
H. R. Sahebi, J. Nonlinear Anal. Optim. Vol. 10(2) (2010), 95-106

Journal of Nonlinear Analysis and Optimization
Volume 10(2) (2010)
http://www.math.sci.nu.ac.th
ISSN : 1906-9685

J. Nonlinear Anal. Optim.

A VISCOSITY NONLINEAR MIDPOINT ALGORITHM FOR
NONEXPANSIVE SEMIGROUP

HAMID REZA SAHEBI∗

Department of Mathematics, Ashtian Branch, Islamic Azad University, Ashtian, Iran.

ABSTRACT. In this paper, we propose a viscosity nonlinear midpoint algorithm (VNMA)
for finding a solution of fixed point problem for a nonexpansive semigroup in real Hilbert
spaces. Under certain conditions control on parameters, the iteration sequences generated
by the proposed algorithm are proved to be strongly convergent to a solution of fixed point
problem for a nonexpansive semigroup. Some numerical examples are presented to illus-
trate the convergence result. Our results improve and extend the corresponding results in
the literature.
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1. Introduction

The explicit midpoint rule is one of the powerful numerical methods for solv-
ing ordinary differential equations and differential algebraic equations. For related
works, we refer to [2, 3, 4, 7, 8, 14, 17, 16] and the references cited therein. For in-
stance, consider the initial value problem for the differential equation y

′
(t) = f(y(t))

with the initial condition y(0) = y0, where f is a continuous function from Rd to
Rd. The explicit midpoint rule which generates a sequence {yn} by following the
recurrence relation

1

h
(yn+1 − yn) = f(

yn+1 − yn
2

).

In 2015, Xu et al. [19] extended and generalized the results of Alghamdi et al. [1]
and applied the viscosity method on the midpoint rule for nonexpansive mappings
and they give the generalized viscosity explicit method:

xn+1 = αnf(xn) + βnxn + (1− αn)T (
xn + xn+1

2
).
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In 2016, Rizvi [13] introduced the following iterative method for the explicit mid-
point rule of nonexpansive mappings:

xn+1 = αnγf(xn) + (1− αnB)T (
xn + xn+1

2
).

Motivated and inspired by the results mentioned and related literature in [1, 13, 19],
we propose an iterative midpoint algorithm based on the viscosity method for finding
a common element of the set of solutions of nonexpansive semigroup in Hilbert
spaces. Then we prove strong convergence theorems that extend and improve the
corresponding results of Rizvi [13], Xu [19], and others. Finally, we give examples
and numerical result to illustrate our main result.

The rest of paper is organized as follows. The next section presents some pre-
liminary results. Section 3 is devoted to introduce midpoint algorithm for solving
it. The last section presents a numerical example to demonstrate the proposed
algorithms.

2. Preliminaries

Let R denote the set of all real numbers, H be a real Hilbert space with inner
product ⟨., .⟩ and norm ∥.∥ and C be a nonempty closed convex subset of H.
A mapping T : C → C is said to be a contraction if there exists a constant α ∈ (0, 1)
such that ∥T (x) − T (y)∥ ≤ α∥x − y∥, for all x, y ∈ C. If α = 1 then T is called
nonexpansive on C.
The fixed point problem (FPP) for a nonexpansive mapping T is: To find x ∈ C
such that x ∈ Fix(T ), where Fix(T ) is the fixed point set of the nonexpansive
mapping T .
In 2006, Marino and Xu [11] considered the following iterative method:

xn+1 = αnγf(xn) + (I − αnB)Txn

with 0 < γ < γ̄
α and prove that the sequence {xn} converges strongly to the unique

solution of the variational inequality ⟨(B − γf)z, x− z⟩ ≥ 0, ∀x ∈ Fix(T ) which is
the optimality condition for minimization problem

min
x∈Fix(T )

1

2
⟨Bx, x⟩ − h(x)

where h is the potential function for γf and B : H → H is a strongly positive linear
bounded operator, i.e., if there exists a constant γ̄ > 0 such that ⟨Bx, x⟩ ≥ γ̄∥x∥2,
∀x ∈ Fix(T ).
A family S := {T (s) : 0 ≤ s < ∞} of mappings from C into itself is called a
nonexpansive semigroup on C if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C
(ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0
(iii) ∥T (s)x− T (s)y∥ ≤ ∥x− y∥ for all x, y ∈ C and s ≥ 0
(iv) For all x ∈ C, s → T (s)x is continuous.

