H. R. Sahebi, J. Nonlinear Anal. Optim. Vol. 10(2) (2010), 95-106

Journal of Nonlinear Analysis and Optimization Volume 10(2) (2010) http://www.math.sci.nu.ac.th ISSN: 1906-9685

J. Nonlinear Anal. Optim.

A VISCOSITY NONLINEAR MIDPOINT ALGORITHM FOR NONEXPANSIVE SEMIGROUP

HAMID REZA SAHEBI*

Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran.

ABSTRACT. In this paper, we propose a viscosity nonlinear midpoint algorithm (VNMA) for finding a solution of fixed point problem for a nonexpansive semigroup in real Hilbert spaces. Under certain conditions control on parameters, the iteration sequences generated by the proposed algorithm are proved to be strongly convergent to a solution of fixed point problem for a nonexpansive semigroup. Some numerical examples are presented to illustrate the convergence result. Our results improve and extend the corresponding results in the literature.

KEYWORDS:Nonexpansive semigroup, Equilibrium problem, Midpoint method, Strongly positive linear bounded operator, Fixed point, Hilbert space. **AMS Subject Classification**: Primary: 47H09, 47H10; Secondary: 47J20.

1. INTRODUCTION

The explicit midpoint rule is one of the powerful numerical methods for solving ordinary differential equations and differential algebraic equations. For related works, we refer to [2, 3, 4, 7, 8, 14, 17, 16] and the references cited therein. For instance, consider the initial value problem for the differential equation y'(t) = f(y(t))with the initial condition $y(0) = y_0$, where f is a continuous function from \mathbb{R}^d to \mathbb{R}^d . The explicit midpoint rule which generates a sequence $\{y_n\}$ by following the recurrence relation

$$\frac{1}{h}(y_{n+1} - y_n) = f(\frac{y_{n+1} - y_n}{2})$$

In 2015, Xu et al. [19] extended and generalized the results of Alghamdi et al. [1] and applied the viscosity method on the midpoint rule for nonexpansive mappings and they give the generalized viscosity explicit method:

$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n) T(\frac{x_n + x_{n+1}}{2}).$$

 $^{^{*}}Corresponding author.$

Email address : sahebi@aiau.ac.ir. Article history : Received 9 January 2019 Accepted 3 August 2019.

In 2016, Rizvi [13] introduced the following iterative method for the explicit midpoint rule of nonexpansive mappings:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (1 - \alpha_n B) T(\frac{x_n + x_{n+1}}{2}).$$

Motivated and inspired by the results mentioned and related literature in [1, 13, 19], we propose an iterative midpoint algorithm based on the viscosity method for finding a common element of the set of solutions of nonexpansive semigroup in Hilbert spaces. Then we prove strong convergence theorems that extend and improve the corresponding results of Rizvi [13], Xu [19], and others. Finally, we give examples and numerical result to illustrate our main result.

The rest of paper is organized as follows. The next section presents some preliminary results. Section 3 is devoted to introduce midpoint algorithm for solving it. The last section presents a numerical example to demonstrate the proposed algorithms.

2. Preliminaries

Let \mathbb{R} denote the set of all real numbers, H be a real Hilbert space with inner product $\langle ., . \rangle$ and norm $\|.\|$ and C be a nonempty closed convex subset of H.

A mapping $T: C \to C$ is said to be a contraction if there exists a constant $\alpha \in (0, 1)$ such that $||T(x) - T(y)|| \leq \alpha ||x - y||$, for all $x, y \in C$. If $\alpha = 1$ then T is called nonexpansive on C.

The fixed point problem (FPP) for a nonexpansive mapping T is: To find $x \in C$ such that $x \in Fix(T)$, where Fix(T) is the fixed point set of the nonexpansive mapping T.

In 2006, Marino and Xu [11] considered the following iterative method:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (I - \alpha_n B)Tx_n$$

with $0 < \gamma < \frac{\bar{\gamma}}{\alpha}$ and prove that the sequence $\{x_n\}$ converges strongly to the unique solution of the variational inequality $\langle (B - \gamma f)z, x - z \rangle \ge 0, \forall x \in \text{Fix}(T)$ which is the optimality condition for minimization problem

$$\min_{x \in \operatorname{Fix}(T)} \frac{1}{2} \langle Bx, x \rangle - h(x)$$

where h is the potential function for γf and $B: H \to H$ is a strongly positive linear bounded operator, i.e., if there exists a constant $\bar{\gamma} > 0$ such that $\langle Bx, x \rangle \geq \bar{\gamma} ||x||^2$, $\forall x \in \operatorname{Fix}(T)$.

