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1. Introduction

Over the past two decades a considerable amount of research work for the de-
velopment of fixed point theory have executed by several mathematicians. There
has been a number of generalizations of the usual notion of a metric space. One
such generalization is a b-metric space initiated by Bakhtin[2]. In[6], Huang and
Zhang introduced the concept of cone metric spaces as a generalization of metric
spaces and proved some important fixed point theorems in such spaces. After that
a series of articles have been dedicated to the improvement of fixed point theory. In
most of those articles, the authors used normality property of cones in their results.
Recently, Hussain and Shah[8] introduced the concept of cone b-metric spaces as a
generalization of b-metric spaces and cone metric spaces. They studied some topo-
logical properties and improved some recent results about KKM mappings in the
setting of a cone b-metric space. In this work, we shall establish sufficient condi-
tions for existence of points of coincidence and common fixed points for a pair of
self mappings without the assumption of normality in cone b-metric spaces. The
results generalize and improve some recent results in the literature. Furthermore,
we support our results by examples.
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2. Preliminaries

In this section we need to recall some basic notations, definitions, and necessary
results from existing literature. Let E be a real Banach space and θ denote the zero
element in E. A cone P is a subset of E such that

(i) P is closed, nonempty and P ̸= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.
For any cone P ⊆ E, we can define a partial ordering ≼ on E with respect to P
by x ≼ y(equivalently, y ≽ x) if and only if y − x ∈ P . We shall write x ≺ y
(equivalently, y ≻ x) if x ≼ y and x ̸= y, while x ≪ y will stand for y− x ∈ int(P ),
where int(P ) denotes the interior of P . The cone P is called normal if there is a
number k > 0 such that for all x, y ∈ E,

θ ≼ x ≼ y implies ∥x∥ ≤ k ∥y∥.
The least positive number satisfying the above inequality is called the normal con-
stant of P . Throughout this paper, we suppose that E is a real Banach space, P is
a cone in E with int(P ) ̸= ∅ and ≼ is a partial ordering on E with respect to P .

Definition 2.1. [6] Let X be a nonempty set. Suppose the mapping d : X×X → E
satisfies

(i) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≼ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Definition 2.2. [8] Let X be a nonempty set and E a real Banach space with cone
P . A vector valued function d : X ×X → E is said to be a cone b-metric function
on X with the coefficient s ≥ 1 if the following conditions are satisfied:

(i) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) ≼ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a cone b-metric space.

Observe that if s = 1, then the ordinary triangle inequality in a cone metric
space is satisfied, however it does not hold true when s > 1. Thus the class of cone
b-metric spaces is effectively larger than that of the ordinary cone metric spaces.
That is, every cone metric space is a cone b-metric space, but the converse need not
be true. The following examples illustrate the above remarks.

Example 2.3. [8] Let X = {−1, 0, 1}, E = R2, P = {(x, y) : x ≥ 0, y ≥ 0}. Define
d : X × X → P by d(x, y) = d(y, x) for all x, y ∈ X, d(x, x) = θ, x ∈ X and
d(−1, 0) = (3, 3), d(−1, 1) = d(0, 1) = (1, 1). Then (X, d) is a cone b-metric space,
but not a cone metric space since the triangle inequality is not satisfied. Indeed, we
have that

d(−1, 1) + d(1, 0) = (1, 1) + (1, 1) = (2, 2) ≺ (3, 3) = d(−1, 0).

It is easy to verify that s = 3
2 .
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Example 2.4. [9] Let E = R2, P = {(x, y) : x ≥ 0, y ≥ 0} ⊆ E, X = R and
d : X ×X → E such that d(x, y) = (| x− y |p, α | x− y |p), where α ≥ 0 and p > 1
are two constants. Then (X, d) is a cone b-metric space with s = 2p−1, but not a
cone metric space.

