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ABSTRACT. In this paper, we introduce implicit and explicit iterative methods for finding
a common element of the set of solutions of a variational inequality and the set of common
fixed points for a countable family of nonexpansive mappings in a Hilbert space. For these
methods, we prove some strong convergence theorems. These theorems improve and extend
some results of Yao et al. [21] and Xu [20].
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1. INTRODUCTION

Let H be a real Hilbert space and A be a bounded operator on H. In this paper,
we assume A is strongly positive; that is, there exists a constant γ > 0 such that
⟨Ax, x⟩ ≥ γ∥x∥2, for all x ∈ H. A typical problem is that of minimizing a quadratic
function over the set of the fixed points of nonexpansive mapping on a real Hilbert
space:

min
x∈F (S)

1

2
⟨Ax, x⟩ − ⟨x, b⟩,

where b is a given point in H.
We recall a mapping T of H into itself is called nonexpansive, if ∥Tx − Ty∥ ≤

∥x−y∥ for all x, y ∈ H. Let F (T ) denote the fixed points set of T , and a contraction
on H is a self­mapping f of H such that ∥f(x)− f(y)∥ ≤ α∥x− y∥ for all x, y ∈ H,
where α ∈ [0, 1) is a constant.

Finding an optimal point in the intersection F of the fixed points set of a family
of nonexpansive mappings is one that occurs frequently in various areas of math­
ematical sciences and engineering. For example, the well­known convex feasibility
problem reduces to finding a point in the intersection of the fixed points set of
a family of nonexpansive mappings; see, e.g., [3, 5]. The problem of finding an
optimal point that minimizes a given cost function Θ : H → R over F is of wide
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interdisciplinary interest and practical importance see, e.g., [2, 4, 6, 23]. A simple
algorithmic solution to the problem of minimizing a quadratic function over F is of
extreme value in many applications including the set theoretic signal estimation,
see, e.g., [23, 9]. The best approximation problem of finding the projection PF (a)
(in the norm induced by inner product of H ) from any given point a in H is the
simplest case of our problem.

In 2006, Marino and Xu [10] considered an iterative method for a single non­
expansive mapping. Let f be a contraction on H and A : H → H be a strongly
positive bounded linear operator. Starting with an arbitrary initial x0 ∈ H, define
a sequence {xn} recursively by

xn+1 = αnγf(xn) + (I − αnA)Txn, n ≥ 0, (1.1)

where γ > 0 is a constant and {αn} is a sequence in (0, 1) satisfying the following
conditions:

(I) limn→∞ αn = 0;
(II)

∑∞
n=1 αn = ∞;

(III)
∑∞

n=1 |αn − αn+1| <∞ or limn→∞
αn

αn+1
= 1.

Consequently, Marino and Xu [10] proved the sequence {xn} generated by (1.1)
converges strongly to the unique solution of the following variational inequality:

⟨(A− γf)x∗, x∗ − x⟩ ≤ 0, for all x ∈ F (T ),

which is the optimality condition for minimization problem

min
x∈F (T )

1

2
⟨Ax, x⟩ − h(x),

where h is a potential function for γf (i.e., h′(x) = γf(x) for x ∈ H).
In 2012, Razani and Yazdi [13] study convergence of a composite iterative scheme
which generalizes iterative sequence (1.1).

In 2008, Yao et al. [21] introduced the iterative sequence

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)Wnxn, for all n ≥ 0, (1.2)

where Wn is the W ­mapping generated by an infinite countable family of nonex­
pansive mappings T1, T2, . . . , Tn, . . . and λ1, λ2, . . . , λn, . . . such that the common
fixed points set F :=

∩∞
n=1 F (Tn) ̸= ∅. Under very mild conditions on the param­

eters, it was proved the sequence {xn} converges strongly to p ∈ F where p is the
unique solution in F of the following variational inequality:

⟨(A− γf)p, p− x∗⟩ ≤ 0, for all x∗ ∈ F, (1.3)

which is the optimality condition for minimization problem

min
x∈F

1

2
⟨Ax, x⟩ − h(x).