A family $S := \{T(s) : 0 \le s < \infty\}$ of mappings from C into itself is called a nonexpansive semigroup on C if it satisfies the following conditions:

- (i) T(0)x = x for all $x \in C$
- (ii) T(s+t) = T(s)T(t) for all $s, t \ge 0$
- (iii) $||T(s)x T(s)y|| \le ||x y||$ for all $x, y \in C$ and $s \ge 0$
- (iv) For all $x \in C, s \to T(s)x$ is continuous.

Chen and Song [6] introduced and studied the following iterative method to prove a strong convergence theorem for FPP in a real Hilbert space:

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) \frac{1}{s_n} \int_0^{s_n} T(s) x_n ds.$$

where f is a contraction mapping. For each point $x \in H$, there exists a unique nearest point of C, denote by $P_C x$, such that $||x - P_C x|| \le ||x - y||$ for all $y \in C$. P_C

is called the metric projection of H onto C. It is well known that P_C is nonexpansive mapping and is characterized by the following property:

$$\langle x - P_C x, y - P_C y \rangle \le 0 \tag{2.1}$$

Further, it is well known that every nonexpansive operator $T: H \to H$ satisfies, for all $(x, y) \in H \times H$, inequality

$$\langle (x - T(x)) - (y - T(y)), T(y) - T(x) \rangle \le (\frac{1}{2}) \| (T(x) - x) - (T(y) - y) \|^2.$$
 (2.2)

It is also known that H satisfies Opial's condition [12], i.e., for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$
(2.3)

holds for every $y \in H$ with $y \neq x$.

Lemma 2.1. [5] The following inequality holds in real space H:

$$||x+y||^2 \le ||x||^2 + 2\langle y, x+y \rangle, \qquad \forall x, y \in H.$$

Definition 2.2. A mapping $M : C \to H$ is said to be monotone, if

$$\langle Mx - My, x - y \rangle \ge 0, \quad \forall x, y \in C.$$

M is called $\alpha\text{-inverse-strongly-monotone}$ if there exists a positive real number α such that

$$\langle Mx - My, x - y \rangle \ge \alpha \|Mx - My\|^2, \quad \forall x, y \in C.$$

Lemma 2.3. [11] Assume that B is a strong positive linear bounded self adjoint operator on a Hilbert space H with coefficient $\bar{\gamma} > 0$ and $0 < \rho \leq ||B||^{-1}$. Then $||I - \rho B|| \leq 1 - \rho \bar{\gamma}$.

Lemma 2.4. [15] Let C be a nonempty bounded closed convex subset of a Hilbert space H and let $S := \{T(s) : 0 \le s < \infty\}$ be a nonexpansive semigroup on C, for each $x \in C$ and t > 0. Then, for any $0 \le h < \infty$,

$$\lim_{t \to \infty} \sup_{x \in C} \|\frac{1}{t} \int_0^t T(s) x ds - T(h) (\frac{1}{t} \int_0^t T(s) x ds)\| = 0.$$

Lemma 2.5. [18] Let $\{a_n\}$ be a sequence of nonnegative real numbers such that $a_{n+1} \leq (1-\alpha_n)a_n + \delta_n$, $n \geq 0$ where α_n is a sequence in (0,1) and δ_n is a sequence in \mathbb{R} such that

(i) $\sum_{n=1}^{\infty} \alpha_n = \infty$; (ii) $\limsup_{n \to \infty} \frac{\delta_n}{\alpha_n} \le 0$ or $\sum_{n=1}^{\infty} \delta_n < \infty$. Then $\lim_{n \to \infty} a_n = 0$.

3. Viscosity Nonlinear Midpoint Algorithm

In this section, we prove a strong convergence theorem based on the explicit iterative for fixed point of nonexpansive semigroup. We firstly present the following unified algorithm.

Let *C* be a nonempty closed convex subset of real Hilbert space *H*. Let $S = \{T(s) : s \in [0, +\infty)\}$ be a nonexpansive semigroup on *C* such that $\operatorname{Fix}(S) \neq \emptyset$. Also $f : C \to H$ be a α -contraction mapping and *A* be a strongly positive bounded linear self adjoint operator on *H* with coefficient $\bar{\gamma} > 0$ such that $0 < \gamma < \frac{\bar{\gamma}}{\alpha} < \gamma + \frac{1}{\alpha}$ and $\bar{\gamma} \leq ||A|| \leq 1$. **Algorithm 3.1.** For given $x_0 \in C$ arbitrary, let the sequence $\{x_n\}$ be generated by:

$$x_{n+1} = \alpha_n \gamma f(x_n) + (1 - \alpha_n A) \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds.$$
(3.1)

where $\{\alpha_n\}$ is a sequence in (0, 1) and $\{s_n\} \subset [s, \infty)$ with s > 0 satisfying conditions:

- $(C1) \lim_{n \to \infty} \alpha_n = 0, \ \Sigma_{n=1}^{\infty} \alpha_n = \infty;$
- (C2) $\sum_{n=1}^{\infty} |\alpha_n \alpha_{n-1}| < \infty$ or $\lim_{n \to \infty} \frac{\alpha_{n+1}}{\alpha_n} = 1;$
- (C3) $\lim_{n\to\infty} s_n = \infty$, $\sup_{n\in\mathbb{N}} |s_{n+1} s_n|$ is bounded.

