Paiwan Wongsasinchai, J. Nonlinear Anal. Optim. Vol. 8(2) (2017), 143-154

Journal of Nonlinear Analysis and Optimization
Volume 8(2) (2017)
http://www.math.sci.nu.ac.th

ISSN : 1906-9605

J. Nonlinear Anal. Optim.

VISCOSITY ITERATIVE SCHEME FOR SPLIT FEASIBILITY
PROBLEMS

PAIWAN WONGSASINCHAI

1 Department of Mathematics, Faculty of Science and Technology, Rambhai Barni Rajabhat
University, Chanthaburi 22000, Thailand

ABSTRACT. In this paper, we intend to solve a split feasibility problem by viscosity
iterative algorithm. The bounded perturbation resilience of the method is examined in
Hibert spaces. As tools, averaged mappings and resolvents of maximal monotone operators
are the specialized procedure to simplify the proofs of the main results. Under mild
conditions, we prove that our algorithms converge to a solution of the split feasibility
problem. Moreover, we show the convergence and result of the algorithms by a numerical
example.
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1. INTRODUCTION

Let C' and @ be nonempty closed convex subsets in real Hibert space H; and
Hj respectively. Let Pc be the metric projection from H; onto C' and Pg be the
metric projection from Hs onto Q. The problem to find

u* e C with Au* €@ (1.1)

where A is a bounded linear operator from H; to Hs, if such u* exist, this problem
is called the split feasibility problem(see [1]). If problem (1.1) has a solution (say
that C'N A71Q is nonempty). u* € C N A~1Q is equivalent to

u* = Pc(I - )\A*<I - PQ)A)U*, (1.2)

where A > 0 and A* is the adjoint operator of A.

* Corresponding author.
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The SFP was first introduced by Censor and Elfving [2] in 1994. They used their
multidistance method to obtain iterative algorithms for solving the SFP. After that,
Byrne [3] proposed his CQ algorithm which generates a sequence {x, } by

Tny1 = Pc(I — MNA*(I — Pg)A)z,, Yn>0. (1.3)

Let B : H; — 21 be a mapping and let Jy = (I + AB)~! be the resolvent of B for
all A > 0. Let T : Ho — Hy be nonexpansive mapping.

In 2015, Takahashi et al. [4] proposed the following algorithm:

Tng1 = JL (20 — MA (I = T) Axy,), (1.4)

where {\,, } is a sequence in [0, 1] and they proved that the sequence {u,,} converges
weakly to a point u* € B~10N A~ Fiz(T) in the framework of Hilbert spaces. That
is this problems is to find a point u* € H; such that

0€ Bu* and Au* € Fiz(T). (1.5)

The set of all solution (1.5) denoted by I' = B=10 N A= Fiz(T).
there are many authers have studied the SFP and its extensions by means of fixed-
point methods and weak-strong convergence theorems of solutions have been estab-
lished in Hilbert or Banach spaces (see [5, 6, 7, 8]).

Let F' be an algorithm operator. Let {z,} be a sequence, generated by z,+1 =
Fz,, and let {y,} be a sequence, generated by yn+1 = F(yn + Bnvn), where {8, }
is a sequence of nonnegative real numbers and {v,,} is a sequence in H such that

o0
Zﬂn <oo and ||| <M, Vn2>0. (1.6)
n=0
An algorthmic operator F' is call bounded perturbation resilient if the following
is ture: if the sequence {z,} is convergent, then {y,} is also convergent (see [9]).

In 2017, Xu [10] presented the bounded perturbation resilience and superior-
ization techniques for the projected scaled gradient(PSG).The iterative method is
defined as following;:

Tpt1 = (1 — ap)zy + anPo(zy — AnD(z,)Vh(xy,) + e(zy,)), Yn>0 (1.7)

where {\,}, {a,} are a sequence in [0, 1], & is a continuous differentiable and con-
vex function, and D(x,) is a diagonal scaling matrix. The weak convergence was
proved in [10].

In 2018, Guo and Chi [11] proposed the following proximal gradient algorithm
with perturbations:
Tnt1 = tnf(xn) + (1 —tp)proxy, ¢(1 — Ay Vh)x, + e(xy,), (1.8)

where {A,}, {t,} are a sequence in [0, 1] and f is a contractive, for solving non-
smooth composite convex optimization problem. They obtained strong convergence
and bounded resilience of the above method.

