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ABSTRACT. In this paper, we introduce implicit and explicit iterative methods for finding
a common element of the set of solutions of a variational inequality and the set of common
fixed points for a countable family of nonexpansive mappings in a Hilbert space. For these
methods, we prove some strong convergence theorems. These theorems improve and extend
some results of Yao et al. [21] and Xu [20].
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1. INTRODUCTION

Let H be a real Hilbert space and A be a bounded operator on H. In this paper,
we assume A is strongly positive; that is, there exists a constant 7 > 0 such that
(Az,x) > 7||z||?, for all z € H. A typical problem is that of minimizing a quadratic
function over the set of the fixed points of nonexpansive mapping on a real Hilbert
space:

1
in = (Az,z) — (,b
wén;(r}g)2< z,x) — (z,b),

where b is a given point in H.

We recall a mapping T of H into itself is called nonexpansive, if ||Tx — Ty|| <
|z —y| forall z,y € H. Let F(T) denote the fixed points set of T, and a contraction
on H is a self-mapping f of H such that ||f(z) — f(y)|| < a|lz —y| for all z,y € H,
where o € [0,1) is a constant.

Finding an optimal point in the intersection F' of the fixed points set of a family
of nonexpansive mappings is one that occurs frequently in various areas of math-
ematical sciences and engineering. For example, the well-known convex feasibility
problem reduces to finding a point in the intersection of the fixed points set of
a family of nonexpansive mappings; see, e.g., [3, 5]. The problem of finding an
optimal point that minimizes a given cost function © : H — R over F is of wide
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interdisciplinary interest and practical importance see, e.g., [2, 4, 6, 23]. A simple
algorithmic solution to the problem of minimizing a quadratic function over F' is of
extreme value in many applications including the set theoretic signal estimation,
see, e.g., [23, 9]. The best approximation problem of finding the projection Pr(a)
(in the norm induced by inner product of H) from any given point a in H is the
simplest case of our problem.

In 2006, Marino and Xu [10] considered an iterative method for a single non-
expansive mapping. Let f be a contraction on H and A : H — H be a strongly
positive bounded linear operator. Starting with an arbitrary initial o € H, define
a sequence {x, } recursively by

Tnt1 = anYf(xn) + (I — a4, A)Tx,, n>0, (1.1)
where v > 0 is a constant and {«, } is a sequence in (0, 1) satisfying the following
conditions:

M lim, oo a, = 0;
m >0 oy = 00;

am >0 |an — apg| < 0o or limy, o0 s =1
Consequently, Marino and Xu [10] proved the sequence {z,} generated by (1.1)

converges strongly to the unique solution of the following variational inequality:
(A=~vf)z* 2" —x) <0, forall z € F(T),

which is the optimality condition for minimization problem

min 1<A;U,:c> — h(z),
zeF(T) 2
where h is a potential function for v f(i.e., '(z) = vf(x) for x € H).
In 2012, Razani and Yazdi [13] study convergence of a composite iterative scheme
which generalizes iterative sequence (1.1).
In 2008, Yao et al. [21] introduced the iterative sequence

Tnt1 = Y f(2n) + Bnxn + (1 — Bp)] — a, AYWyay,, foralln > 0, (1.2)

where W, is the W-mapping generated by an infinite countable family of nonex-
pansive mappings 11,75, ..., Ty, ... and A\, Ao,..., Ay, ... such that the common
fixed points set F' := (),—, F(T},) # (. Under very mild conditions on the param-
eters, it was proved the sequence {x,} converges strongly to p € F' where p is the

unique solution in F of the following variational inequality:
((A=~f)p,p—2*) <0, for all z* € F, (1.3)

which is the optimality condition for minimization problem

1
min 5(14:107 x) — h(z).

In this paper, motivated by Yao et al. [21] and Rhoades [14], we introduce an
implicit and explicit iterative schemes for finding a common element of the set
of solutions of a variational inequality and the set of common fixed points for a
countable family of nonexpansive mappings in a Hilbert space. Then, we prove
some strong convergence theorems which improve and extend some results of Yao
et al. [21] and Xu [20].