In the next remark, we observe that the iterative Algorithm 3.1 is well defined for all n.

Remark 3.2. For all $t \in (0, ||A||^{-1})$ and $u \in C$ fixed, the mapping

$$x \mapsto V_t x := t\gamma f(u) + (1 - tA) \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{u+x}{2}) ds$$

is a contraction with coefficient $\frac{1}{2}(1-t\overline{\gamma}) \in (0,1)$. This is immediately clear, due to the nonexpansivity semigroup of $S = \{T(s) : s \in [0, +\infty)\}$ and the inequality (2.3). In fact, we have, for all $x, y \in H$,

$$\begin{aligned} \|V_t x - V_t y\| &= \|t\gamma f(u) + (1 - tA) \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{u+x}{2}) ds - t\gamma f(u) - (1 - tA) \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{u+y}{2}) ds \\ &\leq (1 - t\overline{\gamma}) \frac{1}{s_n} \int_0^{s_n} \|T(s) (\frac{u+x}{2}) ds - T(s) (\frac{u+y}{2}) ds \| \\ &\leq \frac{1}{2} (1 - t\overline{\gamma}) \|x - y\|. \end{aligned}$$

Hence the Algorithm 3.1 is well defined. Moreover, V_t has a unique fixed point, denoted by x_t , which uniquely solves the fixed point equation

$$x_t = t\gamma f(u) + (1 - tA)\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{u + x_t}{2}) ds.$$
(3.2)

Lemma 3.3. Let $p \in Fix(S)$. Then the sequence $\{x_n\}$ generated by Algorithm 3.1 is bounded.

Proof. Let $p \in Fix(S)$, we obtain

$$\begin{aligned} \|x_{n+1} - p\| &= \|\alpha_n \gamma f(x_n) + (1 - \alpha_n A) \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds - p\| \\ &\leq \alpha_n \|\gamma f(x_n) - Ap\| + (1 - \alpha_n \bar{\gamma})\| \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) - T(s) p\| ds \\ &\leq \alpha_n (\|\gamma f(x_n) - \gamma f(p)\| + \|\gamma f(p) - Ap\|) + (1 - \alpha_n \bar{\gamma})\| \frac{x_n + x_{n+1}}{2} - p\| \\ &\leq \alpha_n \gamma \alpha \|x_n - p\| + \alpha_n \|\gamma f(p) - Ap\| + \frac{(1 - \alpha_n \bar{\gamma})}{2} (\|x_n - p\| + \|x_{n+1} - p\|). \end{aligned}$$

which implies that

$$\frac{1+\alpha_n\bar{\gamma}}{2}\|x_{n+1}-p\| \le (\alpha_n\gamma\alpha + \frac{1-\alpha_n\bar{\gamma}}{2})\|x_n-p\| + \alpha_n\|\gamma f(p) - Ap\|.$$

Then

$$\begin{aligned} \|x_{n+1} - p\| &\leq \left(1 - \frac{2(\bar{\gamma} - \gamma\alpha)\alpha_n}{1 + \alpha_n \bar{\gamma}}\right) \|x_n - p\| + \frac{2\alpha_n(\bar{\gamma} - \gamma\alpha)}{1 + \alpha_n \bar{\gamma}} \frac{\|\gamma f(p) - Ap\|}{\bar{\gamma} - \gamma\alpha} \\ &\leq \max\{\|x_n - p\|, \frac{\|\gamma f(p) - Ap\|}{\bar{\gamma} - \gamma\alpha}\} \\ &\vdots \\ &\leq \max\{\|x_0 - p\|, \frac{\|\gamma f(p) - Ap\|}{\bar{\gamma} - \gamma\alpha}\}. \end{aligned}$$

$$(3.3)$$

Hence $\{x_n\}$ is bounded.

Now, set $t_n := \frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2}) ds$. Then $\{t_n\}$ and $\{f(x_n)\}$ are bounded.