Chen and Song [6] introduced and studied the following iterative method to prove
a strong convergence theorem for FPP in a real Hilbert space:

xn+1 = αnf(xn) + (1− αn)
1
sn

∫ sn
0

T (s)xnds.

where f is a contraction mapping. For each point x ∈ H, there exists a unique
nearest point of C, denote by PCx, such that ∥x−PCx∥ ≤ ∥x−y∥ for all y ∈ C. PC
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is called the metric projection of H onto C. It is well known that PC is nonexpansive
mapping and is characterized by the following property:

⟨x− PCx, y − PCy⟩ ≤ 0 (2.1)
Further, it is well known that every nonexpansive operator T : H → H satisfies, for
all (x, y) ∈ H ×H, inequality

⟨(x− T (x))− (y − T (y)), T (y)− T (x)⟩ ≤ (
1

2
)∥(T (x)− x)− (T (y)− y)∥2. (2.2)

It is also known that H satisfies Opial’s condition [12], i.e., for any sequence {xn}
with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥ (2.3)

holds for every y ∈ H with y ̸= x.

Lemma 2.1. [5] The following inequality holds in real space H:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩, ∀x, y ∈ H.

Definition 2.2. A mapping M : C → H is said to be monotone, if
⟨Mx−My, x− y⟩ ≥ 0, ∀x, y ∈ C.

M is called α-inverse-strongly-monotone if there exists a positive real number α
such that

⟨Mx−My, x− y⟩ ≥ α∥Mx−My∥2, ∀x, y ∈ C.

Lemma 2.3. [11] Assume that B is a strong positive linear bounded self adjoint
operator on a Hilbert space H with coefficient γ̄ > 0 and 0 < ρ ≤ ∥B∥−1. Then
∥I − ρB∥ ≤ 1− ργ̄.

Lemma 2.4. [15] Let C be a nonempty bounded closed convex subset of a Hilbert
space H and let S := {T (s) : 0 ≤ s < ∞} be a nonexpansive semigroup on C, for
each x ∈ C and t > 0. Then, for any 0 ≤ h < ∞,

lim
t→∞

sup
x∈C

∥1
t

∫ t

0

T (s)xds− T (h)(
1

t

∫ t

0

T (s)xds)∥ = 0.

Lemma 2.5. [18] Let {an} be a sequence of nonnegative real numbers such that
an+1 ≤ (1−αn)an+ δn, n ≥ 0 where αn is a sequence in (0, 1) and δn is a sequence
in R such that

(i) Σ∞
n=1αn = ∞; (ii) lim supn→∞

δn
αn

≤ 0 or Σ∞
n=1δn < ∞.

Then limn→∞ an = 0.

3. Viscosity Nonlinear Midpoint Algorithm

In this section, we prove a strong convergence theorem based on the explicit
iterative for fixed point of nonexpansive semigroup. We firstly present the following
unified algorithm.
Let C be a nonempty closed convex subset of real Hilbert space H. Let S =
{T (s) : s ∈ [0,+∞)} be a nonexpansive semigroup on C such that Fix(S) ̸= ∅.
Also f : C → H be a α-contraction mapping and A be a strongly positive bounded
linear self adjoint operator on H with coefficient γ̄ > 0 such that 0 < γ < γ̄

α < γ+ 1
α

and γ̄ ≤ ∥A∥ ≤ 1.
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Algorithm 3.1. For given x0 ∈ C arbitrary, let the sequence {xn} be generated
by:

xn+1 = αnγf(xn) + (1− αnA)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds. (3.1)

where {αn} is a sequence in (0, 1) and {sn} ⊂ [s,∞) with s > 0 satisfying conditions:

(C1) limn→∞ αn = 0, Σ∞
n=1αn = ∞;

(C2)
∑∞

n=1 |αn − αn−1| < ∞ or limn→∞
αn+1

αn
= 1;

(C3) limn→∞ sn = ∞, supn∈N |sn+1 − sn| is bounded.

