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ABSTRACT. In this paper, we propose a new hybrid extragradient algorithm for solving a
variational inequality problem over the solution set of an equilibrium problem in Euclidean
space. By using fixed point and hybrid plane cutting techniques, we show that this problem
can be solved by an explicit extragradient method. Under certain conditions on parameters,
the convergence of the iteration sequences generated by the algorithm are obtained.
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1. Introduction and Motivation

Let Rn be a n­dimentional Euclidean space with an inner product ⟨·, ·⟩ and
the associated norm ∥ · ∥. Let C be a nonempty closed convex subset in Rn and
G : C −→ Rn be an operator, and f : C × C −→ R be a bifunction satisfying
f(x, x) = 0 for every x ∈ C. We consider the following variational inequality
problem over the solution set of the equilibrium problem (shortly VIEP(C, f,G)):

Find x∗ ∈ Sf such that ⟨G(x∗), y − x∗⟩ ≥ 0 ∀y ∈ Sf , (1.1)

where Sf = {u ∈ C : f(u, y) ≥ 0, ∀y ∈ C}, i.e., Sf is the solution set of the
following equilibrium problems (EP(C, f ) for short):

Find u ∈ C such that f(u, y) ≥ 0 ∀y ∈ C. (1.2)
As usual, we call problem (1.1) the upper problem and (1.2) the lower one.

Problem (1.1) can be consider as a special case of mathematical programs with
equilibrium constraints. Sources for such problems can be found in [11, 15, 17].
Bilevel variational inequalities were considered in [1], Moudafi in [16] and Yao et al
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in [22] suggested the use of the proximal point method for monotone bilevel equilib­
rium problems, which contain monotone variational inequalites as a special case.
Recently, Ding in [6] used the auxiliary problem principle to monotone bilevel equi­
librium problems. In those papers, the lower problem is required to be monotone.
In this case the subproblems to be solved are monotone.

It should be noticed that the solution set Sf of the lower problem (1.2) is convex
whenever f is pseudomonotone on C. However, the main difficulty is that, even the
constrained set Sf is convex, it is not given explicitly as in a standard mathematical
programming problem, and therefore the available methods of convex optimization
and variational inequality cannot be applied directly to problem (1.1).

In our recent paper [4] we proposed penalty and gap function methods for solving
bilevel equilibrium problems which contains (1.1) as a special case. Under a certain
strictly ∇­pseudomonotonicity, it has been proved that any stationary point of
the gap function over C is a solution of the penalized problem. This assumption
is satisfied for strict monotonicity case, but it may fail to hold for problem (1.1)
when the lower equilibrium problem is pseudomonotone. The reason is that the
sum of a strongly monotone and a pseudomonotone bifunction, in general, is not
pseudomonotone, even not strongly monotone.

In this paper, we continue our work in [4] by further extend the hybrid extragradient­
viscosity methods introduced by Maingé in [13] for solving bilevel problem (1.1)
when the lower problem is pseudomonotone with respect to its solution set equi­
librium problems rather than monotone variational inequalities as in [13], the later
pseudomonotonicity is somewhat general than pseudomonotone. We show that the
sequence of iterates generated by the proposed algorithm converges to the unique
solution of the bilevel problem (1.1).

The paper is organized as follows. The next section contains some preliminaries
on the Euclidean projection and equilibrium problems. The third section is de­
voted to presentation of the algorithm and its convergence. In the last section, we
describe a special case of minimizing the Euclidean norm over the solution set of
an equilibrium problem, where the bifunction is pseudomonotone with respect to
its solution set. The latter problem arises from the Tikhonov regularization method
for pseudomonotone equilibrium problems [8].

2. Preliminaries

Throughout the paper, by PC we denote the projection operator on C with the
norm ∥.∥, that is

PC(x) ∈ C : ∥x− PC(x)∥ ≤ ∥y − x∥ ∀y ∈ C.

The following well known results on the projection operator onto a closed convex
set will be used in the sequel.

Lemma 2.1. Suppose that C is a nonempty closed convex set in Rn. Then
(i) PC(x) is singleton and well defined for every x;
(ii) π = PC(x) if and only if ⟨x− π, y − π⟩ ≤ 0, ∀y ∈ C;
(iii) ∥PC(x)− PC(y)∥2 ≤ ∥x− y∥2 − ∥PC(x)− x+ y − PC(y)∥2, ∀x, y ∈ C.

