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ABSTRACT. In this paper, we investigate the regularization method via a proximal
point algorithm for solving treating the sum of two accretive operators for a fixed point
set and inverse problems. Strong convergence theorems are established in the framework
of Banach spaces. Furthermore, we also apply our result to variational inequality and
equilibrium problems.

KEYWORDS: Regularization method, proximal point algorithm, zero points, accretive
operators, inverse problems.
AMS Subject Classification: 47H09, 47H17, 47J25, 49J40.

1. Introduction

Many important problems have reformulation which require finding common zero
points of nonlinear operators, for instance, inverse problems, variational inequality,
optimization problems and fixed point problems. In this paper,we use A−1(0) to
denote the set of zeros point of A. A well-known method for solving zero points
of maximal monotone operators is the proximal point algorithm (PPA). First,
Martinet [1] introduced the PPA in a Hilbert space H, that is, for starting x0 ∈ H,
a sequence {xn} generated by

xn+1 = JA
rn(xn) ∀n ∈ N, (1.1)

where A is maximal monotone operators, JA
rn = (I+rnA)−1 is the resolvent operator

of A and {rn} ⊂ (0,∞) is a regularization sequence. An iterative (1.1) is equivalent
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to
xn ∈ xn+1 + rnAxn+1 ∀n ∈ N.

If ϕ(x) : H → R ∪ {∞} is a proper convex and lower semicontinuous function,
then JA

rn reduces to

xn+1 = arg min
{
ϕ(y) +

1

2rn
∥xn − y∥2, y ∈ H

}
∀n ∈ N. (1.2)

Later, Rockafellar [2] studied the proximal point algorithm in framework of a
Hilbert space and he proved that if lim infn−→∞ rn > 0 and A−1(0) ̸= ∅, then the
sequence {xn} converges weakly to a solution of a zero point of A. Rockafellar [2]
has given a more practical method which is an inexact variant of the method:

xn+1 = JA
rnxn + en, ∀n ∈ N, (1.3)

where {en} is an error sequence. It was shown that if en −→ 0 quickly enough such
that

∑∞
n=1 ∥en∥ < ∞, then xn ⇀ z ∈ H, with 0 ∈ A(z).

In 2011, Sahu and Yao [3] also extended PPA for the zero of an accretive op-
erator in a Banach space which has a uniformly Gâteaux differentiable norm by
combining the prox-Tikhonov method and the viscosity approximation method.
They introduced the iterative method to define the sequence {xn} as follows:

xn+1 = JA
rn((1− αn)xn + αnf(xn)), ∀n ∈ N, (1.4)

zn+1 = JA
rn((1− αn)zn + αnf(zn) + en), ∀n ∈ N, (1.5)

where A is an accretive operator such that A−1(0) ̸= ∅ and f is a contractive map-
ping on C and {en} is an error sequence. Strong convergent were established in both
algorithms. This is a source of idea about resolvent operator can be approximated
by contractions.

In the same year, PPA extended to the case of sum of two monotone operators
A and B by use the technique of forward-backward splitting methods. Manaka and
Takahashi [4] introduced the following iterative scheme in a Hilbert space:{

x1 ∈ C,

xn+1 = αnxn + (1− αn)SJ
A
λn

(I − λnB)xn, ∀n ≥ 1,

where {αn} is a sequence in (0,1), {λn} is a positive sequence, S : C → C is a
nonexpansive mapping, A is a maximal monotone operator, B is an inverse strongly
monotone mapping and JA

λn
= (I+λnA)−1 is the resolvent of A. They prove that a

sequence {xn} converges weakly to some point z ∈ Fix(S)∩ (A+B)−1(0) provided
that the control sequence satisfies some conditions. From [4], then we concern with
the problem for finding a common element of Fix(S) ∩ (A+B)−1(0).

In 2012, López et al. [5] use the technique of forward-backward splitting methods
for accretive operators in Banach spaces. They considered the following algorithms
with errors:

xn+1 = (1− αn)xn + αnJ
A
rn(xn − rn(Bxn + an)) + bn (1.6)

xn+1 = αnu+ (1− αn)J
A
rn(xn − rn(Bxn + an)) + bn, (1.7)

where u ∈ E, {an}, {bn} ⊂ E and JA
λn

= (I + λnA)−1 is the resolvent of A. An
operator A is a maximal accretive operator and B is an inverse strongly accretive.
They prove that a sequence {xn} in equation (1.6) and (1.7) is weakly and strongly
convergence, respectively.
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In 2014, Cho et al. [6] introduced the following iterative scheme in a Hilbert
space: 

x1 ∈ C,

zn = αnf(xn) + (1− αn)xn,

yn = JA
rn(zn − rnBzn + en)

xn+1 = βnxn + (1− βn)(γnyn + (1− γn)Syn), for n ∈ N,

where {αn}, {βn}, {γn} are a sequences in (0, 1), {rn} is a positive sequence,
A : C → H is an inverse strongly monotone mapping, B is a maximal monotone
operator, and JA

λn
= (I + λnA)−1 is the resolvent of A. Let S : C → C is a strictly

pseudo-contractive mapping with k ∈ [0, 1), and f : C → C be a contractive
mapping. They prove that a sequence {xn} converges strongly to a point x̄ ∈
Fix(S) ∩ (A+B)−1(0) if the control sequence satisfies some restrictions.

Motivated by [3, 4, 5, 6], then we are interested in the problems for finding
a common element of fixed point of nonexpansive S and element of the (quasi)
variational inclusion problem as follow:

Find x ∈ C such that x ∈ Fix(S) ∩ (A+B)−1(0), (1.8)

where A be single-valued nonlinear mapping and B be a multi-valued mapping.
The purpose of this paper is to introduce an iterative algorithm which is modify

regularization method and use technique of forward-backward splitting methods
for finding a common element of the set solution of nonexpansive S and the set
solution of fixed point of the variational inclusion problems, where A is an m-
accretive operator and B is an inverse-strongly accretive operator in the framework
of Banach space with a uniformly convex and 2-uniformly smooth.

2. Preliminaries

Let E be a Banach space and let E∗ be its dual. Let ⟨·, ·⟩ be the pairing between
E and E∗. For all x ∈ E and x∗ ∈ E∗, the value of x∗ at x be denoted by ⟨x, x∗⟩.
The normalized duality mapping J : E → 2E

∗ is defined by J(x) = {x∗ ∈ E∗ :
⟨x, x∗⟩ = ∥x∥2, ∥x∥ = ∥x∗∥}, for all x ∈ E. A single-value normalized duality
mapping is denoted by j, which means a mapping j : E −→ E∗ such that, for all
u ∈ E, j(u) ∈ E∗ satisfying the following:

⟨u, j(u)⟩ = ∥u∥∥j(u)∥, ∥j(u)∥ = ∥u∥.

If E = H is a Hilbert space, then J = I, where I is identity mapping. If E is smooth
Banach space, then J is single-valued j.

A Banach space E is called an Opial’s space if for each sequence {xn}∞n=0 in E
such that {xn} converges weakly to some x in E, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥

hold for all y ∈ E with y ̸= x. In fact, for any normed linear space X admit
the weakly sequentially continuous duality mapping implies X is Opial space. So,
a Banach space with a weakly sequentially continuous duality mapping has the
Opial’s property; see [7].

The modulus of convexity of E is the function δE : (0, 2] −→ [0, 1] defined by

δ(ϵ) := inf{1−
∥∥∥∥x+ y

2

∥∥∥∥ : ∥x∥ = ∥y∥ = 1; ∥x− y∥ ≥ ϵ}.
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E is said to be uniformly convex if and only if δ(ϵ) > 0, for each ϵ ∈ (0, 2]. It known
that a uniformly convex Banach space is reflexive and strictly convex.

Let S(E) be the unit sphere defined by S(E) = {x ∈ E : ∥x∥ = 1}. Then the
norm ∥ · ∥ of E is said to be Gâteaux differentiable norm, if

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

exists for all x, y ∈ S(E). In this case, space E is called smooth. A spaces E is said
to have a uniformly Gâteaux differentiable norm if for each y ∈ S(E), the limit (2.1)
exist uniformly for all x ∈ S(E). The norm of E is said to be uniformly smooth if
the limit (2.1) is attained uniformly for all x, y ∈ S(E). It is known that if the norm
of E is smooth, then the duality mapping J is single-valued and norm to weak∗

uniformly continuous on each bounded subset of E.
On the other hand, the modulus of smoothness of E is the function ρ : [0,∞) →

[0,∞) defined by

ρ(t) = sup{1
2
(∥x+ y∥+ ∥x− y∥)− 1 : x, y ∈ S(E), ∥x∥ = 1, ∥y∥ ≤ t}.

