



GENERAL ITERATIVE METHODS FOR A FAMILY OF NONEXPANSIVE MAPPINGS

M. YAZDI*

Department of Mathematics, Malard Branch, Islamic Azad University, Malard, Iran

ABSTRACT. In this paper, we introduce implicit and explicit iterative methods for finding a common element of the set of solutions of a variational inequality and the set of common fixed points for a countable family of nonexpansive mappings in a Hilbert space. For these methods, we prove some strong convergence theorems. These theorems improve and extend some results of Yao et al. [21] and Xu [20].

KEYWORDS : Fixed point; Nonexpansive mapping; Weak contraction; Variational inequality.

AMS Subject Classification: 47H10, 47H09

1. INTRODUCTION

Let H be a real Hilbert space and A be a bounded operator on H . In this paper, we assume A is strongly positive; that is, there exists a constant $\bar{\gamma} > 0$ such that $\langle Ax, x \rangle \geq \bar{\gamma}\|x\|^2$, for all $x \in H$. A typical problem is that of minimizing a quadratic function over the set of the fixed points of nonexpansive mapping on a real Hilbert space:

$$\min_{x \in F(S)} \frac{1}{2} \langle Ax, x \rangle - \langle x, b \rangle,$$

where b is a given point in H .

We recall a mapping T of H into itself is called nonexpansive, if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in H$. Let $F(T)$ denote the fixed points set of T , and a contraction on H is a self-mapping f of H such that $\|f(x) - f(y)\| \leq \alpha\|x - y\|$ for all $x, y \in H$, where $\alpha \in [0, 1)$ is a constant.

Finding an optimal point in the intersection F of the fixed points set of a family of nonexpansive mappings is one that occurs frequently in various areas of mathematical sciences and engineering. For example, the well-known convex feasibility problem reduces to finding a point in the intersection of the fixed points set of a family of nonexpansive mappings; see, e.g., [3, 5]. The problem of finding an optimal point that minimizes a given cost function $\Theta : H \rightarrow \mathbb{R}$ over F is of wide

*Corresponding author.

Email address : M_Yazdi@iaumalard.ac.ir.

Article history : Received 8 August 2016 Accepted 19 January 2018.

interdisciplinary interest and practical importance see, e.g., [2, 4, 6, 23]. A simple algorithmic solution to the problem of minimizing a quadratic function over F is of extreme value in many applications including the set theoretic signal estimation, see, e.g., [23, 9]. The best approximation problem of finding the projection $P_F(a)$ (in the norm induced by inner product of H) from any given point a in H is the simplest case of our problem.

In 2006, Marino and Xu [10] considered an iterative method for a single non-expansive mapping. Let f be a contraction on H and $A : H \rightarrow H$ be a strongly positive bounded linear operator. Starting with an arbitrary initial $x_0 \in H$, define a sequence $\{x_n\}$ recursively by

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n A)T x_n, \quad n \geq 0, \quad (1.1)$$

where $\gamma > 0$ is a constant and $\{\alpha_n\}$ is a sequence in $(0, 1)$ satisfying the following conditions:

- (I) $\lim_{n \rightarrow \infty} \alpha_n = 0$;
- (II) $\sum_{n=1}^{\infty} \alpha_n = \infty$;
- (III) $\sum_{n=1}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty$ or $\lim_{n \rightarrow \infty} \frac{\alpha_n}{\alpha_{n+1}} = 1$.

Consequently, Marino and Xu [10] proved the sequence $\{x_n\}$ generated by (1.1) converges strongly to the unique solution of the following variational inequality:

$$\langle (A - \gamma f)x^*, x^* - x \rangle \leq 0, \text{ for all } x \in F(T),$$

which is the optimality condition for minimization problem

$$\min_{x \in F(T)} \frac{1}{2} \langle Ax, x \rangle - h(x),$$

where h is a potential function for γf (i.e., $h'(x) = \gamma f(x)$ for $x \in H$).

In 2012, Razani and Yazdi [13] study convergence of a composite iterative scheme which generalizes iterative sequence (1.1).

In 2008, Yao et al. [21] introduced the iterative sequence

$$x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)W_n x_n, \text{ for all } n \geq 0, \quad (1.2)$$

where W_n is the W -mapping generated by an infinite countable family of nonexpansive mappings $T_1, T_2, \dots, T_n, \dots$ and $\lambda_1, \lambda_2, \dots, \lambda_n, \dots$ such that the common fixed points set $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$. Under very mild conditions on the parameters, it was proved the sequence $\{x_n\}$ converges strongly to $p \in F$ where p is the unique solution in F of the following variational inequality:

$$\langle (A - \gamma f)p, p - x^* \rangle \leq 0, \text{ for all } x^* \in F, \quad (1.3)$$

which is the optimality condition for minimization problem

$$\min_{x \in F} \frac{1}{2} \langle Ax, x \rangle - h(x).$$

In this paper, motivated by Yao et al. [21] and Rhoades [14], we introduce an implicit and explicit iterative schemes for finding a common element of the set of solutions of a variational inequality and the set of common fixed points for a countable family of nonexpansive mappings in a Hilbert space. Then, we prove some strong convergence theorems which improve and extend some results of Yao et al. [21] and Xu [20].

Now, we collect some lemmas which will be used in the main result.

Lemma 1.1. [10] *Assume A is a strongly positive bounded linear operator on a Hilbert space H with coefficient $\bar{\gamma} > 0$ and $0 < \rho \leq \|A\|^{-1}$. Then $\|I - \rho A\| \leq 1 - \rho \bar{\gamma}$.*

Lemma 1.2. Let H be a real Hilbert space. Then, for all $x, y \in H$

- (I) $\|x + y\|^2 \leq \|x\|^2 + 2\langle y, x + y \rangle$;
- (II) $\|x + y\|^2 \geq \|x\|^2 + 2\langle y, x \rangle$.