We recall some well known definitions on monotonicity (see e.g., [2, 7, 9, 17, 21])

Definition 2.2. A bifunction φ : C × C −→ R is said to be
(a) strongly monotone on C with modulus β > 0, if

φ(x, y) + φ(y, x) ≤ −β∥x− y∥2 ∀x, y ∈ C;
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(b) monotone on C if

φ(x, y) + φ(y, x) ≤ 0 ∀x, y ∈ C;

(c) pseudomonotone on C if

φ(x, y) ≥ 0 =⇒ φ(y, x) ≤ 0 ∀x, y ∈ C;

(d) pseudomonotone on C with respect to x∗ if

φ(x∗, y) ≥ 0 =⇒ φ(y, x∗) ≤ 0 ∀y ∈ C.

We say that φ is pseudomonotone on C with respect to a set S if it is pseudomono­
tone on C with respect to every point x∗ ∈ S.

From the definitions it follows that (a) ⇒ (b) ⇒ (c) ⇒ (d) ∀x∗ ∈ C.
When φ(x, y) = ⟨ϕ(x), y − x⟩, where ϕ : C −→ Rn is an operator then the

definition (a) becomes:

⟨ϕ(x)− ϕ(y), x− y⟩ ≥ β∥x− y∥2 ∀x, y ∈ C

i.e., ϕ is β­strongly monotone on C. Similarly, if φ satisfies (b) ((c), (d) resp) on C
then ϕ becomes monotone, (pseudomonotone, pseudomonotone with respect to x∗

resp) on C.
In the sequel, we need the following blanket assumptions
(A1) f(., y) is continuous on Ω for every y ∈ C;
(A2) f(x, .) is convex on Ω for every x ∈ C;
(A3) f is pseudomonotone on C with respect to the solution set Sf of

EP(C, f );
(A4) G is L­Lipschitz and β­strongly monotone on C;
(B1) h(.) is δ­strongly convex, continuously differentiable on Ω;
(B2) {λk} is a positive sequence such that

∑∞
k=0 λk = ∞ and

∑∞
k=0 λ

2
k < ∞.

Lemma 2.3. Suppose Problem EP(C, f ) has a solution. Then under Assumptions
(A1), (A2) and (A3) the solution set Sf is closed, convex and

f(x∗, y) ≥ 0 ∀y ∈ C if and only if f(y, x∗) ≤ 0 ∀y ∈ C.

The proof of this lemma when f is pseudomonotone on C can be found, for
instance, in [9, 17]. When f is pseudomonotone with respect to the solution set of
EP(C, f ), it can be done by the same way. So we omit it.

The following lemmas are well­known from the auxiliary problem principle for
equilibrium problems.

Lemma 2.4. ([14]) Suppose that h is a continuously differentiable and strongly
convex function on C with modulus δ > 0. Then under Assumptions (A1) and (A2),
a point x∗ ∈ C is a solution of EP(C, f ) if and only if it is a solution to the equilibrium
problem:

Find x∗ ∈ C : f(x∗, y) + h(y)− h(x∗)− ⟨∇h(x∗), y − x∗⟩ ≥ 0 ∀y ∈ C. (AEP )

The function
D(x, y) := h(y)− h(x)− ⟨∇h(x), y − x⟩

is called Bregman function. Such a function was used to define a generalized
projection, called D­projection, which was used to develop algorithms for particular
problems, see e.g., [3]. An important case is h(x) := 1

2∥x∥
2. In this case D­

projection becomes the Euclidean one.
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Lemma 2.5. ([14]) Under Assumptions (A1), (A2), a point x∗ ∈ C is a solution of
Problem (AEP) if and only if

x∗ = argmin{f(x∗, y) + h(y)− h(x∗)− ⟨∇h(x∗), y − x∗⟩ : y ∈ C}. (CP )

Note that, since f(x, .) is convex and h is strongly convex, Problem (CP) is a
strongly convex program.

For each z ∈ C, by ∂2f(z, z) we denote the subgradient of the convex function
f(z, .) at z, i.e.,

∂2f(z, z) := {w ∈ Rn : f(z, y) ≥ f(z, z) + ⟨w, y − z⟩, ∀y ∈ C}

= {w ∈ Rn : f(z, y) ≥ ⟨w, y − z⟩, ∀y ∈ C},

and we define the halfspace Hz as

Hz := {x ∈ Rn : ⟨w, x− z⟩ ≤ 0} (2.1)

where w ∈ ∂2f(z, z). Note that when f(x, y) = ⟨F (x), y−x⟩, this halfspace becomes
the one introduced in [21]. The following lemma says that the hyperplane does not
cut off any solution of problem EP(C, f ).