In this paper, motivated by Yao et al. [21] and Rhoades [14], we introduce an
implicit and explicit iterative schemes for finding a common element of the set
of solutions of a variational inequality and the set of common fixed points for a
countable family of nonexpansive mappings in a Hilbert space. Then, we prove
some strong convergence theorems which improve and extend some results of Yao
et al. [21] and Xu [20].

Now, we collect some lemmas which will be used in the main result.

Lemma 1.1. [10] Assume A is a strongly positive bounded linear operator on a
Hilbert space H with coefficient γ > 0 and 0 < ρ ≤ ∥A∥−1. Then ∥I − ρA∥ ≤ 1− ργ.
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Lemma 1.2. Let H be a real Hilbert space. Then, for all x, y ∈ H
(I) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;
(II) ∥x+ y∥2 ≥ ∥x∥2 + 2⟨y, x⟩.
Lemma 1.3. [17] Let {xn} and {yn} be bounded sequences in Banach space X and
{βn} a sequence in [0, 1] with 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose
xn+1 = (1 − βn)yn + βnxn for all integer n ≥ 0 and lim supn→∞(∥yn+1 − yn∥ −
∥xn+1 − xn∥) ≤ 0. Then limn→∞ ∥xn − yn∥ = 0.

Lemma 1.4. [16] Assume {sn} and {γn} are two sequences of nonnegative real
numbers such that

sn+1 ≤ sn − rnΨ(sn) + γn, n ≥ 1,

where Ψ is a continuous and strict increasing function on [0,∞) with Ψ(0) = 0 and
{rn} is a sequence of positive numbers satisfying the conditions:
(I)

∑∞
n=1 rn = ∞;

(II) lim supn→∞
γn

rn
= 0.

Then limn→∞ sn = 0.

Lemma 1.5. [19] Assume {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that
(I)

∑∞
n=1 γn = ∞;

(II) lim supn→∞
δn
γn

≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ an = 0.

2. MAIN RESULTS

Let H be a real Hilbert space with inner product ⟨., .⟩ and the norm ∥.∥. We de­
note weak convergence and strong convergence by notation ⇀ and →, respectively.
Let {Tn}∞n=1 be a sequence of nonexpansive self­mappings on H and {λn}∞n=1 be a
sequence of nonnegative numbers in [0, 1]. For any n ≥ 1, define a mapping Wn of
H into itself as follows:

Un,n+1 = I,
Un,n = λnTnUn,n+1 + (1− λn)I,
...
Un,k = λkTkUn,k+1 + (1− λk)I,
Un,k−1 = λk−1Tk−1Un,k + (1− λk−1)I,
...
Un,2 = λ2T2Un,3 + (1− λ2)I,
Wn = Un,1 = λ1T1Un,2 + (1− λ1)I.

(2.1)

Such a mapping Wn is called the W−mapping generated by Tn, Tn−1, . . . , T1 and
λn, λn−1, . . . , λ1.

Lemma 2.1. [15] Let C be a nonempty closed convex subset of a strictly convex
Banach space X, {Tn}∞n=1 be a sequence of nonexpansive self­mappings on C such
that

∩∞
n=1 F (Tn) ̸= ∅ and {λn}∞n=1 be a sequence of positive numbers in [0, b] for

some b ∈ (0, 1). Then, for every x ∈ C and k ≥ 1, the limit limn→∞ Un,kx exists.

Remark 2.2. [22] It can be known from Lemma 2.1 that ifD is a nonempty bounded
subset of C, then for ε > 0 there exists n0 ≥ k such that for all n > n0

sup
x∈D

∥Un,kx− Ukx∥ ≤ ε.
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Remark 2.3. [22] Using Lemma 2.1, one can define mapping W : C → C as
follows:

Wx = lim
n→∞

Wnx = lim
n→∞

Un,1x,

for all x ∈ C. Such a W is called the W−mapping generated by {Tn}∞n=1 and
{λn}∞n=1. Since Wn is nonexpansive, W : C → C is also nonexpansive.

