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1. INTRODUCTION

Many important problems have reformulation which require finding common zero
points of nonlinear operators, for instance, inverse problems, variational inequality,
optimization problems and fixed point problems. In this paper,we use A~1(0) to
denote the set of zeros point of A. A well-known method for solving zero points
of maximal monotone operators is the prozimal point algorithm (PPA). First,
Martinet [1] introduced the PPA in a Hilbert space H, that is, for starting xo € H,
a sequence {x,} generated by

Tni1 = J; (,) VR €N, (1.1)

where A is maximal monotone operators, J;‘:L = (I+7,A)~ " is the resolvent operator
of A and {r,} C (0,00) is a regularization sequence. An iterative (1.1) is equivalent
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to
Tp € Tpy1 + ATy Vn € N

If ¢(z) : H — RU {oo} is a proper convex and lower semicontinuous function,
then J# reduces to

. 1
Tpy1 = arg min {¢(y)+2r||xn — 1%, yeH} Vn € N. (1.2)

Later, Rockafellar [2] studied the proximal point algorithm in framework of a
Hilbert space and he proved that if liminf,, o, 7, > 0 and A~1(0) # (), then the
sequence {z,} converges weakly to a solution of a zero point of A. Rockafellar [2]
has given a more practical method which is an inexact variant of the method:

Tpt1 = J:}an + en, Vn € N, (1.3)

where {e,, } is an error sequence. It was shown that if e,, — 0 quickly enough such
that >~ [len|| < oo, then x, — z € H, with 0 € A(z).

In 2011, Sahu and Yao [3] also extended PPA for the zero of an accretive op-
erator in a Banach space which has a uniformly Gateaux differentiable norm by
combining the prox-Tikhonov method and the viscosity approximation method.
They introduced the iterative method to define the sequence {z,} as follows:

Tn+1 = an((l - an)zn + Oénf(xn))v Vn €N, (14)
Zn+l = Jvfi((]- - an)zn + anf(zn) + en)a vn €N, (15)

where A is an accretive operator such that A=1(0) # () and f is a contractive map-
ping on C and {e, } is an error sequence. Strong convergent were established in both
algorithms. This is a source of idea about resolvent operator can be approximated
by contractions.

In the same year, PP A extended to the case of sum of two monotone operators
A and B by use the technique of forward-backward splitting methods. Manaka and
Takahashi [4] introduced the following iterative scheme in a Hilbert space:

xr1 € C,
Tpa1 = QpTp + (1 — an)San (I - B)xy,, Vn>1,

where {a;,} is a sequence in (0,1), {A\,} is a positive sequence, S : C — C'is a
nonexpansive mapping, A is a maximal monotone operator, B is an inverse strongly
monotone mapping and J j\4n = (I +X,A)~! is the resolvent of A. They prove that a
sequence {z,} converges weakly to some point z € Fiz(S)N(A+ B)~1(0) provided
that the control sequence satisfies some conditions. From [4], then we concern with
the problem for finding a common element of Fiz(S) N (A + B)~1(0).

In 2012, Lépez et al. [5] use the technique of forward-backward splitting methods
for accretive operators in Banach spaces. They considered the following algorithms
with errors:

Tpt1 = (1 —ap)z, + anJé (zp, — rn(Bzy + ayn)) + by (1.6)

Tpt1 = apu+ (1 — an)J;i (2, — rn(Bxn + an)) + bn, (1.7)

where u € E, {an}, {bn} C E and J{ = (I + X\, A)~" is the resolvent of A. An
operator A is a maximal accretive operator and B is an inverse strongly accretive.
They prove that a sequence {z,} in equation (1.6) and (1.7) is weakly and strongly
convergence, respectively.
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In 2014, Cho et al. [0] introduced the following iterative scheme in a Hilbert
space:

x1 € C,

Zn = anf(xn) + (1 — ap)xy,

Yn = J?i (zn — TnBzn + €n)

Tpt1 = BnTn + (1= Bn)(Vnyn + (1 = ¥0)Syn), for n €N,

where {a,}, {Bn}, {7n} are a sequences in (0, 1), {r,} is a positive sequence,
A : C — H is an inverse strongly monotone mapping, B is a maximal monotone
operator, and an = (I + X\, A)~ ! is the resolvent of A. Let S : C' — C is a strictly
pseudo-contractive mapping with k& € [0,1), and f : C — C be a contractive
mapping. They prove that a sequence {x,} converges strongly to a point Z €
Fiz(S)N (A+ B)71(0) if the control sequence satisfies some restrictions.

Motivated by [3, 4, 5, (], then we are interested in the problems for finding
a common element of fixed point of nonexpansive S and element of the (quasi)
variational inclusion problem as follow:

Find x € C such that x € Fiz(S)N (A + B)~'(0), (1.8)

where A be single-valued nonlinear mapping and B be a multi-valued mapping.

The purpose of this paper is to introduce an iterative algorithm which is modify
regularization method and use technique of forward-backward splitting methods
for finding a common element of the set solution of nonexpansive S and the set
solution of fixed point of the variational inclusion problems, where A is an m-
accretive operator and B is an inverse-strongly accretive operator in the framework
of Banach space with a uniformly convex and 2-uniformly smooth.

2. PRELIMINARIES

Let F be a Banach space and let E* be its dual. Let (-, -) be the pairing between
E and E*. For all z € F and z* € E*, the value of 2* at « be denoted by (z,x*).
The normalized duality mapping J : E — 2F" is defined by J(z) = {z* € E* :
(,2*) = ||z||% ||lz|| = ||lz*|}, for all x € E. A single-value normalized duality
mapping is denoted by j, which means a mapping j : E — E* such that, for all
u € E, j(u) € E* satisfying the following:

(u, 3 (w)) = [ulllli ()l 17| = [u]-

If E = H is a Hilbert space, then J = I, where [ is identity mapping. If F is smooth
Banach space, then J is single-valued j.

A Banach space E is called an Opial’s space if for each sequence {x,}>2 , in E
such that {x,} converges weakly to some x in E, the inequality

liminf ||z, — z|| < liminf ||z, — y||
n—o0 n— oo

hold for all y € E with y # z. In fact, for any normed linear space X admit
the weakly sequentially continuous duality mapping implies X is Opial space. So,
a Banach space with a weakly sequentially continuous duality mapping has the
Opial’s property; see [7].

The modulus of convexity of E is the function dg : (0,2] — [0, 1] defined by

5(e) == inf{1 — || & ;L Y

H el = Nyl = L e — gl > ¢}
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E is said to be uniformly convez if and only if §(e) > 0, for each € € (0, 2]. It known
that a uniformly convex Banach space is reflexive and strictly convex.
Let S(E) be the unit sphere defined by S(E) = {z € E : ||z|| = 1}. Then the

norm || - || of E is said to be Gateauz differentiable norm, if
t —
ety o] o)
t—0 4

exists for all z,y € S(F). In this case, space E is called smooth. A spaces E is said
to have a uniformly Gateauz differentiable norm if for each y € S(FE), the limit (2.1)
exist uniformly for all € S(F). The norm of F is said to be uniformly smooth if
the limit (2.1) is attained uniformly for all z,y € S(E). It is known that if the norm
of E is smooth, then the duality mapping J is single-valued and norm to weak*
uniformly continuous on each bounded subset of F.