Lemma 1.3. [17] Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences in Banach space X and $\{\beta_n\}$ a sequence in $[0, 1]$ with $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \limsup_{n \rightarrow \infty} \beta_n < 1$. Suppose $x_{n+1} = (1 - \beta_n)y_n + \beta_n x_n$ for all integer $n \geq 0$ and $\limsup_{n \rightarrow \infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \leq 0$. Then $\lim_{n \rightarrow \infty} \|x_n - y_n\| = 0$.

Lemma 1.4. [16] Assume $\{s_n\}$ and $\{\gamma_n\}$ are two sequences of nonnegative real numbers such that

$$s_{n+1} \leq s_n - r_n \Psi(s_n) + \gamma_n, \quad n \geq 1,$$

where Ψ is a continuous and strict increasing function on $[0, \infty)$ with $\Psi(0) = 0$ and $\{r_n\}$ is a sequence of positive numbers satisfying the conditions:

- (I) $\sum_{n=1}^{\infty} r_n = \infty$;
- (II) $\limsup_{n \rightarrow \infty} \frac{\gamma_n}{r_n} = 0$.

Then $\lim_{n \rightarrow \infty} s_n = 0$.

Lemma 1.5. [19] Assume $\{a_n\}$ is a sequence of nonnegative real numbers such that

$$a_{n+1} \leq (1 - \gamma_n)a_n + \delta_n,$$

where $\{\gamma_n\}$ is a sequence in $(0, 1)$ and $\{\delta_n\}$ is a sequence such that

- (I) $\sum_{n=1}^{\infty} \gamma_n = \infty$;
- (II) $\limsup_{n \rightarrow \infty} \frac{\delta_n}{\gamma_n} \leq 0$ or $\sum_{n=1}^{\infty} |\delta_n| < \infty$.

Then $\lim_{n \rightarrow \infty} a_n = 0$.

2. MAIN RESULTS

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\cdot\|$. We denote weak convergence and strong convergence by notation \rightharpoonup and \rightarrow , respectively. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence of nonexpansive self-mappings on H and $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of nonnegative numbers in $[0, 1]$. For any $n \geq 1$, define a mapping W_n of H into itself as follows:

$$\begin{aligned} U_{n,n+1} &= I, \\ U_{n,n} &= \lambda_n T_n U_{n,n+1} + (1 - \lambda_n)I, \\ &\vdots \\ U_{n,k} &= \lambda_k T_k U_{n,k+1} + (1 - \lambda_k)I, \\ U_{n,k-1} &= \lambda_{k-1} T_{k-1} U_{n,k} + (1 - \lambda_{k-1})I, \\ &\vdots \\ U_{n,2} &= \lambda_2 T_2 U_{n,3} + (1 - \lambda_2)I, \\ W_n &= U_{n,1} = \lambda_1 T_1 U_{n,2} + (1 - \lambda_1)I. \end{aligned} \tag{2.1}$$

Such a mapping W_n is called the W -mapping generated by T_n, T_{n-1}, \dots, T_1 and $\lambda_n, \lambda_{n-1}, \dots, \lambda_1$.

Lemma 2.1. [15] Let C be a nonempty closed convex subset of a strictly convex Banach space X , $\{T_n\}_{n=1}^{\infty}$ be a sequence of nonexpansive self-mappings on C such that $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of positive numbers in $[0, b]$ for some $b \in (0, 1)$. Then, for every $x \in C$ and $k \geq 1$, the limit $\lim_{n \rightarrow \infty} U_{n,k}x$ exists.

Remark 2.2. [22] It can be known from Lemma 2.1 that if D is a nonempty bounded subset of C , then for $\varepsilon > 0$ there exists $n_0 \geq k$ such that for all $n > n_0$

$$\sup_{x \in D} \|U_{n,k}x - U_k x\| \leq \varepsilon.$$

Remark 2.3. [22] Using Lemma 2.1, one can define mapping $W : C \rightarrow C$ as follows:

$$Wx = \lim_{n \rightarrow \infty} W_n x = \lim_{n \rightarrow \infty} U_{n,1} x,$$

for all $x \in C$. Such a W is called the W -mapping generated by $\{T_n\}_{n=1}^{\infty}$ and $\{\lambda_n\}_{n=1}^{\infty}$. Since W_n is nonexpansive, $W : C \rightarrow C$ is also nonexpansive.

If $\{x_n\}$ is a bounded sequence in C , then we put $D = \{x_n : n \geq 0\}$. Hence, it is clear from Remark 2.2 that for an arbitrary $\varepsilon > 0$ there exists $N_0 \geq 1$ such that for all $n > N_0$

$$\|W_n x_n - W x_n\| = \|U_{n,1} x_n - U_1 x_n\| \leq \sup_{x \in D} \|U_{n,1} x - U_1 x\| \leq \varepsilon.$$

This implies

$$\lim_{n \rightarrow \infty} \|W_n x_n - W x_n\| = 0.$$

Throughout this paper, we assume $\{\lambda_n\}_{n=1}^{\infty}$ is a sequence of positive numbers in $[0, b]$ for some $b \in (0, 1)$.

Lemma 2.4. [15] Let C be a nonempty closed convex subset of a strictly convex Banach space X , $\{T_n\}_{n=1}^{\infty}$ be a sequence of nonexpansive self-mappings on C such that $\bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and $\{\lambda_n\}_{n=1}^{\infty}$ be a sequence of positive numbers in $[0, b]$ for some $b \in (0, 1)$. Then $F(W) = \bigcap_{n=1}^{\infty} F(T_n)$.

Definition 2.5. [18] A self-mapping $f : C \rightarrow C$ is called weak contraction with the function Ψ if there exists a continuous and nondecreasing function $\Psi : [0, \infty) \rightarrow [0, \infty)$ such that $\Psi(s) > 0$, for all $s > 0$, $\Psi(0) = 0$, $\lim_{s \rightarrow \infty} \Psi(s) = +\infty$ and for any $x, y \in C$, $\|f(x) - f(y)\| \leq \|x - y\| - \Psi(\|x - y\|)$.