If {xn} is a bounded sequence in C, then we put D = {xn : n ≥ 0}. Hence, it is
clear from Remark 2.2 that for an arbitrary ε > 0 there exists N0 ≥ 1 such that for
all n > N0

∥Wnxn −Wxn∥ = ∥Un,1xn − U1xn∥ ≤ sup
x∈D

∥Un,1x− U1x∥ ≤ ε.

This implies
lim
n→∞

∥Wnxn −Wxn∥ = 0.

Throughout this paper, we assume {λn}∞n=1 is a sequence of positive numbers
in [0, b] for some b ∈ (0, 1).

Lemma 2.4. [15] Let C be a nonempty closed convex subset of a strictly convex
Banach space X, {Tn}∞n=1 be a sequence of nonexpansive self­mappings on C such
that

∩∞
n=1 F (Tn) ̸= ∅ and {λn}∞n=1 be a sequence of positive numbers in [0, b] for

some b ∈ (0, 1). Then F (W ) =
∩∞

n=1 F (Tn).

Definition 2.5. [18] A self­mapping f : C → C is called weak contraction with the
function Ψ if there exists a continuous and nondecreasing function Ψ : [0,∞) →
[0,∞) such that Ψ(s) > 0, for all s > 0, Ψ(0) = 0, lims→∞ Ψ(s) = +∞ and for any
x, y ∈ C, ∥f(x)− f(y)∥ ≤ ∥x− y∥ −Ψ(∥x− y∥).

Remark 2.6. Clearly a contraction with constant k must be a weak contraction,
where Ψ(s) = (1− k)s, but the converse is not true.

Example 2.7. [1] The mapping Ax = sinx from [0, 1] to [0, 1] is a weak contraction
with Ψ(s) = s3

8 . But A is not a contraction. Indeed, suppose that A is a contraction
with constant k ∈ (0, 1), i.e.,

| sinx− sin y| ≤ k|x− y|, for all x, y ∈ [0, 1]. (2.2)

Since limx→0
sin x
x = 1, taking ε = 1 − k, there exists δ > 0 as 0 < x < δ, we have

| sin x
x − 1| < 1 − k. Therefore k < | sin x−sin 0

x−0 |, i.e., k|x − 0| < | sinx − sin 0|, which
contradicts the assumption of (2.2). Thus A is not a contraction.

Lemma 2.8. [14] Let (X, d) be a complete metric space and f : X → X be a weak
contraction. Then f has a unique fixed point in X.

Lemma 2.9. [7] Let H be a real Hilbert space, C be a closed convex subset of H
and T : C → C be a nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in
C weakly converging to x and if {(I − T )xn} converges to y, then (I − T )x = y.

Lemma 2.10. [8] Let {Tn} be a sequence of nonexpansive mapping on a closed
convex subset C of H and A be a strongly positive bounded linear operator on H
with coefficient 0 < γ ≤ γ. Let {αn} and {βn} be two sequences in [0, 1] with
limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and lim supn→∞ βn < 1. Define a sequence {yn} by

y1 ∈ C and
yn+1 = αnγu+ βnyn + ((1− βn)I − αnA)Tnyn,

for all n ∈ N. Suppose the sequence {yn} converges strongly. Set Pu = limn→∞ yn,
for each u ∈ C. Then, the following hold:
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(I) Pu does not depend on the initial point y1;
(II) P is a nonexpansive mapping on C.

Lemma 2.11. [16] LetX be a Banach space , f be a weak contraction with a function
Ψ on X and T be a nonexpansive mapping on X. Then, the composite mapping Tf
is a weak contraction.

It is easy to see the following lemma.

Lemma 2.12. Let H be a real Hilbert space, f : H → H be a weak contraction and
A be a strongly positive bounded linear operator with coefficient γ > 0. Then, for
0 < γ < γ

⟨(A− γf)x− (A− γf)y, x− y⟩ ≥ (γ − γ)∥x− y∥2, for all x, y ∈ C.