On the other hand, the modulus of smoothness of E is the function p : [0, 00) —
[0,00) defined by

1
p(t) =sup{5(llz +yl +llz —yl) = 1:2,y € S(E), [lz] = L, [lyll < ¢}

A Banach space E be an smooth if pg(t) > 0 for all ¢ > 0. A Banach space E
be an uniformly smooth if and only if lim; ,q @ = 0. A Banach space E is said
to be g-uniformly smooth, if for 1 < ¢ < 2 be a fixed real number, there exists a
constant ¢ > 0 such that p(t) < ct? for all ¢ > 0. It known that every g-uniformly
smooth space is smooth. In the case p(t) < ct? for t > 0, these is 2-uniformly
smooth. The examples of uniformly convex and 2-uniformly smooth Banach space
are Ly, I, or Sobolev spaces WP, where p > 2. It is well known that, Hilbert
spaces are 2-uniformly convex and 2-uniformly smooth. We known that if F is a
reflexive Banach space, then every bounded sequence in E has a weakly convergent
subsequence. Note that all uniformly convex and 2-uniformly smooth Banach space
is reflexive.

Next, we recall the definitions of some operators.
(i) Let f : C — C be an operator. Then f is called k-contraction if there
exists a coefficient k (0 < k < 1) such that
Ifz = fyll < kllz —yll, Va,yeC.
(ii) Let S : C — C be an operator. Then s is called nonexpansive if
1Sz — Sy|| < [le —yll, Vz,yeC.

(iii) Let B : C — FE be an operator. Then B is called a-inverse-strongly
accretive if there exists a constant o > 0 and j(x —y) € J(x — y) such
that

(Bx — By, j(x —y)) > a|Bx — Byl*, Va.yeC.
(iv) A set-valued operator A : D(A) C E — 2F is called accretive if there
exists j(x —y) € J(z —y) such that u € A(x), and v € A(y),
(u—v,j(x—y)) =20, Va,ye D(A).
(v) A set-valued operator A : D(A) C E — 2% is called m-aceretive if A is
accretive and R(I +rA) = E for some r > 0, where I is identity mapping.

Let C' and D are nonempty subsets of a Banach space E such that C is a
nonempty closed convex and D C C, then a mapping @ : C — D is said to be
sunny if Q(z + t(x — Q(z))) = Q(z) whenever z + t(z — Q(x)) € C for all z € C
and ¢t > 0.
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A mapping Q : C — C is called a retraction if Q2 = Q. If a mapping Q : C — C
is a retraction, then Yz = z for all z is in the range of Q.

Lemma 2.1. [8] Let E be a smooth Banach space and let C be a nonempty subset
of E. Let Q : E — C be a retraction and let J be the normalized duality mapping
on E. Then the following are equivalent:

(i) Q is sunny and nonexpansive;

(ZZ) ||Q£E - Qy”2 < <£E - Y J(Q:r, - Qy»vvxvy € E;

(iii) |l(@ — 1) — Q@ — QY)II® < o — yII* — Qz — Qy?

(iv) (x — Qx, J(y — Qz)) <0,Vo € B,y € C.

Lemma 2.2. [9] Let C be a nonempty closed convex subset of a uniformly convex
and uniformly smooth Banach space E and let S be a nonexpansive mapping of C
into itself with Fix(S) # 0. Then, the set Fixz(S) is a sunny nonexpansive retract
of C.

It well known that if £ = H is a Hilbert space, then a sunny nonexpansive
retraction Q)¢ is coincident with the metric projection Po from E onto C, that is
Qc = Pc. Let C be a nonempty closed convex subset of E.

In the sequel for the proof of our main results, we also need the following lemmas.

Lemma 2.3. [10] Let E be a Banach space and J be a normal duality mapping.
Then there exits j(x +y) € J(x +y) for any given x,y € E. Then
-+ gl < 2] +2(y, (= + ), j(z+y) € J(x+y), (2:2)

for any given x,y € E.

Lemma 2.4. [5] Let E be a real Banach space and let C' be a nonempty closed
and convex subset of E. Let B : C'— E be a single valued operator and a-inverse
strongly accretive operator and let A is an m-accretive operator in E with D(A) D C
and D(B) D C.Then

Fiz(JA(I —rB)) = (A+ B)~}(0).
where J& = (I +1rA)~! be a resolvent of A for r > 0.

Lemma 2.5. [11](The Resolvent Identity) Let E be a Banach space and let A be
an m-accretive operator.For r >0, s >0 and x € E, then

JAz = JA (Sx + (1 - S)J:‘a;>.
r T

Lemma 2.6. [12] Let C' be a nonemptly closed convex subset of a 2-uniformly
smooth Banach space E with the 2-uniformly smooth constant K. Let the mapping
B :C — E be a a-inverse strongly accretive operator. Then, we have

I = rB)x — (I = rB)yl* < ||z — y||* - 2r(a — K?r)|| Bz — By, (2.3)

where I is identity mapping. In particular, if r € (0,+5), then (I —rB) is a
NONETPANSIve.

Lemma 2.7. [13] (Demiclosed principle) Let C' be a nonempty, closed and convex
subset of a uniformly convex Banach space E and S : C' — E be a nonexpansive
mapping with Fiz(S) # (. Then I — S is demiclosed at zero, i.e., z, — x and
Ty — Sz, — 0 implies x = Sx.

Lemma 2.8. [14] Let {z,} and {z,} be bounded sequences in a Banach space E
and let {B,} be a sequence in [0,1] with 0 < liminf,, o B, < limsup,,_, . Bn < 1.
Suppose xpt1 = (1 — Bp)zn + Bnxn for all integers n > 0 and limsup,,_, .o (||zn+1 —
Znll = |Znt1 — znl]) < 0. Then lim, oo ||2n, — Zn|| = 0.
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Lemma 2.9. [15] Assume that {a,} is a sequence of nonnegative real numbers
satisfying the condition

apy1 < (1 - tn)an +tpby + ¢y, V0 > 0,

where {t,} is a number sequence in (0,1) such that lim, oo t, =0 and 322, t, =
00, {bn} is a sequence such that limsup,,_, . bn, < 0 and {c,} is a positive number

sequence such that X2 yc, < 00. Then, lim,,_,~ a, = 0.

3. MAIN RESULTS

Before prove our main result, we need the following lemma:

Lemma 3.1. Let E be a uniformly convexr and uniformly smooth Banach space.
Let C be a nonempty closed conver subset of E. Let A : D(A) C C — 2F
be a m-accretive operator and B : C — E be an a-inverse strongly accretive
operator. Let S : C — C be a nonexpansive mapping and let f : C — C be
a contraction mapping with the constant k € (0,1). Let J? = (I +r,A)~" be
a resolvent of A for r, > 0 such that Fiz(S)N (A + B)~Y(0) # 0. If defined
operator Wy, : C — C by Wy, := SJ2 (I — rnB)|on fo + (1 — on)x] + €y) for all
x € C, where o, € (0,1), 7, > 0. Then W, is a contraction operator and has a
unique fized point.

