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ABSTRACT. In the recent decade, a considerable number of optimal control problems have
been solved successfully based on the properties of the measures. Even the method, has
many useful benefits, in general, it is not able to determine the optimal trajectory and
control at the same time; moreover, it rarely uses the advantages of the classical solutions
of the involved systems. In this article, for a SusceptibleInfectedRemovedAntidotal (SIRA)
model for viruses in computer, we are going to present a new solution algorithm. First, by
considering all necessary conditions, the problem is represented in a variational format in
which the trajectory is shown by a trigonometric series with the unknown coefficients. Then
the problem is converted into a new one that the unknowns are the mentioned coefficients
and a positive Radon measure. It is proved that the optimal solution is exited and it is also
explained how the optimal pair would be identified from the results deduced by a finite linear
programming problem. A numerical examples is also given.

KEYWORDS : viruses Computer; Optimal Control; Measure Theory; radon Measure; SIRA
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1. INTRODUCTION

In recent, computer viruses are an important risk to computational systems en
dangering either corporation systems of all sizes or personal computers used for
simple applications as accessing bank accounting or even consulting entertainment
activities schedules. The viruses are being developed simultaneously with the com
puter systems and the use of internet facilities increases the number of damaging
virus incidents. Since the first trials on studying how to combat viruses, biological
analogies were established because biological organisms and computer networks
share many characteristics as, for example, large number of connections among
large number of simple components creating complex system [3]. Local systems
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in a computer network can be attacked generating malfunctions that, spreading
along the network, produce networkwide disorders following a similar qualitative
model of disease spreading for a biological system. This is the main reason for des
ignating attacks against networks by biological terms as worms and viruses. Using
these ideas, it is important to consider that computer viruses have two different
levels for being studied: microscopic and macroscopic [11].The microscopic level
has been the subject of several studies. For instance, [1], [2] establishes theoretical
principles about how to kill the new viruses created every day. Following the virus
development, computer immunology is a new discipline capable of creating efficient
antivirus strategies as programs that are being sold all over the world guaranteeing
protection to individual users of a global network [9]. However, the macroscopic ap
proach has not been receiving the same attention in spite of epidemiology analogies
being an important tool in order to establish the policies to preventing infections
by giving figures about how to update the antivirus programs. The interesting but
simple model considering exponential variation in the number of computer viruses,
proposed by [20], could not be considered realistic because the lack of limits for
the growth, which is a natural phenomenon either in biological or in computer
systems. There is vast catalog of Mathematical Biology models indicated for epi
demiology [12]. One of them, called SIR (SusceptibleInfectedRemoved) model, was
originally proposed by [12]. Here, we employ a modified version of such a model
in order to obtain parameter combinations representing situations with asymptot
ically stable diseasefree solutions. The relations among network parameters can
provide some hints about how to prevent infections in networks. An expression
for the maximum infection rate of computers equipped with antivirus to avoid the
propagation of new infections is given. If this number is known, an updating plan
for antivirus programs in a computer network can be elaborated. According to
an idea of L. C. Young, by transferring the problem in to a theoretical measure
optimization, in 1986 Rubio introduced a powerful method for solving optimal con
trol problems [17]. The important properties of the method (globality, automatic
existence theorem a linear treatment even for extremely nonlinear problems, ...)
caused it to be applied for the wide variety of problems. Even the method has been
used frequency for solving several kinds of problems, like [4], [6] and [7] but at
least two important points were not considered in applying the method yet. Gen
erally the method can not be able to produce the acceptable optimal trajectory and
control directly at the same time; and moreover, the classical format of the system
solution, usually is not taken into account. Therefore, there is no any possibil
ity to use this important fact and their related literatures in the analysis of the
system. In this article, we try to bring attention these two facts; for these pur
poses, an optimal control problem governed by a classical epidemiological models
for studying computer virus system (SIRA) with initial and boundary conditions
and an integral criterion is considered as a sample. Regarding a general format of
the classical solution, the problem is presented in a variational format and then
by a doing deformation it is converted into a measure theoretical one with some
positive coefficient. Next, extending the underlying space, using the density prop
erties and applying some discretization scheme cause to approximate the optimal
pair as a result of a finite linear programming. The approach would be improved
if the number of constraints and nods are exceeded . In this manner, the optimal
trajectory and control is determined at the same time.
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2. The Dynamic System of SIRA