Remark 2.6. Clearly a contraction with constant k must be a weak contraction, where $\Psi(s) = (1 - k)s$, but the converse is not true.

Example 2.7. [1] The mapping $Ax = \sin x$ from $[0, 1]$ to $[0, 1]$ is a weak contraction with $\Psi(s) = \frac{s^3}{8}$. But A is not a contraction. Indeed, suppose that A is a contraction with constant $k \in (0, 1)$, i.e.,

$$|\sin x - \sin y| \leq k|x - y|, \text{ for all } x, y \in [0, 1]. \quad (2.2)$$

Since $\lim_{x \rightarrow 0} \frac{\sin x}{x} = 1$, taking $\varepsilon = 1 - k$, there exists $\delta > 0$ as $0 < x < \delta$, we have $|\frac{\sin x}{x} - 1| < 1 - k$. Therefore $k < |\frac{\sin x - \sin 0}{x - 0}|$, i.e., $k|x - 0| < |\sin x - \sin 0|$, which contradicts the assumption of (2.2). Thus A is not a contraction.

Lemma 2.8. [14] Let (X, d) be a complete metric space and $f : X \rightarrow X$ be a weak contraction. Then f has a unique fixed point in X .

Lemma 2.9. [7] Let H be a real Hilbert space, C be a closed convex subset of H and $T : C \rightarrow C$ be a nonexpansive mapping with $F(T) \neq \emptyset$. If $\{x_n\}$ is a sequence in C weakly converging to x and if $\{(I - T)x_n\}$ converges to y , then $(I - T)x = y$.

Lemma 2.10. [8] Let $\{T_n\}$ be a sequence of nonexpansive mapping on a closed convex subset C of H and A be a strongly positive bounded linear operator on H with coefficient $0 < \gamma \leq \bar{\gamma}$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be two sequences in $[0, 1]$ with $\lim_{n \rightarrow \infty} \alpha_n = 0, \sum_{n=0}^{\infty} \alpha_n = \infty$ and $\limsup_{n \rightarrow \infty} \beta_n < 1$. Define a sequence $\{y_n\}$ by $y_1 \in C$ and

$$y_{n+1} = \alpha_n \gamma u + \beta_n y_n + ((1 - \beta_n)I - \alpha_n A)T_n y_n,$$

for all $n \in \mathbb{N}$. Suppose the sequence $\{y_n\}$ converges strongly. Set $Pu = \lim_{n \rightarrow \infty} y_n$, for each $u \in C$. Then, the following hold:

(I) Pu does not depend on the initial point y_1 ;
 (II) P is a nonexpansive mapping on C .

Lemma 2.11. [16] Let X be a Banach space, f be a weak contraction with a function Ψ on X and T be a nonexpansive mapping on X . Then, the composite mapping Tf is a weak contraction.

It is easy to see the following lemma.

Lemma 2.12. Let H be a real Hilbert space, $f : H \rightarrow H$ be a weak contraction and A be a strongly positive bounded linear operator with coefficient $\bar{\gamma} > 0$. Then, for $0 < \gamma < \bar{\gamma}$

$$\langle (A - \gamma f)x - (A - \gamma f)y, x - y \rangle \geq (\bar{\gamma} - \gamma)\|x - y\|^2, \text{ for all } x, y \in C.$$

That is, $A - \gamma f$ is strongly monotone with coefficient $\bar{\gamma} - \gamma$.

Let A be a strongly positive bounded linear operator on H with coefficient $\bar{\gamma} > 0$. Let $0 < \gamma \leq \bar{\gamma}$ where γ is some constant. First, we give our implicit iterative scheme as follows: let $\{t_n\}$ be a sequence in $(0, 1)$ such that $t_n \leq \|A\|^{-1}$, for all $n \geq 1$ and $u \in H$. For each $n \geq 1$, define a mapping $S_{t_n} : H \rightarrow H$ by

$$S_{t_n}(x) = t_n \gamma u + (I - t_n A)W_n x, \quad x \in H.$$

It is easy to see that for each $t_n \in (0, 1)$, $n \geq 1$, S_{t_n} is a weak contraction on H . Indeed, by Lemma 1.1,

$$\begin{aligned} \|S_{t_n}(x) - S_{t_n}(y)\| &\leq t_n \gamma \|u - u\| + \|(I - t_n A)(W_n x - W_n y)\| \\ &\leq (1 - t_n \bar{\gamma})\|x - y\|. \end{aligned}$$

By Banach contraction principle, for each $n \in \mathbb{N}$, there exists a unique element $z_n \in H$ of S_{t_n} such that

$$z_n = t_n \gamma u + (I - t_n A)W_n z_n, \quad \text{for all } n \geq 1. \quad (2.3)$$

Theorem 2.1. Let H be a real Hilbert space and $\{T_n\}_{n=1}^\infty$ be an infinite family of nonexpansive mappings of H into itself which satisfies $F := \bigcap_{n=1}^\infty F(T_n) \neq \emptyset$. Let $\{z_n\}$ be defined by (2.3) and $t_n \in (0, 1)$ such that $\lim_{n \rightarrow \infty} t_n = 0$. Then $\{z_n\}$ converges strongly to $p \in F$ which is the unique solution of the following variational inequality:

$$\langle Ap - \gamma u, p - x^* \rangle \leq 0, \quad \text{for all } x^* \in F. \quad (2.4)$$

Proof. First, we show the uniqueness of the solution of the variational inequality (2.4). In fact, if p, q are two distinct solutions of the variational inequality (2.4), then

$$\langle Ap - \gamma u, p - q \rangle \leq 0 \quad \text{and} \quad \langle Aq - \gamma u, q - p \rangle \leq 0.$$