Proof. Since S, J, A, and (I — r,B) are nonexpansive. Then we known that W, is
nonexpansive. Since f be a contraction mapping with coefficient k£ € (0,1). We
have

[Wha = Whyl| 1S (I = ruB) e f(2) + (1 = ag)a] + en)

—STA (I =ruB)anf(y) + (1 — an)y] +en) |

< (U =raB)lonf(z) + (1 — an)z] + en)

—((I =raB)lanf(y) + (1 —an)y] + €n) ||
< omf (@) + (1 = an)z] = [anf(y) + (1 = an)y]l
< lanf(@) + (1 = an)r) — (anf(y) + (1 = any)||
= llan(f(z) = f(y)) + (1 — an)(@ = y)|
< an|[f(@) = FWIl + (1 = an)llz -yl
< ankllz —yl+ (1 —an)llz -y

(ank + (1= an))lz -y

Since 0 < (ank + (1 — ay)) < 1, it follows that W, is a contraction mapping of
C into it self. By Banach contraction principle, then there exist a unique fixed
point, i.e., we say T = W,Z. Moreover, by use lemma 2.2, then the set Fiz(W,,)
is sunny nonexpansive retraction of C. Hence there exist a unique fixed point
T € Fiz(W,) = Fiz(S) N (A+ B)~1(0) := Q, namely Qq f (%) =z = W, Z. O

Theorem 3.2. Let E be a uniformly conver and 2-uniformly smooth Banach space
with weakly sequentially continuous duality mapping. Let C be a nonempty closed
convez subset of E. Let A : D(A) C C — 2¥ be a m-accretive operator and
B : C — FE be an a-inverse strongly accretive operator. Let S : C — C be
a nonezxpansive mapping and let f . C — C be a contraction mapping with the
constant k € (0,1). Let Ji* = (I +r,A)~" be a resolvent of A for r, > 0. Assume
that Fiz(S) N (A+ B)~1(0) # 0.
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For given xg € C, let {x,} be a sequence defined by the following:

{ Yn = anf(@n) + (1 = ap)n,

3.1
Tnt+1 = ann + (1 - Bn)SJ;‘i (yn - rnByn + en)a vn Z Oa ( )

where {a, },{Bn} are real number sequences in (0,1), {r,} is a real number sequences
in (0, ), K >0 is the 2-uniformly smooth constant of E and {e,} is a sequence
in E. Assume that the control sequences satisfy the following conditions:

(a) lim,—oo ay, =0, and > 07 | ap = 00;
(b) 0 < liminf, & B <limsup,_ . Bn <1;
(c) limy oorp =71, and r € (0, 135);
(d) Zio:o | en [|< occ.
Then, the sequence {x,} converges strongly to a point T € Fixz(S) N (A+ B)~1(0),
where T = Qqf() and Qr f is a sunny nonexpansive retraction from E onto €.
Proof. Step 1 We want to show that {x,} is bounded. Fixed p € Fiz(S)N (A +
B)71(0) # 0. So, we have p € Fiz(S) and p € (A + B)~*(0) = Fiz(J (I — r,B))
(see Lemma 2.4). Observe that, we consider
lom f(2n) + (1 = an)zn — p
anllf(zn) = pll + (1 — an)l|zn — pl|
an ([[f(@n) = FR)I + [/ (p) —2l) + (1 = an)llzn — pll
ankllzn — pll + anllf(p) — pll + (1 — an)l|lzn — pll
[ank + (1 = an)][|2n = pll + an £ (p) — Pl
= [1—an(@=K)]lzn = pll + anl f(p) — pll. (3.2)
We set z,, 1= SJ;: (Yyn — rnBYn +ent1). Since J,ﬁ‘}1 and I —r, B are nonexpansive,
and from (3.2), it follows that

1yn =

INIAIA

[Zn+1 —pll = [|Bazn + (1= Bn)zn — pll
< Ballen —pll + (1= Bn)llzn —pl
= Balen =l + (1 = B)ISTE (yn — raAyn + e5) = S
< ﬂn”xn_pH +(1_/8n)||‘]:}z(yn_rnByn+en) _pH
= ﬁn”xn - pH + (1 - ﬁn)”‘]ri (Yn — TnByn +en) — Jf; (I —r,B)pl|
< Bullzn = pll + (1 = Ba)l(Yn — 10 BYn + en) — (I = B)p||
= Bullzn =2l + A = Bl = raB)yn — (I = B)p + €|
< Ballen = pll + (1 = Ba) (I = o B)yn — (I = ro B)p|| + [lenl])
< Bullen —pll + (1 = Ba) [[lyn — pll + llenll]
< Ballen —pll + (1= Bp)[(1 — an(1 = k) [|zn — pl|

Fam[f(p) = pll] + (1 = Bn)llen]|
Bullzn — pll + [(1 = Bn) — an(l = K)]|[zn — pl|
+(1 = Bn)anllf(p) = pll + (1 = Bn)llenl
= [Bn+ (1= 08n) — an(l = k)]l|z, — pl
+(1 = Bn)anllf(p) = Pl + (1 = Bn)llen]
= [1-QAQ=Bnanl = k)llzn —pl
+(1 = Bn)anllf(p) — pll + (1 = Br)llenll
= [1= (1= B)][[zn = pll + Aullf(p) =PIl + llenll;
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where A, := (1 — 3,,)a,. Then, it follows that

£ () =l
fowi=pl < max{ o, — ol L ey
£ () —pll
< maxq [za-1 —pl, + llen—1ll + llenl
1—k
If(p) —pl
< {len = ol T ¢ ezl llen—all + llen]
< max{”ac 2, Hf ) p||}+Z||el||<oo

It follows by mathematical induction, we conclude that

o ol < max {llzo =il (1= 07 176) = 2} + 3 lesl v > .
=0

By condition (d), this implies that {z,} is bounded.
From y, = ay, f(z,) + (1 — a)xy,, we obtain

lyn —pll = llanf(@n) + (1 = an)zn — pl|
< anllflen) pl+ (0= )z — ol
(3.3)
From (3.3) and since {z,} is bounded, so {y,} and {z,} are bounded too.
Step 2 We want to show that lim,,_,« ||Zn+1 — Zn|| = 0. By lemma 2.8, we set
VUp = Yn — Ay, + €y, then z, := SJfL Up, it follows that
Hzn-&-l - Zn” = ”S ni1On41 SJ;ivnH
< H rn+1v’ﬂ+1 - J vn”
< || rn+1”n+1 - Jrn+11’n|| + || Prg1Un JA Un”
< s = onll + 197, 00 = T 0nll. (3.4)
Next, we compute ||vp4+1 — v, that
lvnt1 —vnl|l = ||(yn+1 —Tn1BYny1 +eng1) — (Yn — rnByn + en)H

(I =7B)yns1 — (I = rnB)yYn + (Tn — Tng1) Byni1 + eng1 — eal|
(I = 1B)Yns1 — (I = o B)ynll+ | 70 — "1 [ [1BYnsill + [lent1 — enl]
[Yn+1 = Ynll+ [ o = rntr | 1 Byntall + llensall + [lenl]- (3.5)