Due to the high similarity between computer virus and biological virus, some
models for the spread of computer virus have been proposed . Piqueira and Navarro
[15] suggested a modification of the SIRA epidemiological model for computer virus.
In this section, we use the SIRA model for computer virus spread presented by
Piqueira and Navarro [15] to set our control problem. In this model, they considered
that the individuals in a computer system can switch between the Susceptible,
Infected, Recovered and Antidotal states The system of differential equations with

time delay is defined by:
Ṡ = −αSA− βSISI + σISI + σRSR,

İ = βSISI + βAIAI − σISI − δI,

Ṙ = δI − σRSR,

Ȧ = αSA− βAIAI,

The parameters in the model are defined as follows:
δ: removing rate of infected computers;
βSI : infection rate of susceptible computers;
βAI : infection rate of antidotal computers due to the onset of new virus;
σIS : recovering rate of infected computers;
σRS : recovering rate of removed computers, with an operator intervention;
α: conversion of susceptible computers into antidotal ones, occurring when sus
ceptible computers establish effective communication with antidotal ones and the
antidotal install.
For Ṡ+ İ+ Ṙ+ Ȧ = 0, then S+A+ I+R = T , a constant for any time t. By using
the optimal control theory developed by Pontryagin, we can set an optimal control
problem in the SIRA model to control the spread of computer virus. The main goal
of this problem is to investigate an effective strategy to control the computer virus,
which means that we can find an optimal strategy such that the infected nodes
can meet the minimum within a specified time period. To set an optimal control
problem, for given constants Λ, T > 0, we choose the following as our control class:

U = {u(t) ∈ L2(0, T ) : 0 ≤ u(t) ≤ Λ, 0 ≤ t ≤ T}.
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In this problem, the meaning of the control variable is that low levels of the number
of infected nodes build contact to the susceptible nodes and better antivirus soft
ware. In case of high contact rate, the number of infected nodes increases while
the number of susceptible, recovered and antidotal nodes decreases. With better
antivirus software and lower contact rate, susceptible nodes begin to build again
and more nodes are recovered from infection. Therefore, by an optimal control
strategy u(t), a fraction u(t)I(t) of infected nodes moved from class I to class S,
class R and class A. So, our optimal control problem is given by the following. The
optimal control problem is formulated as:

min J(u) =
∫ T

0
[I(t) + ϵu2(t)

2 ]dt

Ṡ = −αSA− βSISI + σISI + σRSR+ ωu(t)I,

İ = βSISI + βAIAI − σISI − δI − u(t)I,

Ṙ = δI − σRSR+ (1− ω)u(t)I,

Ȧ = αSA− βAIAI,

(2.1)

with initial conditions S(0) = S0, I(0) = I0, R(0) = R0 and A(0) = A0 .Here
ϵ ∈ [0, 1] is a positive constant which represents the weight on the size of infected
nodes and systemic cost. Note that for ϵ = 1, the infected ones move to the
susceptible class, while for ϵ = 0, the infected nodes move to the recovered class at
rate of control variable u(t).

3. New Representation of the Problem

Setting S = x1, I = x2, R = x3 and A = x4. We define the function f0 :
J×S×I×R×A×U → R as following where S, I,R,A and U are compact subsets
of R.

f0(t, S(t), I(t), R(t), A(t), u(t)) = f0(t, x1(t), x2(t), x3(t), x4(t), u(t)) = x2(t)+
ϵu2(t)

2
(3.1)

then we write the problem (2.1) in the following form:

min Ξ(x1(.), x2(.), x3(.), x4(.), u(.)) =
∫ T

0
f0(t, x1(t), x2(t), x3(t), x4(t), u(t))dt

ẋ1 = f1(t, x1(t), x2(t), x3(t), x4(t), u(t)),
ẋ2 = f2(t, x1(t), x2(t), x3(t), x4(t), u(t)),
ẋ3 = f3(t, x1(t), x2(t), x3(t), x4(t), u(t)),
ẋ4 = f4(t, x1(t), x2(t), x3(t), x4(t), u(t)),