That is, A− γf is strongly monotone with coefficient γ − γ.

Let A be a strongly positive bounded linear operator on H with coefficient γ > 0.
Let 0 < γ ≤ γ where γ is some constant. First, we give our implicit iterative scheme
as follows: let {tn} be a sequence in (0, 1) such that tn ≤ ∥A∥−1, for all n ≥ 1 and
u ∈ H. For each n ≥ 1, define a mapping Stn : H → H by

Stn(x) = tnγu+ (I − tnA)Wnx, x ∈ H.

It is easy to see that for each tn ∈ (0, 1), n ≥ 1, Stn is a weak contraction on H.
Indeed, by Lemma 1.1,

∥Stn(x)− Stn(y)∥ ≤ tnγ∥u− u∥+ ∥(I − tnA)(Wnx−Wny)∥
≤ (1− tnγ)∥x− y∥.

By Banach contraction principle, for each n ∈ N, there exists a unique element
zn ∈ H of Stn such that

zn = tnγu+ (I − tnA)Wnzn, for all n ≥ 1. (2.3)

Theorem 2.1. Let H be a real Hilbert space and {Tn}∞n=1 be an infinite family
of nonexpansive mappings of H into itself which satisfies F :=

∩∞
n=1 F (Tn) ̸= ∅.

Let {zn} be defined by (2.3) and tn ∈ (0, 1) such that limn→∞ tn = 0. Then {zn}
converges strongly to p ∈ F which is the unique solution of the following variational
inequality:

⟨Ap− γu, p− x∗⟩ ≤ 0, for all x∗ ∈ F. (2.4)

Proof. First, we show the uniqueness of the solution of the variational inequality
(2.4). In fact, if p, q are two distinct solutions of the variational inequality (2.4),
then

⟨Ap− γu, p− q⟩ ≤ 0 and ⟨Aq − γu, q − p⟩ ≤ 0.

Adding up these two inequalities, we have

⟨(Ap− γu)− (Aq − γu), p− q⟩ ≤ 0.

But the strong monotonicity of A − γu (Lemma 2.12) implies that p = q. We use
p ∈ F to denote the unique solution of variational inequality (2.4). Thus, for p ∈ F

zn − p = tn(γu−Ap) + (I − tnA)(Wnzn − p). (2.5)

From (2.5),

∥zn − p∥2 = tn⟨γu−Ap, zn − p⟩+ ⟨(I − tnA)(Wnzn − p), zn − p⟩
≤ tn⟨γu−Ap, zn − p⟩+ (1− tnγ)∥zn − p∥2. (2.6)
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Simplifying (2.6), we have

∥zn − p∥2 ≤ 1

γ
⟨γu−Ap, zn − p⟩. (2.7)

Hence, {zn} is bounded, so are {AWnzn}. Therefore

lim
n→∞

∥zn −Wnzn∥ = lim
n→∞

tn∥γu−AWnzn∥ = 0. (2.8)

Take a subsequence {znk
} of {zn} such that

lim sup
n→∞

⟨γu−Ap, zn − p⟩ = lim
k→∞

⟨γu−Ap, znk
− p⟩.

Since {znk
} is bounded in H, without loss of generality, we assume znk

⇀ z ∈ H.
It follows from (2.8) and Remark 2.3 that z ∈ F (W ). So

lim sup
n→∞

⟨γu−Ap, zn − p⟩ = ⟨γu−Ap, z − p⟩ ≤ 0.

From (2.7), limn→∞ znk
= z. Next, we prove z solves the variational inequality

(2.4). From (2.3),

Azn − γu =
−1

tn
(I − tnA)(zn −Wnzn).