Adding up these two inequalities, we have

$$\langle (Ap - \gamma u) - (Aq - \gamma u), p - q \rangle \leq 0.$$

But the strong monotonicity of $A - \gamma u$ (Lemma 2.12) implies that $p = q$. We use $p \in F$ to denote the unique solution of variational inequality (2.4). Thus, for $p \in F$

$$z_n - p = t_n(\gamma u - Ap) + (I - t_n A)(W_n z_n - p). \quad (2.5)$$

From (2.5),

$$\begin{aligned} \|z_n - p\|^2 &= t_n \langle \gamma u - Ap, z_n - p \rangle + \langle (I - t_n A)(W_n z_n - p), z_n - p \rangle \\ &\leq t_n \langle \gamma u - Ap, z_n - p \rangle + (1 - t_n \bar{\gamma})\|z_n - p\|^2. \end{aligned} \quad (2.6)$$

Simplifying (2.6), we have

$$\|z_n - p\|^2 \leq \frac{1}{\gamma} \langle \gamma u - Ap, z_n - p \rangle. \quad (2.7)$$

Hence, $\{z_n\}$ is bounded, so are $\{AW_nz_n\}$. Therefore

$$\lim_{n \rightarrow \infty} \|z_n - W_n z_n\| = \lim_{n \rightarrow \infty} t_n \|\gamma u - AW_n z_n\| = 0. \quad (2.8)$$

Take a subsequence $\{z_{n_k}\}$ of $\{z_n\}$ such that

$$\limsup_{n \rightarrow \infty} \langle \gamma u - Ap, z_n - p \rangle = \lim_{k \rightarrow \infty} \langle \gamma u - Ap, z_{n_k} - p \rangle.$$

Since $\{z_{n_k}\}$ is bounded in H , without loss of generality, we assume $z_{n_k} \rightharpoonup z \in H$.

It follows from (2.8) and Remark 2.3 that $z \in F(W)$. So

$$\limsup_{n \rightarrow \infty} \langle \gamma u - Ap, z_n - p \rangle = \langle \gamma u - Ap, z - p \rangle \leq 0.$$

From (2.7), $\lim_{n \rightarrow \infty} z_{n_k} = z$. Next, we prove z solves the variational inequality (2.4). From (2.3),

$$Az_n - \gamma u = \frac{-1}{t_n} (I - t_n A)(z_n - W_n z_n).$$

Thus, for $q \in F$

$$\begin{aligned} \langle Az_n - \gamma u, z_n - q \rangle &= \frac{-1}{t_n} \langle (I - t_n A)(z_n - W_n z_n), z_n - q \rangle \\ &= \frac{-1}{t_n} \langle (I - W_n)z_n - (I - W_n)q, z_n - q \rangle + \\ &\quad \langle A(I - W_n)z_n, z_n - q \rangle \\ &\leq \langle A(I - W_n)z_n, z_n - q \rangle, \end{aligned} \quad (2.9)$$

since $I - W_n$ is monotone (i.e., $\langle (I - W_n)x - (I - W_n)y, x - y \rangle \geq 0$ for $x, y \in H$). This is due to the nonexpansivity of W_n . Now, replacing z_n in (2.9) with z_{n_k} and letting $k \rightarrow \infty$. Note that $\lim_{n \rightarrow \infty} z_{n_k} = z$ which implies

$$\langle Az - \gamma u, z - q \rangle \leq 0.$$

That is, $z \in F$ is a solution of the variational inequality (2.4) and hence $z = p$ by uniqueness. Since each cluster point of $\{z_n\}$ equals p , $z_n \rightarrow p$ as $n \rightarrow \infty$. This completes the proof. \square

Theorem 2.2. *Let H be a real Hilbert space, $\{T_n\}_{n=1}^{\infty}$ be an infinite family of nonexpansive mappings of H into itself which satisfies $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$ and A be a strongly positive bounded linear operator on H with coefficient $\gamma > 0$. Let $0 < \gamma < \bar{\gamma}$ where γ is some constant. Let $\{z_n\}$ be defined by*

$$z_n = t_n \gamma f(z_n) + (I - t_n A)W_n z_n, \text{ for all } n \geq 1, \quad (2.10)$$

where $f : H \rightarrow H$ is a weak contraction with a function Ψ , $t_n \in (0, 1)$ such that $\lim_{n \rightarrow \infty} t_n = 0$. Then $\{z_n\}$ converges strongly to $p \in F$ which is the unique solution of the following variational inequality:

$$\langle (A - \gamma f)p, p - x^* \rangle \leq 0, \text{ for all } x^* \in F. \quad (2.11)$$

Proof. Define a sequence $\{u_n\}$ by

$$u_n = t_n \gamma u + (I - t_n A)W_n u_n, \text{ for all } n \geq 1,$$

for any $u \in H$. From Theorem 2.1, $\{u_n\}$ converges strongly. Set $Pu = \lim_{n \rightarrow \infty} u_n$, for each $u \in H$. It follows from Lemma 2.10 that P is nonexpansive. Then Pf is a

weak contraction by Lemma 2.11. From Lemma 2.8, there exists a unique element $z \in H$ such that $z = P(f(z))$. Define a sequence $\{k_n\}$ by

$$k_n = t_n \gamma f(z) + (I - t_n A)W_n k_n, \text{ for all } n \geq 1. \quad (2.12)$$

Then, by Theorem 2.1, $\lim_{n \rightarrow \infty} k_n = P(f(z)) = z \in F(W)$. Therefore

$$\begin{aligned} \|z_n - k_n\| &= t_n \gamma \|f(z_n) - f(z)\| + (1 - t_n \bar{\gamma}) \|W_n z_n - W_n k_n\| \\ &\leq t_n \gamma (\|f(z_n) - f(k_n)\| + \|f(k_n) - f(z)\|) + (1 - t_n \bar{\gamma}) \|z_n - k_n\| \\ &\leq t_n \gamma (\|z_n - k_n\| - \psi(\|z_n - k_n\|) + \|k_n - z\| - \psi(\|k_n - z\|)) \\ &\quad + (1 - t_n \bar{\gamma}) \|z_n - k_n\| \\ &\leq (1 - t_n (\bar{\gamma} - \gamma)) \|z_n - k_n\| + t_n \gamma \|k_n - z\|. \end{aligned}$$