IN A

Next, we compute ||yn+1 — yn|| that

[yn+1 —ynll = ans1f(@nt1) + (1 — ang1)(@n41)) — (@ flan) + (1 — an)zn)||
= |lant1f(@ny1) — anf(Tns1) + anf(@ny1) — anf(zn) + (1 — any1)z,
—(1 = anq1)an — (1 — o) za||
= [on+1 = o) f(@nt1) + an(f(@ns1) = flan)) + (1 = ong1) (@ng1 — @)
20 ((1 = ant1) = (1= )|

IN

= (1= ani1)|Tng1 — 2ol + by

|an+1 - an‘”f(anrl) - an + O‘an<$n+l> - f(xn)ll + (1 - an+1)||33n+1 - an
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< ||xn+1 - -'L‘nH + i,

where hy, = |ant1 — @[l f(Zng1) — zall + anll f(2nt1) — f(@n)]-
That is

an-&-l - Un” < ||xn+1 - an + hn + gn, (3'7)
where gn =| 7 — oy | IIByn+1|| + [lentall + [lenl]-
Next, we compute ||.JA FniaUn — J,ﬁivnH by the resolvent identity (see Lemma 2.5)
that
|| rn+1 J::L’Un“ = ||J7le < dd Up + (1 - M)JéJrlUn) - J;.:'Un”
Tn+1 Tn+1

n Tn A
IG5 = o+ (1= 2072l
o Tn A Tn
= ”(1 - TnJrl) Pap1Un T (1 - ot )UnH
o Tn+1 —Tn, ;A
= | 7”n+1 rog1 VU vn)||
Tntl = Tn
<P o 35)
From (3.7) and (3.8), we obtain
Tn+1
lznt1 = znll < l@nsr — Zall + Ao 4 gnt | “ N vn = vnll-
In view of the condition (a), (c), and (d), it follows that
lzn+1 = znll = [|2n41 —@nll < 0.
We take lim sup, it follows that
limsup (||zn+1 = 2nll = [[Znt1 —2all) < 0.
n—oo
By lemma 2.8, we conclude that
nh_{rolo lzn — 2nl =0 (3.9)
that is limy, o0 [|SJZ (vn) — 2| = 0. From (4.1), we observe that
< (1 =Bu)llzn — zall-
By (3.9), then we conclude that
nh_)ngo |€nt1 — znl = 0. (3.10)

Step 3 To show that lim, .« || By, — Bp|| = 0, lim, e || J7 (v5) — y|| = 0 and
My, o0 [[STE (vn) = J2 (vi)|| = 0.

Tn

Step 3.1 First, we observe that lim,_, ||By, — Bp|| = 0. Notice that

[Zn+1 _pH2 = ||Bpxn+ (1 — Bn)SJ::LUn _p||2
< Bullzn = pl* + (1= Ba)IS T v — plI?
= Ballen —plI* + (1 = Bo)llvn — (I =7, B)p|®

|

v,

1(Yn = 70 Byn + €n) — (I = ru B)pl|®
(I(I = 7 B)yn — (I = B)p|?

+ ( )
Bullzn *p||2 +(1—8n)
Bullzn —p||2 + (1= Bn)

IN

(3.6)
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+2llen |1 = rnB)yn — (I = roB)pll]
< Ballzn = pI* + (1 = Ba) (Ilyn — plI* = 2ru(a — K*r,)[| By, — Bp|®)

+2(1 = Bo)llenlll|(I = rnB)yn — (I — raB)p]|.

Set gn := (1 = Bn)2llenll( = roB)yn — (I — rnB)p||; we get
041 — plI? (3.11)
< Ballen —pl? + (1= Ba) (lyn — 2l = 2ra(a = K*r)||Byn — Bpl|?) + gn

Ballzn = plI? + (1= Ba)llyn — plI* = 2ra(e — K?ra)(1 = Bu) [ By — Bpl* + gn
Ballzn = plI? + (1 = Ba)llan f(zn) + (1 — an)zn — pl®
—2ry(a — K2rn)(1 = Bl Byn — Bp||2 + gn.
Set h,, := 2r,(a — K%r,)(1 — Bn) || Byn — Bp||?, we get
Ballzn = pl? + (1= Ba)llan f(z0) + (1 = an)zn = plI* = ho + gn
Bullzn — p”2 + (1= Bp)an| f(zn) — p”2 + (1= Bp)(1 — an)zn —p||2
—hp + Gn
(1= an(l = Bu))llzn = plI” + (1 = Ba)anl f(2n) = plI* = By + gn-

lzns1 =l <
<

It follows that
2r(an — Kr) (1 = Bn)|| By — Bpl|?
(1= an(l = Bo)llzn = plI* = [|2ns1 = plI* + (1 = Ba)anl f(zn) = plI* + gn
lzn = plI* = llznts = 2l + (1 = Ba)anll f(zn) = pl* + gn
= (@n=p)+ (@nt1 = P)lI(zn —p) = (@ns1 =)
+(1 = Ba)anllf(za) = pII* + gn
= |[(@n —p) + (@nt1 = D)z — Tpga | + (1 = Bu)an f(25) — p||2 + Gn-

In view of the condition (a), (c), (d), and from (3.10), we conclude that lim,,_, o || Byn—
Bpl||?> = 0. This implies

INIA

lim || By, — Bp]| = 0. (3.12)
n—r00
Step 3.2 Second, we will show that lim,, o [|J7 (v5,) — yn|| = 0, we observe that
155 (vn) = pI?

< T2 (0n) = pllll(¥n — 0 Byn + en) — (p — raBp)||

= ST @)~ I + | 7By +e0) — (0~ raBp)|P
| (JA (0) = D) — (W — 7By +€n) — (0 — ra D)’}

= ST @) P + (T~ 7By — (T = raBlp + ea?
— |72 (vn) = Yo — T Byn — €n + 1 Bp||*}

= ST P + 1T~ By — (T = raBYpl + s
(A () = 4 — e0) — ra(Byn — Bp)|P)

< *{H T (0n) = plI” + llyn — pII* + gn

— (177 (vn) = yn = enll” = 270 Byn — Bpl[IJ24 (vn) — yn — €n
+||TnByn - Tan||2)}
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1 i
S UL @n) = I + lyn = pI* + g = 177, (vn) = vn = €n®

+27, | Byn, — Bp|||| T2 (v) = Yn — €nll = IrnByn — o Bp|*}. (3.13)

It follows that

IN

IN

172 (vn) — pl|®

yn = DII* + gn — 171 (vn) — tn — €nl|®

+2r, || Byn — Bpl||| 772 (vn) = yn — €nll = |70 Byn — 1 Bp|?

ltn f(zn) + (1= an)zn —plI> = |2 (0n) = yn — enl?

— |7 Byn — raBpl|* + 21, || Byn — Bp||[|JiE (0n) = yn — enll + g
anllf(zn) = plI* + (1= an)zn = plI> = 172 (vn) = yn + enl?
—7n || Byn — Bp||* + 21| Byn — Bpl|[| I} (vn) = yn — enll + gn-  (3.14)

From (3.14), this implies that

ININIA

IN

|27n41 _pH2

Bullzn = plI* + (1 = B) ST (v) = plI?