Lemma 2.6. ([5]) Under Assumptions (A2) and (A3), one has Sf ⊆ Hz for every
z ∈ C.

Lemma 2.7. ([5]) Under Assumptions (A1) and (A2), if {zk} ⊂ C is a sequence such
that {zk} converges to z̄ and the sequence {wk} with wk ∈ ∂2f(z

k, zk) converges to
w̄, then w̄ ∈ ∂2f(z̄, z̄).

The following lemma is in [21] (see also [5]).

Lemma 2.8. ([21], [5]) Suppose that x ∈ C and u = PC∩Hz (x). Then

u = PC∩Hz (x̄), where x̄ = PHz (x).

Lemma 2.9. (Lemma 3.1 [12]) Let {ak} be a sequence of real numbers that does not
decrease at infinity, in the sense that there exists a subsequence {akj} of {ak} such
that

akj < akj+1 for all j ≥ 0

Also consider the sequence of integers {σ(k)}k≥k0 defined by

σ(k) = max{j ≤ k | aj < aj+1}.

Then {σ(k)}k≥k0 is a nondecreasing sequence verifying

lim
k−→∞

σ(k) = ∞

and, for all k ≥ k0, the following two estimates hold:

aσ(k) ≤ aσ(k)+1 (2.2)

ak ≤ aσ(k)+1 (2.3)
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3. An Hybrid Extragradient Algorithm for VIEP(C, f, G)

Algorithm 1. Pick x0 ∈ C and choose two parameters η ∈ (0, 1), ρ > 0.
At each iteration k = 0, 1, ... having xk do the following steps:
Step 1. Solve the strongly convex program

min
{
f(xk, y) +

1

ρ

[
h(y)− h(xk)− ⟨∇h(xk), y − xk⟩

]
: y ∈ C

}
CP (xk)

to obtain its unique solution yk.
If yk = xk, take uk = xk and go to Step 3. Otherwise, do Step 2.
Step 2. (Armĳo linesearch rule) Find mk as the smallest positive integer number

m satisfying
zk,m = (1− ηm)xk + ηmyk :

⟨wk,m, xk − yk⟩ ≥ 1
ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
with wk,m ∈ ∂2f(z

k,m, zk,m).

(3.1)

Step 3. Set ηk := ηmk , zk := zk,mk , wk := wk,mk . Take

Ck := {x ∈ C : ⟨wk, x− zk⟩ ≤ 0}, uk := PCk
(xk). (3.2)

Step 4. xk+1 = PC(u
k − λkG(uk)) and go to Step 1 with k is replaced by k + 1.

Remark 3.1. (i) If yk = xk then xk is a solution to EP(C, f ).
(ii) wk ̸= 0 ∀k, indeed, at the begining of Step 2, xk ̸= yk. By the Armĳo

linesearch rule and δ­strong convexity of h, we have

⟨wk, xk − yk⟩ ≥ 1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
≥

≥ δ

ρ
∥xk − yk∥2 > 0.

Now we are going to analyze the validity and convergence of the algorithm. Some
parts in our proofs are based on the proof scheme in [13].

Lemma 3.2. Under Assumptions (A1), (A2), (A3), and (A4), the linesearch rule
(3.1) is well­defined in the sense that, at each iteration k, there exists an integer
number m > 0 satisfying the inequality in (3.1) for every wk,m ∈ ∂2f(z

k,m, zk,m),
then for every solution x∗ of EP(C, f ), one has

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥uk − x̄k∥2 −
( ηkδ

ρ∥wk∥
)2∥xk − yk∥4

− 2λk⟨uk − x∗, G(uk)⟩+ λ2
k∥G(uk)∥2 ∀k.

(3.3)

where x̄k = PH
zk
(xk).

Proof. First we prove that there exists a positive integer m0 such that

⟨wk,m0 , xk − yk⟩ ≥ 1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
∀wk,m0 ∈ ∂2f(z

k,m0 , zk,m0).