A Banach space E be an smooth if ρE(t) > 0 for all t > 0. A Banach space E

be an uniformly smooth if and only if limt→0
ρ(t)
t = 0. A Banach space E is said

to be q-uniformly smooth, if for 1 < q ≤ 2 be a fixed real number, there exists a
constant c > 0 such that ρ(t) ≤ ctq for all t > 0. It known that every q-uniformly
smooth space is smooth. In the case ρ(t) ≤ ct2 for t > 0, these is 2-uniformly
smooth. The examples of uniformly convex and 2-uniformly smooth Banach space
are Lp, lp or Sobolev spaces W p

m, where p ≥ 2. It is well known that, Hilbert
spaces are 2-uniformly convex and 2-uniformly smooth. We known that if E is a
reflexive Banach space, then every bounded sequence in E has a weakly convergent
subsequence. Note that all uniformly convex and 2-uniformly smooth Banach space
is reflexive.

Next, we recall the definitions of some operators.
(i) Let f : C −→ C be an operator. Then f is called k-contraction if there

exists a coefficient k (0 < k < 1) such that
∥fx− fy∥ ≤ k∥x− y∥, ∀x, y ∈ C.

(ii) Let S : C −→ C be an operator. Then s is called nonexpansive if
∥Sx− Sy∥ ≤ ∥x− y∥, ∀x, y ∈ C.

(iii) Let B : C −→ E be an operator. Then B is called α-inverse-strongly
accretive if there exists a constant α > 0 and j(x − y) ∈ J(x − y) such
that

⟨Bx−By, j(x− y)⟩ ≥ α∥Bx−By∥2, ∀x, y ∈ C.

(iv) A set-valued operator A : D(A) ⊆ E −→ 2E is called accretive if there
exists j(x− y) ∈ J(x− y) such that u ∈ A(x), and v ∈ A(y),

⟨u− v, j(x− y)⟩ > 0, ∀x, y ∈ D(A).

(v) A set-valued operator A : D(A) ⊆ E −→ 2E is called m-accretive if A is
accretive and R(I + rA) = E for some r > 0, where I is identity mapping.

Let C and D are nonempty subsets of a Banach space E such that C is a
nonempty closed convex and D ⊂ C, then a mapping Q : C → D is said to be
sunny if Q(x + t(x − Q(x))) = Q(x) whenever x + t(x − Q(x)) ∈ C for all x ∈ C
and t ≥ 0.
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A mapping Q : C → C is called a retraction if Q2 = Q. If a mapping Q : C → C
is a retraction, then Qz = z for all z is in the range of Q.
Lemma 2.1. [8] Let E be a smooth Banach space and let C be a nonempty subset
of E. Let Q : E → C be a retraction and let J be the normalized duality mapping
on E. Then the following are equivalent:
(i) Q is sunny and nonexpansive;
(ii) ∥Qx−Qy∥2 ≤ ⟨x− y, J(Qx−Qy)⟩,∀x, y ∈ E;
(iii) ∥(x− y)− (Qx−Qy)∥2 ≤ ∥x− y∥2 − ∥Qx−Qy∥2
(iv) ⟨x−Qx, J(y −Qx)⟩ ≤ 0,∀x ∈ E, y ∈ C.

Lemma 2.2. [9] Let C be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E and let S be a nonexpansive mapping of C
into itself with Fix(S) ̸= ∅. Then, the set Fix(S) is a sunny nonexpansive retract
of C.

It well known that if E = H is a Hilbert space, then a sunny nonexpansive
retraction QC is coincident with the metric projection PC from E onto C, that is
QC = PC . Let C be a nonempty closed convex subset of E.

In the sequel for the proof of our main results, we also need the following lemmas.
Lemma 2.3. [10] Let E be a Banach space and J be a normal duality mapping.
Then there exits j(x+ y) ∈ J(x+ y) for any given x, y ∈ E. Then

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, j(x+ y)⟩, j(x+ y) ∈ J(x+ y), (2.2)
for any given x, y ∈ E.

Lemma 2.4. [5] Let E be a real Banach space and let C be a nonempty closed
and convex subset of E. Let B : C −→ E be a single valued operator and α-inverse
strongly accretive operator and let A is an m-accretive operator in E with D(A) ⊃ C
and D(B) ⊃ C.Then

Fix
(
JA
r (I − rB)

)
= (A+B)−1(0).

where JA
r = (I + rA)−1 be a resolvent of A for r > 0.

Lemma 2.5. [11](The Resolvent Identity) Let E be a Banach space and let A be
an m-accretive operator.For r > 0, s > 0 and x ∈ E, then

JA
r x = JA

s

(
s

r
x+

(
1− s

r

)
JA
r x

)
.

Lemma 2.6. [12] Let C be a nonempty closed convex subset of a 2-uniformly
smooth Banach space E with the 2-uniformly smooth constant K. Let the mapping
B : C −→ E be a α-inverse strongly accretive operator. Then, we have

∥(I − rB)x− (I − rB)y∥2 ≤ ∥x− y∥2 − 2r(α−K2r)∥Bx−By∥2, (2.3)
where I is identity mapping. In particular, if r ∈ (0, α

K2 ), then (I − rB) is a
nonexpansive.
Lemma 2.7. [13] (Demiclosed principle) Let C be a nonempty, closed and convex
subset of a uniformly convex Banach space E and S : C −→ E be a nonexpansive
mapping with Fix(S) ̸= ∅. Then I − S is demiclosed at zero, i.e., xn ⇀ x and
xn − Sxn −→ 0 implies x = Sx.

Lemma 2.8. [14] Let {xn} and {zn} be bounded sequences in a Banach space E
and let {βn} be a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Suppose xn+1 = (1− βn)zn + βnxn for all integers n ≥ 0 and lim supn→∞(∥zn+1 −
zn∥ − ∥xn+1 − xn∥) ≤ 0. Then limn→∞ ∥zn − xn∥ = 0.
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Lemma 2.9. [15] Assume that {an} is a sequence of nonnegative real numbers
satisfying the condition

an+1 ≤ (1− tn)an + tnbn + cn,∀n ≥ 0,

where {tn} is a number sequence in (0, 1) such that limn→∞ tn = 0 and Σ∞
n→∞tn =

∞, {bn} is a sequence such that lim supn→∞ bn ≤ 0 and {cn} is a positive number
sequence such that Σ∞

n=0cn < ∞. Then, limn→∞ an = 0.

3. Main results

Before prove our main result, we need the following lemma:

Lemma 3.1. Let E be a uniformly convex and uniformly smooth Banach space.
Let C be a nonempty closed convex subset of E. Let A : D(A) ⊆ C −→ 2E

be a m-accretive operator and B : C −→ E be an α-inverse strongly accretive
operator. Let S : C −→ C be a nonexpansive mapping and let f : C −→ C be
a contraction mapping with the constant k ∈ (0, 1). Let JA

rn = (I + rnA)−1 be
a resolvent of A for rn > 0 such that Fix(S) ∩ (A + B)−1(0) ̸= ∅. If defined
operator Wn : C → C by Wn := SJA

rn ((I − rnB)[αnfx+ (1− αn)x] + en) for all
x ∈ C, where αn ∈ (0, 1), rn > 0. Then Wn is a contraction operator and has a
unique fixed point.

Proof. Since S, JA
rn , and (I − rnB) are nonexpansive. Then we known that Wn is

nonexpansive. Since f be a contraction mapping with coefficient k ∈ (0, 1). We
have

∥Wnx−Wny∥ = ∥SJA
rn ((I − rnB)[αnf(x) + (1− αn)x] + en)

−SJA
rn ((I − rnB)[αnf(y) + (1− αn)y] + en) ∥

≤ ∥ ((I − rnB)[αnf(x) + (1− αn)x] + en)

− ((I − rnB)[αnf(y) + (1− αn)y] + en) ∥
≤ ∥[αnf(x) + (1− αn)x]− [αnf(y) + (1− αn)y]∥
≤ ∥(αnf(x) + (1− αn)x)− (αnf(y) + (1− αny)∥
= ∥αn(f(x)− f(y)) + (1− αn)(x− y)∥
≤ αn∥f(x)− f(y)∥+ (1− αn)∥x− y∥
≤ αnk∥x− y∥+ (1− αn)∥x− y∥
= (αnk + (1− αn))∥x− y∥.