In 2019, Duan and Zheng [12] presented a viscosity approximation method for
solving problem (1.5):

Tn+1 = anf(xn) + (1 - an)J)\Bn (xn - TnA*(]- - T)Axn + e(xn))v (19)
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where {\,}, {mn}, {a@n} are a sequence in [0, 1] and they gave the bounded pertur-
bation of (1.9) yields a sequence {z,} generated by the iterative process:

Yn = Ty + ﬁnvn
Tn+l = anf(yn) + (]- - O‘n)J)\Bi,/ (yn - TnA*(I - T)Ayn + e(yn))v (110)
where {\.}, {7n}, {an}, {Bn} are a sequence in [0, 1]

In this paper, we extend work in [12] and purpose the following process for solving
problem (1.5) :

Tni1 = anf(@n + e(zn)) + (1 — an)JD (zn — Mg A* (I = T) Az, + e(zy)), (1.11)

where {\.}, {7n}, {an}, are a sequence in [0,1], f is contractive, and we give a
sequence {z,} generated by the iterative process:

Yn = Tpn + Bnn
Tyt1 = anf(yn +e(yn)) + (1 — an)Jﬂi (Yn — A A (I = T)Ay, +e(yn)), (1.12)

where {A\.}, {7n}, {an}, {Bn} are a sequence in [0,1] and f is contractive.

After that we prove the convergence point of the iterative method which is also
the unique solution of some variational inequality problem. A numerical example
is also given to demonstrate the effectiveness of our iterative schemes.

2. PRELIMINARIES

Let {x,} be a sequence in a real Hilbert space H. First, We give notations:

e Denote {z,} converging weakly to by z, — z and {x,} converging
strongly to x by x, — x.

e Denote the set of fixed points of mapping T by Fix(T) ={x € H : Tz = z}

e Denotetheweak w-limit set of {x,,} by wy(2y) := {2 : Iz, — }.

Definition 2.1. A mapping F': H — H is said to be
(i) Lipschizian if there exist a positive constant L such that
|Fe— Fyl| < Lllz —yll, Va,y e H.

In particular, if L = 1, we say that F' is nonexpansive, namely,

HFx—FyHSLHx—yH, \V’J},yEH,

if L €1]0,1), we say that F is contractive.
(ii) a-averaged mapping (a-av for short) if

F=(1-a)+aT,
where a € [0,1) and T : H — H is nonexpansive.
Definition 2.2. A mapping B : H — H is said to be
(i) monotone if
(Bx — By,z —y) <0, Vz,ye€ H.
(ii) m—strongly monotone if there exists a posive constant eta such that

(Bx — By,z —y) > 77||;v—y\|27 Vr,y € H.
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(iii) a-inverse strongly monotone (for short a-ism) if there exist a positive con-
stant o such that

(Bx — By,x —y) > o||Bx — By||?, Vz,y € H.
In paticular, if a = 1, we say that B is firmly nonexpansive, namely,
<Bx—By,x—y>2||Bx—By||2, any€H~

Definition 2.3. Let B : H — H be amonotone mapping. Then B is maximal
monotone if there exists no monotone operater A : H — 2 such that graA prop-
erly contains graB,i.e. for every (z,u) € H X H,

(z,u) € graB < V(y,v) € graB, {(x —y,u —v) > 0.
Lemma 2.4. Let H be a real Hillbert space. Theere holds the following inequality
o+ yll* < [lall* +2(z +y.y), Va,yeH.

Lemma 2.5. Let f: H— H be a k€ (0,1) and let T : H — H be a nonezpansive
mapping. Then

(i) I — f is (1-k)-strongly monotone:

(I === yxz—y) >0 =p)llz—ylf*, Vo,yeH.
(ii) I —T is monotone:
(I-T)x—I-T)y,x—y) >0, Vr,ye€H.

Proposition 2.6. [1] Assume that H, and Hy are Hilbert space. Let B : Hy — 21

be a mazximal monotone mapping and let A : Hy — Hs be a bounded linear operator
such that A # 0. Let T : Hy — Hy be a nonexpansive mapping. Then

(i) A*(I —T)A is W—ism.