Lemma 3.4. The following properties are satisfying for the Algorithm 3.1

- $P1. \quad \lim_{n \to \infty} \|x_{n+1} x_n\| = 0.$
- $P2. \quad \lim_{n \to \infty} \|x_n t_n\| = 0.$
- $P3. \quad \lim_{n \to \infty} \|T(s)t_n t_n\| = 0.$

Proof. P1: Let $p \in Fix(S)$, we have,

$$\begin{split} \|t_{n+1} - t_n\| \\ &= \|\frac{1}{s_{n+1}} \int_0^{s_{n+1}} T(s) (\frac{x_{n+1} + x_{n+2}}{2}) ds - \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds \| \\ &= \|\frac{1}{s_{n+1}} \int_0^{s_{n+1}} (T(s) (\frac{x_{n+1} + x_{n+2}}{2}) - T(s) (\frac{x_n + x_{n+1}}{2})) ds + (\frac{1}{s_{n+1}} - \frac{1}{s_n}) \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds \\ &+ \frac{1}{s_{n+1}} \int_{s_n}^{s_{n+1}} T(s) (\frac{x_n + x_{n+1}}{2}) ds \| \\ &= \|\frac{1}{s_{n+1}} \int_0^{s_{n+1}} (T(s) (\frac{x_n + x_{n+2}}{2}) - T(s) (\frac{x_n + x_{n+1}}{2})) ds \\ &+ (\frac{1}{s_{n+1}} - \frac{1}{s_n}) \int_0^{s_n} (T(s) (\frac{x_n + x_{n+1}}{2}) - T(s)p) ds + \frac{1}{s_{n+1}} \int_{s_n}^{s_{n+1}} (T(s) (\frac{x_n + x_{n+1}}{2}) - T(s)p) ds \| \\ &\leq \|\frac{x_{n+1} + x_{n+2}}{2} - \frac{x_n + x_{n+1}}{2}\| + \frac{|s_{n+1} - s_n|s_n}{s_{n+1}s_n}\| \frac{x_n + x_{n+1}}{2} - p\| + \frac{|s_{n+1} - s_n|}{s_{n+1}}\| \frac{x_n + x_{n+1}}{2} - p\| \\ &\leq \frac{1}{2} (\|x_{n+1} - x_n\| + \|x_{n+2} - x_{n+1}\|) + \frac{|s_{n+1} - s_n|}{s_{n+1}} (\|x_n - p\| + \|x_{n+1} - p\|). \end{split}$$

$$(3.4)$$

Next, we show that the sequence $\{x_n\}$ is asymptotically regular, i.e., $\lim_{n\to\infty} ||x_{n+2} - x_{n+1}|| = 0$. By (3.4) we estimate that

$$\begin{split} \|x_{n+2} - x_{n+1}\| \\ &= \|(\alpha_{n+1}\gamma f(x_{n+1}) + (1 - \alpha_{n+1}A)\frac{1}{s_{n+1}}\int_{0}^{s_{n+1}}T(s)(\frac{x_{n+1} + x_{n+2}}{2})ds) \\ &- (\alpha_{n}\gamma f(x_{n}) + (1 - \alpha_{n}A)\frac{1}{s_{n}}\int_{0}^{s_{n}}T(s)(\frac{x_{n} + x_{n+1}}{2})ds)\| \\ &= \|(1 - \alpha_{n+1}A)(\frac{1}{s_{n+1}}\int_{0}^{s_{n+1}}T(s)(\frac{x_{n+1} + x_{n+2}}{2})ds - \frac{1}{s_{n}}\int_{0}^{s_{n}}T(s)(\frac{x_{n} + x_{n+1}}{2})ds) \\ &+ (\alpha_{n}A - \alpha_{n+1}A)\frac{1}{s_{n}}\int_{0}^{s_{n}}T(s)(\frac{x_{n} + x_{n+1}}{2})ds + (\alpha_{n+1} - \alpha_{n})\gamma f(x_{n}) \\ &+ \alpha_{n+1}(\gamma f(x_{n+1}) - \gamma f(x_{n}))\| \\ &\leq (1 - \alpha_{n+1}\bar{\gamma})\|t_{n+1} - t_{n}\| + M|\alpha_{n} - \alpha_{n+1}| + \alpha_{n+1}\gamma\|f(x_{n+1}) - f(x_{n})\| \\ &\leq (1 - \alpha_{n+1}\bar{\gamma})\|t_{n+1} - t_{n}\| + M|\alpha_{n} - \alpha_{n+1}| + \alpha_{n+1}\gamma\alpha\|x_{n+1} - x_{n}\| \\ &\leq \frac{1 - \alpha_{n+1}\bar{\gamma}}{2}(\|x_{n+1} - x_{n}\| + \|x_{n+2} - x_{n+1}\|) + (1 - \alpha_{n+1}\bar{\gamma})\frac{|s_{n+1} - s_{n}|}{s_{n+1}}(\|x_{n} - p\|) \\ &+ \|x_{n+1} - p\|) + M|\alpha_{n} - \alpha_{n+1}| + \alpha_{n+1}\gamma\alpha\|x_{n+1} - x_{n}\|, \end{split}$$

where $M := \sup\{\frac{1}{s_n} \int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2}) ds + \gamma \|f(x_n)\|\}.$