(3.2)
where
x1(0) = x10, x2(0) = x20, x3(0) = x30, x4(0) = x40 and x1(T ), x2(T ), x3(T ), x4(T )
are not specifed. Also,

f1(t, x1(t), x2(t), x3(t), x4(t), u(t)) = −αx1x4 − βSIx1x2 + σISx2 + σRSx3 + ωu(t)x2,

f2(t, x1(t), x2(t), x3(t), x4(t), u(t)) = βSIx1x2βAIx4x2 − σISx2 − δx2 − u(t)x2,

f3(t, x1(t), x2(t), x3(t), x4(t), u(t)) = δx2 − σRSx4 + (1− ω)u(t)x2,

f4(t, x1(t), x2(t), x3(t), x4(t), u(t)) = αx1x4 − βAIx4x2,

Let us consider A = A1 × A2 × A3 × A4 and Ω = J × A × U , where J =
[0, T ], U = [0, 1] and Ai, i = 1, 2, 3, 4 closed and bounded subset of Rn. Suppose
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that X(t) = (x1(t), x2(t), x3(t), x4(t)) ,consider the differential equation

´X(t) = f(t,X(t), u(t)), t ∈ J0 = (0, 1) (3.3)

where g : Ω → Rn a continuous function, and the trajectory function t ∈ J →
X(t) ∈ A is absolutely continuous and the control function t ∈ J → u(t) ∈ U
is Lebesguemeasurable. We say that a trajectory control pair w = [X(.), u(.)] is
admissible if the following conditions hold :
(a) : x(t) ∈ A, t ∈ J
(b) : u(t) ∈ U, t ∈ J
(c) : The boundary conditions X(0) = X0 is satisfied,
(d) : The pair w satisfies the differential equation (3.3) a.e. on J0. We assume
that the set of all admissible pairs is nonempty and denote it by W . Our control
problem consists of finding the pair w = [X(.), u(.)] ∈ W , which minimizes the
functional

I[X(.), u(.)] =

∫ T

0

f0(t,X(t), u(t))dt (3.4)

where f0 ∈ C(Ω), the space of continuous functions on Ω, with topology of uniform
convergence. This control problem may or may not have a solution in W .

4. InfiniteDimensional Linear Programming

We may transform the above control problems to an infinitedimensional linear
programming problem. Let w = [X(.), u(.)] be an admissible pair, and B an open
ball in Rn+1 containing J × A and ´C(B) be the space of real valued continuously
differentiable functions on B. Let ϕ ∈ ´C(B), and define function ϕi as follows:

ϕ
(i)
fi
(t,X(t), u(t)) = ϕX(t,X(t)).fi(t,X(t), u(t)) + ϕt(t,X(t)), i = 1, 2, 3, 4. (4.1)

for all (, X(t), u(t)) ∈ Ω, note that ϕX(t) is nvector, and that the first term in
the righthand side of (4.1) is their inner product. The function ϕi is in the space
C(Ω) the continuous functions on the compact set Ω. Since w = [X(.), u(.)] is an
admissible pair, we have

∫ T

0
ϕ
(i)
fi
(t,X(t), u(t))dt =

=
∫ T

0
ϕX(t,X(t)).fi(t,X(t), u(t)) + ϕt(t,X(t))

=
∫ T

0
ϕ́(t,X(t))dt

= ϕ(T, X́(T ))− ϕ(0, X́(0)) = ∆ϕi

(4.2)

for all ϕ ∈ Ć(B).Let D(J0) be the space of infinitely differentiable realvalued
functions with compact support in J0. For i = 1, 2, 3, 4, we define

ψi(t,X(t), u(t)) = X(t)ψ́(t) + fi(t,X(t), u(t)).ψ(t) (4.3)

for all ψ ∈ D(J0), then for ψ ∈ D(J0) we have:∫ T

0

ψi(t,X(t), u(t))dt =
∫ T

0
X(t)ψ́(t)dt+

∫ T

0
fi(t,X(t), u(t)).ψ(t)dt

= X(t)ψ(t)|J −
∫ T

0
(X́(t)− fi(t,X(t), u(t)))ψ(t) = 0

since the trajectory and control function are an admissible pair satisfying (4.3) a.e.
on J0, and since the function ψ has compact support in J0,ψ(0) = ψ(T ) = 0, also
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by choosing a variable t, we have∫ T

0

fi(t,X(t, u(t)))dt = af , f ∈ C1(Ω)

where C1(Ω) is subspace of the space C(Ω) of all continuous function on Ω
depending only on the variable t.
Now, The mapping

ΛW : F →
∫
J

F (t,X(t), u(t))dt, F ∈ C(Ω)

defines a positive linear functional on C(Ω). By the Riesz representation theorem
[19] there exist a unique positive Radon measure µ on Ω such that∫

J

F (t,X(t), u(t))dt =

∫
Ω

F dµ = µ(F ), F ∈ C(Ω)

Thus, the minimization of the functional Ξ in (3.2) over Ω is equivalent to the
minimization of

Ξ(µ) =

∫
Ω

f0dµ = µ(f0) ∈ R (4.4)

over the set of positive measures µ corresponding to admissible pairs w, which
satisfy

µ(ϕ
(i)
f ) = ∆ϕi, ϕ ∈ Ć(B)

µ(ψi) = 0, ψ ∈ D(J0)
µ(g) = ag g ∈ C1(Ω).