.. 1

(ii) For 0 <7 < 5772 )
I—7A*(I-T)A is 7||A||*- averaged and J2 (I —TA*(I —T)A) is w
averaged.

Lemma 2.7. [13] Let B be a mazimal monotone operator. Let Jff = +~+B)!

and JP = (I+AB)~!, where v > 0 and A\ > 0 are two real numbers, be the resolvent
operators of B. Then

A A
fo: Jf(;az—l—(l - ;)Jfl‘), Vo € H.

Lemma 2.8. [14] Let H be a real Hillbert space, and let T : H — H be a nonez-
pansive mapping with Fix(T) # 0.if {x,} is a sequence in H weakly converging to
x and if {(I — T)x,} converges strongly to y,then (I —T) = y; in particulary, if
y =0, then v € Fiz(T).
Lemma 2.9. [15] Assume {0} is a sequence of nonnegative real numbers such that
Un+1 S (1 - pn)an + pn5n7 n Z 07
0n+1§0—n_@n+¢na 77‘207

where {pn} is a sequence in (0,1), {¢on} is a sequence of nonnegative real numbers
and {6,} and {¢,} are two sequences in R such that

(i) 220:1 Pn = O0;
(ii) limy, 00 @r = 05
(iii) limp— oo ¥n, = 0 = limsup,_, o On, <0 for any subsequence (ny) C (n).
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Then lim,,_, o 0, = 0.

Lemma 2.10. [4] Let Hy and Hy be Hilbert space. Let B : Hy — 21 be a mazimal
monotone mapping and let J/{B = (I + AB)~1 be the resolvent of B for A > 0. Let
T : Hy — Hs be a nonexpansive mapping and let T : Hy — Hy be a bounded linear
operater. Suppose that B=*0 N A= Fixz(T) # 0. Let \,7 > 0. Then the following
equality holds:

Fix(J2(I —7A*(I - T)A)) = (A*(I - T)A+ B) 0 = B"'0n A~ Fiz(T)

3. MAIN RESULTS

In [1] proposed the viscosity approximation method:
Tn+1 = anf(xn) + (1 - an)S(mn)a Vn >0,
which converges strongly to a fixed point u* of the nonexpansive mapping S. In
[5] further proved that u* € Fiz(S) is also the unique solution of the following
variational inequality problem:
(I = flu*,a—u*y >0, VYie Fix(S), (3.1)

where f: H — H is a k-contraction.
In this section, we present a viscosity iterative algorithm for solving problem

(1.5). Rewrite iteration (1.11) as

Tnat1 = Qnf(xn +e(x,)) + (1 — ocn)J,ﬁ (xn — MA (I — T) Az, + e(xy,))
=anf(zn) + (1= an)Jl (xn — MA* (I = T)Azy) +€,, VYn >0,
where
€n = an(f(zn +e(rn)) — fzn) + (1 — an)(in (X = ApA*(I = T) Az, + e(z))

=I5 (2 — A\A* (I = T) Azy)).

Since Ji is nonexpansive and f is contractive, it is easy to get

enll < anllf(zn +e(zn)) — flzan)| + (1 - O‘n)”J»i (T — M A (I = T) Az, + e(xn))
B *
—J (xn — MA* (I = T)Ax,)||

< anklle(an)| + (1 — an)lle(@n)]

= (ank + 1 —an)lle(zn)||

< lle(zn)ll-
Theorem 3.1. Let Hi, Hy be two real Hilbert spaces and let A : Hi — Hy be a
bounded linear operator with L = || A* Al|, where A* is the adjoint of A. Suppose that
B : Hy — 211 s ¢ mazimal monotone operator and T : Hy — Hs is a nonexpansive
mapping. Assume that I = B=10N A~ Fix(T) # 0. Let f be a k-contractive on

Hy with 0 < k < 1. Choose xg € Hy arbitrarily and define a sequence {x,} in the
following manner:

Tnt1 = nf(an +e(zy)) + (1 — an)Jfl (X — AA™(I = T)Azy, +e(zy)) (3.2)
if the following conditions are satisfied:
(i) limysooan =0 and > 00y, = o0o;
(ii) 0 < liminf,, o v, < limsup,,_, ., Vo < 00;
(iii) 0 < liminf, oo Ap < limsup,, . Ay < %;
)

(iv) >nzo lle(zn)]l < oo.
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Then {x,} converges strongly to u* € T', which is also the unique solution of varia-
tional inequality problem (3.1).