Definition 2.5. [8] Let (X, d) be a cone b-metric space, x ∈ X and (xn) be a
sequence in X. Then

(i): (xn) converges to x whenever, for every c ∈ E with θ ≪ c, there is a
natural number n0 such that for all n > n0, d(xn, x) ≪ c. We denote this
by lim

n→∞
xn = x or xn → x (n → ∞);

(ii): (xn) is a Cauchy sequence whenever, for every c ∈ E with θ ≪ c, there
is a natural number n0 such that for all n,m > n0, d(xn, xm) ≪ c;

(iii): (X, d) is a complete cone b-metric space if every Cauchy sequence is
convergent.

Remark 2.6. [8] Let (X, d) be a cone b-metric space over the ordered real Banach
space E with a cone P . Then the following properties are often used:

(i): If a ≼ b and b ≪ c, then a ≪ c.
(ii): If a ≪ b and b ≪ c, then a ≪ c.
(iii): If θ ≼ u ≪ c for each c ∈ int(P ), then u = θ.
(iv): If c ∈ int(P ), θ ≼ an and an → θ, then there exists n0 such that for all

n > n0 we have an ≪ c.
(v): Let θ ≪ c. If θ ≼ d(xn, x) ≼ bn and bn → θ, then eventually d(xn, x) ≪

c, where (xn), x are a sequence and a given point in X.
(vi): If θ ≼ an ≼ bn and an → a, bn → b, then a ≼ b, for each cone P .
(vii): If E is a real Banach space with cone P and if a ≼ λa where a ∈ P

and 0 ≤ λ < 1, then a = θ.
(viii): α int(P ) ⊆ int(P ) for α > 0.
(ix): For each δ > 0 and x ∈ int(P ) there is 0 < γ < 1 such that ∥ γx ∥< δ.
(x): For each θ ≪ c1 and c2 ∈ P , there is an element θ ≪ d such that

c1 ≪ d, c2 ≪ d.
(xi): For each θ ≪ c1 and θ ≪ c2, there is an element θ ≪ e such that

e ≪ c1, e ≪ c2.

Definition 2.7. [1] Let T and S be self mappings of a set X. If y = Tx = Sx for
some x in X, then x is called a coincidence point of T and S and y is called a point
of coincidence of T and S.

Definition 2.8. [11] The mappings T, S : X → X are weakly compatible, if for
every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.9. [1] Let S and T be weakly compatible selfmaps of a nonempty
set X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the
unique common fixed point of S and T .

Definition 2.10. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1. A
mapping T : X → X is called expansive if there exists a real constant k > s such
that

d(Tx, Ty) ≽ k d(x, y)

for all x, y ∈ X.
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3. TOPOLOGY IN CONE b-METRIC SPACES

In this section our concern is to introduce some topological aspects in cone b-
metric spaces. This will facilate the initiation of open and closed sets, limit points
of sets and other allied notions in the setting of cone b-metric spaces.

Definition 3.1. [8] Let (X, d) be a cone b-metric space and B ⊆ X.
(i): b ∈ B is called an interior point of B whenever there is θ ≪ p such that

B0(b, p) ⊆ B, where B0(b, p) := {y ∈ X : d(y, b) ≪ p}.
(ii): An element x ∈ X is called a limit point of B whenever for every θ ≪ e,

B0(x, e) \ (B \ {x}) ̸= ∅. A subset B ⊆ X is called closed whenever each
limit point of B belongs to B.

(iii): A subset A ⊆ X is called open whenever each element of A is an interior
point of A, that is, for any a ∈ A, there exists c ∈ int P such that the open
ball B0(a, c) ⊆ A.

(iv): A subset B ⊆ X is called bounded whenever there exist θ ≪ c and
x0 ∈ X such that d(b, x0) ≪ c for all b ∈ B.

(v): A subset B ⊆ X is called compact whenever every open cover of B has
a finite subcover.