Indeed, suppose by contradiction that, for every positive integer m and zk,m =
(1− ηm)xk + ηmyk there exists wk,m ∈ ∂2f(z

k,m, zk,m) such that

⟨wk,m, xk − yk⟩ < 1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
.
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Since zk,m −→ xk as m −→ ∞, by Theorem 24.5 in [20], the sequence {wk,m}∞m=1

is bounded. Thus we may assume that wk,m −→ w̄ for some w̄. Taking the limit
as m −→ ∞, from zk,m −→ xk and wk,m −→ w̄, by Lemma 2.7, it follows that
w̄ ∈ ∂2f(x

k, xk) and

⟨w̄, xk − yk⟩ ≤ 1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
. (3.4)

Since w̄ ∈ ∂2f(x
k, xk), we have

f(xk, yk) ≥ f(xk, xk) + ⟨w̄, yk − xk⟩ = ⟨w̄, yk − xk⟩.

Combining with (3.4) yields

f(xk, yk) +
1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
≥ 0,

which contradicts to the fact that

f(xk, yk) +
1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
< 0.

Thus, the linesearch is well defined.
Now we prove (3.3). For simplicity of notation, let dk := xk − yk, Hk := Hzk .

Since uk = PC∩Hk
(x̄k) and x∗ ∈ Sf , by Lemma 2.6, x∗ ∈ C ∩Hk, we have

∥uk − x̄k∥2 ≤ ⟨x∗ − x̄k, uk − x̄k⟩

which together with

∥uk − x∗∥2 = ∥x̄k − x∗∥2 + ∥uk − x̄k∥2 + 2⟨uk − x̄k, x̄k − x∗⟩

implies
∥uk − x∗∥2 ≤ ∥x̄k − x∗∥2 − ∥uk − x̄k∥2. (3.5)

Replacing

x̄k = PHk
(xk) = xk − ⟨wk, xk − zk⟩

∥wk∥2
wk

into (3.5) we obtain

∥uk−x∗∥2 ≤ ∥xk−x∗∥2−∥uk−x̄k∥2−2⟨wk, xk−x∗⟩ ⟨w
k, xk − zk⟩
∥wk∥2

+
⟨wk, xk − zk⟩2

∥w∥2
.

Substituting xk = zk + ηkd
k into the last inequality we get

∥uk − x∗∥2 ≤ ∥xk − x∗∥2 −∥uk − x̄k∥2 +
(ηk⟨wk, dk⟩

∥wk∥

)2

− 2ηk⟨wk, dk⟩
∥wk∥2

⟨wk, xk − x∗⟩

= ∥xk − x∗∥2 − ∥uk − x̄k∥2 −
(ηk⟨wk, dk⟩

∥wk∥

)2

− 2ηk⟨wk, dk⟩
∥wk∥2

⟨wk, zk − x∗⟩.

In addition, by the Armĳo linesearch rule, using the δ­strong convexity of h we
have

⟨wk, xk − yk⟩ ≥ 1

ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
≥ δ

ρ
∥xk − yk∥2.

Note that x∗ ∈ Hk we can write

∥uk − x∗∥2 ≤ ∥xk − x∗∥2 − ∥uk − x̄k∥2 −
( ηkδ

ρ∥wk∥

)2

∥xk − yk∥4. (3.6)

We have
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∥xk+1 − x∗∥2 = ∥PC(u
k − λkG(uk))− PC(x

∗)∥2 ≤ ∥uk − x∗ − λkG(uk))∥2

= ∥uk − x∗∥2 − 2λk⟨uk − x∗, G(uk)⟩+ λ2
k∥G(uk)∥2,

which together with (3.6) implies

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − ∥uk − x̄k∥2 −
( ηkδ

ρ∥wk∥
)2∥xk − yk∥4

− 2λk⟨uk − x∗, G(uk)⟩+ λ2
k∥G(uk)∥2 ∀k

(3.7)

as desired.
□

Lemma 3.3. The sequences {xk}, {uk} generated by the Algorithm 1, are bounded
under Assumptions (A1), (A2), (A3), and (A4).

Proof. We have

∥xk+1 − x∗∥ = ∥PC(u
k − λkG(uk))− PC(x

∗)∥ ≤ ∥uk − λkG(uk)− x∗∥

≤ ∥(uk − λkG(uk))− (x∗ − λkG(x∗))∥+ λk∥G(x∗)∥

= ∥(1− L2λk

β
)(uk − x∗)− L2λk

β

[
(
β

L2
G− I)uk − (

β

L2
G− I)x∗]∥

+ λk∥G(x∗)∥

≤ (1− L2λk

β
)∥uk − x∗∥+ L2λk

β
Tk + λk∥G(x∗)∥,

(3.8)
where Tk = ∥( β

L2G− I)uk − ( β
L2G− I)x∗∥.