Proof. Let Vi, = JZ ((I = \,A*(I — T)A). From Proposition 2.6, it follows that
JB((I = MA*(I-T)A) is Ll — gy as0< A, < .
Step 1. show that {z,} is bounded. For any u* € T', we have
[0 — o
= [lanf(zn) + (1 — an)Va,2n + € — ™|
= lanf(zn) + Va, @n — @V, Tn + €, — u*||
= ||[(anf(zn) — apu®™) + (Vy, zp — u*) — (@, Vi, n — aqu™) + €,
= llan(f(zn) —u") + (1 = an)(Va, 20 — u”) + &
< ol f(@n) = u®l| + (1 = an)[[(Va, 20 — ") + [Jen]
= an| f(zn) = f(u®) + f(u") = u"[ + (L = an)[[(Va, 20 — u")[| + [[€n]]
< anllf(zn) = f)|| + onllf(u”) —u®| + (1 = an) [[(Va, 2n — u®)[| + [[en]]
= anllf(zn) = Fu)ll + anl[f(u*) = u’[| + (1 = an)[[(Va,2n — Va,u)| + [[en]
< ankl|lzn — w4+ an [ f(u®) = u'l| + (1 = an) [z, — " + [Jen]

= (1 o k) (") )+ 2L
N |
= (1= an(1 = k))l|zn — '] +%“"“)l|ﬂu ) LLH -

Qn

From condition (i), (iv) and o, > 0, we get {”’e\"“} is bounded.Thus there exists

M; > 0 such that sup{Hf(u*) —u*|| + %ﬂ‘}g My, for all n > 0. By Mathemat-

ical Induction, we get ||z, — u*| < max{||:vo — ||, 2 }, which implies that the

sequence {J}n} is bounded, so are {f(:z:n)}, {VAn:cn} and {A*(I — T)A:vn}.
Step 2. Show that for any sequence{nk} C {n},

Fixing u* € I', we have

041 — ||
= |lanf(@n) + (1 — an) Vi, Zp + & — u*||?
= [lanf(zn) + (1 — an)V, 20 — U*||2

+ 2{an f(2) + (1= an)Va, @0 — u,€n) + [[€]]?
= lan(f(@n) —u*) + (1 = an)(Va, 20 — u*)|?

+ 2{an f(20) + (1= an)Va, @0 — u”,€n) + [[€]]°
< an |l fzn) = u[P + (1= an)?[|Va, 20 — ||

+ 20, (1 — an){f(xn) — u*, Vi, @y — u™)

+2llen f(2n) + (1= an)Va, 20 — w*[[[E]l + (65
= ap |l f(wn) = u*[” + (1 = an)?[|Va, 20 — u*||?

+ 20, (1 — an){(f(xn) —u*, Vi, zy —u®)
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+ 2o (f(n) = ) + (1 = @) (Vo 2n — u")[[En ] + [
< A2||f(zn) — u|? + (1 — an)?[[Va, 20 — u*?
+ 2a"(1 - an)<f(1}n - U*7 V)\nxn - U’*>

+ 20, (1 — an){(f(zn) —u*, Vi, xp — u*)

n

+ (200l @a) = u* |+ 20 = an) @ = w* | + 6] ) 2]

< 202 (|1 f(@a) = PP + £ () = u'2) + (1= an)? [Va, 2 — ']
+ 20471(1 - an)<f(xn) - U*’ anxn - ’U,*> + M2H/e\7l||

< 202 (|1 f(@a) = PP + £ () = u'2) + (1= an)?[Va, 0 — ']

