̸⊂ −C◦, for all y ∈ Y .

Proof. Define a multifunction
G(x, y)

def
= H(y, x)−H(x, y).

Then, θ ∈ G(x, x) for all x ∈ K, G(·, y) is C-upper semi-continuous and G(x, ·) is
C-convex. Apply Corollary 3.5 to complete the proof. � �

3.2. Strong solutions. According to Theorem 3.1, we shall give a supplementary
assumption to assure the existence of a generalized weak equilibrium.

Corollary 3.7. In addition to Theorem 3.1, if there exists a pointed closed convex
cone C̃ ⊂ L with C \ {θ} ⊂ C̃◦, then F and G possess at least one 2-equilibrium.

Proof. With this assumption, we can replace the cone C in Theorem 3.1 with C̃
and still obtain the result that

F (y, x)−G(x, y) ̸⊂ C̃◦.

Since C \ {θ} ⊂ C̃◦, we have
F (y, x)−G(x, y) ̸⊂ C \ {θ}. �

�

Corollary 3.8. In addition to Theorem 3.5, if there exists a pointed closed convex
cone C̃ ⊂ L with C \ {θ} ⊂ C̃◦, then F and G possesses at least one generalized
equilibrium.

Proof. As in the previous corollary, set F = θ. � �
3.3. Saddle points. We have mentioned in the earlier section the problem of finding
a saddle point. For instance, let E1, E2, L be three topological vector spaces and
K1,K2 be two nonempty closed convex subsets of E1 and E2, respectively. Suppose
that C ⊂ L is a pointed closed convex cone. Now, consider the multifunction
F : K1×K2 ⇒ L. A point (x1, x2) ∈ K1×K2 is called a weak saddle point (strong
saddle point) if

F (y1, x2)− F (x1, y2) ̸⊂ −C◦(−C \ {θ}), for all (y1, y2) ∈ K1 ×K2.

Theorem 3.9. Let E1, E2, L be three topological vector spaces, K1,K2 two nonempty
closed convex subsets of E1, E2, resp., C ⊂ L a pointed closed convex cone. Suppose
that F : K1 ×K2 ⇒ L is a multifunction with the following properties:
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(i) F (x, ·) is C-upper semi-continuous and C-concave;
(ii) F (·, y) is C-lower semi-continuous and C-convex;
(iii) there exists a collection {(Ci,Ki)}i∈I satisfying (C1), (C2) and for each

i ∈ I, there exists k ∈ I with

{x ∈ K ; F (y1, x2)− F (x1, y2) ̸⊂ −C◦, ∀(y1, y2) ∈ Ck} ⊂ Ki.

Then, F possesses at least one (K1,K2)-weak saddle point.

Proof. Set K
def
= K1 ×K2. We may see that K is closed and convex. Consider the

multifunction
G(x, y)

def
= F (y1, x2)− F (x1, y2).

It is easy to verify that θ ∈ G(x, x) for all x ∈ K1 × K2, G(x, ·) is C-convex and
G(·, y) is C-upper semi-continuous. By Corollary 3.5, G has a weak equilibrium
x̂ = (x̂1, x̂2) ∈ K which is in turn a weak equilibrium of G and is in turn a (K1,K2)-
weak saddle point of F . � �

Corollary 3.10. In addition to Theorem 3.9, if there exists a pointed closed convex
cone C̃ ⊂ L with C \ {θ} ⊂ C̃◦, then F possesses at least one saddle point.

Proof. Combine the proofs of Corollary 3.8 and Theorem 3.9. � �

3.4. Non-cooperative game equilibrium. Let I = {1, 2, · · · , n} (n ∈ N) denotes the
set of players. To each player i ∈ I, we assign a set Ki of strategies with Ki being
nonempty, closed and convex in some topological vector space Ei. Suppose that L is
a topological vector space with a pointed closed convex cone C. A loss multifunction
for each player i is the function Fi : K =

∏
i∈I Ki ⇒ L. For x = (xi)i∈I ∈ K, we

write x−i|yi
def
= (x1, x2, · · · , xi−1, yi, xi+1, · · · , xn), where yi ∈ Ki.