Now, we collect some lemmas which will be used in the main result.

Lemma 1.1. [10] Assume A is a strongly positive bounded linear operator on a
Hilbert space H with coefficienty > 0 and 0 < p < ||A[|71. Then ||I — pA| < 1 —p7.
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Lemma 1.2. Let H be a real Hilbert space. Then, for allx,y € H
() =z +yl? < llz]* + 2(y, 2 + y);
(D) [lz +yl[* > [|=]|* + 2{y, z).

Lemma 1.3. [17] Let {z,,} and {y, } be bounded sequences in Banach space X and
{8} a sequence in [0, 1] with 0 < liminf,,_, B, < limsup,,_, . Bn < 1. Suppose

Tnt1 = (1 = Bn)yn + Bnxn for all integer n > 0 and limsup,, , oo (|[yn+1 — ynll —
|Znt1 — znl|) < 0. Thenlim, oo ||€n — ynl| = 0.

Lemma 1.4. [16] Assume {s,} and {7,} are two sequences of nonnegative real
numbers such that
Snt1 < Sn = ¥ (sn) +n, n 21,
where ¥ is a continuous and strict increasing function on [0, oo) with ¥(0) = 0 and
{rn} is a sequence of positive numbers satisfying the conditions:
(I) doneymn =003
(IT) limsup,,_, ., = =0.
Thenlim,, .o Sy, =0
Lemma 1.5. [19] Assume {an} is a sequence of nonnegative real numbers such that
Ap41 S (]- - ’Yn)an + 5n7
where {7, } is a sequence in (0,1) and {0, } is a sequence such that
(I) Yoniim = 00;
(IT) limsup,,_, - % <0or) 2 |6,] < .
Then lim,,_, o a,, = 0.

2. MAIN RESULTS

Let H be a real Hilbert space with inner product (.,.) and the norm ||.||. We de-
note weak convergence and strong convergence by notation — and —, respectively.
Let {T},}2°; be a sequence of nonexpansive self-mappings on H and {\,}52, be a
sequence of nonnegative numbers in [0, 1]. For any n > 1, define a mapping W,, of
H into itself as follows:

Un,n+1 =1 ’
Un,n = )\nTnUn,nJrl + (]- - An)ja

Une = MTUp g1 + (1 — )1,

2.1
Unj—1 = Ae—1Th-1Upn ik + (1 — Mp—1)], (@.1)

Un2 = XU, 3+ (1 — )1,
W, =Up1=MT1Up2 + (1—=X)I.

Such a mapping W, is called the W —mapping generated by 7,,,7,,—1,...,71 and
Ans An—1y .oy AL

Lemma 2.1. [15] Let C' be a nonempty closed convex subset of a strictly convex
Banach space X, {T,,}52_, be a sequence of nonexpansive self-mappings on C' such
that (), F(T,,) # 0 and {\,}22, be a sequence of positive numbers in [0,b] for
someb € (0,1). Then, for every z € C and k > 1, the limit lim,,_, o, Uy, x& exists.

Remark 2.2. [22] It can be known from Lemma 2.1 that if D is a nonempty bounded
subset of C, then for € > 0 there exists ng > k such that for all n > ng

sup ||Uy xz — Ugz|| <e.
zeD
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Remark 2.3. [22] Using Lemma 2.1, one can define mapping W : C — C as
follows:

Wz = lim Wyox = lim U, iz,
,
n—oo n—oo

for all z € C. Such a W is called the W —mapping generated by {7,,}52; and
{An}52,. Since W, is nonexpansive, W : C' — C is also nonexpansive.

If {z,} is a bounded sequence in C, then we put D = {z,, : n > 0}. Hence, it is
clear from Remark 2.2 that for an arbitrary € > 0 there exists Ny > 1 such that for
all n > Ny

Whzn — Wep| = ||Upizn — Uiz, < sug |Up1x — Urz|| <e.
S

This implies
lim [|[W,z, — Wz,| =0.
n—oo

Throughout this paper, we assume {\,, }° ; is a sequence of positive numbers
in [0,b] for some b € (0,1).