+ 20 (1 — an) (llf(xn) — f)flen —u™|[ + (f(u") =", Va, 20 — U*>> + Ma |||
< 205kl —u*|? 4+ 200 | f(u*) = u*[|? 4+ (1= ap) 2, — uw*|?
+ 20, (1 — an)k||zn — u*||* + 200 (1 — ) (f(u*) — u*, Vi, 2 — u*) + M€, ||
= (202k + (1= an)? + 200 (1 — )k ) 2, — u*|? + 203 £ (") — "
T 200(1 = @) (F(u%) — 07, Va0 — ") + My S
= (1= n(2 = an(1+ 2% = 2(1 — an)k)) ||z, — u*||?
+ 20, (1 — a ) (f (u*) — u*, Vi, 2p — u*) + 2062 || f(u*) — u*||? + Ma[&,]l, (3.3)
where
My = sup {20, () — ' + 201 — ) — * | + 2]
neN
Note that
Vi, = JE (I = XA I = T)A) = (1 — wy)I + w, Uy, (3.4)

such that w,, = %7 and U, is nonexpansive. By condition (iii), we get

1 .. .
— < liminf w, <limsupw, <1
2 n—oo n—o00

Since u* € T, then V) u* = u*. Furthermore, we have (1 — wy,)u* + w,U,u* = u*.
It is clear that U,u* = u*.

[E——TE
= [lan f(xn) + (1 — an)Va, @p + €n — u*||?
= lanf (@n) + (1 — an)Va, 20 — u||?
+ 2(an f(n) + (1 = o) Va, @ — 1™, 8n) + [[E0]|
< lanf(@n) + (1 — an)Va, zn — u*[?
+ 2l f (2n) + (1= an)Va, 2 — ul[[[Eal] + (1)
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< Mlenf(@n) + (1 — an)Va, 20 — “*”2
+ (20n]f(zn) = ull +2(1 = an)llen —w' | + &) I
< Mlenf(an) + (1 — an)Va, 20 — u*||2 + Ma|en ||
= [Va,zn — " + an(f(zn) = Va,z)[1? + Mz,
= [Va,zn — w*[I* + af [ f(zn) = Vi, al?
+ 20, (Vi T — 0™, f(xn) — Vi, Tn) + Mal|En]|
= [|(1 = wp) 2y + wUpzn — U*||2 + O‘i”f(xn) - V>\n$n||2
+ 20, (Vy, Tn — 0™, f(xn) — Vi, Tn) + Mal|E,]|
= ||z — wnzn + W Upxp — (1 — wy)u® — w,Upu®||2 + a2 || f(2zn) — Vi, Znl?
+ 20, (Vy, n — U™, f(2n) — Vi, Tn) + Ma|En]|
=[[(1 —wn)(zn — u*) + wp (Uny — UnU*)”2 + O‘i”f(xn) - VAnmnHZ
+ 20, (Vi @, — u”, f(2n) — Vi, Zn) + Male,]|
= (1 —wy)[|z, — U*||2 + wp||Unon — UnU*||2 = wn (1 = wp)|[Unzn — anZ
+aillf(xn) = Va,znll® + 200 (Va, 20 — 0, f2n) = Vi, 2n) + Ma|&, |
<|lzn — U*||2 = wn (1 = wy) | Unzn — anQ + O‘in(xn) - V>\nxn”2
+ 20, (Vy, T — 0™, f(xn) — Vi, Tn) + Mal|€n]|- (3.5)

Furthermore, we set

On = ”xn_U*”Za Pn :an(Z—an(l—i-?kQ) —2(1 — ay)k),
- 1
22— (14+2k2) —2(1 — ap)k

+2(1 = an)(f(u") = u', Voo — u)]
On = Wn (1 — wy) | Unn — 2,||%, and
O = o[ f(zn) = Va,anll? + 200 (Va0 — u*, f(wn) = Va, zn) + Ma|n]].
Note that

* * é\n
20l f() — ) + 2,121

n

On

_ : _ 2\ _ _ _ _
pn — 0, Zopn =0 (lim (2~ an(l+2k%) = 2(1 — an)k) = 2(1 — k) > 0)
n=

and ¢, > 0 (a, — 0). By lemma 2.9, we have ¢,, — 0 (k — oo) implies that
limy, 00 sSUp 0y, < 0 for any subsequence {n;} C {n}. Indeed, ¢,, — 0(k — o0)
implies that |Up,zn, — @n, || = 0(k — 00) due to condition (iii). From (3.3) we
have

||xnk - V/\nk Lny, ” = Wn,, ||xnk - Unkxnk ” — 0. (36)
Step 3. Show that
wWp{®n,} CT (3.7)

where wy,{z,, } is the set of all weak cluster points of {z, }.
Let @ € wy{xy, } and Ty, is a subsequence of x,, weakly converging to u. We use

{zn,} to denote Tny, and we assume that A,, — A.Then 0 < A < % In the same
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way, we take a subsequence {v,, } of v, by condition (ii) and assume that ~,, — ~.
Let V) = Jf([ — AM*(I —T))A, we see that V is nonexpansive. Set

ty = Tn, — A, AT —T)Axy,; 2k = Tn, — \A* (I —T)Az,,.