Which implies

$$\|z_n - k_n\| \leq \frac{\gamma}{\bar{\gamma} - \gamma} \|k_n - z\|.$$

So $\lim_{n \rightarrow \infty} \|z_n - k_n\| = 0$ and hence $\lim_{n \rightarrow \infty} \|z_n - z\| = 0$. This complete the proof. \square

Secondly, we give an explicit iterative scheme: for any given $x_0 \in H$, let the sequence $\{x_n\}$ be generated by

$$x_{n+1} = \alpha_n \gamma u + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)W_n x_n, \text{ for all } n \geq 0. \quad (2.13)$$

Now, we prove the following strong convergence theorem concerning the iterative scheme (2.13).

Theorem 2.3. *Let H be a real Hilbert space, $\{T_n\}_{n=1}^{\infty}$ be an infinite family of non-expansive mappings of H into itself which satisfies $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$, A be a strongly positive bounded linear operator on H with coefficient $\bar{\gamma} > 0$ and $\|A\| \leq 1$. Let $0 < \gamma \leq \bar{\gamma}$ where γ is some constant. Let $\{\alpha_n\}, \{\beta_n\}$ be two sequences in $(0, 1)$ satisfying the following conditions:*

(I) $\lim_{n \rightarrow \infty} \alpha_n = 0$;

(II) $\sum_{n=0}^{\infty} \alpha_n = \infty$;

(III) $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \limsup_{n \rightarrow \infty} \beta_n < 1$.

Then, the sequence $\{x_n\}$ defined by (2.13) converges strongly to $p \in F$ which is the unique solution of the following variational inequality (2.4).

Proof. Let $Q = P_{\bigcap_{n=1}^{\infty} F(T_n)}$. So

$$\begin{aligned} \|Q((I - A)x + \gamma u) - Q((I - A)y + \gamma u)\| &\leq \|(I - A)x + \gamma u - ((I - A)y + \gamma u)\| \\ &\leq \|(I - A)x - (I - A)y\| \\ &\leq (1 - \bar{\gamma}) \|x - y\|, \end{aligned}$$

for all $x, y \in H$. Therefore $Q = P_{\bigcap_{n=1}^{\infty} F(T_n)}$ is a contraction of H into itself. By Banach contraction principle there exists a unique element $p \in H$ such that $p = Q((I - A)p + \gamma u) = P_{\bigcap_{n=1}^{\infty} F(T_n)}((I - A)p + \gamma u)$ or equivalently

$$\langle Ap - \gamma u, p - x^* \rangle \leq 0, \text{ for all } x^* \in F.$$

From the condition (I), we may assume, without loss of generality, $\alpha_n \leq (1 - \beta_n) \|A\|^{-1}$. Since A is strongly positive bounded linear operator on H ,

$$\|A\| = \sup\{|\langle Ax, x \rangle| : x \in H, \|x\| = 1\}.$$

Observe

$$\begin{aligned} \langle ((1 - \beta_n)I - \alpha_n A)x, x \rangle &= (1 - \beta_n) - \alpha_n \langle Ax, x \rangle \\ &\geq 1 - \beta_n - \alpha_n \|A\| \\ &\geq 0, \end{aligned}$$

that is to say $(1 - \beta_n)I - \alpha_n A$ is positive. It follows that

$$\begin{aligned} \|(1 - \beta_n)I - \alpha_n A\| &= \sup\{\langle ((1 - \beta_n)I - \alpha_n A)x, x \rangle : x \in H, \|x\| = 1\} \\ &= \sup\{1 - \beta_n - \alpha_n \langle Ax, x \rangle : x \in H, \|x\| = 1\} \\ &\leq 1 - \beta_n - \alpha_n \bar{\gamma}. \end{aligned}$$

Next, we prove $\{x_n\}$ is bounded. Indeed, for $p \in F$

$$\begin{aligned} \|x_{n+1} - p\| &= \|\alpha_n(\gamma u - Ap) + \beta_n(x_n - p) + ((1 - \beta_n)I - \alpha_n A)(W_n x_n - p)\| \\ &\leq (1 - \beta_n - \alpha_n \bar{\gamma})\|x_n - p\| + \beta_n\|x_n - p\| + \alpha_n\|\gamma u - Ap\| \\ &\leq (1 - \alpha_n \bar{\gamma})\|x_n - p\| + \alpha_n\|\gamma u - Ap\|. \end{aligned} \tag{2.14}$$

It follows from (2.14) that

$$\|x_n - p\| \leq \max\{\|x_0 - p\|, \frac{\|\gamma u - Ap\|}{\bar{\gamma}}\}, \quad n \geq 1.$$

Hence $\{x_n\}$ is bounded, so are $\{W_n x_n\}$.

Define

$$x_{n+1} = \beta_n x_n + (1 - \beta_n) y_n, \quad n \geq 0.$$

Observe from the definition of y_n ,

$$\begin{aligned} y_{n+1} - y_n &= \frac{x_{n+2} - \beta_{n+1} x_{n+1}}{1 - \beta_{n+1}} - \frac{x_{n+1} - \beta_n x_n}{1 - \beta_n} \\ &= \frac{\alpha_{n+1} \gamma u + ((1 - \beta_{n+1})I - \alpha_{n+1} A)W_{n+1} x_{n+1}}{1 - \beta_{n+1}} \\ &\quad - \frac{\alpha_n \gamma u + ((1 - \beta_n)I - \alpha_n A)W_n x_n}{1 - \beta_n} \\ &= \frac{\alpha_{n+1}}{1 - \beta_{n+1}} \gamma u - \frac{\alpha_n}{1 - \beta_n} \gamma u + W_{n+1} x_{n+1} \\ &\quad - W_n x_n + \frac{\alpha_n}{1 - \beta_n} A W_n x_n - \frac{\alpha_{n+1}}{1 - \beta_{n+1}} A W_{n+1} x_{n+1} \\ &= \frac{\alpha_{n+1}}{1 - \beta_{n+1}} [\gamma u - A W_{n+1} x_{n+1}] + \frac{\alpha_n}{1 - \beta_n} [A W_n x_n - \gamma u] \\ &\quad + W_{n+1} x_{n+1} - W_{n+1} x_n + W_{n+1} x_n - W_n x_n. \end{aligned}$$