Since 0 < (αnk + (1 − αn)) < 1, it follows that Wn is a contraction mapping of
C into it self. By Banach contraction principle, then there exist a unique fixed
point, i.e., we say x̄ = Wnx̄. Moreover, by use lemma 2.2, then the set Fix(Wn)
is sunny nonexpansive retraction of C. Hence there exist a unique fixed point
x̄ ∈ Fix(Wn) = Fix(S) ∩ (A+B)−1(0) := Ω, namely QΩf(x̄) = x̄ = Wnx̄. �

Theorem 3.2. Let E be a uniformly convex and 2-uniformly smooth Banach space
with weakly sequentially continuous duality mapping. Let C be a nonempty closed
convex subset of E. Let A : D(A) ⊆ C −→ 2E be a m-accretive operator and
B : C −→ E be an α-inverse strongly accretive operator. Let S : C −→ C be
a nonexpansive mapping and let f : C −→ C be a contraction mapping with the
constant k ∈ (0, 1). Let JA

rn = (I + rnA)−1 be a resolvent of A for rn > 0. Assume
that Fix(S) ∩ (A+B)−1(0) ̸= ∅.
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For given x0 ∈ C, let {xn} be a sequence defined by the following:{
yn = αnf(xn) + (1− αn)xn,

xn+1 = βnxn + (1− βn)SJ
A
rn(yn − rnByn + en), ∀n ≥ 0,

(3.1)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequences
in (0, α

K2 ), K > 0 is the 2-uniformly smooth constant of E and {en} is a sequence
in E. Assume that the control sequences satisfy the following conditions:

(a) limn−→∞ αn = 0, and
∑∞

n=1 αn = ∞;
(b) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(c) limn−→∞ rn = r, and r ∈ (0, α

K2 );
(d)

∑∞
n=0 ∥ en ∥< ∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S) ∩ (A+B)−1(0),
where x̄ = QΩf()̄ and QF f is a sunny nonexpansive retraction from E onto Ω.

Proof. Step 1 We want to show that {xn} is bounded. Fixed p ∈ Fix(S) ∩ (A +
B)−1(0) ̸= ∅. So, we have p ∈ Fix(S) and p ∈ (A+ B)−1(0) = Fix(JA

rn(I − rnB))
(see Lemma 2.4). Observe that, we consider

∥yn − p∥ = ∥αnf(xn) + (1− αn)xn − p∥
≤ αn∥f(xn)− p∥+ (1− αn)∥xn − p∥
≤ αn (∥f(xn)− f(p)∥+ ∥f(p)− p∥) + (1− αn)∥xn − p∥
≤ αnk∥xn − p∥+ αn∥f(p)− p∥+ (1− αn)∥xn − p∥
= [αnk + (1− αn)]∥xn − p∥+ αn∥f(p)− p∥
= [1− αn(1− k)]∥xn − p∥+ αn∥f(p)− p∥. (3.2)

We set zn := SJA
rn(yn−rnByn+en+1). Since JA

rn and I−rnB are nonexpansive,
and from (3.2), it follows that
∥xn+1 − p∥ = ∥βnxn + (1− βn)zn − p∥

≤ βn∥xn − p∥+ (1− βn)∥zn − p∥
= βn∥xn − p∥+ (1− βn)∥SJB

rn(yn − rnAyn + en)− Sp∥
≤ βn∥xn − p∥+ (1− βn)∥JA

rn(yn − rnByn + en)− p∥
= βn∥xn − p∥+ (1− βn)∥JA

rn(yn − rnByn + en)− JA
rn(I − rnB)p∥

≤ βn∥xn − p∥+ (1− βn)∥(yn − rnByn + en)− (I − rnB)p∥
= βn∥xn − p∥+ (1− βn)∥(I − rnB)yn − (I − rnB)p+ en∥
≤ βn∥xn − p∥+ (1− βn) (∥(I − rnB)yn − (I − rnB)p∥+ ∥en∥)
≤ βn∥xn − p∥+ (1− βn) [∥yn − p∥+ ∥en∥]
≤ βn∥xn − p∥+ (1− βn)[(1− αn(1− k))∥xn − p∥

+αn∥f(p)− p∥] + (1− βn)∥en∥
= βn∥xn − p∥+ [(1− βn)− αn(1− k)]∥xn − p∥

+(1− βn)αn∥f(p)− p∥+ (1− βn)∥en∥
= [βn + (1− βn)− αn(1− k)]∥xn − p∥

+(1− βn)αn∥f(p)− p∥+ (1− βn)∥en∥
= [1− (1− βn)αn(1− k)]∥xn − p∥

+(1− βn)αn∥f(p)− p∥+ (1− βn)∥en∥
= [1− λn(1− k)]∥xn − p∥+ λn∥f(p)− p∥+ ∥en∥,
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where λn := (1− βn)αn. Then, it follows that

∥xn+1 − p∥ ≤ max

{
∥xn − p∥, ∥f(p)− p∥

1− k

}
+ ∥en∥

≤ max

{
∥xn−1 − p∥, ∥f(p)− p∥

1− k

}
+ ∥en−1∥+ ∥en∥

≤ max

{
∥xn−2 − p∥, ∥f(p)− p∥

1− k

}
+ ∥en−2∥+ ∥en−1∥+ ∥en∥

...

≤ max

{
∥x0 − p∥, ∥f(p)− p∥

1− k

}
+

n∑
i=0

∥ei∥ < ∞.

It follows by mathematical induction, we conclude that

∥xn+1 − p∥ ≤ max

{
∥x0 − p∥, (1− k)−1∥f(p)− p∥

}
+

n∑
i=0

∥ei∥, ∀n ≥ 0.

By condition (d), this implies that {xn} is bounded.
From yn = αnf(xn) + (1− αn)xn, we obtain

∥yn − p∥ = ∥αnf(xn) + (1− αn)xn − p∥
≤ αn∥f(xn)− p∥+ (1− αn)∥xn − p∥.

(3.3)
From (3.3) and since {xn} is bounded, so {yn} and {zn} are bounded too.

Step 2 We want to show that limn−→∞ ∥xn+1 − xn∥ = 0. By lemma 2.8, we set
vn := yn − rnAyn + en, then zn := SJB

rnvn, it follows that

∥zn+1 − zn∥ = ∥SJA
rn+1

vn+1 − SJA
rnvn∥

≤ ∥JA
rn+1

vn+1 − JA
rnvn∥

≤ ∥JA
rn+1

vn+1 − JA
rn+1

vn∥+ ∥JA
rn+1

vn − JA
rnvn∥

≤ ∥vn+1 − vn∥+ ∥JA
rn+1

vn − JA
rnvn∥. (3.4)

Next, we compute ∥vn+1 − vn∥ that
∥vn+1 − vn∥ = ∥(yn+1 − rn+1Byn+1 + en+1)− (yn − rnByn + en)∥

= ∥(I − rnB)yn+1 − (I − rnB)yn + (rn − rn+1)Byn+1 + en+1 − en∥
≤ ∥(I − rnB)yn+1 − (I − rnB)yn∥+ | rn − rn+1 | ∥Byn+1∥+ ∥en+1 − en∥
≤ ∥yn+1 − yn∥+ | rn − rn+1 | ∥Byn+1∥+ ∥en+1∥+ ∥en∥. (3.5)

Next, we compute ∥yn+1 − yn∥ that
∥yn+1 − yn∥ = ∥(αn+1f(xn+1) + (1− αn+1)(xn+1))− (αnf(xn) + (1− αn)xn)∥

= ∥αn+1f(xn+1)− αnf(xn+1) + αnf(xn+1)− αnf(xn) + (1− αn+1)xn

−(1− αn+1)xn − (1− αn)xn∥
= ∥(αn+1 − αn)f(xn+1) + αn(f(xn+1)− f(xn)) + (1− αn+1)(xn+1 − xn)

+xn((1− αn+1)− (1− αn))∥
≤ |αn+1 − αn|∥f(xn+1)− xn∥+ αn∥f(xn+1)− f(xn)∥+ (1− αn+1)∥xn+1 − xn∥
= (1− αn+1)∥xn+1 − xn∥+ hn
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≤ ∥xn+1 − xn∥+ hn, (3.6)
where hn = |αn+1 − αn|∥f(xn+1)− xn∥+ αn∥f(xn+1)− f(xn)∥.