Since G is L­Lipschitz and β­strongly monotone, we have

T 2
k = ∥ β

L2
(G(uk)−G(x∗))− (uk − x∗)∥2

=
β2

L4
∥G(uk)−G(x∗)∥2 − 2

β

L2
⟨G(uk)−G(x∗), uk − x∗⟩+ ∥uk − x∗∥2

≤ β2

L2
∥uk − x∗∥2 − 2

β2

L2
∥uk − x∗∥2 + ∥uk − x∗∥2

= (1− β2

L2
)∥uk − x∗∥2.

Hence Tk ≤
√

1− β2

L2 ∥uk − x∗∥. Then combining with (3.8) we get

∥xk+1 − x∗∥ ≤ (1− λk
L2

β
(1−

√
1− β2

L2
))∥uk − x∗∥+ λk∥G(x∗)∥

= (1− λk
L2

β
γ)∥uk − x∗∥+ λk∥G(x∗)∥

= (1− γk)∥uk − x∗∥+ γk(
β

L2γ
∥G(x∗)∥)

where, γ = 1−
√
1− β2

L2 and γk = λk
L2

β γ ∈ (0; 1).

By induction we get
∥xk+1 − x∗∥ ≤ max{∥xk − x∗∥, β

L2γ ∥F (x∗)∥} ≤ ... ≤ max{∥x0 − x∗∥, β
L2γ ∥F (x∗)∥}.

Hence {xk} is bounded, which, from (3.6), implies that {uk} is bounded too. □
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Lemma 3.4. There exists a subsequence {xki} ⊂ {xk} converges to some x̄ ∈ C
such that {yki}, {zki}, {wki} are bounded.

Proof. First, we show that there exists M > 0 such that ∥xki − yki∥ ≤ M for all
i large enough.

Indeed, from the δ­strong convexity of the function

fki(.) = ρf(xki , .) + h(y)− h(xki)− ⟨∇h(xki), .− xki⟩

we have

⟨s(xki)− s(yki), xki − yki⟩ ≥ δ∥xki − yki∥2, ∀s(xki) ∈ ∂fki
(xki), ∀s(yki) ∈ ∂fki

(yki)

which implies

⟨s(xki), xki − yki⟩ ≥ ⟨s(yki), xki − yki⟩+ δ∥xki − yki∥2.

Since yki = argmin{fki(y) : y ∈ C}, we have 0 ∈ ∂fki(y
ki) + NC(y

ki) which, by
necessary and sufficient optimality condition for convex programming,is equiva­
lent to ⟨s(yki), y − yki⟩ ≥ 0 ∀y ∈ C, in particular, ⟨s(yki), xki − yki⟩ ≥ 0. Thus
⟨s(xki), xki − yki⟩ ≥ δ∥xki − yki∥2, which implies

∥xki − yki∥ ≤ 1√
δ
∥s(xki)∥, ∀s(xki) ∈ ∂fki(x

ki). (3.9)

Since xki −→ x̄ by Theorem 24.5 in [20] there exists an integer number i0 > 0,
large enough such that

∂2f(x
ki , xki) ⊂ ∂2f(x̄, x̄) +B[0; 1], ∀i > i0 (3.10)

where B[0; 1] denotes the closed unit ball of Rn.
In addition, s(xki) ∈ ∂fki

(xki) = ρ∂2f(x
ki , xki) ∀i and the set ∂2f(x̄, x̄) is

bounded, we deduce from (3.9) and (3.10) that {∥xki − yki∥} is bounded. So
that, combining with Lemma 3.3 we get the boundedness of {yki}. By definition of
zki : zki = (1−ηki)x

ki+ηkiy
ki it implies that {zki} is also bounded. Without loss of

generality we may assume that zki converges to some z̄. Since wki ∈ ∂2f(z
ki , zki),

by again Theorem 24.5 in [20] we get the boundedness of the subsequence {wki}.
□

Lemma 3.5. If the subsequence {xki} ⊂ {xk} converges to some x̄ and

∥yki − xki∥4( ηki

∥wki∥
)2 −→ 0 as i −→ ∞ (3.11)

then x̄ ∈ Sf .