Lemma 2.4. [15] Let C' be a nonempty closed convex subset of a strictly convex
Banach space X, {T,,}52, be a sequence of nonexpansive self-mappings on C' such
that ", F(T,,) # 0 and {\,}22, be a sequence of positive numbers in [0, b] for
someb € (0,1). Then F(W) = (., F(T,).

n=1

Definition 2.5. [18] A self-mapping f : C' — C'is called weak contraction with the
function ¥ if there exists a continuous and nondecreasing function ¥ : [0, 00) —
[0,00) such that ¥(s) > 0, for all s > 0, ¥(0) = 0, lims_,o ¥(s) = +00 and for any
2,y € G |[f(x) = W)l < [l = yll = |z = yl)-

Remark 2.6. Clearly a contraction with constant & must be a weak contraction,
where U(s) = (1 — k)s, but the converse is not true.

Example 2.7. [1] The mapping Az = sinz from [0, 1] to [0, 1] is a weak contraction

with U(s) = %. But A is not a contraction. Indeed, suppose that A is a contraction

with constant k£ € (0,1), i.e.,
|sinz —siny| < k|z — y|, for all z,y € [0, 1]. (2.2)

Since lim,_.q Si;““ =1, taking ¢ = 1 — k, there exists § > 0 as 0 < z < J, we have

822 1] < 1 — k. Therefore k < [$2£=800| ' e k[z — 0| < |sinz — sin0|, which
contradicts the assumption of (2.2). Thus A is not a contraction.
Lemma 2.8. [14] Let (X, d) be a complete metric space and f : X — X be a weak

contraction. Then [ has a unique fixed point in X.

Lemma 2.9. [7] Let H be a real Hilbert space, C be a closed convex subset of H
and T : C — C be a nonexpansive mapping with F(T) # 0. If {z,,} is a sequence in
C weakly conwerging to x and if {(I — T)x,,} converges toy, then (I — Tz = y.

Lemma 2.10. [3] Let {T,,} be a sequence of nonexpansive mapping on a closed
convex subset C of H and A be a strongly positive bounded linear operator on H
with coefficient 0 < v < 7. Let {a,} and {8,} be two sequences in [0, 1] with
limy, 00 0y = 0,37 v, = 00 and limsup,,_, ., B, < 1. Define a sequence {y, } by
11 € C and
Yn+1 = QpYU + BrYn + ((]— - 5n)I - anA)Tnyna

Jor alln € N. Suppose the sequence {y,} converges strongly. Set Pu = lim,,_,cc Yn,
foreach u € C. Then, the following hold:
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(I) Pu does not depend on the initial point y; ;
(II) P is a nonexpansive mapping on C'.

Lemma 2.11. [16] Let X be a Banach space, f be a weak contraction with a function
U on X and T be a nonexpansive mapping on X. Then, the composite mapping T f
is a wealk contraction.

It is easy to see the following lemma.

Lemma 2.12. Let H be a real Hilbert space, f : H — H be a wealk contraction and
A be a strongly positive bounded linear operator with coefficient ¥ > 0. Then, for
0<y<”y

(A=yf)z = (A=f)y,x —y) = (7 =Nz —yl? forallz,y € C.
That is, A — ~ f is strongly monotone with coefficient 7 — ~.

Let A be a strongly positive bounded linear operator on H with coefficient 7 > 0.
Let 0 < v < 7 where v is some constant. First, we give our implicit iterative scheme
as follows: let {t,} be a sequence in (0, 1) such that ¢,, < ||A| 7}, for all » > 1 and
u € H. For each n > 1, define a mapping S;, : H — H by

Se, () =tpyu+ (I —t, A)Wyha, x € H.