Bullzn = plI* + (1 = Ba) | T (v2) = pII?

Ballzn = pl* + (1 = Ba){anll f(zn) = pII* + (1 = an)llzn — pl?
—[172} (vn) = yn + €nll> = 7ul| Byn — Bpl?

+27, || By, — BpHHJ;i (Vn) = Yn — enll + g;z}

(1= an)llzn = pI* + (1 = Ba)anl f(zn) - pl*

—(1= B2 (W) = yn + enll® = (1 = Bu)ra | Byn — ra Bp|?
+(1 = B2)2rnl|Byn — Bpll|| 7} (va) = yn — eall + (1 = Ba)dn
=PI + cnll f(@n) = pI* = (1= Ba) 7, (V) = yn + enl|?
_TiHByn - TanHQ + 27"71HByn - Bp”HJ:}L (Un) —Yn — enH + Gn-

It follows that

IN

(1- ﬁn)HJr{i (Un) = Yn + enH2

|zn =l = Znr1 = Pl + anll f(@n) = plI* = 75l By — o Bpl|?
+2r | Byn — Bpl| 77, (vn) = yn = €nll + gn-

lzn = pII* = llznss = plI* + sn

[(@n —p) + (@nt1 = D[ (xn — P) — (Tn+1 = P)|| + 50

[(@n = p) + (@nt1 = P)llzn — Zpiall + sn, (3.15)

where we set s, := a, || f(z,) — p||*> — r2||Byn — rn Bpl|* + 27, || By, — Bp||[| J2 (vn) —

Yn = €nll + g
From (3.15), in view of the condition (a), (¢), (d), and equation (3.10), we conclude

that

. A . _ _
nh_r)nooHJrn(Un) Yn en” 0.

This in turn implies that

lim || J2 (vn) = yal = 0. (3.16)

n—ro0
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Step 3.3 Lastly, we will show that lim, o [|SJ2 (v,,) — J; (vn)]| = 0, we see
that

lyn —znll = [lanf(zn) + (1 — an)zn — 20|

|
Q
3
=
—~
8
3
~
I
8
3

By condition (a), then
lim |y, — x| = 0. (3.17)

n—r-o0

Next, from (3.16) and equation (3.17), then we see that
17, (vn) = ll < 17 (vn) = gll + 1y = 2n]l-
That is
lim |72 (vs) — || = 0. (3.18)
From equation (3.9) and (3.18), then we see that
HSJ;:L (vn) — J:}I(Un)H < HSJ::L(Un) —xp + ||xn - Jii(vn)H
That is
. A _7A _
i IS4 () = 2 (0] = 0. (3.19)

Step 4 Since FE is a uniformly convex and 2-uniformly smooth Banach space,
then FE is reflexive Banach space. By reflexive Banach space and from {z,}, {y,}
are bounded, then it has a weakly convergence subsequence. We may assume that
T, = &. In view of lim,,_,  ||yn —Zn|| = 0, then there exist a subsequence of {y, }
of {y,} which converges weakly to &. we can say that {y,, } also converges weakly to
2, 1.e, yn, — &, without loss of generality. To show that & € Fiz(S)N(A+B)~1(0) =
Q.

(i) First, we want to show that & € Fixz(S). Now, we have y,, — &. Since we
known that {J: (v,)} is bounded and form lim, o [|J:2 (v;,) — yn|| = 0, then we
say that {J;,ii (Un,)} — 2.

From (3.19), we have lim, . [|SJ2 (vn,) — J2 (vy,)]| = 0. By demiclosed
principle, this implies S& = &, namely we prove that & € Fix(S). (ii) Next, to
show that JA(I —rB)# = 2. Since a Banach space with weakly continuous duality
mapping has the Opial’s condition, see [7]. Suppose & # JA(I — rB)#. By the
Opial’s condition and condition (c), (d), then we have

liminf [y, — 2]
11— 00

< liminf ||y,, — JA(I — rB)z||
71— 00

< lminf{|lyn, — Un,
1—> 00

i

|+ 12, (0n,) = JA U = o B)E])}

[+ 1A (wn) — JAUT — rB)E]))

|+ low, — (I —rB)2]}

1 = rB)ya, — (1~ rB)E] + llen,
1.

Un,

i

= liminf{[ly,, —
1— 00

< hm lnf{”ym -
1— 00

Un,

i

}

= liminf{[jy,, —
1— 00

T2 ()
T4 ()
I (n,)
T ()
A ()

IN

lim lnf{”y’m —J Un,;
11— 00

Tn,

|+ Y. — 21 + llen,

By (3.16) and condition (d), hence

liminf ya, — 2| < limint ||y, — 2.
11— 00 71— 00
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This is contradiction. Therefore, JA(I — rB)i = 4.
This complete the proof that # € Fiz(S)N (A + B)~1(0) = Q.

Step 5 We defined operator W,, : C — C by W,, := SJ2 ((I — r,B)|on fo +
(1 — apn)z] + ey) for all x € C, where «,, € (0,1), 7, > 0. From lemma 3.1 an
operators W, is a contraction operator and has a unique fixed point. Moreover, by
use lemma 2.2, we known that z € Fiz(W,,) = Fiz(S)N(A+B)~1(0) := Q, namely
Qaf(z) =z =W,z. (Now, & =T too)

Next, we will show that limsup,,_ . (f(Z)—Z, j(yn—7)) < 0, where lim; o x; =
Z = Qqf(z) and z, solves equation z; = SJ (I—r, B)(tf(2;)+(1—t)x;),Vt € (0,1).

(i) We want to show that lim,— o [|[Wyhn — yn|| = 0. Consider

||ann - ynH < ||S T (( - rnB)[anf(wn) + (1 — an)xn] +en) — JUn” + ||33n — Unl|

= |lzn — @nll + lzn — ynl.- (3.20)
From (3.9) and (3.17), then
lim [[Wyx, —yn| = 0. (3.21)
n—oQ

(ii) We want to show that limsup,,_, .. (f(Z) — %, j(yn — Z)) < 0. We compute

e = ynll?
= ST (I = raB)(tf (o) + (1 = t)ae) — yall?
= (SIL I = raB)(tf(ze) + (1= )2e) = Wa + Wain = Y, j (@ = Yn))
= (STL (I = ruB)(tf(ze) + (1= O)ze) = Watn, j(2: — yn))

F(Wan = Yn, j (@ — yn))
= <SJ;1( —rnB)(tf(we) + (1 —t)zy) — SJ:}I,((I — T B)yn +€n), j (T — yn))
+WnTn — Yn, § (Tt — Yn))
< (I =maB)(tf(ze) + (L= )xe) = (I = 70 B)yn — €n, j(xt — Yn))
HIWnzn — ynllllze — ynll
= (L =raB)(tf(ze) + A = t)as) = (I = rpB)yn, j(@¢ = Yn)) + (€, J (@t — yn))
HIWnzn — ynllllze — ynll
(tf(ze) + (1 = t)ze) — e + 20 — Y, J(@e — yn)) + llenllllze — |
HIWnzn — ynllllze — ynll
< () = ), g (@e — yn)) + (T — Y, (@0 = yn)) + llenllllze — ynll
HIWnzn — ynllllze — ynll
Hf(@e) = e, g (e —yn)) + llze = yall® + lenllllze = yull + [Wazy — yallllze — yal
—t{f (@) = x4, (Yn — 22)) + 1zt = yal® + llenlllze = yall + 1Wazn = yallllze — yall
(3.22)