Proof. We will consider two distinct cases:
Case 1. Inf ηki

∥wki∥ > 0. Then by (3.11), one has limi−→∞ ∥yki − xki∥ = 0, thus
yki −→ x̄ and zki −→ x̄.

From definition of yki we have
f(xki , y) + 1

ρ [h(y)− h(xki)− ⟨∇h(xki), y − xki⟩]

≥ f(xki , yki) +
1

ρ
[h(yki)− h(xki)− ⟨∇h(xki), yki − xki⟩], ∀y ∈ C

by the continuity of h,∇h, we get in the limit as i −→ ∞ that

f(x̄, y) +
1

ρ
[h(y)− h(x̄)− ⟨∇h(x̄), y − x̄⟩] ≥ 0, ∀y ∈ C

this fact shows that x̄ ∈ Sf .
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Case 2. Lim ηki

∥wki∥ = 0. By the linesearch rule and τ ­strong convexity of h we
have

⟨wki , xki − yki⟩ ≥ 1

ρ

[
h(yki)− h(xki)− ⟨∇h(xki), yki − xki⟩

]
≥ τ

ρ
∥xki − yki∥2.

Thus ∥yki − xki∥ ≤
√

ρ
τ ∥w

ki∥.
From the boundedness of {wki} and (3.11) it follows ηki −→ 0, so that

zki = (1−ηki)x
ki +ηkiy

ki −→ x̄ as i −→ ∞. Without loss of generality, we suppose
that wki −→ w̄ ∈ ∂2f(x̄, x̄) and yki −→ ȳ as i −→ ∞.

We have
f(xki , y) + 1

ρ [h(y)− h(xki)− ⟨∇h(xki), y − xki⟩]

≥ f(xki , yki) +
1

ρ
[h(yki)− h(xki)− ⟨∇h(xki), yki − xki⟩], ∀y ∈ C

letting i −→ ∞, we obtain in the limit that
f(x̄, y) + 1

ρ [h(y)− h(x̄)− ⟨∇h(x̄), y − x̄⟩]

≥ f(x̄, ȳ) +
1

ρ
[h(ȳ)− h(x̄)− ⟨∇h(x̄), ȳ − x̄⟩] ∀y ∈ C.

In the other hand, by the linesearch rule (3.1), for mki−1 there exists wki,mki
−1 ∈

∂2f(z
ki,mki

−1, zki,mki
−1) such that

⟨wmki
−1, xki − yki⟩ < 1

ρ

[
h(yki)− h(xki)− ⟨∇h(xki), yki − xki⟩

]
. (3.12)

Letting i −→ ∞ and combining with zki,mki
−1 −→ x̄, wki,mki

−1 −→ w̄ ∈ ∂2f(x̄, x̄)
we obtain in the limit from (3.12) that

⟨w̄, x̄− ȳ⟩ ≤ 1

ρ

[
h(ȳ)− h(x̄)− ⟨∇h(x̄), ȳ − x̄⟩

]
.

Note that w̄ ∈ ∂f(x̄, ȳ), it follows from the last inequality that,

f(x̄, ȳ) +
1

ρ

[
h(ȳ)− h(x̄)− ⟨∇h(x̄), ȳ − x̄⟩

]
≥ 0.

Hence
f(x̄, y) +

1

ρ

[
h(y)− h(x̄)− ⟨∇h(x̄), y − x̄⟩

]
≥ 0, ∀y ∈ C,

which shows that x̄ ∈ Sf . □
Now we are in a position to prove the convergence of the proposed algorithm.

Theorem 3.6. Suppose that the solution set Sf of EP(C, f ) is nonempty and that the
function h(.), the sequence {λk} satisfying the conditions (B1), (B2) respectively.
Then under Assumptions (A1), (A2), (A3), and (A4), the sequence {xk} generated
by Algorithm 1 converges to the unique solution x∗ of VIEP(C, f,G).

Proof. By Lemma 3.2 we have

∥xk+1 − x∗∥2 − ∥xk − x∗∥2 +
( ηkδ

ρ∥wk∥

)2

∥xk − yk∥4 ≤ −2λk⟨uk − x∗, G(uk)⟩

+ λ2
k∥G(uk)∥2 ∀k.