It is easy to see that for each t,, € (0,1), n > 1, S;_ is a weak contraction on H.
Indeed, by Lemma 1.1,

15t (2) = S, W)l < tnyllu = ull + [|( = tn A)(Wnz — Way)|
< A=tz -yl
By Banach contraction principle, for each n € N, there exists a unique element
zn € H of S, such that

2n = tpyu+ (I — t, A)Wy 2y, foralln > 1. (2.3)

Theorem 2.1. Let H be a real Hilbert space and {T,}%2, be an infinite family
of nonexpansive mappings of H into itself which satisfies F := (\—, F(T,) # 0.
Let {z,} be defined by (2.3) and t,, € (0,1) such that lim,,_, t, = 0. Then {z,}
converges strongly to p € F which is the unique solution of the following variational
inequality:

(Ap — yu,p — z*) <0, forallz* € F. (2.4)
Proof. First, we show the uniqueness of the solution of the variational inequality

(2.4). In fact, if p,q are two distinct solutions of the variational inequality (2.4),
then

(Ap —~yu,p—q) <0 and (Ag—~yu,q—p) <0.

Adding up these two inequalities, we have
((Ap —yu) — (Ag —yu),p — q) < 0.

But the strong monotonicity of A — yu (Lemma 2.12) implies that p = q. We use
p € F' to denote the unique solution of variational inequality (2.4). Thus, for p € F’

Zn —p = to(yu— Ap) + (I — t, A)(Wyz, — p). 2.5)
From (2.5),

(yu = Ap, 2z, = p) + ((I = t, A)(Wn2n — p), 20 — D)

”Zn —p||2 tn
tn{yu — Ap, 2o — p) + (1 = t,7) [ 20 — pII>.

(2.6)

IA I
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Simplifying (2.6), we have

1

2 — plI? < WWU — Ap, 2, — D). 2.7)

Hence, {z,} is bounded, so are { AW, z,}. Therefore
lim ||z, — Wyz,|| = lm t,|yu — AWy 2| = 0. 2.8)
n—00 n—oo
Take a subsequence {z,, } of {z,} such that
limsup(yu — Ap, 2z, — p) = lim (yu — Ap, 2z, — D).
n— o0 k—o0

Since {z,, } is bounded in H, without loss of generality, we assume z,, — z € H.
It follows from (2.8) and Remark 2.3 that z € F(WW). So
limsup(yu — Ap, z, — p) = (yu — Ap,z —p) <0.
n—oo
From (2.7), lim,—~ 2n, = 2. Next, we prove z solves the variational inequality
(2.4). From (2.3),
—1
Az, —yu = t—([ —tnA)(zn — Whzn).

n

Thus, for g € F'
<Azn — YU, Zp — Q> = =L <(I - tnA)(Zn - ann>7 Zn — Q>

tn

T = W)z — (I = Wa)g, 20 — @)+
(2.9)

S <A(I - Wn)zna Zn — Q>7
since I — W,, is monotone (.e.,((I — Wy,)x — (I — Wy,)y,x —y) > 0 for z,y € H.
This is due to the nonexpansivity of W,,). Now, replacing z, in (2.9) with z,, and
letting k — co. Note that lim,,_, 2,, = 2z which implies
(Az —yu,z — q) <0.

That is, z € F' is a solution of the variational inequality (2.4) and hence z = p by
uniqueness. Since each cluster point of {z,} equals p, z, — p as n — oo. This
completes the proof. O

Theorem 2.2. Let H be a real Hilbert space, {1, }52, be an infinite family of nonex-
pansive mappings of H into itself which satisfies F := (\—, F(T,,) # 0 and A be a
strongly positive bounded linear operator on H with coefficienty > 0. Let 0 < v <7
where 7 is some constant. Let {z,} be defined by

zn =ty yf(zn) + (I — t, A)Wy 2y, foralln > 1, (2.10)

where f : H — H is a weak contraction with a function ¥, t, € (0,1) such that
lim,, o t, = 0. Then {z,} converges strongly to p € F which is the unique solution
of the following variational inequality:

((A=~f)p,p—x*) <0, forallz* € F. (2.11)
Proof. Define a sequence {u,} by
Up = tpyu + (I — t, A)Whu,, foralln > 1,

for any u € H. From Theorem 2.1, {u,,} converges strongly. Set Pu = lim;,_, o, wp,,
for each u € H. It follows from Lemma 2.10 that P is nonexpansive. Then Pf is a
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weak contraction by Lemma 2.11. From Lemma 2.8, there exists a unique element
z € H such that z = P(f(z)). Define a sequence {k,} by

kn=t,vf(z)+ (I —t, A)W,k,, forall n > 1. (2.12)
Then, by Theorem 2.1, lim,,_,o k, = P(f(2)) = z € F(W). Therefore
[2n = knll = ta[|f(2n) = F)I + (1 = t.9) [[Whnzn — Wiky||

< tay(1f(zn) = R+ 1f (k) = F(2N) + (1 = t27) |20 — Kal

< tnY(llzn = Enll = ¥(llzn = Eall) + 1k — 2[] = ¢ (([kn — 2]))
+(1 = a7z — Kall

< A=t = Mzn = knll + tayllkn — 2]

Which implies
Iz — knll < =——|lkn — 2|
=

So lim, 0 ||2n — kx|l = 0 and hence lim,_, ||z, — 2|| = 0. This complete the
proof. t

Secondly, we give an explicit iterative scheme: for any given x¢p € H, let the
sequence {z, } be generated by

Tnt1 = QYU+ Bpxy + (1 — Bu)I — an A)Wyay,, for all n > 0. (2.13)

Now, we prove the following strong convergence theorem concerning the iterative
scheme (2.13).

Theorem 2.3. Let H be a real Hilbert space, {T,,}52, be an infinite family of non-
expansive mappings of H into itself which satisfies F' := ﬂzo:l F(T,) #0, Abea
strongly positive bounded linear operator on H with coefficienty > 0 and ||A]| < 1.
Let 0 < v < 7 where v i some constant. Let {«,}, {fn} be two sequences in (0,1)
satisfying the following conditions:

(1) limy, 00 iy, = 05

(II) Zn 0 Qn = O0;

(II1) 0 < liminf, o0 By < limsup,, . Bn < 1.

Then, the sequence {x,} defined by (2.13) converges strongly to p € F which is the
unique solution of the following variational inequality (2.4).

Proof. Let Q = Pn=_  p(r,). SO

QI = A)z +u) = QU — Ay +yu)|| < [[(I - A)x + yu—

(I = Ay +u)|
(I = Az — (I = A)yl|
(L=l - yll,
for all z,y € H. Therefore Q = Pn>= . F(r,) is a contraction of H into itself.
By Banach contraction principle there exists a unique element p € H such that
p=Q(I - A)p+u) = Pa=_ r(r,)((I = A)p + ~yu) or equivalently

(Ap — yu,p — 2*) <0, for all z* € F.

INIA

n=1

From the condition (I), we may assume, without loss of generality, «, < (1 —
Bn)||A||~L. Since A is strongly positive bounded linear operator on H,

[A]l = sup{|(Az, z)| : # € H, ||z[| = 1}.

Observe
(A =B — anA)z, x) 1- ﬁn) — o (Az, 1)

(
L — Bn — an|| Al
0,

VIV I
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that is to say (1 — 3,)] — «, A is positive. It follows that

11 = Bn)l — oAl = sup{{((1 = Bn)] — anA)z,z) : 2 € H, ||z|| = 1}
=sup{l — S, — an<Ax7m> cx € H,|z|| =1}

S 1- /Bn - anﬁ~
Next, we prove {z,} is bounded. Indeed, for p € F

|21 —pll = [lan(yu — Ap) + Bn(@n — p) + (1 = Bn)I — anA)(Wyzy, — p)||
< (1= B = ) lom — ol + Bullzn — pll + anllyu — Ap
< (1 —aY)zn —pll + anllyu — Ap].
(2.14)
It follows from (2.14) that

yu — Ap
e — pll < max{llzo - pl., M”L

Hence {x,,} is bounded, so are {W,,z,}.
Define
Tpt1 = Bnxn + (L = Bn)yn, n > 0.
Observe from the definition of y,,,
Tni2—Bni1Tntl  Tnt1—Bnn