Let (X, d) be a cone b-metric space with the coefficient s ≥ 1. Then the family of
sets {B(x, c) : x ∈ X, θ ≪ c} where B(x, c) = {y ∈ X : d(y, x) ≪ c} is a sub basis
for a topology on X. This topology is denoted by τcb. It is to be noted that τcb is a
Hausdorff topology. Suppose for each c with θ ≪ c, we have B(x, c) ∩ B(y, c) ̸= ∅.
So, there exists z ∈ X such that d(z, x) ≪ c

2s and d(z, y) ≪ c
2s . Hence,

d(x, y) ≼ s(d(x, z) + d(z, y)) ≪ c.

This implies that d(x, y) = θ, that is, x = y.

Proposition 3.2. [8] Let (X, d) be a cone b-metric space and τcb be the topology
defined above. Then for any nonempty subset A ⊆ X we have
(i) A is closed if and only if for any sequence (xn) in A which converges to x, we
have x ∈ A;
(ii) If we define Ā to be the intersection of all closed subsets of X which contains
A, then for any x ∈ Ā and for any c ∈ int P , we have B0(x, c) ∩A ̸= ∅.

Theorem 3.3. [8] Let (X, d) be a cone b-metric space and τcb be the topology
defined above. Then for any nonempty subset A ⊆ X, the following properties are
equivalent:
(i) A is compact.
(ii) For any sequence (xn) in A, there exists a subsequence (xnk

) of (xn) which
converges, and lim

n→∞
xn ∈ A.

4. Main Results

In this section, we prove some point of coincidence and common fixed point
results in cone b-metric spaces.

Theorem 4.1. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1.
Suppose the mappings f, g : X → X satisfy the contractive condition

d(fx, fy) ≼ λ d(gx, gy) (4.1)
for all x, y ∈ X, where λ ∈ [0, 1

s ) is a constant. If f(X) ⊆ g(X) and f(X) or g(X)
is a complete subspace of X, then f and g have a unique point of coincidence in X.
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Moreover, if f and g are weakly compatible, then f and g have a unique common
fixed point in X.

Proof. Let x0 ∈ X and choose x1 ∈ X such that fx0 = gx1. This is possible since
f(X) ⊆ g(X). Continuing this process, we can construct a sequence (xn) in X such
that fxn = gxn+1, n = 0, 1, 2, · · ·.
By using (4.1), we have

d(fxn+1, fxn) ≼ λd(gxn+1, gxn)

= λd(fxn, fxn−1)

≼ λ2d(gxn, gxn−1)

= λ2d(fxn−1, fxn−2)

·
·
·
≼ λnd(fx1, fx0). (4.2)

For any m,n ∈ N with m > n, we have by using condition (4.2) that
d(fxn, fxm) ≼ s [d(fxn, fxn+1) + d(fxn+1, fxm)]

≼ sd(fxn, fxn+1) + s2d(fxn+1, fxn+2) + · · ·
+sm−n−1 [d(fxm−2, fxm−1) + d(fxm−1, fxm)]

≼
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−n−1λm−1

]
d(fx0, fx1)

≼
[
sλn + s2λn+1 + · · ·+ sm−n−1λm−2 + sm−nλm−1

]
d(fx0, fx1)

= sλn
[
1 + sλ+ (sλ)2 + · · ·+ (sλ)m−n−2 + (sλ)m−n−1

]
d(fx0, fx1)

≼ sλn

1− sλ
d(fx0, fx1). (4.3)

It is to be noted that sλn

1−sλ d(fx0, fx1) → θ as n → ∞. Let θ ≪ c be given.
Then we can find m0 ∈ N such that

sλn

1− sλ
d(fx0, fx1) ≪ c,

for each n > m0.

Therefore, it follows from (4.3) that

d(fxn, fxm) ≼ sλn

1− sλ
d(fx0, fx1) ≪ c

for all m > n > m0.
So (fxn) is a Cauchy sequence in f(X). Suppose that f(X) is a complete sub-

space of X. Then there exists y ∈ f(X) ⊆ g(X) such that fxn → y and also
gxn → y. In case, g(X) is complete, this holds also with y ∈ g(X). Let u ∈ X be
such that gu = y. For θ ≪ c, one can choose a natural number n0 ∈ N such that
d(y, fxn) ≪ c

s(λ+1) and d(gxn, gu) ≪ c
s(λ+1) for all n > n0.