By the resolvent identity, we conclude that
V., T — Vazn, ||
= |15 (@ny = A AL = T)Ay) = J7 (0, — AA™(I = T) Az, )|
= HJWB,,’% (tx) — Jf(zk)ﬂ

Y
:\\Jf(%km(lf )2 ) =I5 ()]
<t (1- 2 >J$;k>—zk||
ngk ngk
Y B Y
= 1— )8 Y=z + L2
| Dot (L= )8 ) — s+ Sl
il Y
= [[—(tr —2) + (1 *f)( otk —
Nk n
< Lt =zl + (1 - l)H e — 2
Vnk
= % |, — Ay A*(I = T) Ay, — 0, + AA*(I — T) Ay, |
Nk
Y
+(1- m)HJﬁktk — 2|
_ v * Y B
= — | = Qe = NA T = T) Az, || + (L= —)IIJ;, tr — 2]l
ng Yn ‘
% v
L O W[ (I_T)Axnk”+(1_7)”‘]fﬁktk_zk“
’ynk 7nk
Y * Y
= 1O = VA = T) Az, | + ( It = 2. (3.8)
Nk Mg

Since v, — v and A, — A as k — oo, then ||V, @5, — Vazy, || — 0. As a result,
we get

n

From lemma 2.8, we have wy,{zn,} C Fiz(Vy). It follows from lemma 2.10 that
Wy {Zn, } € S. We also have

limsup(f(u*) — v, Vi, n, —u") = limsup(f(u") — u*, zn, —u”)

RN ko0
+ lilzrisip<f(u*) —u", Vi, Tny — Tny) (3.10)
and
limsup(f(u*) — u*, z,, —u*) = (f(u") —u*,u—u"),Vu eT. (3.11)

k—o0
It is easy to get from (3.10) tend to zero. Since u* is the unique solution of varia-
tional inequality problem (3.1), we get
(f(u*) —u*,u—u*) <O0.
Hence
lim sup d,,, <O0.

k—o0
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The bounded perturbation of (3.2) by the following iterative method:

Yn = Tn + Bnn,
Tpy1 = o f(yn +€(yn)) + (1 — O‘n)‘]ijgn (Yn — A A (I = T)Ayn + e(yn)),
(3.12)

where {\,}, {}, {an}, {8.} are a sequence in [0, 1] and f is contractive.
O

Theorem 3.2. Let {8,} and {v,} be satisfied by condition (1.6). Let Hy, Hs be
two real Hilbert spaces and let A be a bounded linear operator with L = ||A*A]|,
where A* is the adjoint of A. Suppose that T = B~10N A~ Fixz(T) # 0. Let f be
k-contrative mapping on H, with 0 < k < 1. Choose xg € Hjarbitrarily and define
the sequence {x,} by (3.12).1If the following conditions are satisfied:

(i) limpyoon, =0 and D07 an = 00;

(if) 0 < liminf, o0 vn < limsup,, .o ¥n < 00;

(iii) 0 < iminf, oo Ay < limsup,,_, oo A < 73

(iv) 2onio lle(yn)ll < oo.

Then {x,} converges strongly to u*, where u* is a solution of problem (1.5),which
is also the unique solution of variational inequality problem (3.1)

Proof. we can rewrite (3.12) as

Tng1 = O f () + (1 — an)JD (2 — M A* (I = T)Axy,) + €, (3.13)
where
n = an(fyn +e(yn)) = f(20) + (1 = an)(J5, (Yn — A A* (I = T) Ays + e(yn))
B *
—Jy (xn, — MA* (I — T)Axy,)), (3.14)
Since A*(I —T)A is i—ism, then it is 2L-Lipschitz. Thus,
[€nll
< anl[f(yn + €(yn)) — flan) (3.15)
+ (L= an)|JZ (yn = M A (I = T) Ay + €(yn)) — JZ (2 — A A™(1 — T) Azy,)|