That is
∥vn+1 − vn∥ ≤ ∥xn+1 − xn∥+ hn + gn, (3.7)

where gn =| rn − rn+1 | ∥Byn+1∥+ ∥en+1∥+ ∥en∥.
Next, we compute ∥JA

rn+1
vn − JA

rnvn∥ by the resolvent identity (see Lemma 2.5)
that

∥JA
rn+1

vn − JA
rnvn∥ = ∥JA

rn

(
rn

rn+1
vn + (1− rn

rn+1
)JA

rn+1
vn

)
− JA

rnvn∥

≤ ∥
(

rn
rn+1

vn + (1− rn
rn+1

)JA
rn+1

vn

)
− vn∥

= ∥( rn
rn+1

− 1)vn + (1− rn
rn+1

)JA
rn+1

vn∥

= ∥(1− rn
rn+1

)JA
rn+1

vn − (1− rn
rn+1

)vn∥

= ∥rn+1 − rn
rn+1

(JA
rn+1

vn − vn)∥

≤ | rn+1 − rn
rn+1

| ∥JA
rn+1

vn − vn∥. (3.8)

From (3.7) and (3.8), we obtain

∥zn+1 − zn∥ ≤ ∥xn+1 − xn∥+ hn + gn+ | rn+1 − rn
rn+1

| ∥JA
rn+1

vn − vn∥.

In view of the condition (a), (c), and (d), it follows that
∥zn+1 − zn∥ − ∥xn+1 − xn∥ ≤ 0.

We take lim sup, it follows that
lim sup
n→∞

(∥zn+1 − zn∥ − ∥xn+1 − xn∥) ≤ 0.

By lemma 2.8, we conclude that
lim

n→∞
∥zn − xn∥ = 0 (3.9)

that is limn→∞ ∥SJA
rn(vn)− xn∥ = 0. From (4.1), we observe that
∥xn+1 − xn∥ = ∥βnxn + (1− βn)zn − xn∥

≤ (1− βn)∥zn − xn∥.
By (3.9), then we conclude that

lim
n→∞

∥xn+1 − xn∥ = 0. (3.10)

Step 3 To show that limn→∞ ∥Byn −Bp∥ = 0, limn→∞ ∥JA
rn(vn)− yn∥ = 0 and

limn→∞ ∥SJA
rn(vn)− JA

rn(vn)∥ = 0.
Step 3.1 First, we observe that limn→∞ ∥Byn −Bp∥ = 0. Notice that

∥xn+1 − p∥2 = ∥βnxn + (1− βn)SJ
A
rnvn − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥SJA
rnvn − p∥2

= βn∥xn − p∥2 + (1− βn)∥vn − (I − rnB)p∥2

= βn∥xn − p∥2 + (1− βn)∥(yn − rnByn + en)− (I − rnB)p∥2

≤ βn∥xn − p∥2 + (1− βn)[∥(I − rnB)yn − (I − rnB)p∥2
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+2∥en∥∥(I − rnB)yn − (I − rnB)p∥]
≤ βn∥xn − p∥2 + (1− βn)

(
∥yn − p∥2 − 2rn(α−K2rn)∥Byn −Bp∥2

)
+2(1− βn)∥en∥∥(I − rnB)yn − (I − rnB)p∥.

Set ḡn := (1− βn)2∥en∥∥(I − rnB)yn − (I − rnB)p∥, we get
∥xn+1 − p∥2 (3.11)

≤ βn∥xn − p∥2 + (1− βn)
(
∥yn − p∥2 − 2rn(α−K2rn)∥Byn −Bp∥2

)
+ ḡn

= βn∥xn − p∥2 + (1− βn)∥yn − p∥2 − 2rn(α−K2rn)(1− βn)∥Byn −Bp∥2 + ḡn

= βn∥xn − p∥2 + (1− βn)∥αnf(xn) + (1− αn)xn − p∥2

−2rn(α−K2rn)(1− βn)∥Byn −Bp∥2 + ḡn.

Set h̄n := 2rn(α−K2rn)(1− βn)∥Byn −Bp∥2, we get
∥xn+1 − p∥2 ≤ βn∥xn − p∥2 + (1− βn)∥αnf(xn) + (1− αn)xn − p∥2 − h̄n + ḡn

≤ βn∥xn − p∥2 + (1− βn)αn∥f(xn)− p∥2 + (1− βn)(1− αn)∥xn − p∥2

−h̄n + ḡn

= (1− αn(1− βn))∥xn − p∥2 + (1− βn)αn∥f(xn)− p∥2 − h̄n + ḡn.

It follows that
2rn(αn −K2rn)(1− βn)∥Byn −Bp∥2

≤ (1− αn(1− βn))∥xn − p∥2 − ∥xn+1 − p∥2 + (1− βn)αn∥f(xn)− p∥2 + ḡn

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + (1− βn)αn∥f(xn)− p∥2 + ḡn

= ∥(xn − p) + (xn+1 − p)∥∥(xn − p)− (xn+1 − p)∥
+(1− βn)αn∥f(xn)− p∥2 + ḡn

= ∥(xn − p) + (xn+1 − p)∥∥xn − xn+1∥+ (1− βn)αn∥f(xn)− p∥2 + ḡn.

In view of the condition (a), (c), (d), and from (3.10), we conclude that limn−→∞ ∥Byn−
Bp∥2 = 0. This implies

lim
n−→∞

∥Byn −Bp∥ = 0. (3.12)

Step 3.2 Second, we will show that limn→∞ ∥JA
rn(vn)−yn∥ = 0, we observe that

∥JA
rn(vn)− p∥2

≤ ∥JA
rn(vn)− p∥∥(yn − rnByn + en)− (p− rnBp)∥

=
1

2
{∥JA

rn(vn)− p∥2 + ∥(yn − rnByn + en)− (p− rnBp)∥2

−∥
(
JA
rn(vn)− p

)
− (yn − rnByn + en)− (p− rnBp)∥2}

=
1

2
{∥JA

rn(vn)− p∥2 + ∥(I − rnB)yn − (I − rnB)p+ en∥2

−∥JA
rn(vn)− yn − rnByn − en + rnBp∥2}

=
1

2
{∥JA

rn(vn)− p∥2 + ∥(I − rnB)yn − (I − rnB)p∥2 + ḡn

−∥
(
JA
rn(vn)− yn − en

)
− rn(Byn −Bp)∥2}

≤ 1

2

{
∥JA

rn(vn)− p∥2 + ∥yn − p∥2 + ḡn

−(∥JA
rn(vn)− yn − en∥2 − 2rn∥Byn −Bp∥∥JA

rn(vn)− yn − en∥
+∥rnByn − rnBp∥2)

}
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=
1

2

{
∥JA

rn(vn)− p∥2 + ∥yn − p∥2 + ḡn − ∥JA
rn(vn)− yn − en∥2

+2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥ − ∥rnByn − rnBp∥2

}
. (3.13)

It follows that

∥JA
rn(vn)− p∥2

≤ ∥yn − p∥2 + ḡn − ∥JA
rn(vn)− yn − en∥2

+2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥ − ∥rnByn − rnBp∥2

= ∥αnf(xn) + (1− αn)xn − p∥2 − ∥JA
rn(vn)− yn − en∥2

−∥rnByn − rnBp∥2 + 2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥+ ḡn

≤ αn∥f(xn)− p∥2 + (1− αn)∥xn − p∥2 − ∥JA
rn(vn)− yn + en∥2

−rn∥Byn −Bp∥2 + 2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥+ ḡn. (3.14)

From (3.14), this implies that

∥xn+1 − p∥2

≤ βn∥xn − p∥2 + (1− βn)∥SJA
rn(vn)− p∥2

≤ βn∥xn − p∥2 + (1− βn)∥JA
rn(vn)− p∥2

≤ βn∥xn − p∥2 + (1− βn)
{
αn∥f(xn)− p∥2 + (1− αn)∥xn − p∥2

−∥JA
rn(vn)− yn + en∥2 − rn∥Byn −Bp∥2

+2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥+ ḡn

}
= (1− αn)∥xn − p∥2 + (1− βn)αn∥f(xn)− p∥2

−(1− βn)∥JA
rn(vn)− yn + en∥2 − (1− βn)r

2
n∥Byn − rnBp∥2

+(1− βn)2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥+ (1− βn)ḡn

≤ ∥xn − p∥2 + αn∥f(xn)− p∥2 − (1− βn)∥JA
rn(vn)− yn + en∥2

−r2n∥Byn − rnBp∥2 + 2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥+ ḡn.

It follows that

(1− βn)∥JA
rn(vn)− yn + en∥2

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn∥f(xn)− p∥2 − r2n∥Byn − rnBp∥2

+2rn∥Byn −Bp∥∥JA
rn(vn)− yn − en∥+ ḡn.

= ∥xn − p∥2 − ∥xn+1 − p∥2 + sn

= ∥(xn − p) + (xn+1 − p)∥∥(xn − p)− (xn+1 − p)∥+ sn

= ∥(xn − p) + (xn+1 − p)∥∥xn − xn+1∥+ sn, (3.15)

where we set sn := αn∥f(xn)−p∥2−r2n∥Byn−rnBp∥2+2rn∥Byn−Bp∥∥JA
rn(vn)−

yn − en∥+ ḡn.
From (3.15), in view of the condition (a), (c), (d), and equation (3.10), we conclude
that

lim
n−→∞

∥JA
rn(vn)− yn − en∥ = 0.

This in turn implies that

lim
n−→∞

∥JA
rn(vn)− yn∥ = 0. (3.16)
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Step 3.3 Lastly, we will show that limn→∞ ∥SJA
rn(vn) − JA

rn(vn)∥ = 0, we see
that

∥yn − xn∥ = ∥αnf(xn) + (1− αn)xn − xn∥
= αn∥f(xn)− xn∥.

By condition (a), then
lim

n−→∞
∥yn − xn∥ = 0. (3.17)

Next, from (3.16) and equation (3.17), then we see that
∥JA

rn(vn)− yn∥ ≤ ∥JA
rn(vn)− yn∥+ ∥yn − xn∥.

That is
lim

n−→∞
∥JA

rn(vn)− xn∥ = 0. (3.18)

From equation (3.9) and (3.18), then we see that
∥SJA

rn(vn)− JA
rn(vn)∥ ≤ ∥SJA

rn(vn)− xn∥+ ∥xn − JA
rn(vn)∥.

That is
lim

n−→∞
∥SJA

rn(vn)− JA
rn(vn)∥ = 0. (3.19)

Step 4 Since E is a uniformly convex and 2-uniformly smooth Banach space,
then E is reflexive Banach space. By reflexive Banach space and from {xn}, {yn}
are bounded, then it has a weakly convergence subsequence. We may assume that
xni ⇀ x̂. In view of limn−→∞ ∥yn−xn∥ = 0, then there exist a subsequence of {yni}
of {yn} which converges weakly to x̂. we can say that {yni} also converges weakly to
x̂, i.e, yni

⇀ x̂, without loss of generality. To show that x̂ ∈ Fix(S)∩(A+B)−1(0) =
Ω.

(i) First, we want to show that x̂ ∈ Fix(S). Now, we have yni
⇀ x̂. Since we

known that {JA
rn(vn)} is bounded and form limn−→∞ ∥JA

rn(vn)− yn∥ = 0, then we
say that {JA

rni
(vni)} ⇀ x̂.

From (3.19), we have limn−→∞ ∥SJA
rni

(vni
) − JA

rni
(vni

)∥ = 0. By demiclosed
principle, this implies Sx̂ = x̂, namely we prove that x̂ ∈ Fix(S). (ii) Next, to
show that JA

r (I − rB)x̂ = x̂. Since a Banach space with weakly continuous duality
mapping has the Opial’s condition, see [7]. Suppose x̂ ̸= JA

r (I − rB)x̂. By the
Opial’s condition and condition (c), (d), then we have

lim inf
i→∞

∥yni
− x̂∥

< lim inf
i→∞

∥yni
− JA

r (I − rB)x̂∥

≤ lim inf
i→∞

{∥yni − JA
rni

(vni)∥+ ∥JA
rni

(vni)− JA
rn(I − rnB)x̂∥}

= lim inf
i→∞

{∥yni
− JA

rni
(vni

)∥+ ∥JA
r (vni

)− JA
r (I − rB)x̂∥}

≤ lim inf
i→∞

{∥yni
− JA

rni
(vni

)∥+ ∥vni
− (I − rB)x̂∥}

= lim inf
i→∞

{∥yni
− JA

rni
(vni

)∥+ ∥(I − rB)yni
− (I − rB)x̂∥+ ∥eni

∥}

≤ lim inf
i→∞

{∥yni − JA
rni

(vni)∥+ ∥yni − x̂∥+ ∥eni∥}.

By (3.16) and condition (d), hence
lim inf
i→∞

∥yni − x̄∥ < lim inf
i→∞

∥yni − x̂∥.
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This is contradiction. Therefore, JA
r (I − rB)x̂ = x̂.

This complete the proof that x̂ ∈ Fix(S) ∩ (A+B)−1(0) = Ω.

Step 5 We defined operator Wn : C → C by Wn := SJA
rn((I − rnB)[αnfx +

(1 − αn)x] + en) for all x ∈ C, where αn ∈ (0, 1), rn > 0. From lemma 3.1 an
operators Wn is a contraction operator and has a unique fixed point. Moreover, by
use lemma 2.2, we known that x̄ ∈ Fix(Wn) = Fix(S)∩(A+B)−1(0) := Ω, namely
QΩf(x̄) = x̄ = Wnx̄. (Now, x̂ = x̄ too)

Next, we will show that lim supn−→∞⟨f(x̄)−x̄, j(yn−x̄)⟩ ≤ 0, where limt−→0 xt =
x̄ = QΩf(x̄) and xt solves equation xt = SJA

rn(I−rnB)(tf(xt)+(1−t)xt),∀t ∈ (0, 1).
(i) We want to show that limn−→∞ ∥Wnxn − yn∥ = 0. Consider

∥Wnxn − yn∥ ≤ ∥SJA
rn ((I − rnB)[αnf(xn) + (1− αn)xn] + en)− xn∥+ ∥xn − yn∥

= ∥zn − xn∥+ ∥xn − yn∥. (3.20)
From (3.9) and (3.17), then

lim
n−→∞

∥Wnxn − yn∥ = 0. (3.21)

(ii) We want to show that lim supn→∞⟨f(x̄)− x̄, j(yn − x̄)⟩ ≤ 0. We compute
∥xt − yn∥2

= ∥SJA
rn(I − rnB)(tf(xt) + (1− t)xt)− yn∥2

= ⟨SJA
rn(I − rnB)(tf(xt) + (1− t)xt)−Wnxn +Wnxn − yn, j(xt − yn)⟩

= ⟨SJA
rn(I − rnB)(tf(xt) + (1− t)xt)−Wnxn, j(xt − yn)⟩

+⟨Wnxn − yn, j(xt − yn)⟩
= ⟨SJA

rn(I − rnB)(tf(xt) + (1− t)xt)− SJA
rn((I − rnB)yn + en), j(xt − yn)⟩

+⟨Wnxn − yn, j(xt − yn)⟩
≤ ⟨(I − rnB)(tf(xt) + (1− t)xt)− (I − rnB)yn − en, j(xt − yn)⟩

+∥Wnxn − yn∥∥xt − yn∥
= ⟨(I − rnB)(tf(xt) + (1− t)xt)− (I − rnB)yn, j(xt − yn)⟩+ ⟨en, j(xt − yn)⟩

+∥Wnxn − yn∥∥xt − yn∥
≤ ⟨(tf(xt) + (1− t)xt)− xt + xt − yn, j(xt − yn)⟩+ ∥en∥∥xt − yn∥

+∥Wnxn − yn∥∥xt − yn∥
≤ ⟨t(f(xt)− xt), j(xt − yn)⟩+ ⟨xt − yn, j(xt − yn)⟩+ ∥en∥∥xt − yn∥

+∥Wnxn − yn∥∥xt − yn∥
≤ t⟨f(xt)− xt, j(xt − yn)⟩+ ∥xt − yn∥2 + ∥en∥∥xt − yn∥+ ∥Wnxn − yn∥∥xt − yn∥
≤ −t⟨f(xt)− xt, j(yn − xt)⟩+ ∥xt − yn∥2 + ∥en∥∥xt − yn∥+ ∥Wnxn − yn∥∥xt − yn∥

(3.22)
It follows that

t⟨f(xt)− xt, j(yn − xt)⟩ ≤ ∥en∥∥xt − yn∥+ ∥Wnxn − yn∥∥xt − yn∥.