Thus, for q ∈ F

⟨Azn − γu, zn − q⟩ = −1
tn

⟨(I − tnA)(zn −Wnzn), zn − q⟩

= −1
tn

⟨(I −Wn)zn − (I −Wn)q, zn − q⟩+

⟨A(I −Wn)zn, zn − q⟩

≤ ⟨A(I −Wn)zn, zn − q⟩,

(2.9)

since I −Wn is monotone (i.e.,⟨(I −Wn)x − (I −Wn)y, x − y⟩ ≥ 0 for x, y ∈ H.
This is due to the nonexpansivity of Wn). Now, replacing zn in (2.9) with znk

and
letting k → ∞. Note that limn→∞ znk

= z which implies

⟨Az − γu, z − q⟩ ≤ 0.

That is, z ∈ F is a solution of the variational inequality (2.4) and hence z = p by
uniqueness. Since each cluster point of {zn} equals p, zn → p as n → ∞. This
completes the proof. □

Theorem 2.2. Let H be a real Hilbert space, {Tn}∞n=1 be an infinite family of nonex­
pansive mappings of H into itself which satisfies F :=

∩∞
n=1 F (Tn) ̸= ∅ and A be a

strongly positive bounded linear operator on H with coefficient γ > 0. Let 0 < γ < γ
where γ is some constant. Let {zn} be defined by

zn = tnγf(zn) + (I − tnA)Wnzn, for all n ≥ 1, (2.10)

where f : H → H is a weak contraction with a function Ψ, tn ∈ (0, 1) such that
limn→∞ tn = 0. Then {zn} converges strongly to p ∈ F which is the unique solution
of the following variational inequality:

⟨(A− γf)p, p− x∗⟩ ≤ 0, for all x∗ ∈ F. (2.11)

Proof. Define a sequence {un} by

un = tnγu+ (I − tnA)Wnun, for all n ≥ 1,

for any u ∈ H. From Theorem 2.1, {un} converges strongly. Set Pu = limn→∞ un,
for each u ∈ H. It follows from Lemma 2.10 that P is nonexpansive. Then Pf is a
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weak contraction by Lemma 2.11. From Lemma 2.8, there exists a unique element
z ∈ H such that z = P (f(z)). Define a sequence {kn} by

kn = tnγf(z) + (I − tnA)Wnkn, for all n ≥ 1. (2.12)

Then, by Theorem 2.1, limn→∞ kn = P (f(z)) = z ∈ F (W ). Therefore

∥zn − kn∥ = tnγ∥f(zn)− f(z)∥+ (1− tnγ)∥Wnzn −Wnkn∥
≤ tnγ(∥f(zn)− f(kn)∥+ ∥f(kn)− f(z)∥) + (1− tnγ)∥zn − kn∥
≤ tnγ(∥zn − kn∥ − ψ(∥zn − kn∥) + ∥kn − z∥ − ψ(∥kn − z∥))

+(1− tnγ)∥zn − kn∥
≤ (1− tn(γ − γ))∥zn − kn∥+ tnγ∥kn − z∥.

Which implies
∥zn − kn∥ ≤ γ

γ − γ
∥kn − z∥.

So limn→∞ ∥zn − kn∥ = 0 and hence limn→∞ ∥zn − z∥ = 0. This complete the
proof. □

Secondly, we give an explicit iterative scheme: for any given x0 ∈ H, let the
sequence {xn} be generated by

xn+1 = αnγu+ βnxn + ((1− βn)I − αnA)Wnxn, for all n ≥ 0. (2.13)

Now, we prove the following strong convergence theorem concerning the iterative
scheme (2.13).

Theorem 2.3. Let H be a real Hilbert space, {Tn}∞n=1 be an infinite family of non­
expansive mappings of H into itself which satisfies F :=

∩∞
n=1 F (Tn) ̸= ∅, A be a

strongly positive bounded linear operator on H with coefficient γ > 0 and ∥A∥ ≤ 1.
Let 0 < γ ≤ γ where γ i some constant. Let {αn}, {βn} be two sequences in (0, 1)
satisfying the following conditions:
(I) limn→∞ αn = 0;
(II)

∑∞
n=0 αn = ∞;

(III) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
Then, the sequence {xn} defined by (2.13) converges strongly to p ∈ F which is the
unique solution of the following variational inequality (2.4).