Ynt+1 — Yn = T—Bnt - 1—Bn
Oén+1’Yu+((1 Bry1) =1 A)Wni1Tn i1

_ ozn'yu+((1fﬁn)lfanA)ann
1_571
On 41

an
T T~ YU+ Whi1Zn 41

—Woxpy + a" AWz, — 1(’"“ AW, 1Ty i1

- lf"“ [7u—AWn+1xn+1] [AW Xy — YU

+Wn+1$n+1 Wn+1xn + Wn+1xn -W nTn.-

So

A

[Yn+1 = Ynll = lZns1 — zall < 2555 (Iyull + [ AW @041 )
+125- ([AWnza || + [[yul)
+||Wn+115n+1 Wi1znll + [Wag1zn — Wy, ||
—||znt1 — znll
5 (vl + [AW 1@
+125- (AW za || + [yull) + [Watr2n — Waan|-
(2.15)

IN

From (2.1), Since T; and U, ; are nonexpansive, we get

||Wn+1xn - ann” ||)\1T1Un+1,2'rn - )\lTlUn,2xn||

M| Ung1,2%0 — Up 220 |

M| A2 ToUnt1, 320 — AoToU, 32|

M2 || Uns1,3%n — Un sxn | (2.16)

)\1)\2 CIEaE /\nHUn+1,n+1xn - Un,n+1mnH
MH?:1 Ais

where M > 0is a constant such that ||Uy 41 nt12n — Upnt12n|] < M, foralln > 0.
Substituting (2.16) into (2.15), we have

ARVAN VAN VAN | I VAN |

_CQn41

[Yn+1 = Yull = Zns1 —2n < T Bt (HVUH + AWy g 120 41]))
155, (AWl + [yl + ML A
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which implies (noting that () and 0 < A\; < b < 1,forall¢ > 1)

Lmsup(||yn+1 = Ynll = [[2n+1 — znl]) < 0.
n—oo
Hence, by Lemma 1.3,
lim |y, — 2] = 0.
n—oo
Consequently
lim ||zp41 — 2| = lm (1 — By)l|yn — zn] = 0. (2.17)
n—oo n—oo
Note

lzn = Whznll < ||Tpy1 — 2ol + [ 2ne1 — W, ||

(2.18)
< ||l'n+1 - an + O‘n”'}/u - AWn$nH + 6n||Wn-rn - xn||7
which implies
— — AW,
1- Bn
It follows from (2.17) that
lim [|[Wyz, —2,| = 0. (2.19)
n—oo
By the same argument as in the proof of Theorem 2.1,
lim sup{yu — Ap, z,, — p) <0, (2.20)
n—oo
where p = P>~ r(7,)((I — A)p + yu). From (2.19),
lim sup(yu — Ap, Wz, —p) <0 (2.21)

n— oo

Finally, we prove z,, — p as n — oo. From (2.13),

o (yu = Ap) + Bu(@n —p) + (1 = Ba)I — anA) Wy, —p)|?
g lyu — Ap[l* + [|Bn(zn — p) + (1 = Bu)I — an A)(Wya, — p)|I?
+28p a0 (yu — Ap, x, — p)
+2a, (yu — Ap, (1 = Bn) — anA) (W, — p))
< (1= B — an@)[Wazn — pll + Bullzn — pl))* + i |lyu — Ap||?
+25no‘n<7u - Ap, Tp — p> + 2(1 - ﬂn)an<7u - Apa ann - p>
—204121<’)/U - Ap» A(ann - p)>a

lznt1 = pII?