Then

⟨f(xt)− xt, j(yn − xt)⟩ ≤ 1

t
{∥en∥∥xt − yn∥+ ∥Wnxn − yn∥∥xt − yn∥}.

By virtue of (3.21) and condition (d), we found that
lim sup
n→∞

⟨f(xt)− xt, j(yn − xt)⟩ ≤ 0. (3.23)
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Since xt → x̄, as t → 0 and the fact that j is norm-to- weak∗ uniformly continuous
on bounded subset of E, we obtain

|⟨f(x̄)− x̄, j(yn − x̄)⟩ − ⟨f(xt)− xt, j(yn − xt)⟩|
≤ |⟨f(x̄)− x̄, j(yn − x̄)⟩ − ⟨f(x̄)− x̄, j(yn − xt)⟩|

+|⟨f(x̄)− x̄, j(yn − xt)⟩ − ⟨f(xt)− xt, j(yn − xt)⟩|
≤ |⟨f(x̄)− x̄, j(yn − x̄)− j(yn − xt)⟩|+ |⟨f(x̄)− x̄− f(xt) + xt, j(yn − xt)⟩|
≤ ∥f(x̄)− x̄∥∥j(yn − x̄)− j(yn − xt)∥+ ∥f(x̄)− x̄− f(xt) + xt∥∥yn − xt∥

−→ 0, as t −→ 0.

Hence, for any ϵ > 0, there exist δ > 0 such that ∀t ∈ (0, δ) the following inequality
holds:

⟨f(x̄)− x̄, j(yn − x̄)⟩ ≤ ⟨f(xt)− xt, j(yn − xt)⟩+ ϵ.

Taking lim supn→∞ in the above inequality, we find that
lim sup
n→∞

⟨f(x̄)− x̄, j(yn − x̄)⟩ ≤ lim sup
n→∞

⟨f(xt)− xt, j(yn − xt)⟩+ ϵ.

Since ϵ is arbitrary and (3.23), we obtain that
lim sup
n→∞

⟨f(x̄)− x̄, j(yn − x̄)⟩ ≤ 0. (3.24)

Step 6 Next, we prove that {xn} converges strongly to x̄ = QΩf(x̄) by using
the lemma 2.3 and lemma 2.9. We note that
∥xn+1 − x̄∥2 = ∥βnxn + (1− βn)SJ

A
rn(vn)− x̄∥2

≤ βn∥xn − x̄∥2 + (1− βn)∥SJA
rn(vn)− x̄∥2

= βn∥xn − x̄∥2 + (1− βn)∥SJA
rn(vn)− Sx̄∥2

≤ βn∥xn − x̄∥2 + (1− βn)∥JA
rn(vn)− x̄∥2

= βn∥xn − x̄∥2 + (1− βn)∥JA
rn(vn)− JA

rn(I − rnB)x̄∥2

≤ βn∥xn − x̄∥2 + (1− βn)∥vn − (I − rnB)x̄∥2

= βn∥xn − x̄∥2 + (1− βn)∥(yn − rnByn + en)− (I − rnB)x̄∥2

= βn∥xn − x̄∥2 + (1− βn)∥(I − rnB)yn − (I − rnB)x̄+ en∥2

= βn∥xn − x̄∥2 + (1− βn)[∥(I − rnA)yn − (I − rnA)x̄∥2

+2⟨en, j((I − rnB)yn − (I − rnB)x̄+ en)⟩
≤ βn∥xn − x̄∥2 + (1− βn)

[
∥yn − x̄∥2 + 2∥en∥∥(I − rnB)yn − (I − rnB)x̄+ en∥

]
.

(3.25)
Consider

∥yn − x̄∥2 = ⟨αnf(xn) + (1− αn)xn − x̄, j(yn − x̄)⟩
= ⟨αn(f(xn)− x̄) + (1− αn)(xn − x̄), j(yn − x̄)⟩
= ⟨αn (f(xn)− f(x̄)) + αn (f(x̄)− x̄) + (1− αn)(xn − x̄), j(yn − x̄)⟩
= ⟨αn(f(xn)− f(x̄)) + (1− αn)(xn − x̄), j(yn − x̄)⟩+ ⟨αn(f(x̄)− x̄), j(yn − x̄)⟩
≤ ∥αn(f(xn)− f(x̄)) + (1− αn)(xn − x̄)∥∥yn − x̄∥+ αn⟨f(x̄)− x̄, j(yn − x̄)⟩
≤ [αnk∥xn − x̄∥+ (1− αn)∥xn − x̄∥] ∥yn − x̄∥+ αn⟨f(x̄)− x̄, j(yn − x̄)⟩
= [1− αn(1− k)]∥xn − x̄∥∥yn − x̄∥+ αn⟨f(x̄)− x̄, j(yn − x̄)⟩

= (1− αn(1− k))
∥xn − x̄∥2 + ∥yn − x̄∥2

2
+ αn⟨f(x̄)− x̄, j(yn − x̄)⟩
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=
1− αn(1− k)

2

(
∥xn − x̄∥2 + ∥yn − x̄∥2

)
+ αn⟨f(x̄)− x̄, j(yn − x̄)⟩.

It follows that
2∥yn − x̄∥2 (3.26)

≤ (1− αn(1− k))∥xn − x̄∥2 + (1− αn(1− k))∥yn − x̄∥2 + 2αn⟨f(x̄)− x̄, j(yn − x̄)⟩
≤ (1− αn(1− k))∥xn − x̄∥2 + ∥yn − x̄∥2 + 2αn⟨f(x̄)− x̄, j(yn − x̄)⟩.

Therefore, we obtain
∥yn − x̄∥2 ≤ (1− αn(1− k))∥xn − x̄∥2 + 2αn⟨f(x̄)− x̄, j(yn − x̄)⟩. (3.27)

Replace (3.27) in (3.25) that

∥xn+1 − x̄∥2

≤ βn∥xn − x̄∥2 + (1− βn)
[
(1− αn(1− k))∥xn − x̄∥2 + 2αn⟨f(x̄)− x̄, j(yn − x̄)⟩

]
+(1− βn)2∥en∥∥(I − rnB)yn − (I − rnB)x̄+ en∥

= (1− αn(1− k)(1− βn))∥xn − x̄∥2 + 2αn(1− βn)⟨f(x̄)− x̄, j(yn − x̄)⟩
+2(1− βn)∥en∥∥(I − rnB)yn − (I − rnB)x̄+ en∥

= (1− λn)∥xn − x̄∥2 + 2λn

(1− k)
⟨f(x̄)− x̄, j(yn − x̄)⟩+ cn,

where cn := 2(1−βn)∥en∥∥(I−rnB)yn−(I−rnB)x̄+en∥, and λn = αn(1−k)(1−βn).

If we set bn = 2
(1−k) ⟨f(x̄)−x̄, j(yn−x̄)⟩ and we have lim supn−→∞⟨f(x̄)−x̄, j(yn−

x̄)⟩ ≤ 0, then we see that lim supn→∞ bn ≤ 0, and also that
∑∞

n=0 cn < ∞.

By lemma 2.8 and condition (a), (b), and (d), we conclude that ∥xn− x̄∥2 −→ 0,
as n −→ ∞. This implies

lim
n−→∞

∥xn − x̄∥ = 0,

i.e., xn converges strongly to x̄. �

Next, we will utilize theorem 3.2 to study some strong convergence theorem in
Lp with 2 ≤ p < ∞. Since Lp, where p ≥ 2 are uniformly convex and 2-uniformly
smooth Banach space with K = p− 1, then we consider E = Lp and we derive that
following theorem:

Theorem 3.3. Let C be a nonempty closed convex subset of an Lp for 2 ≤ p < ∞.
Let A, B, S, f , JA

rn be the same as in theorem 3.2. Let {αn}, {βn} are real num-
ber sequences in (0, 1), {rn} is a real number sequences in (0, α

(p−1)2 ) and {en} is
a sequence in E. Assume that the control sequences satisfy the following condi-
tions (a),(b) and (d) in theorem 3.2 and conditions (c) limn−→∞ rn = r, and r ∈
(0, α

(p−1)2 ). Then the sequence {xn} is defined by (4.1) converges strongly to a point
x̄ ∈ Fix(S) ∩ (A+B)−1(0).