Now,
d(y, fu) ≼ s[d(y, fxn) + d(fxn, fu)]

≼ s[d(y, fxn) + λ d(gxn, gu)]

≪ c, for all n > n0,
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which gives that d(y, fu) = θ, i.e., fu = y and hence fu = gu = y. Therefore, y is
a point of coincidence of f and g.
For uniqueness, let v be another point of coincidence of f and g. So fx = gx = v
for some x ∈ X. Then

d(v, y) = d(fx, fu) ≼ λ d(gx, gu) = λ d(v, y).

By Remark 2.6(vii), we have d(v, y) = θ i.e., v = y.
Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.9, f and g have a unique
common fixed point in X. �

The following Corollary is the Theorem 2.1[9].

Corollary 4.2. Let (X, d) be a complete cone b-metric space with the coefficient
s ≥ 1. Suppose the mapping f : X → X satisfies the contractive condition

d(fx, fy) ≼ λ d(x, y)

for all x, y ∈ X, where λ ∈ [0, 1
s ) is a constant. Then f has a unique fixed point in

X. Furthermore, the iterative sequence (fnx) converges to the fixed point.

Proof. The proof follows from Theorem 4.1 by taking g = I, the identity mapping
on X.

�

Corollary 4.3. Let (X, d) be a complete cone b-metric space with the coefficient
s ≥ 1. Suppose the mapping g : X → X is onto and satisfies

d(gx, gy) ≽ k d(x, y)

for all x, y ∈ X, where k > s is a constant. Then g has a unique fixed point in X.

Proof. Taking f = I in Theorem 4.1, we obtain the desired result.
�

Remark 4.4. Corollary 4.3 gives a sufficient condition for the existence of unique
fixed point of an expansive mapping in cone b-metric spaces.

Theorem 4.5. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1.
Suppose the mappings f, g : X → X satisfy the contractive condition

d(fx, fy) ≼ a d(fx, gx) + b d(fy, gy) (4.4)
for all x, y ∈ X, where a, b ≥ 0 with a+sb < 1. If f(X) ⊆ g(X) and f(X) or g(X)
is a complete subspace of X, then f and g have a unique point of coincidence in X.
Moreover, if f and g are weakly compatible, then f and g have a unique common
fixed point in X.

Proof. Let x0 ∈ X be arbitrary. As in Theorem 4.1, we can construct a sequence
(xn) in X such that fxn = gxn+1, n = 0, 1, 2, · · ·.
Using (4.4), we have

d(fxn+1, fxn) ≼ a d(fxn+1, gxn+1) + b d(fxn, gxn)

= a d(fxn+1, fxn) + b d(fxn, fxn−1)

which implies that
d(fxn+1, fxn) ≼ k d(fxn, fxn−1) (4.5)
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where k = b
1−a . It is easy to see that 0 ≤ k < 1

s .
By repeated application of (4.5), we obtain

d(fxn+1, fxn) ≼ kd(fxn, fxn−1) ≼ k2d(fxn−1, fxn−2) ≼ · · · ≼ knd(fx1, fx0).

By an argument similar to that used in Theorem 4.1, it follows that (fxn) is a
Cauchy sequence in f(X). If f(X) is a complete subspace of X, then there ex-
ists y ∈ f(X) ⊆ g(X) such that fxn → y and also gxn → y. In case, g(X) is
complete, this holds also with y ∈ g(X). Let u ∈ X be such that gu = y. For
θ ≪ c, one can choose a natural number n0 ∈ N such that d(y, fxn) ≪ 1−bs

2(s+as2)c

and d(gxn, gu) ≪ 1−bs
2as2 c for all n > n0.