A point x̂ = (x̂i)i∈I ∈ K is said to be a weak non-cooperative game equilibrium
(strong non-cooperative game equilibrium) if for each i ∈ I,

Fi(x̂
−i|yi)− Fi(x̂) ̸⊂ −C◦, for all y = (yi)i∈I ∈ K.

Theorem 3.11. Let (Ei)i∈I be a sequence of topological vector spaces, (Ki) a se-
quence of nonempty closed convex sets with Ki ⊂ Ei. Suppose that for each i ∈ I,
Fi : K =

∏
i∈I Ki ⇒ L, where L is a topological vector space with a pointed closed

convex cone C. Also assume that the following properties hold for each i ∈ I:
(N1) Fi is C-continuous, i.e., Fi is both C-upper and C-lower semi-continuous;
(N2) at each i ∈ I, Fi(x

−i|·) is C-convex;
(N3) there exists a collection {(Cj , Qj)}j∈J , where for each j ∈ J , Cj , Qj ⊂

E
def
=
∏

i∈I Ei, satisfying (C1), (C2) and for each j ∈ J , there exists k ∈ J
with

{(xi)i∈I ∈ K ;
∑
i∈I

[Fi(x
−i|yi)− Fi(x)] ̸⊂ −C◦, ∀(yi)i∈I ∈ Ck} ⊂ Qj .

Then, the sequence (Fi)i∈I has at least one weak non-cooperative game equilibrium.

Proof. Define a multifunction G : K ×K ⇒ L by

G(x, y)
def
=
∑
i∈I

[Fi(x
−i|yi)− Fi(x)].

It is clear that θ ∈ G(x, x) for all x ∈ K, G(x, ·) is C-convex and G(·, y) is C-
lower semi-continuous. Applying Corollary 3.5, we obtain the existence of a weak
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equilibrium of H, which is in turn a weak equilibrium of G. That is, there exists a
point x̂ = (x̂i)i∈I ∈ K with∑

i∈I

[Fi(x̂
−i|yi)− Fi(x̂)] ̸⊂ −C◦, ∀y = (yi)i∈I ∈ K.

For each ℓ ∈ I, we may take y ∈ K such that yi = x̂i for all i ∈ I \ {ℓ} into account
and conclude that

Fℓ(x̂
−ℓ|yℓ)− Fℓ(x̂) ̸⊂ −C◦, ∀yℓ ∈ Kℓ. �

�
Corollary 3.12. In addition to Theorem 3.11, if there exists a pointed closed convex
cone C̃ ⊂ L with C \ {θ} ⊂ C̃◦, then the sequence (Fi)i∈I has at least one non-
cooperative game equilibrium.
Proof. Combine the proof of Corollary 3.8 and Theorem 3.11. � �
3.5. Mixed equilibrium problems. There are several classes of different mixed equi-
librium problems and generalized mixed equilibrium problems. However, in this
paper, we shall consider only on the major ones.

According to the problem (GEP), we may consider this as a mixture of two
multifunctions F and G, with F (x, y) = −F̃ (y, x) for some F̃ : Y × Y ⇒ L such
that θ ∈ F̃ (x, x) for all x ∈ Y . Then, (GEP) can be rewritten as the problem of
finding x̂ ∈ Y such that

F (x̂, y) +G(x̂, y) ̸⊂ −C◦, ∀y ∈ Y.

In other words, the problem (GEP) conveys the mixed equilibrium problemsas it
includes the two set-valued equilibrium problems corresponded to F̃ and G, re-
spectively. Thus, if F̃ is (−C)-monotone, F̃ (·, y) is C-upper semi-continuous, and
F̃ (x, ·) is C-convex, then it follows from Theorem 3 that this mixed equilibrium
problem has a solution.