which implies
[Zni1 —plI> < (1= an¥)?lzn — plI* + 2Bnon (yu — Ap, x,, — p)
+O‘$LH’YU - Ap||2 + 2(1 - ﬂn)an<7u - AP, Whxy, — p>
120,730 — plI* + 707 |20 — plI* + i lyu — Ap]?
+2Bnan{(yu — Ap, 2, — p) + 2(1 = Bn)an(yu — Ap, Wpz,, — p)
+2a; [|yu — Ap|||A(Wpz, —p)||
= [1 =207z — p”2 + O‘n{an(i2”mn _pH2
+yu = Apll? + 2|lyu — Apll[| AWz, — p)I)
+2ﬁn<7u — Ap,x, — p> + 2(1 - ﬁn)h/u — Ap, Wy, — p>}

Since {z,} and {W,,z,,} are bounded, we can take a constant M; > 0 such that
T lln = plI* + lvw — Apl|* + 2llyu — Apl[| AWnan — )l < M,
for alln > 0. So

IN

Znt1 — ol < [1 = 20|z — PII* + onén, (2.22)
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where

&n = 2Bn(yu — Ap, xn — p) +2(1 = Bn)(yu — Ap, Wypxy, — p) + an My

By (1), (2.20) and (2.21), we get limsup,,_,.. & < 0. Now, applying Lemma 1.5 to
(2.22) concludes x,, — p as n — oo. This completes the proof. O

Theorem 2.4. Let H be a real Hilbert space, {T,,}52, be an infinite family of nonex-
pansive mappings of H into itself which satisfies F := (', F(T,,) #0. f : H - H
be a wealk contraction with a function ¥, A be a strongly positive bounded linear
operator on H with coefficienty > 0 and || A|| < 1. Let 0 < v < 7 where vy is some
constant. Let {ay,}, {Bn} be two sequences in (0,1) satisfying the following condi-
tions:

(1) limy,— o0 vy = 0;

(I1) Y02 5o = 005

(II1) 0 < liminf, 00 By < limsup,, ., Bn < 1.

For any given zy € H, the sequence {x,} defined by

Tnt1 = QY f(n) + Bran + (1 — )] — @, A)Wyoay,, foralln > 1, (2.23)

converges strongly to p € F which is the unique solution of the following variational
inequality (2.11).

Proof. Define a sequence {u,} by
Unt1 = YU + Bptn + (1 = Bp)] — an A)Whuy, foralln > 1,

for any v € C. From Theorem 2.3, {u,} converges strongly. Set Pu = lim, oo U,
for each v € C'. By the same argument as in the proof of Theorem 2.2, there exists
z = P(f(z)). Define a sequence {k, } by

knt1 = anyf(2) + Bukn + (1 — Bu)I — ay A)Wyky,, foralln > 1. (2.24)
Then, by Theorem 2.3, lim,, o ky, = P(f(2)) = z € F(W). Therefore
[Znt1 = kns1ll = an¥llf(@n) = f(2)| + Bullzn — Eal|

+(1 = Bn — an¥) [Wazn — Wikn||
<y (1£a) — FE + 17050~ FGID + Bl — Kl
+(1 = Bn — an?)[zn — kal
< anY([on = knll = Y(llen = kall) + 1k — 21 = ¥ ([[kn — 2])))
+(1 = an)||zn — Eall
< (=@ =Mlzn = kall = any(flzn = Enl))
Frany([kn = 2l = ¥ ((lkn = 2[)))
< Men = kall = anydb(llzn = Ekall) + any(llkn =2l = D([[kn = 2[]))-

Set s, = |2n — knll, Y = anY(|lkn — 2|| — ¥(||kn — 2]|)) and 7, = a,7y. Since
Tn

lim —= = [k, — z|| — ¥([[kn — 2])) = 0
n—oo ’I",n
and
o0 o0
D_rn=D ey =00,
n=0 n=0
by Lemma 1.4, lim,, o |2, — &y || = 0. Hence lim,,_, o, ||, — 2|| = 0. This complete
the proof. O
Remark 2.13. Theorem 2.2 is a generalization of [21, Theorem 3.1].

Remark 2.14. Theorem 2.4 is a generalization of [20, Theorem 3.2] and [21, The-
orem 3.2] with assumption ||A| < 1.
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