(3.13)
From the boundedness of {uk} and {G(uk)} it implies that, there exist positive

numbers A,B such that

|⟨uk − x∗, G(uk)⟩| ≤ A, ∥G(uk)∥2 ≤ B ∀k.
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By setting ak = ∥xk − x∗∥2, and combining with the last inequalities, (3.13)
becomes

ak+1 − ak +
( ηkδ

ρ∥wk∥

)2

∥xk − yk∥4 ≤ 2λkA+ λ2
kB. (3.14)

We will consider two distinct cases:
Case 1. There exists k0 such that {ak} is decreasing when k ≥ k0.
Then there exists limk−→∞ ak = a, taking the limit on both sides of (3.14) we get

lim
k−→∞

( ηkδ

ρ∥wk∥

)2

∥xk − yk∥4 = 0. (3.15)

In addition,
∥xk+1 − uk∥ = ∥PC(u

k − λkG(uk))− PC(u
k)∥

≤ ∥uk − λkG(uk)− uk∥

= λk∥G(uk)∥ −→ 0 as k −→ ∞.

(3.16)

From the boundedness of {uk} it implies that, there exists {uki} ⊂ {uk} and
uki −→ ū ∈ C such that lim inf⟨uk − x∗, G(x∗)⟩ = limi−→∞⟨uki − x∗, G(x∗)⟩.

Combining this fact with (3.15) and (3.16) we obtain

xki+1 −→ ū and
( ηki+1δ

ρ∥wki+1∥

)2

∥xki+1 − yki+1∥4 −→ 0 as i −→ ∞.

By Lemma 3.5 we get ū ∈ Sf . Thus

lim inf
k−→∞

⟨uk − x∗, F (x∗)⟩ = lim
i−→∞

⟨uki − x∗, G(x∗)⟩ = ⟨ū− x∗, G(x∗)⟩ ≥ 0.

Since F is β­strongly monotone, one has

⟨uk − x∗, G(uk)⟩ = ⟨uk − x∗, G(uk)−G(x∗)⟩+ ⟨uk − x∗, G(u∗)⟩

≥ β∥uk − x∗∥2 + ⟨uk − x∗, G(u∗)⟩.

Taking the limit as k −→ ∞ and remember that a = lim ∥uk − x∗∥2 we get

lim inf
k−→∞

⟨uk − x∗, G(uk)⟩ ≥ βa. (3.17)

If a > 0 , then by choosing ϵ = 1
2βa, from (3.17) it implies that, there exists

k0 > 0 such that

⟨uk − x∗, G(uk)⟩ ≥ 1

2
βa, ∀k ≥ k0.

From (3.13) we get

ak+1 − ak ≤ −λkβa+ λ2
kB, ∀k ≥ k0

and thus summing up from k0 to k we have

ak+1 − ak0 ≤ −
k∑

j=k0

λjβa+B
k∑

j=k0

λ2
j

combining this fact with
∑∞

k=0 λk = ∞ and
∑∞

k=0 λ
2
k < ∞ we obtain

lim inf ak = −∞, which is a contradiction.
Thus we must have a = 0. i.e., limk−→∞ ∥xk − x∗∥ = 0.
Case 2. There exists a subsequence {aki}i≥0 ⊂ {ak}k≥0 such that aki < aki+1

for all i ≥ 0. In this situation, we consider the sequence of indices {σ(k)} defined
as in Lemma 2.9. It follows that aσ(k)+1 − aσ(k) ≥ 0, which by (3.14) amounts to( ησ(k)δ

ρ∥wσ(k)∥

)2

∥xσ(k) − yσ(k)∥4 ≤ 2λσ(k)A+ λ2
σ(k)B.
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Therefore

lim
k−→∞

( ησ(k)δ

ρ∥wσ(k)∥

)2

∥xσ(k) − yσ(k)∥4 = 0.

From the boundedness of {xσ(k)}, without loss of generality we may assume
that xσ(k) −→ x̄. By Lemma 3.5 we get x̄ ∈ Sf .