So

$$\begin{aligned} \|y_{n+1} - y_n\| - \|x_{n+1} - x_n\| &\leq \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\|\gamma u\| + \|A W_{n+1} x_{n+1}\|) \\ &\quad + \frac{\alpha_n}{1 - \beta_n} (\|A W_n x_n\| + \|\gamma u\|) \\ &\quad + \|W_{n+1} x_{n+1} - W_{n+1} x_n\| + \|W_{n+1} x_n - W_n x_n\| \\ &\quad - \|x_{n+1} - x_n\| \\ &\leq \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\|\gamma u\| + \|A W_{n+1} x_{n+1}\|) \\ &\quad + \frac{\alpha_n}{1 - \beta_n} (\|A W_n x_n\| + \|\gamma u\|) + \|W_{n+1} x_n - W_n x_n\|. \end{aligned} \tag{2.15}$$

From (2.1), Since T_i and $U_{n,i}$ are nonexpansive, we get

$$\begin{aligned} \|W_{n+1} x_n - W_n x_n\| &= \|\lambda_1 T_1 U_{n+1,2} x_n - \lambda_1 T_1 U_{n,2} x_n\| \\ &\leq \lambda_1 \|U_{n+1,2} x_n - U_{n,2} x_n\| \\ &= \lambda_1 \|\lambda_2 T_2 U_{n+1,3} x_n - \lambda_2 T_2 U_{n,3} x_n\| \\ &\leq \lambda_1 \lambda_2 \|U_{n+1,3} x_n - U_{n,3} x_n\| \\ &\leq \dots \\ &\leq \lambda_1 \lambda_2 \dots \lambda_n \|U_{n+1,n+1} x_n - U_{n,n+1} x_n\| \\ &\leq M \prod_{i=1}^n \lambda_i, \end{aligned} \tag{2.16}$$

where $M \geq 0$ is a constant such that $\|U_{n+1,n+1} x_n - U_{n,n+1} x_n\| \leq M$, for all $n \geq 0$.

Substituting (2.16) into (2.15), we have

$$\begin{aligned} \|y_{n+1} - y_n\| - \|x_{n+1} - x_n\| &\leq \frac{\alpha_{n+1}}{1 - \beta_{n+1}} (\|\gamma u\| + \|A W_{n+1} x_{n+1}\|) \\ &\quad + \frac{\alpha_n}{1 - \beta_n} (\|A W_n x_n\| + \|\gamma u\|) + M \prod_{i=1}^n \lambda_i, \end{aligned}$$

which implies (noting that (I) and $0 < \lambda_i \leq b < 1$, for all $i \geq 1$)

$$\limsup_{n \rightarrow \infty} (\|y_{n+1} - y_n\| - \|x_{n+1} - x_n\|) \leq 0.$$

Hence, by Lemma 1.3,

$$\lim_{n \rightarrow \infty} \|y_n - x_n\| = 0.$$

Consequently

$$\lim_{n \rightarrow \infty} \|x_{n+1} - x_n\| = \lim_{n \rightarrow \infty} (1 - \beta_n) \|y_n - x_n\| = 0. \quad (2.17)$$

Note

$$\begin{aligned} \|x_n - W_n x_n\| &\leq \|x_{n+1} - x_n\| + \|x_{n+1} - W_n x_n\| \\ &\leq \|x_{n+1} - x_n\| + \alpha_n \|\gamma u - AW_n x_n\| + \beta_n \|W_n x_n - x_n\|, \end{aligned} \quad (2.18)$$

which implies

$$\|x_n - W_n x_n\| \leq \frac{\|x_{n+1} - x_n\| + \alpha_n \|\gamma u - AW_n x_n\|}{1 - \beta_n}.$$

It follows from (2.17) that

$$\lim_{n \rightarrow \infty} \|W_n x_n - x_n\| = 0. \quad (2.19)$$

By the same argument as in the proof of Theorem 2.1,

$$\limsup_{n \rightarrow \infty} \langle \gamma u - Ap, x_n - p \rangle \leq 0, \quad (2.20)$$

where $p = P_{\bigcap_{n=1}^{\infty} F(T_n)}((I - A)p + \gamma u)$. From (2.19),

$$\limsup_{n \rightarrow \infty} \langle \gamma u - Ap, W_n x_n - p \rangle \leq 0 \quad (2.21)$$

Finally, we prove $x_n \rightarrow p$ as $n \rightarrow \infty$. From (2.13),

$$\begin{aligned} \|x_{n+1} - p\|^2 &= \|\alpha_n(\gamma u - Ap) + \beta_n(x_n - p) + ((1 - \beta_n)I - \alpha_n A)(W_n x_n - p)\|^2 \\ &= \alpha_n^2 \|\gamma u - Ap\|^2 + \|\beta_n(x_n - p) + ((1 - \beta_n)I - \alpha_n A)(W_n x_n - p)\|^2 \\ &\quad + 2\beta_n \alpha_n \langle \gamma u - Ap, x_n - p \rangle \\ &\quad + 2\alpha_n \langle \gamma u - Ap, ((1 - \beta_n)I - \alpha_n A)(W_n x_n - p) \rangle \\ &\leq ((1 - \beta_n - \alpha_n \bar{\gamma}) \|W_n x_n - p\| + \beta_n \|x_n - p\|)^2 + \alpha_n^2 \|\gamma u - Ap\|^2 \\ &\quad + 2\beta_n \alpha_n \langle \gamma u - Ap, x_n - p \rangle + 2(1 - \beta_n) \alpha_n \langle \gamma u - Ap, W_n x_n - p \rangle \\ &\quad - 2\alpha_n^2 \langle \gamma u - Ap, A(W_n x_n - p) \rangle, \end{aligned}$$