IN

IN A

It follows that
tf(@e) =2 d(yn — 1)) < lenllllze = yall + [Waten = yallllze = yall-
Then
(f(@e) =, (yn — ) < %{Ilenllllxt = Ynll + [Wnzn — ynllllzr — yn}-
By virtue of (3.21) and condition (d), we found that
hfln_f;(l)p(f(xt) =, j(yn — x1)) < 0. (3.23)
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Since x; — %, as t — 0 and the fact that j is norm-to- weak® uniformly continuous
on bounded subset of E, we obtain

(F(Z) = 2, 5(yn — 7)) = (f(21) = 21,5 (Yn — 21))]

< [f(@) = 2,5(yn — 7)) = (f(2) = T, 5(yn — 21))

(@) = 2,5(yn — 1)) — (F (@) — 20, 5 (yn — 1))
< [F@) =2, 5(yn =) = Jlyn — )| + [(f(T) =T = f(@e) + 24,5 (yn — 240))]
< @) = 217 (yn = 2) =3 (yn — @)l + [1(Z) = 2 = f2e) + zelllyn — 24|

— 0, ast — 0.

Hence, for any € > 0, there exist ¢ > 0 such that V¢ € (0, ) the following inequality
holds:

(f(@) = 2,5(yn — 7)) < (f(@1) =20, 5(yn — 21)) + €

Taking limsup,,_, ., in the above inequality, we find that
limsup(f(7) — 7,5 (yn — 7)) < limsup(F(ze) — 20,5 (g — 20)) + €.
n— o0 n—00
Since € is arbitrary and (3.23), we obtain that
limsup(f (%) — Z,j(yn — 7)) < 0. (3.24)
n—oo

Step 6 Next, we prove that {z,} converges strongly to T = Qqf(Z) by using
the lemma 2.3 and lemma 2.9. We note that

[Zns1 — jH2 = ||Bnzn +(1— Bn)sjé(vn) - f||2

< Ballen =2l + (1= B)IIST7 (vn) — 2|
= Ballzn — 21> + (1 = B)lIST} (va) — S22
< Ballzn — 217 + (1= Ba) 15 (va) — 212
= Bullzn =21 + (1 = B 17} (va) = T2 (I = r B)Z||?
< /BnHl'n_i'”Q + (1= Bp)llvn — (I =1y )f||2
= Ballzn — 5_3”2 + (1= Bn)l(yn — TnByn +en) — (I - rnB)s_cHQ
= ﬂonn*j”Q + 1 =B —raB) n*(I*TnB)jJFenHQ
= Bullen — 2| + (1= Bl = raA)yn — (I =1, A)z|?
+2(en, J((I =1 B)yn — (I =1 B)T + €5))
< Ballen =zl + 1= B) [llyn — 2I° + 2llenll| (] = 70 B)yn — (I =12 B)T +en] -
(3.25)
Consider
||yn_-f||2 = (anf(zn) + (1 —an)zn —2,5(yn — 7))
= {an(f(zn) = 2) + (1 — an)(@n — 2),j(yn — 2))
= (an (f(zn) = f(2)) + an (f(Z) = Z) + (1 — an)(2n — Z),J(yn — T))
(an(f(zn) = f(2) + (1 — an)(@n — ), j(yn — 2)) + (o (f(Z) = 2),5(yn — T))
< llen(f(zn) = f(2) + (1= an)(@n = 2)||lyn — Zl| + an (f(Z) — 2,j(yn — 7))
< lankllzn =2 + (1= an)llzn = 2] lyn — 2] + an(f(Z) — 2, (yn — 7))
[

L= an (1 =E)l|lzn = Z|llyn — 2l + an(f () = Z,5(yn — 7))
lzn — 2% + llyn — 2|
2

(1 —an(l—k)) +an(f(2) = Z,5(yn — 2))
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= 2B 32 4~ 317) + 0 (@) ~ 7,5~ )

It follows that

2|y — || (3.26)

< (L=an(l=R)llzn =2l + (1 = an(l = &))lyn — Z)|* + 200 (f(T) = 7,5 (yn — T
< 7).

(1 —an(l = &))llzn = 2[* + llyn — 2] + 200 (f (@) — 2, j(yn —
Therefore, we obtain
lyn — jHQ < (I—an(l=Fk)llzn — jH2 + 20, (f(Z) — 7, j(yn — T)). (3.27)
Replace (3.27) in (3.25) that

)

lzn41 —
< Buallzn =217+ (1= Ba) [ = an(1 = B)lon — Z* + 200 (f(Z) = 7, j (yn — 2))]
+(1 = Bn)2lenlll(I = rnB)yn — (I = B)T + ey |
= (1= =k)(A = Ba))llzn — Z|* + 2001 = Ba)(f(Z) = 2,5 (yn — 7))
+2(1 = Bu)llenllli(I = rnB)yn — (I = rn B)T + en|
2M,
(1—=F)
where ¢, := 2(1=8p)|len || |(I=7nB)yn—(I—r,B)Z+e, |, and A, = a, (1—k)(1—0).

= (1=2)lzn —2|* + (f(x) = 2,5(yn — T)) + Cn,

If we set b, = Of—k)ﬁ(i‘)—f,j(yn—a‘s» and we have limsup,, __, . (f(Z)—Z,j(yn—
z)) <0, then we see that limsup,,_, . b, <0, and also that Y~ ¢, < coc.

By lemma 2.8 and condition (a), (b), and (d), we conclude that ||z, —Z||*> — 0,
as n — oo. This implies

lim |z, — | =0,
n—-o0

i.e., x, converges strongly to . O

Next, we will utilize theorem 3.2 to study some strong convergence theorem in
L, with 2 < p < oo. Since L,, where p > 2 are uniformly convex and 2-uniformly
smooth Banach space with K = p— 1, then we consider F = L, and we derive that
following theorem:

Theorem 3.3. Let C be a nonempty closed convex subset of an Ly, for 2 <p < oo.
Let A, B, S, f, Ji} be the same as in theorem 3.2. Let {on,}, {Bn} are real num-
ber sequences in (0,1), {r,} is a real number sequences in (0, ﬁ) and {e,} is
a sequence in E. Assume that the control sequences satisfy the following condi-
tions (a),(b) and (d) in theorem 3.2 and conditions (c) lim, oo ry =7, and r €
(0, ﬁ) Then the sequence {x,} is defined by (4.1) converges strongly to a point

T € Fiz(S)N (A+ B)~1(0).

Consider a mapping S = I in theorem 3.2, we can obtain the following corollary
direct.