In the next remark, we observe that the iterative Algorithm 3.1 is well defined
for all n.

Remark 3.2. For all t ∈ (0, ∥A∥−1) and u ∈ C fixed, the mapping

x 7→ Vtx := tγf(u) + (1− tA)
1

sn

∫ sn

0

T (s)(
u+ x

2
)ds

is a contraction with coefficient 1
2 (1 − tγ) ∈ (0, 1). This is immediately clear, due

to the nonexpansivity semigroup of S = {T (s) : s ∈ [0,+∞)} and the inequality
(2.3). In fact, we have, for all x, y ∈ H,

∥Vtx− Vty∥ = ∥tγf(u) + (1− tA) 1
sn

∫ sn
0

T (s)(u+x
2 )ds− tγf(u)− (1− tA) 1

sn

∫ sn
0

T (s)(u+y
2 )ds∥

≤ (1− tγ) 1
sn

∫ sn
0

∥T (s)(u+x
2 )ds− T (s)(u+y

2 )ds∥

≤ 1
2 (1− tγ)∥x− y∥.

Hence the Algorithm 3.1 is well defined. Moreover, Vt has a unique fixed point,
denoted by xt, which uniquely solves the fixed point equation

xt = tγf(u) + (1− tA)
1

sn

∫ sn

0

T (s)(
u+ xt

2
)ds. (3.2)

Lemma 3.3. Let p ∈ Fix(S). Then the sequence {xn} generated by Algorithm 3.1
is bounded.

Proof. Let p ∈ Fix(S), we obtain

∥xn+1 − p∥ = ∥αnγf(xn) + (1− αnA) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− p∥

≤ αn∥γf(xn)−Ap∥+ (1− αnγ̄)∥ 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )− T (s)p∥ds

≤ αn(∥γf(xn)− γf(p)∥+ ∥γf(p)−Ap∥) + (1− αnγ̄)∥xn+xn+1

2 − p∥

≤ αnγα∥xn − p∥+ αn∥γf(p)−Ap∥+ (1−αnγ̄)
2 (∥xn − p∥+ ∥xn+1 − p∥).

which implies that

1+αnγ̄
2 ∥xn+1 − p∥ ≤ (αnγα+ 1−αnγ̄

2 )∥xn − p∥+ αn∥γf(p)−Ap∥.
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Then

∥xn+1 − p∥ ≤ (1− 2(γ̄−γα)αn

1+αnγ̄
)∥xn − p∥+ 2αn(γ̄−γα)

1+αnγ̄
∥γf(p)−Ap∥

γ̄−γα

≤ max{∥xn − p∥, ∥γf(p)−Ap∥
γ̄−γα }

...
≤ max{∥x0 − p∥, ∥γf(p)−Ap∥

γ̄−γα }.
(3.3)

Hence {xn} is bounded. �

Now, set tn := 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds. Then {tn} and {f(xn)} are bounded.

Lemma 3.4. The following properties are satisfying for the Algorithm 3.1

P1. limn→∞ ∥xn+1 − xn∥ = 0.

P2. limn→∞ ∥xn − tn∥ = 0.

P3. limn→∞ ∥T (s)tn − tn∥ = 0.