Now,
d(y, fu) ≼ s[d(y, fxn) + d(fxn, fu)]

≼ s[d(y, fxn) + a d(fxn, gxn) + b d(fu, gu)]

≼ s[d(y, fxn) + as d(fxn, y) + as d(y, gxn) + b d(fu, y)].

So it must be the case that
(1− bs)d(y, fu) ≼ (s+ as2)d(y, fxn) + as2d(y, gxn). (4.6)

Therefore, we obtain from condition (4.6) that

d(y, fu) ≼ s+ as2

1− bs
d(y, fxn) +

as2

1− bs
d(gu, gxn)

≪ c for all n > n0. (4.7)
This implies that d(y, fu) = θ, i.e., fu = y and hence fu = gu = y. Therefore, y is
a point of coincidence of f and g.

For uniqueness, let v be another point of coincidence of f and g. So fx = gx = v
for some x ∈ X. Then

d(v, y) = d(fx, fu) ≼ a d(fx, gx) + b d(fu, gu) = θ.

By Remark 2.6(vii), we have d(v, y) = θ i.e., v = y.
Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.9, f and g have a unique
common fixed point in X. �
Corollary 4.6. Let (X, d) be a complete cone b-metric space with the coefficient
s ≥ 1. Suppose the mapping f : X → X satisfies the contractive condition

d(fx, fy) ≼ a d(fx, x) + b d(fy, y)

for all x, y ∈ X, where a, b ≥ 0 with a + sb < 1. Then f has a unique fixed point
in X.

Proof. Proof follows from Theorem 4.5 by taking g = I.
�

Theorem 4.7. Let (X, d) be a cone b-metric space with the coefficient s ≥ 1.
Suppose the mappings f, g : X → X satisfy the contractive condition

d(fx, fy) ≼ a d(fx, gy) + b d(fy, gx) (4.8)
for all x, y ∈ X, where a, b ≥ 0 with max{a, b} < 1

s2+s . If f(X) ⊆ g(X) and
f(X) or g(X) is a complete subspace of X, then f and g have a unique point of
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coincidence in X. Moreover, if f and g are weakly compatible, then f and g have
a unique common fixed point in X.

Proof. Let x0 ∈ X be arbitrary. As in Theorem 4.1, we can construct a sequence
(xn) in X such that fxn = gxn+1, n = 0, 1, 2, · · ·.
Using (4.8), we have

d(fxn+1, fxn) ≼ a d(fxn+1, gxn) + b d(fxn, gxn+1)

= a d(fxn+1, fxn−1)

≼ as[d(fxn+1, fxn) + d(fxn, fxn−1)].

This implies that
d(fxn+1, fxn) ≼

as

1− as
d(fxn, fxn−1). (4.9)

Therefore, we obtain from condition (4.9) that

d(fxn+1, fxn) ≼ k d(fxn, fxn−1) (4.10)

where k = as
1−as . It is easy to see that 0 ≤ k < 1

s .
By repeated application of (4.10), we obtain

d(fxn+1, fxn) ≼ kd(fxn, fxn−1) ≼ k2d(fxn−1, fxn−2) ≼ · · · ≼ knd(fx1, fx0).

By an argument similar to that used in Theorem 4.1, it follows that (fxn) is a
Cauchy sequence in f(X). If f(X) is a complete subspace of X, then there ex-
ists y ∈ f(X) ⊆ g(X) such that fxn → y and also gxn → y. In case, g(X) is
complete, this holds also with y ∈ g(X). Let u ∈ X be such that gu = y. For
θ ≪ c, one can choose a natural number n0 ∈ N such that d(y, fxn) ≪ 1−bs2

2(s+as)c

and d(gxn, gu) ≪ 1−bs2

2bs2 c for all n > n0.

Now,

d(y, fu) ≼ s[d(y, fxn) + d(fxn, fu)]

≼ s[d(y, fxn) + a d(fxn, gu) + b d(fu, gxn)]

≼ s[d(y, fxn) + a d(fxn, y) + bs d(y, gxn) + bs d(fu, y)].