Consider a mapping S ≡ I in theorem 3.2, we can obtain the following corollary
direct.

Corollary 3.4. Let E be a uniformly convex and 2-uniformly smooth Banach space
with weakly sequentially continuous duality mapping. Let C be a nonempty closed
convex subset of E. Let A : D(A) ⊆ E −→ 2E be an m-accretive operator such that
the domain of A is included in C and B : C −→ X be an α-inverse strongly accretive
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operator. Let f : C −→ C be a contraction mapping with the constant k ∈ (0, 1).
Let JA

rn = (I + rnA)−1 be a resolvent of A for rn > 0 such that (A+B)−1(0) ̸= ∅.
For given x0 ∈ C, Let xn be a sequence in the following process:{

yn = αnf(xn) + (1− αn)xn,

xn+1 = βnxn + (1− βn)J
A
rn(yn − rnByn + en), ∀n ≥ 0,

(3.28)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequences
in (0, α

K2 ), K > 0 is the 2-uniformly smooth constant of E and {en} is a sequence
in E. Assume that the control sequences satisfy the following conditions:

(a) limn−→∞ αn = 0,
∑∞

n=1 αn = ∞;
(b) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(c) limn−→∞ rn = r, and r ∈ (0, α

K2 );
(d)

∑∞
n=0 ∥ en ∥< ∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ (A+B)−1(0).

Consider a mapping S ≡ I and f(xn) ≡ u, ∀n ∈ N in theorem 3.2, we obtain the
following corollary direct.

Corollary 3.5. Let E be a uniformly convex and 2-uniformly smooth Banach space
with weakly sequentially continuous duality mapping. Let C be a nonempty closed
convex subset of E. Let A : D(A) ⊆ E −→ 2E be an m-accretive operator such that
the domain of A is included in C and let B : C −→ X be an α-inverse strongly
accretive operator. Let JB

rn = (I + rnB)−1 be a resolvent of B for rn > 0 such that
(A+B)−1(0) ̸= ∅.

For given x0 ∈ C, Let xn be a sequence in the following process:
yn = αnu+ (1− αn)xn,
xn+1 = βnxn + (1− βn)J

A
rn(yn − rnByn + en), ∀n ≥ 0,

(3.29)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequences
in (0, α

K2 ) , K > 0 is the 2-uniformly smooth constant of E and {en} is a sequence
in E. Assume that the control sequence satisfy the following conditions:

(a) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(b) limn−→∞ rn = r, and r ∈ (0, α

K2 );
(c)

∑∞
n=0 ∥ en ∥< ∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ (A+B)−1(0).

Setting JA
rn ≡ I, B ≡ 0, f(xn) ≡ u, ∀n ∈ N and en ≡ 0, then we have the

following corollary of the modified Mann-Halpern iteration.

Corollary 3.6. Let E be a uniformly convex and 2-uniformly smooth Banach space
and let C be a nonempty closed convex subset of E. Let S : C −→ C be a nonex-
pansive mapping such that Fix(S) ̸= ∅. For given x0, u ∈ C, Let xn be a sequence
in the following process:{

yn = αnu+ (1− αn)xn,

xn+1 = βnxn + (1− βn)Syn, ∀n ≥ 0,
(3.30)

where {αn}, {βn} are real number sequences in (0, 1). Assume that the control
sequence satisfy the following conditions:

(a) limn−→∞ αn = 0, and
∑∞

n=1 αn = ∞;
(b) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S).
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4. Some applications

In this section, we give two applications of our main results in the framework of
Hilbert spaces. Now, we consider theorem 3.2, in the framework of Hilbert spaces,
it known that K =

√
2
2 . Let H be a Hilbert space and let C be a nonempty closed

convex subset of H.

Theorem 4.1. [6, Corollary 2.2] Let A : C −→ 2H be a maximal monotone op-
erators such that the domain of B which included in C and B : C −→ H be an
α-inverse strongly monotone operator. Let S : C −→ C be a nonexpansive map-
ping and let f : C −→ C be a contraction mapping with the constant k ∈ (0, 1). Let
JA
rn = (I+rnA)−1 be a resolvent of A for rn > 0 such that Fix(S)∩(A+B)−1(0) ̸= ∅.

For given x0 ∈ C, let {xn} be a sequence defined by following:{
yn = αnf(xn) + (1− αn)xn,

xn+1 = βnxn + (1− βn)SJ
A
rn(yn − rnByn + en), ∀n ≥ 0,

(4.1)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequences
in (0, 2α) and {en} is a sequence in H. Assume that the control sequences satisfy
the following conditions:

(a) limn−→∞ αn = 0, and
∑∞

n=1 αn = ∞;
(b) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(c) limn−→∞ rn = r, and r ∈ (0, α

K2 );
(d)

∑∞
n=0 ∥ en ∥< ∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S) ∩ (A+B)−1(0).
Next, we will give some related results.

4.1. Application to projection for variational inequality.

Let C be a nonempty, close and convex subset of a Hilbert space H. The metric
projection of a point x ∈ H onto C, denoted by PC(x), is defined as the unique
solution of the problem

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C, ∀x ∈ H.

For each x ∈ H and z ∈ C, the metric projection PC is satisfied
z = PC(x) ⇐⇒ ⟨y − z, x− z⟩ ≤ 0, ∀y ∈ C. (4.2)

Note that the metric projection is nonexpansive mapping.
Let g : H −→ (−∞,∞] is a proper convex lower semicontinuous function. Then

the subdifferential ∂g of g is defined as follow:
∂g(x) = {z ∈ H : g(y)− g(x) ≥ ⟨y − x, z⟩, ∀y ∈ H},

for all x ∈ H. If g(x) = ∞, then ∂g(x) ̸= ∅, Takahashi [16] claim that ∂g is
m-accretive operator. Since we know that, an m-accretive operator is maximal
monotone operators in a Hilbert space, then we claim that ∂g is maximal monotone
operators. Then we define the set of minimizers of g as follow:

argminy∈Hg(y) = {z ∈ H : g(z) = miny∈Hg(y)}.

It is easy to verify that 0 ∈ ∂g(x) if and only if g(z) = miny∈Hg(y). Let iC be the
indicator function of C by

iC(x) =

{
0, ∀x ∈ C,
+∞, x /∈ C.
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Then iC is a proper lower semicontinuous convex function on H. So, we see that
the subdifferential ∂iC of iC is maximal monotone operator; see, [16]. The resolvent
Jr of ∂iC for r > 0, that is Jrx = (I + r∂iC)

−1x, ∀x ∈ H. Next, we recall that set
NC(u) is called the normal cone of C at u define by

NC(u) = {z ∈ H : ⟨z, y − u⟩ ≤ 0, ∀y ∈ C}.
Since NC(u) = ∂iC(u). In fact, we have that for any x ∈ H and u ∈ C,

u = Jrx = (I + r∂iC)
−1x ⇐⇒ x ∈ u+ r∂iCu

⇐⇒ x ∈ u+ rNC(u)

⇐⇒ x− u ∈ rNC(u)

⇐⇒ 1

r
⟨x− u, y − u⟩ ≤ 0, ∀y ∈ C

⇐⇒ ⟨x− u, y − u⟩ ≤ 0, ∀y ∈ C

⇐⇒ u = PCx. (4.3)
Then u = (I + r∂iC)

−1x ⇐⇒ u = PCx, ∀x ∈ H, u ∈ C.
Now, we consider the following variational inequality problem (VIP) for B is to

find x ∈ C such that
⟨Bx, y − x⟩ ≥ 0, ∀y ∈ C. (4.4)

The set of solutions of (4.4) is denoted by V I(C,B).
V I(C,B) =

{
x ∈ C : ⟨Bx, y − x⟩ ≥ 0, ∀y ∈ C

}
. (4.5)

Theorem 4.2. Let B : C −→ H be an α-inverse strongly monotone mapping. Let
S : C −→ C be a nonexpansive mapping and let f : C −→ C be a contraction
mapping with the constant k ∈ (0, 1). Assume that Fix(S) ∩ V I(C,B) ̸= ∅. For
given x0 ∈ C, let {xn} be a sequence defined by following:{

yn = αnf(xn) + (1− αn)xn,

xn+1 = βnxn + (1− βn)SPC(yn − rnByn + en), ∀n ≥ 0,
(4.6)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequences
in (0, 2α) and {en} is a sequence in H. Assume that the control sequences satisfy
the following conditions:

(a) limn−→∞ αn = 0, and
∑∞

n=1 αn = ∞;
(b) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(c) limn−→∞ rn = r, and r ∈ (0, 2α);
(d)

∑∞
n=0 ∥ en ∥< ∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S)∩V I(C,A), where
x̄ = PFix(S)∩V I(C,B)f(x̄).