Proof. P1: Let p ∈ Fix(S), we have,

∥tn+1 − tn∥

= ∥ 1
sn+1

∫ sn+1

0
T (s)(xn+1+xn+2

2 )ds− 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds∥

= ∥ 1
sn+1

∫ sn+1

0
(T (s)(xn+1+xn+2

2 )− T (s)(xn+xn+1

2 ))ds+ ( 1
sn+1

− 1
sn
)
∫ sn
0

T (s)(xn+xn+1

2 )ds

+ 1
sn+1

∫ sn+1

sn
T (s)(xn+xn+1

2 )ds∥

= ∥ 1
sn+1

∫ sn+1

0
(T (s)(xn+1+xn+2

2 )− T (s)(xn+xn+1

2 ))ds

+( 1
sn+1

− 1
sn
)
∫ sn
0

(T (s)(xn+xn+1

2 )− T (s)p)ds+ 1
sn+1

∫ sn+1

sn
(T (s)(xn+xn+1

2 )− T (s)p)ds∥

≤ ∥xn+1+xn+2

2 − xn+xn+1

2 ∥+ |sn+1−sn|sn
sn+1sn

∥xn+xn+1

2 − p∥+ |sn+1−sn|
sn+1

∥xn+xn+1

2 − p∥

≤ 1
2 (∥xn+1 − xn∥+ ∥xn+2 − xn+1∥) + |sn+1−sn|

sn+1
(∥xn − p∥+ ∥xn+1 − p∥).

(3.4)

Next, we show that the sequence {xn} is asymptotically regular, i.e.,
limn→∞ ∥xn+2 − xn+1∥ = 0.
By (3.4) we estimate that
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∥xn+2 − xn+1∥

= ∥(αn+1γf(xn+1) + (1− αn+1A) 1
sn+1

∫ sn+1

0
T (s)(xn+1+xn+2

2 )ds)

−(αnγf(xn) + (1− αnA) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds)∥

= ∥(1− αn+1A)( 1
sn+1

∫ sn+1

0
T (s)(xn+1+xn+2

2 )ds− 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds)

+(αnA− αn+1A) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds+ (αn+1 − αn)γf(xn)

+αn+1(γf(xn+1)− γf(xn))∥

≤ (1− αn+1γ̄)∥tn+1 − tn∥+M |αn − αn+1|+ αn+1γ∥f(xn+1)− f(xn)∥

≤ (1− αn+1γ̄)∥tn+1 − tn∥+M |αn − αn+1|+ αn+1γα∥xn+1 − xn∥

≤ 1−αn+1γ̄
2 (∥xn+1 − xn∥+ ∥xn+2 − xn+1∥) + (1− αn+1γ̄)

|sn+1−sn|
sn+1

(∥xn − p∥

+∥xn+1 − p∥) +M |αn − αn+1|+ αn+1γα∥xn+1 − xn∥,

where M := sup{ 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds+ γ∥f(xn)∥}.

Then

(1 + αn+1γ̄)∥xn+2 − xn+1∥ ≤ (1 + (2αγ − γ̄)αn+1)∥xn+1 − xn∥

+(1− αn+1γ̄)
2|sn+1−sn|

sn+1
(∥xn − p∥+ ∥xn+1 − p∥)

+2M |αn − αn+1|.
Therefore

∥xn+2 − xn+1∥ ≤ (1− 2(γ̄−αγ)αn+1

1+αn+1γ̄
)∥xn+1 − xn∥+ ( 1−αn+1γ̄

1+αn+1γ̄
)( 2|sn+1−sn|

sn+1
)(∥xn − p∥

+∥xn+1 − p∥) + 2M
1+αn+1γ̄

|αn − αn+1|.

Hence, it follows by Lemma 2.5 that
lim
n→∞

∥xn+1 − xn∥ = 0. (3.5)

And similarly, we have
lim

n→∞
∥xn+2 − xn+1∥ = 0. (3.6)

Also by (3.4), (3.5),(3.6) and (C3) we have limn→∞ ∥tn+1 − tn∥ = 0.

P2: We can write
∥xn − tn∥ ≤ ∥xn+1 − xn∥+ ∥αnγf(xn) + (1− αnA)tn − tn∥

≤ ∥xn − xn+1∥+ αn∥γf(xn)−Atn∥.