Then

$$(1 + \alpha_{n+1}\bar{\gamma}) \|x_{n+2} - x_{n+1}\| \leq (1 + (2\alpha\gamma - \bar{\gamma})\alpha_{n+1}) \|x_{n+1} - x_n\| + (1 - \alpha_{n+1}\bar{\gamma})\frac{2|s_{n+1} - s_n|}{s_{n+1}} (\|x_n - p\| + \|x_{n+1} - p\|) + 2M|\alpha_n - \alpha_{n+1}|.$$

Therefore

$$\begin{aligned} \|x_{n+2} - x_{n+1}\| &\leq (1 - \frac{2(\bar{\gamma} - \alpha \gamma)\alpha_{n+1}}{1 + \alpha_{n+1}\bar{\gamma}}) \|x_{n+1} - x_n\| + (\frac{1 - \alpha_{n+1}\bar{\gamma}}{1 + \alpha_{n+1}\bar{\gamma}}) (\frac{2|s_{n+1} - s_n|}{s_{n+1}}) (\|x_n - p\| \\ &+ \|x_{n+1} - p\|) + \frac{2M}{1 + \alpha_{n+1}\bar{\gamma}} |\alpha_n - \alpha_{n+1}|. \end{aligned}$$

Hence, it follows by Lemma 2.5 that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0.$$
(3.5)

And similarly, we have

$$\lim_{n \to \infty} \|x_{n+2} - x_{n+1}\| = 0. \tag{3.6}$$

 $\lim_{n \to \infty} \|x_{n+2} - x_{n+1}\| = 0.$ Also by (3.4), (3.5),(3.6) and (C3) we have $\lim_{n \to \infty} \|t_{n+1} - t_n\| = 0.$

P2: We can write

$$\begin{aligned} \|x_n - t_n\| &\leq \|x_{n+1} - x_n\| + \|\alpha_n \gamma f(x_n) + (1 - \alpha_n A)t_n - t_n\| \\ &\leq \|x_n - x_{n+1}\| + \alpha_n \|\gamma f(x_n) - At_n\|. \end{aligned}$$

By (C1) and (3.5), we obtain

$$\lim_{n \to \infty} \|x_n - t_n\| = 0.$$
(3.7)

100

P3: Let $K := \{w \in C : \|w - p\| \le \|x_0 - p\|, \frac{1}{\bar{\gamma} - \gamma \alpha} \|\gamma f(p) - Bp\|\}$. Then K is a nonempty bounded closed convex subset of C which is T(s)-invariant for each $s \in [0, +\infty)$ and contains $\{x_n\}$. So, without loss of generality, we may assume that $S := \{T(s) : s \in [0, +\infty)\}$ is a nonexpansive semigroup on K.

$$\begin{split} \|T(s)x_n - x_n\| &= \|T(s)x_n - T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds + T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds \\ &- \frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds + \frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &\leq \|T(s)x_n - T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &\leq \|x_n - \frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ &+ \|\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &= 2\|\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &+ \|T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - x_n\| \\ &+ \|T(s)\frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds - \frac{1}{s_n}\int_0^{s_n} T(s)(\frac{x_n + x_{n+1}}{2})ds\| \\ \end{split}$$

Since $\frac{x_n+x_{n+1}}{2} \in C$, from (3.7) and Lemma 2.4, we obtain $\lim_{n\to\infty} ||T(s)x_n-x_n|| = 0$.

Therefore

$$||T(s)t_n - t_n|| \leq ||T(s)t_n - T(s)x_n|| + ||T(s)x_n - x_n|| + ||x_n - t_n||$$

$$\leq ||t_n - x_n|| + ||T(s)x_n - x_n|| + ||x_n - t_n||.$$

Then we have $\lim_{n\to\infty} ||T(s)t_n - t_n|| = 0.$

4. Convergence Algorithm

Theorem 4.1. The Algorithm defined by (3.1) convergence strongly to $z \in Fix(S)$, which is a unique solution in of the variational inequality $\langle (\gamma f - A)z, y - z \rangle \leq 0, \quad \forall y \in Fix(S).$

Proof. Let $s = P_{Fix(S)}$. We get

$$\begin{aligned} \|s(I - A + \gamma f)(x) - s(I - A + \gamma f)(y)\| &\leq \|(I - A + \gamma f)(x) - (I - A + \gamma f)(y)\| \\ &\leq \|I - A\| \|x - y\| + \gamma \|f(x) - f(y)\| \\ &\leq (1 - \bar{\gamma})\|x - y\| + \gamma \alpha \|x - y\| \\ &= (1 - (\bar{\gamma} - \gamma \alpha))\|x - y\|. \end{aligned}$$

Then $s(I - A + \gamma f)$ is a contraction mapping from H into itself. Therefore by Banach contraction principle, there exists $z \in H$ such that $z = s(I - A + \gamma f)z =$