which implies

$$\begin{aligned} \|x_{n+1} - p\|^2 &\leq (1 - \alpha_n \bar{\gamma})^2 \|x_n - p\|^2 + 2\beta_n \alpha_n \langle \gamma u - Ap, x_n - p \rangle \\ &\quad + \alpha_n^2 \|\gamma u - Ap\|^2 + 2(1 - \beta_n) \alpha_n \langle \gamma u - Ap, W_n x_n - p \rangle \\ &\quad - 2\alpha_n^2 \langle \gamma u - Ap, A(W_n x_n - p) \rangle \\ &\leq [1 - 2\alpha_n \bar{\gamma}] \|x_n - p\|^2 + \bar{\gamma}^2 \alpha_n^2 \|x_n - p\|^2 + \alpha_n^2 \|\gamma u - Ap\|^2 \\ &\quad + 2\beta_n \alpha_n \langle \gamma u - Ap, x_n - p \rangle + 2(1 - \beta_n) \alpha_n \langle \gamma u - Ap, W_n x_n - p \rangle \\ &\quad + 2\alpha_n^2 \|\gamma u - Ap\| \|A(W_n x_n - p)\| \\ &= [1 - 2\alpha_n \bar{\gamma}] \|x_n - p\|^2 + \alpha_n \{ \alpha_n (\bar{\gamma}^2 \|x_n - p\|^2 \\ &\quad + \|\gamma u - Ap\|^2 + 2\|\gamma u - Ap\| \|A(W_n x_n - p)\|) \\ &\quad + 2\beta_n \langle \gamma u - Ap, x_n - p \rangle + 2(1 - \beta_n) \langle \gamma u - Ap, W_n x_n - p \rangle \}. \end{aligned}$$

Since $\{x_n\}$ and $\{W_n x_n\}$ are bounded, we can take a constant $M_1 > 0$ such that

$$\bar{\gamma}^2 \|x_n - p\|^2 + \|\gamma u - Ap\|^2 + 2\|\gamma u - Ap\| \|A(W_n x_n - p)\| \leq M_1,$$

for all $n \geq 0$. So

$$\|x_{n+1} - p\|^2 \leq [1 - 2\alpha_n \bar{\gamma}] \|x_n - p\|^2 + \alpha_n \xi_n, \quad (2.22)$$

where

$$\xi_n = 2\beta_n \langle \gamma u - Ap, x_n - p \rangle + 2(1 - \beta_n) \langle \gamma u - Ap, W_n x_n - p \rangle + \alpha_n M_1.$$

By (I), (2.20) and (2.21), we get $\limsup_{n \rightarrow \infty} \xi_n \leq 0$. Now, applying Lemma 1.5 to (2.22) concludes $x_n \rightarrow p$ as $n \rightarrow \infty$. This completes the proof. \square

Theorem 2.4. *Let H be a real Hilbert space, $\{T_n\}_{n=1}^{\infty}$ be an infinite family of nonexpansive mappings of H into itself which satisfies $F := \bigcap_{n=1}^{\infty} F(T_n) \neq \emptyset$, $f : H \rightarrow H$ be a weak contraction with a function Ψ , A be a strongly positive bounded linear operator on H with coefficient $\bar{\gamma} > 0$ and $\|A\| \leq 1$. Let $0 < \gamma \leq \bar{\gamma}$ where γ is some constant. Let $\{\alpha_n\}, \{\beta_n\}$ be two sequences in $(0, 1)$ satisfying the following conditions:*

- (I) $\lim_{n \rightarrow \infty} \alpha_n = 0$;
- (II) $\sum_{n=0}^{\infty} \alpha_n = \infty$;
- (III) $0 < \liminf_{n \rightarrow \infty} \beta_n \leq \limsup_{n \rightarrow \infty} \beta_n < 1$.

For any given $x_0 \in H$, the sequence $\{x_n\}$ defined by

$$x_{n+1} = \alpha_n \gamma f(x_n) + \beta_n x_n + ((1 - \beta_n)I - \alpha_n A)W_n x_n, \text{ for all } n \geq 1, \quad (2.23)$$

converges strongly to $p \in F$ which is the unique solution of the following variational inequality (2.11).

Proof. Define a sequence $\{u_n\}$ by

$$u_{n+1} = \alpha_n \gamma u + \beta_n u_n + ((1 - \beta_n)I - \alpha_n A)W_n u_n, \text{ for all } n \geq 1,$$

for any $u \in C$. From Theorem 2.3, $\{u_n\}$ converges strongly. Set $Pu = \lim_{n \rightarrow \infty} u_n$, for each $u \in C$. By the same argument as in the proof of Theorem 2.2, there exists $z = P(f(z))$. Define a sequence $\{k_n\}$ by

$$k_{n+1} = \alpha_n \gamma f(z) + \beta_n k_n + ((1 - \beta_n)I - \alpha_n A)W_n k_n, \text{ for all } n \geq 1. \quad (2.24)$$