By (C1) and (3.5), we obtain
lim
n→∞

∥xn − tn∥ = 0. (3.7)
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P3: Let K := {w ∈ C : ∥w − p∥ ≤ ∥x0 − p∥, 1
γ̄−γα∥γf(p) − Bp∥}. Then K is

a nonempty bounded closed convex subset of C which is T (s)-invariant for each
s ∈ [0,+∞) and contains {xn}. So, without loss of generality, we may assume that
S := {T (s) : s ∈ [0,+∞)} is a nonexpansive semigroup on K.

∥T (s)xn − xn∥ = ∥T (s)xn − T (s) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds+ T (s) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds

− 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds+ 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− xn∥

≤ ∥T (s)xn − T (s) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds∥

+∥T (s) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds∥

+∥ 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− xn∥

≤ ∥xn − 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds∥

+∥T (s) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds∥

+∥ 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− xn∥

= 2∥ 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− xn∥

+∥T (s) 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds− 1
sn

∫ sn
0

T (s)(xn+xn+1

2 )ds∥

Since xn+xn+1

2 ∈ C, from (3.7) and Lemma 2.4, we obtain limn→∞ ∥T (s)xn−xn∥ =
0.
Therefore

∥T (s)tn − tn∥ ≤ ∥T (s)tn − T (s)xn∥+ ∥T (s)xn − xn∥+ ∥xn − tn∥

≤ ∥tn − xn∥+ ∥T (s)xn − xn∥+ ∥xn − tn∥.

Then we have limn→∞ ∥T (s)tn − tn∥ = 0. �

4. Convergence Algorithm

Theorem 4.1. The Algorithm defined by (3.1) convergence strongly to z ∈ Fix(S),
which is a unique solution in of the variational inequality ⟨(γf − A)z, y − z⟩ ≤
0, ∀y ∈ Fix(S).

Proof. Let s = PFix(S). We get

∥s(I −A+ γf)(x)− s(I −A+ γf)(y)∥ ≤ ∥(I −A+ γf)(x)− (I −A+ γf)(y)∥

≤ ∥I −A∥∥x− y∥+ γ∥f(x)− f(y)∥

≤ (1− γ̄)∥x− y∥+ γα∥x− y∥

= (1− (γ̄ − γα))∥x− y∥.
Then s(I − A + γf) is a contraction mapping from H into itself. Therefore by
Banach contraction principle, there exists z ∈ H such that z = s(I − A + γf)z =
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PFix(S)(I −A+ γf)z.
We show that ⟨(γf − A)z, xn − z⟩ ≤ 0. To show this inequality, we choose a
subsequence {tni

} of {tn} such that
lim sup
n→∞

⟨(γf −A)z, tn − z⟩ = lim
i→∞

⟨(γf −A)z, tni
− z⟩. (4.1)

Since {tni
} is bounded, there exists a subsequence {tnij

} of {tni
} ⊆ K which

converges weakly to some w ∈ C. Without loss of generality, we can assume that
tni

⇀ w. Now, we prove that w ∈ Fix(S). Assume that w /∈ Fix(S). Since tni
⇀ w

and T (s)w ̸= w, from Opial’s conditions (2.3) and Lemma 3.4 (P3), we have
lim infi→∞ ∥tni − w∥ < lim infi→∞ ∥tni − T (s)w∥

≤ lim infi→∞(∥tni − T (s)tni∥+ ∥T (s)tni − T (s)w∥)

≤ lim infi→∞ ∥tni
− w∥,

which is a contradiction. Thus, we obtain w ∈ Fix(S). Now from (2.1), we have
lim supn→∞⟨(γf −A)z, xn − z⟩ = lim supn→∞⟨(γf −A)z, tn − z⟩

≤ lim supi→∞⟨(γf −A)z, tni − z⟩

= ⟨(γf −A)z, w − z⟩

≤ 0.