 $P_{\operatorname{Fix}(S)}(I - A + \gamma f)z$. We show that $\langle (\gamma f - A)z, x_n - z \rangle \leq 0$. To show this inequality, we choose a subsequence $\{t_{n_i}\}$ of $\{t_n\}$ such that

$$\limsup_{n \to \infty} \langle (\gamma f - A)z, t_n - z \rangle = \lim_{i \to \infty} \langle (\gamma f - A)z, t_{n_i} - z \rangle.$$
(4.1)

Since $\{t_{n_i}\}$ is bounded, there exists a subsequence $\{t_{n_i}\}$ of $\{t_{n_i}\} \subseteq K$ which converges weakly to some $w \in C$. Without loss of generality, we can assume that $t_{n_i} \rightarrow w$. Now, we prove that $w \in Fix(S)$. Assume that $w \notin Fix(S)$. Since $t_{n_i} \rightarrow w$ and $T(s)w \neq w$, from Opial's conditions (2.3) and Lemma 3.4 (P3), we have

 $\liminf_{i \to \infty} \|t_{n_i} - w\| < \liminf_{i \to \infty} \|t_{n_i} - T(s)w\|$

$$\leq \liminf_{i \to \infty} (\|t_{n_i} - T(s)t_{n_i}\| + \|T(s)t_{n_i} - T(s)w\|)$$

$$\leq \liminf_{i \to \infty} \|t_{n_i} - w\|,$$

which is a contradiction. Thus, we obtain $w \in Fix(S)$. Now from (2.1), we have

$$\limsup_{n \to \infty} \langle (\gamma f - A)z, x_n - z \rangle = \limsup_{n \to \infty} \langle (\gamma f - A)z, t_n - z \rangle$$

$$\leq \limsup_{i \to \infty} \langle (\gamma f - A)z, t_{n_i} - z \rangle$$

$$= \langle (\gamma f - A)z, w - z \rangle$$

$$\leq 0.$$

(4.2)

Now we prove that x_n is strongly convergence to z.

$$\begin{split} \|x_{n+1} - z\|^2 &= \alpha_n \langle \gamma f(x_n) - Az, x_{n+1} - z \rangle + \langle (1 - \alpha_n A)(t_n - z), x_{n+1} - z \rangle \\ &\leq \alpha_n (\gamma \langle f(x_n) - f(z), x_{n+1} - z \rangle + \langle \gamma f(z) - Az, x_{n+1} - z \rangle) \\ &+ \|1 - \alpha_n A\| \|t_n - z\| \|x_{n+1} - z\| \\ &\leq \alpha_n \alpha \gamma \|x_n - z\| \|x_{n+1} - z\| + \alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle \\ &+ (1 - \alpha_n \tilde{\gamma}) \|\frac{x_n + x_{n+1}}{2} - z\| \|x_{n+1} - z\| \\ &\leq \alpha_n \alpha \gamma \|x_n - z\| \|x_{n+1} - z\| + \alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle \\ &+ \frac{1 - \alpha_n \tilde{\gamma}}{2} (\|x_n - z\| + \|x_{n+1} - z\|) \|x_{n+1} - z\| \\ &= \frac{1 - \alpha_n \tilde{\gamma} + 2\alpha_n \alpha \gamma}{2} \|x_n - z\| \|x_{n+1} - z\| + \frac{1 - \alpha_n \tilde{\gamma}}{2} \|x_{n+1} - z\|^2 \\ &+ \alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle \\ &\leq \frac{1 - \alpha_n (\tilde{\gamma} - 2\alpha \gamma)}{4} (\|x_n - z\|^2 + \|x_{n+1} - z\|^2) + \frac{1 - \alpha_n \tilde{\gamma}}{2} \|x_{n+1} - z\|^2 \\ &+ \alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle \\ &\leq \frac{1 - \alpha_n (\tilde{\gamma} - 2\alpha \gamma)}{4} \|x_n - z\|^2 + \frac{3}{4} \|x_{n+1} - z\|^2 + \alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle. \end{split}$$

This implies that

$$4\|x_{n+1}-z\|^2 \le (1-\alpha_n(\bar{\gamma}-2\alpha\gamma))\|x_n-z\|^2+3\|x_{n+1}-z\|^2+4\alpha_n\langle\gamma f(z)-Az, x_{n+1}-z\rangle.$$

Then

$$||x_{n+1} - z||^2 \leq (1 - \alpha_n (\bar{\gamma} - 2\alpha\gamma)) ||x_n - z||^2 + 4\alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle$$

= $(1 - l_n) ||x_n - z||^2 + 4\alpha_n \langle \gamma f(z) - Az, x_{n+1} - z \rangle,$
(4.3)

where $l_n = \alpha_n (\bar{\gamma} - 2\alpha\gamma)$.