Corollary 3.4. Let E be a uniformly convexr and 2-uniformly smooth Banach space
with weakly sequentially continuous duality mapping. Let C be a nonempty closed
conver subset of E. Let A: D(A) C E — 2F be an m-accretive operator such that
the domain of A is included in C and B : C — X be an a-inverse strongly accretive

)
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operator. Let f : C — C be a contraction mapping with the constant k € (0,1).
Let Ji} = (I +r,A)7" be a resolvent of A for r, >0 such that (A+ B)~(0) # 0.
For given x¢ € C, Let x,, be a sequence in the following process:

{ Yn = Oénf(zn) + (]- - Oén)xna

3.28
Tnt1 = ﬁnfn + (1 - Bn)Jé (yn - rnByn + en)a vn > 07 ( )

where {an }, {Bn} are real number sequences in (0,1), {ry} is a real number sequences
in (0, 7z), K > 0 is the 2-uniformly smooth constant of E and {e,} is a sequence
in E. Assume that the control sequences satisfy the following conditions:

(a) lim, oo, =0, 307 | @y = 00;

(b) 0 <liminf, o B <limsup,_ . Bn < 1;

(¢) limy, oo my =17, and r € (0, 22);

(d) 3202 Il en < oo
Then, the sequence {x,} converges strongly to a point T € (A + B)~1(0).

Consider a mapping S = I and f(z,) = u, ¥n € N in theorem 3.2, we obtain the
following corollary direct.

Corollary 3.5. Let E be a uniformly conver and 2-uniformly smooth Banach space
with weakly sequentially continuous duality mapping. Let C be a nonempty closed
conver subset of E. Let A: D(A) C E — 2F be an m-accretive operator such that
the domain of A is included in C and let B : C — X be an a-inverse strongly
accretive operator. Let JTBT’L = (I +7r,B)~! be a resolvent of B for r, > 0 such that
(A + B)~1(0) # 0.

For given xg € C, Let x,, be a sequence in the following process:

Yn = QpU + (1 - O‘n)xnv
Tnt+1 = Bnn + (1 - ﬂn)J{f‘ (yn — o By, + Gn), Vn >0,

n

(3.29)

where {an}, {Bn} are real number sequences in (0,1), {ry} is a real number sequences
in (0,4%) , K > 0 is the 2-uniformly smooth constant of E and {e,} is a sequence
in E. Assume that the control sequence satisfy the following conditions:

(b) lim,,— oo =1, and r € (0, 32);
(€) Yonco Il en lI< 0.
Then, the sequence {x,} converges strongly to a point T € (A + B)~1(0).

(a) 0 <liminf,— o B, < limsup,,_ . Bn < 1;

Setting J::L =1, B=0, f(xn) = u, Yn € N and ¢, = 0, then we have the
following corollary of the modified Mann-Halpern iteration.

Corollary 3.6. Let E be a uniformly conver and 2-uniformly smooth Banach space
and let C' be a nonempty closed convex subset of E. Let S : C — C be a nonex-
pansive mapping such that Fixz(S) # 0. For given zg,u € C, Let z,, be a sequence
in the following process:

Yn = QpU + (1 - an)xna
Tny1 = Bnxn + (1 - /Bn)Syna Vn >0,

where {an},{Bn} are real number sequences in (0,1). Assume that the control
sequence satisfy the following conditions:

(3.30)

(a) lim,— 00 vy =0, and Zzo:l Qp = 005
(b) 0 <liminf, o B, <limsup,,_ . Bn < 1.
Then, the sequence {x,} converges strongly to a point T € Fix(S).
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4. SOME APPLICATIONS

In this section, we give two applications of our main results in the framework of
Hilbert spaces. Now, we consider theorem 3.2, in the framework of Hilbert spaces,
it known that K = g Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H.

Theorem 4.1. [6, Corollary 2.2] Let A : C — 25 be a mazimal monotone op-

erators such that the domain of B which included in C and B : C — H be an

a-inverse strongly monotone operator. Let S : C — C be a nonexpansive map-

ping and let f : C — C be a contraction mapping with the constant k € (0,1). Let

Ji = (I4+r,A)~! be a resolvent of A forr, > 0 such that Fiz(S)N(A+B)~1(0) # 0.
For given xg € C, let {x,} be a sequence defined by following:

{ Yn = anf(rn) + (1 — an)zn,

. (4.1)
Tnt1 = ﬂnxn + (1 - ﬂn)SJrn (yn - rnByn + en), Vn > O,

where {an },{Bn} are real number sequences in (0,1), {ry} is a real number sequences
in (0,2«) and {e,} is a sequence in H. Assume that the control sequences satisfy
the following conditions:

(a) limy—yoo 0y =0, and D07 | oy, = 00;

(b) 0 <liminf, o B, <limsup, .. Bn <1;

(c) imy, oorp =1, and r € (0, 1);

(@) Y20 |l en 1< .
Then, the sequence {x,} converges strongly to a point T € Fiz(S)N (A+ B)~1(0).
Next, we will give some related results.

4.1. Application to projection for variational inequality.

Let C be a nonempty, close and convex subset of a Hilbert space H. The metric
projection of a point x € H onto C, denoted by Pc(z), is defined as the unique
solution of the problem

e — Poall < |lz — yll, Yy € C, var € A.
For each x € H and z € C, the metric projection P is satisfied
z=Po(z) <= (y—z,2—2) <0, Vy e C. (4.2)
Note that the metric projection is nonexpansive mapping.
Let g : H — (—00,00] is a proper convex lower semicontinuous function. Then
the subdifferential dg of g is defined as follow:
dg(x) ={ze€ H:g(y) —g(z) 2 (y —z,2), Vy € H},
for all x € H. If g(x) = oo, then dg(z) # 0, Takahashi [16] claim that dg is
m-accretive operator. Since we know that, an m-accretive operator is maximal
monotone operators in a Hilbert space, then we claim that dg is maximal monotone
operators. Then we define the set of minimizers of g as follow:
argminyeng(y) = {z € H : g(z) = minyeng(y)}-

It is easy to verify that 0 € Jg(z) if and only if g(2) = minyemg(y). Let ic be the
indicator function of C' by

. 0, Vr € C,

iol) = {

+oo, z¢C.
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Then i¢ is a proper lower semicontinuous convex function on H. So, we see that
the subdifferential dic of i¢ is maximal monotone operator; see, [16]. The resolvent
J,. of dic for r > 0, that is J,.o = (I +rdic) 'z, Vo € H. Next, we recall that set
N¢(u) is called the normal cone of C' at u define by
Ne(w)={z€ H:(z,y—u) <0, Yy e C}.
Since N¢(u) = 0ic(u). In fact, we have that for any x € H and u € C,
w=Juo=I+7r0ic) 'z < zcu+rdicu

< zcu+rNc(u)

< z—u€erNg(u)

— %(sc—u,y—u} <0, VyeC

— (rz—uy—u) <0, Vyel

= u=Pcox. (4.3)
Then u = (I +rdic) 'z <= u= Pox, Vz € H, u e C.