So it must be the case that

(1− bs2)d(y, fu) ≼ (s+ as)d(y, fxn) + bs2d(y, gxn). (4.11)

Therefore, we obtain from condition (4.11) that

d(y, fu) ≼ s+ as

1− bs2
d(y, fxn) +

bs2

1− bs2
d(gu, gxn)

≪ c for all n > n0.

This implies that d(y, fu) = θ, i.e., fu = y and hence fu = gu = y. Therefore, y is
a point of coincidence of f and g.

For uniqueness, let v be another point of coincidence of f and g. So fx = gx = v
for some x ∈ X. Then

d(v, y) = d(fx, fu) ≼ a d(fx, gu) + b d(fu, gx)

= a d(v, y) + b d(y, v)

= (a+ b) d(v, y).
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Since a+ b < 1, by Remark 2.6(vii), we have d(v, y) = θ i.e., v = y.
Therefore, f and g have a unique point of coincidence in X.

If f and g are weakly compatible, then by Proposition 2.9, f and g have a unique
common fixed point in X. �

Corollary 4.8. Let (X, d) be a complete cone b-metric space with the coefficient
s ≥ 1. Suppose the mapping f : X → X satisfies the contractive condition

d(fx, fy) ≼ a d(fx, y) + b d(fy, x)

for all x, y ∈ X, where a, b ≥ 0 with max{a, b} < 1
s2+s . Then f has a unique fixed

point in X.

Proof. Proof follows from Theorem 4.7 by taking g = I.
�

We conclude with some examples.

Example 4.9. Let E = R2, the Euclidean plane and P = {(x, y) ∈ R2 : x, y ≥ 0}
a cone in E. Let X = [0, 1] and p > 1 be a constant. We define d : X ×X → E as

d(x, y) = (| x− y |p, | x− y |p)
for all x, y ∈ X. Then (X, d) is a cone b-metric space with the coefficient s = 2p−1.
Let us define f, g : X → X as

fx =
x

4
− x2

8
, for all x ∈ X

and
gx =

x

2
, for all x ∈ X.

Then, for every x, y ∈ X one has
d(fx, fy) = (| fx− fy |p, | fx− fy |p)

=

(
| 1
4
(x− y)− 1

8
(x− y)(x+ y) |p, | 1

4
(x− y)− 1

8
(x− y)(x+ y) |p

)
=

(
| x
2
− y

2
|p . | 1

2
− 1

4
(x+ y) |p, | x

2
− y

2
|p . | 1

2
− 1

4
(x+ y) |p

)
≼ 1

2p

(
| x
2
− y

2
|p, | x

2
− y

2
|p
)

=
1

2p
d(gx, gy).

Thus, we have all the conditions of Theorem 4.1 and 0 ∈ X is the unique common
fixed point of f and g.

Example 4.10. Let E = R2, the Euclidean plane and P = {(x, y) ∈ R2 : x, y ≥ 0}
a cone in E. Let X = [0, 1] and p > 1 be a constant. We define d : X ×X → E as

d(x, y) = (| x− y |p, | x− y |p)
for all x, y ∈ X. Then (X, d) is a cone b-metric space with the coefficient s = 2p−1.
Let us define f, g : X → X as

fx =
x

16
, for all x ∈ [0,

1

2
)

=
x

12
, for all x ∈ [

1

2
, 1]
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and
gx =

x

2
, for all x ∈ X.

Now we verify that for every x, y ∈ X one has
d(fx, fy) ≼ a d(fx, gx) + b d(fy, gy)

where a, b ≥ 0 with a+ sb < 1.

Case-I If x, y ∈ [0, 1
2 ), then

d(fx, fy) = (| fx− fy |p, | fx− fy |p)

=
1

16p
(| x− y |p, | x− y |p)

≼ 1

16p
((| x | + | y |)p, (| x | + | y |)p)

≼ 2p

16p
(xp + yp, xp + yp)

=
2p

7p
.
7p

16p
(xp + yp, xp + yp) .