In addition, uσ(k) = PC∩Hσ(k)
(xσ(k)) = PCσ(k)

(xσ(k)).
Then combining with Lemma 2.6 we have

∥uσ(k) − x̄∥ ≤ ∥xσ(k) − x̄∥ −→ 0 as k −→ ∞

so that limk−→∞ uσ(k) = x̄.
By ( 3.13) we get

2λσ(k)⟨uσ(k) − x∗, G(uσ(k))⟩ ≤ aσ(k) − aσ(k)+1 −
( ησ(k)δ

ρ∥gσ(k)∥

)2

∥xσ(k) − yσ(k)∥4

+ λ2
σ(k)∥G(uσ(k))∥2 ≤ λ2

σ(k)B

which implies

⟨uσ(k) − x∗, G(uσ(k))⟩ ≤
λσ(k)

2
B. (3.18)

Since G is β­strongly monotone, we have

β∥uσ(k) − x∗∥2 ≤ ⟨uσ(k) − x∗, G(uσ(k))−G(x∗)⟩

= ⟨uσ(k) − x∗, G(uσ(k))⟩ − ⟨uσ(k) − x∗, G(x∗)⟩
which combining with (3.18) we get

∥uσ(k) − x∗∥2 ≤ 1

β

[λσ(k)

2
B − ⟨uσ(k) − x∗, G(x∗)⟩

]
so that

lim
k−→∞

∥uσ(k) − x∗∥2 ≤ −⟨uσ(k) − x∗, G(x∗)⟩ ≤ 0

which amounts to
lim

k−→∞
∥uσ(k) − x∗∥ = 0. (3.19)

In addition,

∥xσ(k)+1 − uσ(k)∥ = ∥PC(u
σ(k) − λσ(k)G(uσ(k)))− P(u

σ(k))∥

≤ λσ(k)∥G(uσ(k))∥ −→ 0 as k −→ ∞

which together with (3.19), one has limk−→∞ xσ(k)+1 = x∗, which means that
limk−→∞ aσ(k)+1 = 0.

By (2.3) in Lemma 2.9 we have

0 ≤ ak ≤ aσ(k)+1 −→ 0 as k −→ ∞.

Thus {xk} converges to x∗. □

4. Application to Minimizing the Euclidean Norm with Pseudomomotone
Equilibrium Constraints

In this section, we consider the problem:

min{∥x− xg∥2 : x ∈ Sf}, MNEP(C, f)

where xg ∈ C is given (plays the role of a guess­solution of EP(C, f )) and Sf is the
solution set of problem EP(C, f ). This problem arises in the Tikhonov regularization
method for pseudomonotone equilibrium problems, see, e.g., [8]. In this case, by
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choosing G(x) = x − xg, the problem MNEP(C, f ) becomes to the one in the form
of VIEP(C, f,G).

It is well known that, under Assumptions (A1), (A2) and (A3), the solution set
Sf of EP(C, f ) is a closed convex set. As we have mentioned that the main diffi­
culty in problem MNEP(C, f ) is that its feasible domain Sf , although is convex, it
is not given explicitly as in a standard mathematical programming problem. In the
sequel, we always suppose that Assumptions (A1), (A2), and (A3) are satisfied. The
algorithm for this case takes the form.

Algorithm 2. Take x1 := xg ∈ C and choose parameters ρ > 0, η, ∈ (0, 1).
At each iteration k = 1, 2, .. having xk do the following steps:
Step 1. Solve the strongly convex program

min
{
f(xk, y) +

1

ρ

[
h(y)− h(xk)− ⟨∇h(xk), y − xk⟩

]
: y ∈ C

}
CP (xk)

to obtain its unique solution yk. If xk = yk, take uk := xk and go to Step 4.
Step 2. Find mk as the smallest positive integer number m such that

zk,m = (1− ηm)xk + ηmyk :

⟨wk,m, xk − yk⟩ ≥ 1
ρ

[
h(yk)− h(xk)− ⟨∇h(xk), yk − xk⟩

]
with wk,m ∈ ∂2f(z

k,m, zk,m).

(4.1)

Set ηk := ηmk , zk := zk,mk , wk = wk,m.
Step 3. Take uk := PCk

(xk), where

Ck := {x ∈ C : ⟨wk, x− zk⟩ ≤ 0}. (4.2)

Step 4.
xk+1 := λkx

g + (1− λk)u
k (4.3)

Repeat iteration k with k is replaced by k + 1.
Similar to Theorem 3.1, we have the following theorem

Theorem 4.1. Under Assumptions (A1) (A2), (A3), and (B1), (B2), the sequence
{xk} generated by Algorithm 2 converges to the unique solution x∗ of MNEP(C, f ).

Conclusion. We have proposed an explicit hybrid extragradient algorithm for
solving the variational inequality problems with equilibrium problems constraint,
where the bifunction is pseudomonotone with respect to its solution set. The
convergence of the algorithm is obtained, and a special case of this problem is con­
sidered.
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