(4.2)

Now we prove that xn is strongly convergence to z.

∥xn+1 − z∥2 = αn⟨γf(xn)−Az, xn+1 − z⟩+ ⟨(1− αnA)(tn − z), xn+1 − z⟩

≤ αn(γ⟨f(xn)− f(z), xn+1 − z⟩+ ⟨γf(z)−Az, xn+1 − z⟩)

+∥1− αnA∥∥tn − z∥∥xn+1 − z∥

≤ αnαγ∥xn − z∥∥xn+1 − z∥+ αn⟨γf(z)−Az, xn+1 − z⟩
+(1− αnγ̄)∥xn+xn+1

2 − z∥∥xn+1 − z∥

≤ αnαγ∥xn − z∥∥xn+1 − z∥+ αn⟨γf(z)−Az, xn+1 − z⟩

+ 1−αnγ̄
2 (∥xn − z∥+ ∥xn+1 − z∥)∥xn+1 − z∥

= 1−αnγ̄+2αnαγ
2 ∥xn − z∥∥xn+1 − z∥+ 1−αnγ̄

2 ∥xn+1 − z∥2

+αn⟨γf(z)−Az, xn+1 − z⟩

≤ 1−αn(γ̄−2αγ)
4 (∥xn − z∥2 + ∥xn+1 − z∥2) + 1−αnγ̄

2 ∥xn+1 − z∥2

+αn⟨γf(z)−Az, xn+1 − z⟩

≤ 1−αn(γ̄−2αγ)
4 ∥xn − z∥2 + 3

4∥xn+1 − z∥2 + αn⟨γf(z)−Az, xn+1 − z⟩.
This implies that
4∥xn+1−z∥2 ≤ (1−αn(γ̄−2αγ))∥xn−z∥2+3∥xn+1−z∥2+4αn⟨γf(z)−Az, xn+1−z⟩.
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Then
∥xn+1 − z∥2 ≤ (1− αn(γ̄ − 2αγ))∥xn − z∥2 + 4αn⟨γf(z)−Az, xn+1 − z⟩

= (1− ln)∥xn − z∥2 + 4αn⟨γf(z)−Az, xn+1 − z⟩,
(4.3)

where ln = αn(γ̄ − 2αγ).
Since limn→∞ αn = 0 and Σ∞

n=0αn = ∞, it is easy to see that limn→∞ ln = 0,
Σ∞

n=0ln = ∞. Hence, from (4.2) and (4.3) and Lemma 2.5, we deduce that xn → z,
where z = PΘ(I −A+ γf)z. �

5. Numerical Examples

In this section, we give some examples and numerical results for supporting our
main theorem. All the numerical results have been produced in Matlab 2017 on a
Linux workstation with a 3.8 GHZ Intel annex processor and 8 Gb of memory

Example 5.1. Consider a Fredholm integral equation of the following form

x(t) = g(t) +

∫ t

0

F (t, k, x(k))dk, t ∈ [0, 1], (5.1)

where g is a continuous function on [0, 1] and F : [0, 1]× [0, 1]×R → R is continuous
and satisfies the following condition

|F (t, k, x)− F (t, k, y)| ≤ |x− y|, ∀t, s ∈ [0, 1], x, y ∈ R,

then equation (5.1) has at least one solution in L2[0, 1] (see [9]).
Define a mapping T (s) : L2[0, 1] → L2[0, 1] by

(T (s)x)(t) = e−2s(g(t) +

∫ t

0

F (t, k, x(k)) dk, t ∈ [0, 1].

It is easy to observe that S = {T (s) : s ∈ [0,+∞)} is nonexpansive semigroup. In
fact, we have, for x, y ∈ L2[0, 1],

∥T (s)x− T (s)y∥2 =
∫ 1

0
|(T (s)x)(t)− (T (s)y)(t)|2 dt

=
∫ 1

0
|e−2s

∫ 1

0
(F (t, k, x(k))− F (t, k, y(k))) dk|2 dt

≤
∫ 1

0
(
∫ 1

0
|x(k)− y(k)|2 dk) dt

=
∫ 1

0
|x(k)− y(k)|2 dk

= ∥x− y∥2.