Proof. By lemma 2.4 we know that Fix(JA
r (I−rB)) = (A+B)−1(0). Put A = ∂iC ,

and we to show that V I(C,B) = (∂iC +B)−1(0). Note that

x ∈ (∂iC +B)−1(0) ⇐⇒ 0 ∈ ∂iCx+Bx

⇐⇒ 0 ∈ NCx+Bx

⇐⇒ −Bx ∈ NCx

⇐⇒ ⟨−Bx, y − x⟩ ≤ 0

⇐⇒ ⟨Bx, y − x⟩ ≥ 0

⇐⇒ x ∈ V I(C,B). (4.7)
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From (4.3), therefore, we can conclude the desired conclusion immediately. �

4.2. Application for equilibrium problems. Let F be a bifunction of C × C
into R, where R is the set of real numbers. The equilibrium problem for finding
x ∈ C such that

F (x, y) ≥ 0, ∀y ∈ C. (4.8)
The set of solutions of (4.8) is denoted by EP (F ).

For solving the equilibrium problem, we assume that the bifunction F satisfies
the following conditions:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each x, y, z ∈ C, lim supt−→0+ F (tz + (1− t)x, y) ≤ F (x, y);
(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Lemma 4.3. [17] Let C be a nonempty closed and convex subset of a real Hilbert
space H and let F be a bifunction of C ×C into R satisfying (A1)-(A4). Let r > 0
and z ∈ H. Then, there exists x ∈ C such that

F (x, y) +
1

r
⟨y − x, x− z⟩ ≥ 0, ∀y ∈ C. (4.9)

Lemma 4.4. [18] Let C be a nonempty closed and convex subset of a real Hilbert
space H and let F : C ×C −→ R satisfies (A1)-(A4). For r > 0 and z ∈ H, define
a mapping Tr : H −→ C as follows:

Tr(z) = {x ∈ C : F (x, y) +
1

r
⟨y − x, x− z⟩ ≥ 0, ∀y ∈ C},∀z ∈ H. (4.10)

Then, the following hold:
(1) Tr is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x, y ∈ H,

∥Trx− Try∥2 ≤ ⟨Tr(x)− Tr(y), x− y⟩;
(3) Fix(Tr) = EP (F );
(4) EP (F ) is closed and convex.

Lemma 4.5. [19] Let C be a nonempty closed and convex subset of a real Hilbert
space H and let F : C × C −→ R satisfies (A1)-(A4) and AF be a multi-valued
mapping of H into itself defined by

AFx =

{
{z ∈ H : F (x, y) ≥ ⟨y − x, z⟩,∀y ∈ C}, ∀x ∈ C,
∅, x /∈ C.

Then EP (F ) = A−1
F (0) and AFx is a maximal monotone operator with the domain

D(AF ) ⊂ C. Furthermore, the resolvent Tr of F coincides with the resolvent of AF ,
i.e.,

Trx = (I + rAF )
−1(x), ∀x ∈ H, r > 0, (4.11)

where Tr is defined as in (4.10)

We recalled that Tr is the resolvent of AF for r > 0. Since A = AF , we will show
that Jrx = Trx. Indeed, for x ∈ H, we have

z ∈ Jrx = (I + rAF )
−1(x) ⇐⇒ x ∈ (I + rAF )z

⇐⇒ x ∈ z + rAF z

⇐⇒ x− z ∈ rAF z

⇐⇒ 1

r
(x− z) ∈ AF z



140 J. NONLINEAR ANAL. OPTIM. VOL. 8(2) (2017)

⇐⇒ F (z, y) ≥ ⟨y − z,
1

r
(x− z)⟩

⇐⇒ F (z, y) ≥ ⟨y − z,
−1

r
(z − x)⟩

⇐⇒ F (z, y) ≥ −1

r
⟨y − z, z − x⟩

⇐⇒ F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C

⇐⇒ z ∈ Trx. (4.12)
Using lemmas 4.3, 4.4, 4.5 and theorem 4.1, we also obtain the following result.

Theorem 4.6. Let F : C × C −→ R which satisfies (A1)− (A4). Let S : C −→ C
be a nonexpansive mapping and let f : C −→ C be a contraction mapping with the
constant k ∈ (0, 1). Assume that Fix(S) ∩ EP (F ) ̸= ∅. For given x0 ∈ C, let {xn}
be a sequence defined by following:{

yn = αnf(xn) + (1− αn)xn,

xn+1 = βnxn + (1− βn)STrn(yn + en), ∀n ≥ 0,
(4.13)

where {αn}, {βn} are real number sequences in (0, 1), {rn} is a real number sequences
in (0, 2α) and {en} is a sequence in H.

Assume that the control sequences satisfy the following conditions:
(a) limn−→∞ αn = 0, and

∑∞
n=1 αn = ∞;

(b) 0 < lim infn−→∞ βn ≤ lim supn−→∞ βn < 1;
(c) limn−→∞ rn = r, and r ∈ (0, 2α);
(d)

∑∞
n=0 ∥ en ∥< ∞.

Then, the sequence {xn} converges strongly to a point x̄ ∈ Fix(S) ∩EP (F ), where
x̄ = PFix(S)∩EP (F )f(x̄).

Proof. Put A ≡ AF and B ≡ 0 in (A + B)−1(0) from theorem 4.1. Furthermore,
for bifunction F : C ×C −→ R, we define AFx as in lemma 4.5, we have EP (F ) =
A−1

F (0) and let Trn be the resolvent of AF for rn > 0. Therefore, we can conclude
the desired conclusion immediately. �

5. Conclusion and remarks

Our main results extends and improves in the following:
(i) Theorem 3.2 extends and improves Theorem 3.1 of Manaka and Takahashi [4,

Theorem 3.1] from a Hilbert space to a Banach space and from weak convergence
to strong convergence.

(ii) Theorem 3.2 partially extends and improves Theorem 2.1 of Cho et al. [6,
Theorem 2.1] from a Hilbert space to a Banach space with uniformly convex and
2-uniformly smooth.

(iii) Theorem 3.2 extends and improves Theorem 3.1 of Qing and Cho [20, The-
orem 3.1] from the problems of finding an element of A−1(0) to the problem of
finding an element of Fix(S) ∩ (A+B)−1(0).

(iv) Theorem 3.2 extends and improves Theorem 3.7 of Sahu and Yao [3, Theorem
3.7] from the problems of finding an element of A−1(0) to the problem of finding
an element of Fix(S) ∩ (A+B)−1(0).

(v) Theorem 3.2 extends and improves Theorem 3.7 of López et al. [5, Theorem
3.7] from the problems of finding an element of (A + B)−1(0) to the problem of
finding an element of Fix(S) ∩ (A+B)−1(0).



MODIFY REGULARIZATION METHOD VIA PROXIMAL POINT ALGORITHMS 141

6. Acknowledgments

The first author would like to thank the Faculty of Education, Burapha Uni-
versity, for supporting by the Human Resource Development Scholarship. Also,
the second author was supported by the Thailand Research Fund and the King
Mongkut’s University of Technology Thonburi (Grant No.RSA5780059).

References
1. B. Martinet: Régularisation, d’inéquations variationelles par approximations succesives, Rev.

Francaise Informat., Recherche Operationelle 4„ Ser. R-3, 1970, 154 – 159.
2. R.T. Rockafellar: Monotone operators and proximal point algorithm. SIAM J. Control Optim.

vol. 14, 1976, 877 – 898.
3. DR. Sahu, JC. Yao: The prox-Tikhonov regularization method for the proximal point algo-

rithm in Banach spaces. J. Glob. Optim. vol. 51, 2011, 641 – 65.
4. H. Manaka and W. Takahashi: Weak convergence theorems for maximal monotone operators

with nonspreading mappings in a Hilbert space, Cubo A Mathematical Journal, vol. 13, no.
1, 2011, 11 – 24.
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