The next theorem overcome the situation when the function F̃ is not valid.
Theorem 3.13. In addition to Theorem 3.1, assume further that

(M1) F (x, ·) is C-convex;
(M2) for each fixed x, y ∈ K, the multifunction

t ∈ [0, 1] 7→ F (ty + (1− t)x, y)

is C-upper semi-continuous at t = 0;
(M3) there is a solution x̂ ∈ K of the problem (GEP) that admits an absolute

exclusion, i.e.,
F (y, x̂)−G(x̂, y) ⊂ L \ C◦, ∀y ∈ K.

Then, x̂ also solves the following problem:
F (x̂, y) +G(x̂, y) ̸⊂ −C◦, for all y ∈ K.

Proof. We first define two multifunctions F ′, G′ : K ×K ⇒ L such that

F ′(x, y)
def
=

{
F (x, y), if x ̸= y,
{θ}, otherwise,

and G′(x, y)
def
=

{
G(x, y), if x ̸= y,
{θ}, otherwise.

It is clear that F ′ and G′ preserves the C-convexity, C-semi continuity, and C-
monotonicity of F and G, respectively. For t ∈ [0, 1] and y ∈ K, we write

xt
def
= ty + (1− t)x̂.
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From the C-convexity of F ′(x, ·) and G′(x, ·), we have{
θ ∈ tF ′(xt, y) + (1− t)F ′(xt, x̂)− C,

θ ∈ (1− t)tG′(x̂, y)− (1− t)G′(x̂, xt)− C.

Consequently, we have

θ ∈ tF ′(xt, y) + (1− t)[F ′(xt, x̂)−G′(x̂, xt)] + (1− t)tG′(x̂, y)− C.

We now claim that tF ′(xt, y) + (1 − t)tG′(x̂, y) ̸⊂ −C◦. Otherwise, if we suppose
to the contrary, it follows that for some ξ ∈ tF ′(xt, y) + (1 − t)tG′(x̂, y) and ξ′ ∈
(1− t)[F ′(xt, x̂)−G′(x̂, xt)], we have

θ ∈ ξ + ξ′ − C ⊂ ξ′ − C◦ − C ⊂ ξ′ − C◦.

Hence, it is the case that ξ′ ∈ C◦, which contradicts (M3). So we have proved our
claim. For t ̸= 0, we further obtain that

tF ′(xt, y) + (1− t)tG′(x̂, y) ̸⊂ −C◦. (3.1)

Define a multifunction H : [0, 1] ⇒ L by

H(t)
def
= F ′(xt, y) + (1− t)G′(x̂, y), ∀t ∈ [0, 1].

We may see from (M2) that H is C-upper semi-continuous at t = 0.
Let us now verify that H(0) ̸⊂ −C◦, since if it is so, the combination with the

fact that F ′(x̂, y) +G′(x̂, y) ⊂ F (x̂, y) +G(x̂, y) will eventually implies our desired
result. Assume to the contrary that H(0) ⊂ −C◦. Thus, we may find an open set
N with H(0) ⊂ N ⊂ −C◦, which immediately give

N − C ⊂ −C◦ − C ⊂ −C◦.

Since H is C-upper semi-continuous, we can find an open set P ⊂ R such that

H(P ∩ [0, 1]) ⊂ N − C ⊂ −C◦.

Taking any t ∈ P ∩ (0, 1], we have from the above inclusion that H(t) ⊂ −C◦. This
contradicts with (3.1), and so this proves the theorem. � �

Conclusion

We close this paper with recalling that a new class of generalized equilibrium
problems is formulated. It turns out that many esteemed problems in optimization
are included and unified. Explicit and implicit consequences are also deduced and
studied. Ultimately and most importantly, our results enlarge the validity support
of the approximation models for several generalized equilibrium problems.
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