This means that to find the solution of integral equation (5.1) is reduced to find a
fixed point of the nonexpansive semigroup S in L2[0, 1].
For any given function x0 ∈ L2[0, 1], define a sequence of functions xn in L2[0, 1]
by

xn+1 = αnγf(xn) + (1− αnA)
1

sn

∫ sn

0

T (s)(
xn + xn+1

2
)ds

satisfying the conditions of Algorithm 3.1. Then the sequence {xn} converges
strongly in L2[0, 1] to the solution of integral equation (5.1) which is also a so-
lution of the following variational inequality

⟨(γf −A)z, y − z⟩ ≤ 0, ∀y ∈ Fix(S).
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Example 5.2. Let H = R, the set of all real numbers, with the inner product
defined by ⟨x, y⟩ = xy, ∀x, y ∈ R, and induced usual norm | . |. Let C = [−3, 0];
Let f(x) = 1

5 (x + 2), A(x) = 1
3x and let, for each x ∈ C, T (s)x = 1

1+3sx. Then
there exist unique sequences {xn} ⊂ R generated by the iterative scheme

xn+1 =
6

5
(xn + 2) + (1− 3

n
A)

1

sn

∫ sn

0

1

1 + 3s
(
xn + xn+1

2
)ds (5.2)

where αn = 3
n and sn = n. Then {xn} converges to {0} ∈ Fix(S). f is contraction

mapping with constant α = 1
3 and A is a strongly positive bounded linear operator

with constant γ̄ = 1 on C. Therefore, we can choose γ = 2 which satisfies 0 <
γ < γ̄

α < γ + 1
α . Furthermore, it is easy to observe that Fix(S) = {0} ̸= ∅. After

simplification, scheme (5.2) reduce to

xn+1 =
12
5n + 1

n (
6
5 + 1

6 (1−
1
n ) ln(1 + 3n))xn

1− 1
6n (1−

1
n ) ln(1 + 3n)

.

Following the proof of Theorem 4.1, we obtain that {xn} converges strongly to
w = {0} ∈ Fix(S).

Example 5.3. Let H = R, the set of all real numbers, with the inner product
defined by ⟨x, y⟩ = xy, ∀x, y ∈ R, and induced usual norm | . |. Let C = [0, 2]; Let
f(x) = 1

8x, A(x) = 2x and let, for each x ∈ C, T (s)x = e−2sx. Then there exist
unique sequences {xn} ⊂ R generated by the iterative scheme

xn+1 =
1

4
√
n
xn + (1− 1√

n
A)

1

sn

∫ sn

0

e−2s(
xn + xn+1

2
)ds (5.3)

where αn = 1√
n

and sn = 2n. Then {xn} converges to {0} ∈ Fix(S). f is
contraction mapping with constant α = 1

5 and A is a strongly positive bounded linear
operator with constant γ̄ = 1 on C. Therefore, we can choose γ = 2 which satisfies
0 < γ < γ̄

α < γ + 1
α . Furthermore, it is easy to observe that Fix(S) = {0} ̸= ∅.

After simplification, scheme (5.3) reduce to

xn+1 =

1
4
√
n
− 1

8n (1−
2√
n
)(e−4n − 1)

1 + 1
8n (1−

2√
n
)(e−4n − 1)

xn.
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Following the proof of Theorem 4.1, we obtain that {xn} converges strongly to
w = {0} ∈ Fix(S).

 

6. Conculsion

We have proposed a viscosity nonlinear midpoint algorithm (VNMA) in real
Hilbert spaces. The strong convergence of iteration sequence generated by the
algorithm to a solution of VNMA is obtained. Some numerical examples are also
provided to illustrate the convergence of proposed algorithm.
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