Since $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$, it is easy to see that $\lim_{n\to\infty} l_n = 0$, $\sum_{n=0}^{\infty} l_n = \infty$. Hence, from (4.2) and (4.3) and Lemma 2.5, we deduce that $x_n \to z$, where $z = P_{\Theta}(I - A + \gamma f)z$.

5. Numerical Examples

In this section, we give some examples and numerical results for supporting our main theorem. All the numerical results have been produced in Matlab 2017 on a Linux workstation with a 3.8 GHZ Intel annex processor and 8 Gb of memory

Example 5.1. Consider a Fredholm integral equation of the following form

$$x(t) = g(t) + \int_0^t F(t, k, x(k)) dk, t \in [0, 1],$$
(5.1)

where g is a continuous function on [0,1] and $F: [0,1] \times [0,1] \times \mathbb{R} \to \mathbb{R}$ is continuous and satisfies the following condition

$$|F(t,k,x) - F(t,k,y)| \le |x-y|, \qquad \forall t,s \in [0,1], \quad x,y \in \mathbb{R},$$

then equation (5.1) has at least one solution in $L^2[0,1]$ (see [9]). Define a mapping $T(s): L^2[0,1] \to L^2[0,1]$ by

$$(T(s)x)(t) = e^{-2s}(g(t) + \int_0^t F(t, k, x(k)) \, dk, \qquad t \in [0, 1].$$

It is easy to observe that $S = \{T(s) : s \in [0, +\infty)\}$ is nonexpansive semigroup. In fact, we have, for $x, y \in L^2[0, 1]$,

$$\begin{aligned} \|T(s)x - T(s)y\|^2 &= \int_0^1 |(T(s)x)(t) - (T(s)y)(t)|^2 dt \\ &= \int_0^1 |e^{-2s} \int_0^1 (F(t,k,x(k)) - F(t,k,y(k))) dk|^2 dt \\ &\leq \int_0^1 (\int_0^1 |x(k) - y(k)|^2 dk) dt \\ &= \int_0^1 |x(k) - y(k)|^2 dk \\ &= \|x - y\|^2. \end{aligned}$$

This means that to find the solution of integral equation (5.1) is reduced to find a fixed point of the nonexpansive semigroup S in $L^2[0,1]$.

For any given function $x_0 \in L^2[0,1]$, define a sequence of functions x_n in $L^2[0,1]$ by

$$x_{n+1} = \alpha_n \gamma f(x_n) + (1 - \alpha_n A) \frac{1}{s_n} \int_0^{s_n} T(s) (\frac{x_n + x_{n+1}}{2}) ds$$

satisfying the conditions of Algorithm 3.1. Then the sequence $\{x_n\}$ converges strongly in $L^2[0,1]$ to the solution of integral equation (5.1) which is also a solution of the following variational inequality

$$\langle (\gamma f - A)z, y - z \rangle \le 0, \quad \forall y \in Fix(S).$$

Example 5.2. Let $H = \mathbb{R}$, the set of all real numbers, with the inner product defined by $\langle x, y \rangle = xy$, $\forall x, y \in \mathbb{R}$, and induced usual norm | . |. Let C = [-3, 0]; Let $f(x) = \frac{1}{5}(x+2)$, $A(x) = \frac{1}{3}x$ and let, for each $x \in C$, $T(s)x = \frac{1}{1+3s}x$. Then there exist unique sequences $\{x_n\} \subset \mathbb{R}$ generated by the iterative scheme

$$x_{n+1} = \frac{6}{5}(x_n+2) + (1-\frac{3}{n}A)\frac{1}{s_n}\int_0^{s_n}\frac{1}{1+3s}(\frac{x_n+x_{n+1}}{2})ds$$
(5.2)

where $\alpha_n = \frac{3}{n}$ and $s_n = n$. Then $\{x_n\}$ converges to $\{0\} \in Fix(S)$. f is contraction mapping with constant $\alpha = \frac{1}{3}$ and A is a strongly positive bounded linear operator with constant $\bar{\gamma} = 1$ on C. Therefore, we can choose $\gamma = 2$ which satisfies $0 < \gamma < \frac{\bar{\gamma}}{\alpha} < \gamma + \frac{1}{\alpha}$. Furthermore, it is easy to observe that $Fix(S) = \{0\} \neq \emptyset$. After simplification, scheme (5.2) reduce to

$$x_{n+1} = \frac{\frac{12}{5n} + \frac{1}{n}(\frac{6}{5} + \frac{1}{6}(1 - \frac{1}{n})\ln(1 + 3n))x_n}{1 - \frac{1}{6n}(1 - \frac{1}{n})\ln(1 + 3n)}$$

Following the proof of Theorem 4.1, we obtain that $\{x_n\}$ converges strongly to $w = \{0\} \in Fix(S)$.