< ankllyn + e(yn) — @nl|

+ (1 = an)llyn — AnA™ (I = T)Ayn + e(yn) — (zn — A A™(I = T) Az, |
= ankllyn — xn +e(yn)|

(1= an)llgn — n — A(A°(] = T) Ay — A*(I = T)Azy) + e(g)]|
< ankllyn — anll + anklle(yn)|

+ (1 —an) (Hyn — Znl| + A [[AT(I = T) Ay, — A™(I — T) Az, || + 6(%))
< anknyn - an + O‘nkHe(yn)H

+(1—an) (llyn — || + 2Xn Ll|yn — 2a + ||€(yn)>

= (apk + 142\, L — oy — 20,20 L) |lyn — xnll + (ank + 14+ ay)lle(yn)]|
= (ank + (1 — ) (1 + 220, L)) [[yn — 2l + (1 + (1 + K)o [le(yn) ||
< (ank + (1 = ) (1420, L)) Bul Vi | + (1 + (1 = k)an) le(yn) |l (3.16)
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From (1.6) and

e} 00
Y lletya)ll < oo and Y |[En]| < oo
n=1 n=1

Thus, we find from theorem 3.1 that algorithm (3.2) is bounded perturbation re-
silient.
(]

4. NUMERICAL RESULTS

In this section, we consider the following numerical examples to present the
effectiveness, realization and convergence of Theorem 3.1.

1
Example 4.1. Let H; = Hy = R2. Define h(x) = % Take B : R?2 — R? and

T : R?2 - R2 asfollows:

3.0 : 4
5= (3 §): TG0 — GO.psin(E) ad o) - ().
Observe that B is a positive linear operator. Then it is maximal monotone. T is
3-av and the set of fixed points Fiz(T) = {y|(y(1),0)"} is nonempty. Then it is
nonexpansive. Hence, we obtain the resolvent mapping Jf = (I+~B)~!. It follows

that

JB _ 1 <97 +1 0 >

T By+1)(9y+1) 0 3y+1
Generatea 2 x 2 random matrix A, and compute the Lipschitz constant L =
|AT A||, where AT represents the transpose of A. Take v, = 0.9, \,, = A\ = &

. 100L
and o, = yro

According to the iterative process of Theorem 3.1, the sequence {x,,} is generated
by

1 1 1
— (= e(x 1-—
4n+5(14(”+ (wa)) +( dn+5
As n — oo, we have {z,} — u*. Taking random initial guess xy and the stopping
criteria is ||€n1+1 — @, || < €, we obtain the numerical experiment results in Table 1.

VIB (2, — MAT(I = T) Az, + e(2,)).

Tn

Tn4+1 =

TABLE 1. z¢ = rand(2,1)

€ Ay, = ﬁ n Time T |Znt1 — znl]
106  0.006745 20 0.010811 (0.000003, 0.000001) 8.068095 x 10~7
107 0.022563 30 0.013420 (0.000001, 0.000000) 8.854955 x 108
10-8  0.011875 46 0.009761 (0.000000, 0.000000) 9.290480 x 108

Next, we consider the algorithm with bounded perturbation resilience. Choose
the bounded sequence {v,} and the summable nonnegative real sequence {3, } as

follows: p
v =14 dall

0, if 0 € B(y,),

where B(x,,) = (32, (1), 97,(2))T, 2,(i), i = 1,2 denote the ith element of x,,, and
Brn = ", for some ¢ € (0,1). Setting ¢ = 0.9, the numerical results can be seen in
Table 2.
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TABLE 2. zy = rand(2,1)

€ Ap = ﬁ n Time T, |Tnt1 — ]
10 0.006923 33 0.015636 (0.000000, 0.000000) 6.782486 x 10~7
10~7  0.006444 60 0.015266 (0.000000, 0.000000) 8.078633 x 10—8
10~  0.005079 83 0.015765 (0.000000, 0.000000) 7.836764 x 10~°

5. CONCLUSION

We have introduced a viscosity iterative scheme and obtained the strong con-
vergence. We also consider the bounded perturbation resilience of the proposed
method and get theoretical convergence results.
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