Now, we consider the following variational inequality problem (VIP) for B is to
find z € C such that

(Bz,y —z) >0, Vy € C. (4.4)
The set of solutions of (4.4) is denoted by VI(C, B).
VIC,B)={ze€C:(Bz,y—xz)>0,VyeC }. (4.5)

Theorem 4.2. Let B: C — H be an a-inverse strongly monotone mapping. Let
S : C — C be a nonexpansive mapping and let f : C — C be a contraction
mapping with the constant k € (0,1). Assume that Fiz(S) N VI(C,B) # (. For
given xg € C, let {x,} be a sequence defined by following:

Yn = anf(xn) + (1 - an)x'm
Tn41 = ﬁnxn + (1 - Bn)SPC(yn - TnByn + en); Vn Z 07

where {an}, {Bn} are real number sequences in (0,1), {ry} is a real number sequences
in (0,2a) and {e,} is a sequence in H. Assume that the control sequences satisfy
the following conditions:

(4.6)

(a) lim,— oo o, =0, and D07 | ay = 00;

(b) 0 <liminf, o Bp <limsup,_ . Bn < 1;

(¢) lim, ooy =71, and r € (0,2a);

(d) X020 Il en ll< o0.
Then, the sequence {x,} converges strongly to a point z € Fiz(S)NVI(C, A), where
T = Ppiys)nvie,s)f(Z).
Proof. By lemma 2.4 we know that Fiz(JA(I—rB)) = (A+B)~'(0). Put A = dic,
and we to show that VI(C, B) = (0ic + B)~1(0). Note that

x € (0ic + B)~1(0) 0 € dicw + Bx

0 € Necx + Bz
—Bx € Nex

Freueee

x e VI(C,B). (4.7)
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From (4.3), therefore, we can conclude the desired conclusion immediately. o

4.2. Application for equilibrium problems. Let F' be a bifunction of C' x C
into R, where R is the set of real numbers. The equilibrium problem for finding
x € C such that
F(z,y) >0, Yy € C. (4.8)

The set of solutions of (4.8) is denoted by EP(F).

For solving the equilibrium problem, we assume that the bifunction F satisfies
the following conditions:

(Al) F(z,z) =0 for all z € C;

(A2) F' is monotone, i.e., F(z,y) + F(y,z) <0 for any z,y € C;

(A3) for each z,y,z € C, limsup,__, g+ F(tz+ (1 —t)z,y) < F(x,y);

(A4) for each x € C, y+— F(z,y) is convex and lower semicontinuous.

Lemma 4.3. [17] Let C be a nonempty closed and convex subset of a real Hilbert
space H and let F' be a bifunction of C x C into R satisfying (A1)-(A4). Let r >0
and z € H. Then, there exists x € C' such that

1
Floy) + (y—we -2 =20, Vyel. (4.9)

Lemma 4.4. [18] Let C' be a nonempty closed and convex subset of a real Hilbert
space H and let F': C x C — R satisfies (A1)-(A4). Forr >0 and z € H, define
a mapping T, : H — C as follows:

1
T.(2) ={z € C:F(z,y) + ;(y —x,x—2)>0, Yy e C},Vz € H. (4.10)

Then, the following hold:

(1) T, is single-valued;

(2) T, is firmly nonexpansive, i.e., for any x,y € H,

ITve = Tryl|* < (Tr(2) = Tr(y), @ — y);

(3) Fi(T,) = EP(F);

(4) EP(F) is closed and convet.
Lemma 4.5. [19] Let C be a nonempty closed and convex subset of a real Hilbert

space H and let F' : C x C — R satisfies (A1)-(A4) and Ap be a multi-valued
mapping of H into itself defined by
A — {z€eH:F(z,y) > {y—z,2),Yy € C}, VzxeCl,

Then EP(F) = A}l(O) and Arx is a mazimal monotone operator with the domain
D(Ag) C C. Furthermore, the resolvent T, of F' coincides with the resolvent of A,
i.e.,

T,x=(I+rAp) Y(x), Vo € H, r> 0, (4.11)
where T, is defined as in (4.10)

We recalled that T, is the resolvent of Ap for r > 0. Since A = A, we will show
that J.z = T,-x. Indeed, for x € H, we have

ze€Jyx=I+rAp) Hz) <= zec(I+rAp)z
<~ wE€z+rApz

<~ x—z€rAFRz

<

l(wf z) € Apz
”
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F(e,y) 2y =2,z — 2))

Floy) 2y =2, — (=~ o))

F(z,y) 2 7<y—z,z—m>

1
F(z,y)—i—f(y—z,z—@ 20, Vyec
T
zeT,x. (4.12)

T o111

Using lemmas 4.3, 4.4, 4.5 and theorem 4.1, we also obtain the following result.

Theorem 4.6. Let F : C x C — R which satisfies (A1) — (A4). Let S: C — C
be a monexpansive mapping and let f : C — C be a contraction mapping with the
constant k € (0,1). Assume that Fixz(S) N EP(F) # 0. For given xg € C, let {z,}
be a sequence defined by following:

{ Yn = Oénf(xn) + (]- - an)xna

(4.13)
Tn+l = 6nxn + (]- - 5n)STrn (yn + en)a n > 07

where {an }, {Bn} are real number sequences in (0,1), {r,} is a real number sequences
in (0,2a) and {e,} is a sequence in H.
Assume that the control sequences satisfy the following conditions:
(a) lim,—yoo o, = 0, and Y07 | v, = 00;
(b) 0 < liminf,, . B, <limsup,,__,. Bn <1;
(¢) limy,_yoorn =7, and r € (0,20a);

(d) 302 Il en < o0.
Then, the sequence {x,} converges strongly to a point T € Fix(S) N EP(F), where

T = Ppiy(s)nepr)f(T).

Proof. Put A = Ap and B =0 in (A + B)71(0) from theorem 4.1. Furthermore,
for bifunction F' : C x C — R, we define Apz as in lemma 4.5, we have EP(F) =
A7'(0) and let 7)., be the resolvent of Ar for 7, > 0. Therefore, we can conclude
the desired conclusion immediately. O

5. CONCLUSION AND REMARKS

Our main results extends and improves in the following:

(i) Theorem 3.2 extends and improves Theorem 3.1 of Manaka and Takahashi [4,
Theorem 3.1] from a Hilbert space to a Banach space and from weak convergence
to strong convergence.

(ii) Theorem 3.2 partially extends and improves Theorem 2.1 of Cho et al. [0,
Theorem 2.1] from a Hilbert space to a Banach space with uniformly convex and
2-uniformly smooth.

(iii) Theorem 3.2 extends and improves Theorem 3.1 of Qing and Cho [20, The-
orem 3.1] from the problems of finding an element of A~1(0) to the problem of
finding an element of Fiz(S) N (A + B)~1(0).

(iv) Theorem 3.2 extends and improves Theorem 3.7 of Sahu and Yao [3, Theorem
3.7] from the problems of finding an element of A=1(0) to the problem of finding
an element of Fiz(S) N (A + B)~1(0).

(v) Theorem 3.2 extends and improves Theorem 3.7 of Ldpez et al. [5, Theorem
3.7] from the problems of finding an element of (A + B)~1(0) to the problem of
finding an element of Fiz(S) N (A + B)~1(0).
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