Example 5.3. Let $H = \mathbb{R}$, the set of all real numbers, with the inner product defined by $\langle x, y \rangle = xy$, $\forall x, y \in \mathbb{R}$, and induced usual norm | . |. Let C = [0, 2]; Let $f(x) = \frac{1}{8}x$, A(x) = 2x and let, for each $x \in C$, $T(s)x = e^{-2s}x$. Then there exist unique sequences $\{x_n\} \subset \mathbb{R}$ generated by the iterative scheme

$$x_{n+1} = \frac{1}{4\sqrt{n}}x_n + (1 - \frac{1}{\sqrt{n}}A)\frac{1}{s_n}\int_0^{s_n} e^{-2s}(\frac{x_n + x_{n+1}}{2})ds$$
(5.3)

where $\alpha_n = \frac{1}{\sqrt{n}}$ and $s_n = 2n$. Then $\{x_n\}$ converges to $\{0\} \in Fix(S)$. f is contraction mapping with constant $\alpha = \frac{1}{5}$ and A is a strongly positive bounded linear operator with constant $\bar{\gamma} = 1$ on C. Therefore, we can choose $\gamma = 2$ which satisfies $0 < \gamma < \frac{\bar{\gamma}}{\alpha} < \gamma + \frac{1}{\alpha}$. Furthermore, it is easy to observe that $Fix(S) = \{0\} \neq \emptyset$. After simplification, scheme (5.3) reduce to

$$x_{n+1} = \frac{\frac{1}{4\sqrt{n}} - \frac{1}{8n}(1 - \frac{2}{\sqrt{n}})(e^{-4n} - 1)}{1 + \frac{1}{8n}(1 - \frac{2}{\sqrt{n}})(e^{-4n} - 1)}x_n.$$

Following the proof of Theorem 4.1, we obtain that $\{x_n\}$ converges strongly to $w = \{0\} \in Fix(S)$.

6. CONCULSION

We have proposed a viscosity nonlinear midpoint algorithm (VNMA) in real Hilbert spaces. The strong convergence of iteration sequence generated by the algorithm to a solution of VNMA is obtained. Some numerical examples are also provided to illustrate the convergence of proposed algorithm.

7. Acknowledgements

We thank the anonymous referee for the thorough review and appreciate the comments and suggestions, which help improving the quality of this paper.

References

- M.A. Alghamdi, N. Shahzad, H.K. Xu, The implicit midpoint rule for nonexpansive mappings, Fixed Point Theory Appl., 96 (2014), 9 pages.
- W. Auzinger, R. Frank, Asymptotic error expansions for stiff equations: an analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case, Numer. Math., 56 (1989) 469-499.
- 3. G. Bader, P. Deuflhard, A semi-implicit mid-point rule for stiff systems of ordinary differential equations, Numer. Math., 41 (1983) 373-398.
- A. Bayreuth, The implicit midpoint rule applied to discontinuous differential equations, Computing, 49 (1992) 45-62.
- S. S. Chang, J. Lee, H. W. Chan, An new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis. 70(2009)3307-3319.
- R. Chen, Y. Song, Convergence to common fixed point of nonexpansive semigroups, J. Comput. Appl. Math. 200, 566–575 (2007).
- P. Deuflhard, Recent progress in extrapolation methods for ordinary differential equations, SIAM Rev., 27(4) (1985) 505-535.
- 8. E. Hofer, A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants, SIAM J. Numer. Anal., 13 (1976) 645-663.
- P.L. Lions, Approximation de points fixes de contractions, C.R. Acad. Sci., Ser. A-B Paris 284 (1977) 1357-1359.

- H. Mahdioui, O. Chadli, On a system of generalized mixed equilibrium problem involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Advances in Operations Research. 2012(2012)843-486.
- G. Marino, HK, Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, Math. Appl. 318(2006)43-52.
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Am. Math. Soc. 73(4)(1967)595-597.
- S. H. Rizvi, General Viscosity Implicit Midpoint Rule For Nonexpansive Mapping, ArVix, 2016 (2016), 14 pages.
- 14. C. Schneider, Analysis of the linearly implicit mid-point rule for differential-algebra equations, Electron. Trans. Numer. Anal., 1 (1993) 1-10.
- T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211(1997)71-83.
- S. Somalia, S. Davulcua, Implicit midpoint rule and extrapolation to singularly perturbed boundary value problems, Int. J. Comput. Math., 75(1) (2000) 117-127.
- S. Somalia, Implicit midpoint rule to the nonlinear degenerate boundary value problems, Int. J. Comput. Math., 79(3) (2002) 327-332.
- H. K. Xu, Viscosity approximation method for nonexpansive semigroups, J. Math. Anal. Appl. 298(2004)279-291.
- H.K. Xu, M.A. Alghamdi, N. Shahzad., The viscosity technique for the implicit mid point rule of nonexpansive mappings in Hilbert spaces, Fixed point Theory Appl., 41 (2015), 12 pages.