Also,
d(fx, gx) + d(fy, gy) = (| fx− gx |p, | fx− gx |p) + (| fy − gy |p, | fy − gy |p)

=
(
| x

16
− x

2
|p, | x

16
− x

2
|p
)
+
(
| y

16
− y

2
|p, | y

16
− y

2
|p
)

=
7p

16p
(xp + yp, xp + yp) .

Therefore,

d(fx, fy) ≼ 2p

7p
[d(fx, gx) + d(fy, gy)] ≼ 2p

5p
[d(fx, gx) + d(fy, gy)].

Case-II If x, y ∈ [ 12 , 1], then

d(fx, fy) ≼ 2p

12p
(xp + yp, xp + yp)

=
2p

5p
.
5p

12p
(xp + yp, xp + yp) .

and,
d(fx, gx) + d(fy, gy) =

5p

12p
(xp + yp, xp + yp) .

Therefore,
d(fx, fy) ≼ 2p

5p
[d(fx, gx) + d(fy, gy)].

Case-III If x ∈ [0, 1
2 ) and y ∈ [ 12 , 1], then

d(fx, fy) = (| fx− fy |p, | fx− fy |p)

=
(
| x

16
− y

12
|p, | x

16
− y

12
|p
)

≼ 2p
(
(
x

16
)p + (

y

12
)p, (

x

16
)p + (

y

12
)p
)

=
2p

5p

(
(
5x

16
)p + (

5y

12
)p, (

5x

16
)p + (

5y

12
)p
)

≼ 2p

5p

(
(
7x

16
)p + (

5y

12
)p, (

7x

16
)p + (

5y

12
)p
)
.
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Also,
d(fx, gx) + d(fy, gy) = (| fx− gx |p, | fx− gx |p) + (| fy − gy |p, | fy − gy |p)

=
(
| x

16
− x

2
|p, | x

16
− x

2
|p
)
+

(
| y

12
− y

2
|p, | y

12
− y

2
|p
)

=

(
(
7x

16
)p + (

5y

12
)p, (

7x

16
)p + (

5y

12
)p
)
.

Therefore,
d(fx, fy) ≼ 2p

5p
[d(fx, gx) + d(fy, gy)].

Thus, we have
d(fx, fy) ≼ 2p

5p
[d(fx, gx) + d(fy, gy)]

for all x, y ∈ X, where a+ sb = (1+ s) 2
p

5p ≤ 2s. 2
p

5p = 2p. 2
p

5p = 4p

5p < 1 since s = 2p−1.
We see that f(X) ⊆ g(X), g(X) is complete, f and g are weakly compatible.
Therefore, all the conditions of Theorem 4.5 are satisfied and 0 ∈ X is the unique
common fixed point of f and g.

Example 4.11. Let X = {1, 2, 3}, E = R2, P = {(x, y) : x ≥ 0, y ≥ 0}. Define
d : X × X → P by d(x, y) = d(y, x) for all x, y ∈ X, d(x, x) = θ, x ∈ X and
d(1, 2) = (8, 8), d(2, 3) = d(1, 3) = (2, 2). We observe that

d(1, 2) = (8, 8) ̸≼ d(1, 3) + d(3, 2) = (2, 2) + (2, 2) = (4, 4).

This shows that the triangle inequality does not hold true and so (X, d) is not a
cone metric space. It is easy to verify that (X, d) is a cone b-metric space with the
coefficient s = 2. Let us define f, g : X → X as

fx = 3, for all x ∈ X

and
gx = 3, for x ∈ {1, 3}

= 1, for x = 2.

Then for every x, y ∈ X one has
d(fx, fy) ≼ a d(fx, gy) + b d(fy, gx)

for all a, b ≥ 0.
We see that f(X) ⊆ g(X), f(X) is complete, f and g are weakly compatible.
Therefore, all the conditions of Theorem 4.7 are satisfied and 3 ∈ X is the unique
common fixed point of f and g.
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