Proof. Let Q = P∩∞
n=1 F (Tn). So

∥Q((I −A)x+ γu)−Q((I −A)y + γu)∥ ≤ ∥(I −A)x+ γu−
((I −A)y + γu)∥

≤ ∥(I −A)x− (I −A)y∥
≤ (1− γ)∥x− y∥,

for all x, y ∈ H. Therefore Q = P∩∞
n=1 F (Tn) is a contraction of H into itself.

By Banach contraction principle there exists a unique element p ∈ H such that
p = Q((I −A)p+ γu) = P∩∞

n=1 F (Tn)((I −A)p+ γu) or equivalently

⟨Ap− γu, p− x∗⟩ ≤ 0, for all x∗ ∈ F.

From the condition (I), we may assume, without loss of generality, αn ≤ (1 −
βn)∥A∥−1. Since A is strongly positive bounded linear operator on H,

∥A∥ = sup{|⟨Ax, x⟩| : x ∈ H, ∥x∥ = 1}.
Observe

⟨((1− βn)I − αnA)x, x⟩ = (1− βn)− αn⟨Ax, x⟩
≥ 1− βn − αn∥A∥
≥ 0,
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that is to say (1− βn)I − αnA is positive. It follows that

∥(1− βn)I − αnA∥ = sup{⟨((1− βn)I − αnA)x, x⟩ : x ∈ H, ∥x∥ = 1}
= sup{1− βn − αn⟨Ax, x⟩ : x ∈ H, ∥x∥ = 1}
≤ 1− βn − αnγ.

Next, we prove {xn} is bounded. Indeed, for p ∈ F

∥xn+1 − p∥ = ∥αn(γu−Ap) + βn(xn − p) + ((1− βn)I − αnA)(Wnxn − p)∥
≤ (1− βn − αnγ)∥xn − p∥+ βn∥xn − p∥+ αn∥γu−Ap∥
≤ (1− αnγ)∥xn − p∥+ αn∥γu−Ap∥.

(2.14)
It follows from (2.14) that

∥xn − p∥ ≤ max{∥x0 − p∥, ∥γu−Ap∥
γ

}, n ≥ 1.

Hence {xn} is bounded, so are {Wnxn}.
Define

xn+1 = βnxn + (1− βn)yn, n ≥ 0.

Observe from the definition of yn,

yn+1 − yn = xn+2−βn+1xn+1

1−βn+1
− xn+1−βnxn

1−βn

= αn+1γu+((1−βn+1)I−αn+1A)Wn+1xn+1

1−βn+1

−αnγu+((1−βn)I−αnA)Wnxn

1−βn

= αn+1

1−βn+1
γu− αn

1−βn
γu+Wn+1xn+1

−Wnxn + αn

1−βn
AWnxn − αn+1

1−βn+1
AWn+1xn+1

= αn+1

1−βn+1
[γu−AWn+1xn+1] +

αn

1−βn
[AWnxn − γu]

+Wn+1xn+1 −Wn+1xn +Wn+1xn −Wnxn.

So

∥yn+1 − yn∥ − ∥xn+1 − xn∥ ≤ αn+1

1−βn+1
(∥γu∥+ ∥AWn+1xn+1∥)

+ αn

1−βn
(∥AWnxn∥+ ∥γu∥)

+∥Wn+1xn+1 −Wn+1xn∥+ ∥Wn+1xn −Wnxn∥
−∥xn+1 − xn∥

≤ αn+1

1−βn+1
(∥γu∥+ ∥AWn+1xn+1∥)

+ αn

1−βn
(∥AWnxn∥+ ∥γu∥) + ∥Wn+1xn −Wnxn∥.