Then, by Theorem 2.3, $\lim_{n \rightarrow \infty} k_n = P(f(z)) = z \in F(W)$. Therefore

$$\begin{aligned} \|x_{n+1} - k_{n+1}\| &= \alpha_n \gamma \|f(x_n) - f(z)\| + \beta_n \|x_n - k_n\| \\ &\quad + (1 - \beta_n - \alpha_n \bar{\gamma}) \|W_n x_n - W_n k_n\| \\ &\leq \alpha_n \gamma (\|f(x_n) - f(k_n)\| + \|f(k_n) - f(z)\|) + \beta_n \|x_n - k_n\| \\ &\quad + (1 - \beta_n - \alpha_n \bar{\gamma}) \|x_n - k_n\| \\ &\leq \alpha_n \gamma (\|x_n - k_n\| - \psi(\|x_n - k_n\|) + \|k_n - z\| - \psi(\|k_n - z\|)) \\ &\quad + (1 - \alpha_n \bar{\gamma}) \|x_n - k_n\| \\ &\leq (1 - \alpha_n (\bar{\gamma} - \gamma)) \|x_n - k_n\| - \alpha_n \gamma \psi(\|x_n - k_n\|) \\ &\quad + \alpha_n \gamma (\|k_n - z\| - \psi(\|k_n - z\|)) \\ &\leq \|x_n - k_n\| - \alpha_n \gamma \psi(\|x_n - k_n\|) + \alpha_n \gamma (\|k_n - z\| - \psi(\|k_n - z\|)). \end{aligned}$$

Set $s_n = \|x_n - k_n\|$, $\gamma_n = \alpha_n \gamma (\|k_n - z\| - \psi(\|k_n - z\|))$ and $r_n = \alpha_n \gamma$. Since

$$\lim_{n \rightarrow \infty} \frac{\gamma_n}{r_n} = \|k_n - z\| - \psi(\|k_n - z\|) = 0$$

and

$$\sum_{n=0}^{\infty} r_n = \sum_{n=0}^{\infty} \alpha_n \gamma = \infty,$$

by Lemma 1.4, $\lim_{n \rightarrow \infty} \|x_n - k_n\| = 0$. Hence $\lim_{n \rightarrow \infty} \|x_n - z\| = 0$. This complete the proof. \square

Remark 2.13. Theorem 2.2 is a generalization of [21, Theorem 3.1].

Remark 2.14. Theorem 2.4 is a generalization of [20, Theorem 3.2] and [21, Theorem 3.2] with assumption $\|A\| \leq 1$.

REFERENCES

- Y.I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, *Operator Theory, Advances and Applications.* **98** (1997) 7-22.
- H.H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert spaces, *J. Math. Anal. Appl.* **202** (1996) 150-159.
- H.H. Bauschke, J.M. Borwein, On projection algorithms for solving convex feasibility problems, *SIAM Rev.* **38** (1996) 367-426.
- P.L. Combettes, Constrained image recovery in product space, in: *Proceedings of the IEEE International Conference on Image Processing(Washangton, DC, 1995)*, IEEE Computer Society Press, California, 1995, 2025-2028.
- P.L. Combettes, The foundations of set theoretic estimation, *Proc. IEEE.* **81** (1993) 182-208.
- F. Deutsch, H. Hundal, The rate of convergence of Dykstra's cyclic projections algorithm: The polyhedral case, *Numer. Funct. Anal. Optim.* **15** (1994) 537-565.
- K. Geobel, W.A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge Stud. Adv. Math. **28**, Cambridge univ. Press, 1990.
- C.S. Hu, G. Cai, Viscosity approximation schemes for fixed point problems and equilibrium problems and variational inequality problems, *Nonlinear Anal.* **72** (2010) 1792-1808.
- A.N. Iusem, A.R. De Pierro, On the convergence of Han's method for convex programming with quadratic objective, *Math. Program, Ser. B.* **52** (1991) 265-284.
- G. Marino, H.K. Xu, A general iterative method for nonexpansive mappings in Hibert spaces, *J. Math. Anal. Appl.* **318** (2006) 43-52.
- X. Qin, Y.J. Cho, S.M. Kang, An iterative method for an infinite family of nonexpansive mappings in Hilbert spaces, *Bull. Mallays. Math. Sci. Soc. (2)* **32** (2009)(2) 161-171.
- X. Qin, S.M. Kang, Convergence theorems on an iterative method for variational inequality problems and fixed point problems, *Bull. Mallays. Math. Sci. Soc. (2)* **33** (2010)(1) 155-167.
- A. Razani, M. Yazdi, A new iterative method for generalized equilibrium and fixed point problems of nonexpansive mappings, *Bull. Mallays. Math. Sci. Soc. (2)* **35**(4) (2012) 1049-1061.
- B.E. Rhoades, Some theorems on weakly contractive maps, *Nonlinear Anal.* **47** (2001) 2683-2693.
- K. Shimoji, W. Takahashi, Strong convergence to common fixed points of infinite nonexpansive mappings and applications, *Taiwanse J. Math.* **5** (2001) 387-404.
- Y. Song, Equivalent theorems of the convergence between proximal type alghorithms, *Nonlinear Anal.* (2008) doi:10.1016/j.na.2008.10.067.
- T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, *J. Math. Anal. Appl.* **305** (2005) 227-239.
- Y.Q. Wang, Viscosity approximation methods with weakly contractive mappings for nonexpansive mappings, *J Zhejiang Univ Sci A.* **8**(10) (2007) 1691-1694.
- H.K. Xu, An iterative approach to quadratic optimization, *J. Optim. Theory Appl.* **116** (2003) 659-678.
- H.K. Xu, Viscosity approximation methods for nonexpansive mappings, *J. Math. Anal. Appl.* **298** (2004) 279-291.
- Y. Yao, Y.C. Liou, R. Chen, A general iterative method for an infinite family of nonexpansive mappings, *Nonlinear Anal.* **69** (2008) 1644-1654.
- Y. Yao, Y.C. Liou, J.C. Yao, Convergence theorem for equilibrium problems and a for and fixed point problems of infinite family of nonexpansive mappings, *Fixed Point Theory and Applications.* **2007** (2007) doi:10.1155/2007/64363.
- D.C. Youla, Mathematical theory of image restoration by the method of convex projections, in: H. Stark(Ed.), *Image Recovery: Theory and Applications*, Academic Press, Felorida, 1987, 29-77.