(2.15)
From (2.1), Since Ti and Un,i are nonexpansive, we get

∥Wn+1xn −Wnxn∥ = ∥λ1T1Un+1,2xn − λ1T1Un,2xn∥
≤ λ1∥Un+1,2xn − Un,2xn∥
= λ1∥λ2T2Un+1,3xn − λ2T2Un,3xn∥
≤ λ1λ2∥Un+1,3xn − Un,3xn∥
≤ . . .
≤ λ1λ2 . . . λn∥Un+1,n+1xn − Un,n+1xn∥
≤ M

∏n
i=1 λi,

(2.16)

where M ≥ 0 is a constant such that ∥Un+1,n+1xn−Un,n+1xn∥ ≤M , for all n ≥ 0.
Substituting (2.16) into (2.15), we have

∥yn+1 − yn∥ − ∥xn+1 − xn∥ ≤ αn+1

1−βn+1
(∥γu∥+ ∥AWn+1xn+1∥)

+ αn

1−βn
(∥AWnxn∥+ ∥γu∥) +M

∏n
i=1 λi,
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which implies (noting that (I) and 0 < λi ≤ b < 1, for all i ≥ 1)

lim sup
n→∞

(∥yn+1 − yn∥ − ∥xn+1 − xn∥) ≤ 0.

Hence, by Lemma 1.3,
lim
n→∞

∥yn − xn∥ = 0.

Consequently

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

(1− βn)∥yn − xn∥ = 0. (2.17)

Note
∥xn −Wnxn∥ ≤ ∥xn+1 − xn∥+ ∥xn+1 −Wnxn∥

≤ ∥xn+1 − xn∥+ αn∥γu−AWnxn∥+ βn∥Wnxn − xn∥,
(2.18)

which implies

∥xn −Wnxn∥ ≤ ∥xn+1 − xn∥+ αn∥γu−AWnxn∥
1− βn

.

It follows from (2.17) that

lim
n→∞

∥Wnxn − xn∥ = 0. (2.19)

By the same argument as in the proof of Theorem 2.1,

lim sup
n→∞

⟨γu−Ap, xn − p⟩ ≤ 0, (2.20)

where p = P∩∞
n=1 F (Tn)((I −A)p+ γu). From (2.19),

lim sup
n→∞

⟨γu−Ap,Wnxn − p⟩ ≤ 0 (2.21)

Finally, we prove xn → p as n→ ∞. From (2.13),

∥xn+1 − p∥2 = ∥αn(γu−Ap) + βn(xn − p) + ((1− βn)I − αnA)(Wnxn − p)∥2
= α2

n∥γu−Ap∥2 + ∥βn(xn − p) + ((1− βn)I − αnA)(Wnxn − p)∥2
+2βnαn⟨γu−Ap, xn − p⟩
+2αn⟨γu−Ap, ((1− βn)I − αnA)(Wnxn − p)⟩

≤ ((1− βn − αnγ)∥Wnxn − p∥+ βn∥xn − p∥)2 + α2
n∥γu−Ap∥2

+2βnαn⟨γu−Ap, xn − p⟩+ 2(1− βn)αn⟨γu−Ap,Wnxn − p⟩
−2α2

n⟨γu−Ap,A(Wnxn − p)⟩,
which implies

∥xn+1 − p∥2 ≤ (1− αnγ)
2∥xn − p∥2 + 2βnαn⟨γu−Ap, xn − p⟩

+α2
n∥γu−Ap∥2 + 2(1− βn)αn⟨γu−Ap,Wnxn − p⟩

−2α2
n⟨γu−Ap,A(Wnxn − p)⟩

≤ [1− 2αnγ]∥xn − p∥2 + γ2α2
n∥xn − p∥2 + α2

n∥γu−Ap∥2
+2βnαn⟨γu−Ap, xn − p⟩+ 2(1− βn)αn⟨γu−Ap,Wnxn − p⟩
+2α2

n∥γu−Ap∥∥A(Wnxn − p)∥
= [1− 2αnγ]∥xn − p∥2 + αn{αn(γ

2∥xn − p∥2
+∥γu−Ap∥2 + 2∥γu−Ap∥∥A(Wnxn − p)∥)
+2βn⟨γu−Ap, xn − p⟩+ 2(1− βn)⟨γu−Ap,Wnxn − p⟩}.

Since {xn} and {Wnxn} are bounded, we can take a constant M1 > 0 such that

γ2∥xn − p∥2 + ∥γu−Ap∥2 + 2∥γu−Ap∥∥A(Wnxn − p)∥ ≤M1,

for all n ≥ 0. So

∥xn+1 − p∥2 ≤ [1− 2αnγ]∥xn − p∥2 + αnξn, (2.22)
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where

ξn = 2βn⟨γu−Ap, xn − p⟩+ 2(1− βn)⟨γu−Ap,Wnxn − p⟩+ αnM1.

By (I), (2.20) and (2.21), we get lim supn→∞ ξn ≤ 0. Now, applying Lemma 1.5 to
(2.22) concludes xn → p as n→ ∞. This completes the proof. □

Theorem 2.4. Let H be a real Hilbert space, {Tn}∞n=1 be an infinite family of nonex­
pansive mappings of H into itself which satisfies F :=

∩∞
n=1 F (Tn) ̸= ∅, f : H → H

be a weak contraction with a function Ψ, A be a strongly positive bounded linear
operator on H with coefficient γ > 0 and ∥A∥ ≤ 1. Let 0 < γ ≤ γ where γ is some
constant. Let {αn}, {βn} be two sequences in (0, 1) satisfying the following condi­
tions:
(I) limn→∞ αn = 0;
(II)

∑∞
n=0 αn = ∞;

(III) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.
For any given x0 ∈ H , the sequence {xn} defined by

xn+1 = αnγf(xn) + βnxn + ((1− βn)I − αnA)Wnxn, for all n ≥ 1, (2.23)

converges strongly to p ∈ F which is the unique solution of the following variational
inequality (2.11).

Proof. Define a sequence {un} by

un+1 = αnγu+ βnun + ((1− βn)I − αnA)Wnun, for all n ≥ 1,

for any u ∈ C. From Theorem 2.3, {un} converges strongly. Set Pu = limn→∞ un,
for each u ∈ C. By the same argument as in the proof of Theorem 2.2, there exists
z = P (f(z)). Define a sequence {kn} by

kn+1 = αnγf(z) + βnkn + ((1− βn)I − αnA)Wnkn, for all n ≥ 1. (2.24)

Then, by Theorem 2.3, limn→∞ kn = P (f(z)) = z ∈ F (W ). Therefore

∥xn+1 − kn+1∥ = αnγ∥f(xn)− f(z)∥+ βn∥xn − kn∥
+(1− βn − αnγ)∥Wnxn −Wnkn∥

≤ αnγ(∥f(xn)− f(kn)∥+ ∥f(kn)− f(z)∥) + βn∥xn − kn∥
+(1− βn − αnγ)∥xn − kn∥

≤ αnγ(∥xn − kn∥ − ψ(∥xn − kn∥) + ∥kn − z∥ − ψ(∥kn − z∥))
+(1− αnγ)∥xn − kn∥

≤ (1− αn(γ − γ))∥xn − kn∥ − αnγψ(∥xn − kn∥)
+αnγ(∥kn − z∥ − ψ(∥kn − z∥))

≤ ∥xn − kn∥ − αnγψ(∥xn − kn∥) + αnγ(∥kn − z∥ − ψ(∥kn − z∥)).
Set sn = ∥xn − kn∥, γn = αnγ(∥kn − z∥ − ψ(∥kn − z∥)) and rn = αnγ. Since

lim
n→∞

γn
rn

= ∥kn − z∥ − ψ(∥kn − z∥) = 0

and
∞∑

n=0

rn =

∞∑
n=0

αnγ = ∞,

by Lemma 1.4 , limn→∞ ∥xn−kn∥ = 0. Hence limn→∞ ∥xn−z∥ = 0. This complete
the proof. □

Remark 2.13. Theorem 2.2 is a generalization of [21, Theorem 3.1].

Remark 2.14. Theorem 2.4 is a generalization of [20, Theorem 3.2] and [21, The­
orem 3.2] with assumption ∥A∥ ≤ 1.
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