(4.5)

Define the set of all positive Radon measures on Ω satisfying (4.5) as Σ. Also we
assumeM+(Ω) be the set of all positive Radon measures on Ω. Now if we topologize
the space M+(Ω) by the weak∗ topology, it can be shown that Σis compact [18].
In the sense of this topology,the functional Ξ : Σ → R define by (4.4) is a linear
continuous functional on a compact set Σ, thus it attains its minimum on Σ, and
so the measure theoretical problem, which consist of finding the minimum of the
functional (4.4), over the subset of M+(Ω), possesses a minimizing solution, µ∗, in
Σ, [18].

5. Metamorphosis

We now estimate the optimal control by a nearlyoptimal piecewise constant
control. The problem (4.4) and (4.5) are an infinite dimensional linear programming
problem, because all the functionals in (4.4) and (4.5) are linear in the variable µ,
and furthermore µ is required to be positive. First we consider the minimization of
(4.4) not only over the set Σ but over a subset of it defined by requiring that only a
finite number of constraints in (4.5) be satisfied.

Theorem 5.1. Let Σ(M1,M2, L) be a subset of M+(Ω)consists of all measures
which satisfy the

µ(ϕ
(i)
f ) = ∆ϕi, i = 1, 2, ...,M1 ϕi ∈ C1(Ω)

µ(ψr) = 0, r = 1, 2, ...,M2 ψr ∈ D(J0)

µ(gs) = ags , s = 1, 2, ..., L gs ∈ C1(Ω)

As M1,M2 and L tend to infinity, η(M1,M2, L) = infΣ(M1,M2,L)µ(f0) tends to
η = infΣµ(f0).
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Proof. see [18].
The first stage of the approximation is completed successfully. As the second stage,
it is possible to develop a finitedimensional, linear program whose solution can be
used to construct the solution of the infinitedimensional linear program (4.4) and
(4.5). From Theorem (A.5) of [18], we can characterize a measure, say µ∗, in the
set Σ(M1,M2, L) at which the functional µ→ µ(f) attains its minimum, it follows
from a result of [16].

Theorem 5.2. The measure µ∗ in the set Σ(M1,M2, L) at which the function µ →
µ(f) attains its minimum has the form

µ∗ =

M1+M2+L∑
k=1

α∗
kδ(z

∗
k),

where z∗k ∈ Ω; the coefficients α∗
k ≥ 0, k = 1, 2, ...,M1 +M2 + L.

Here δ(z) defines a unitary atomic measure, characterized by δ(z)(F ) = F (z),
where F ∈ C(Ω). Now the measure theoretical optimization problem is equivalent
to a nonlinear optimization problem, in which the unknowns are the coefficients
α∗
k and supports z∗k, k = 1, 2, ...,M1 +M2 + L. It would be convenient if we could

minimize the functional µ → µ(f) only with respect to the coefficients α∗
k, k =

1, 2, ...,M1+M2+L, this would be a linear programming problem. However, we do
not know the support of the optimal measure. The answer lies in approximation of
this support, by introducing a dense set in Ω.
Now, we construct a piecewise constant control function corresponding to the finite
dimensional problem. Therefore in the infinitedimensional linear programming
problem (4.4) with restriction defined by (4.5), we shall consider how one can choose
total functions in the constraints (4.4) and (4.5). Consider first functions ϕi in Ć(B)
as follows:

x1, x2, x3, x4, x
2
2, x

3
2, x1x2, x3x2, x4x2, tx2 (5.1)

Trivially the linear combinations of these functions are uniformly dense in the space
C1(B) [19], we choose onlyM1 number of them. Also, we chooseM2 functions with
compact support in the following form:

ψr(t) =

 sin[2πr
(

t−0
T−0

)
] r = 1, 2, ...,M21,

1− cos[2πr
(

t−0
T−0

)
] r =M21 + 1,M21 + 2, ..., 2M21.

(5.2)

where, M2 = 2M21.
Finally, it is necessary to choose L number of functions of time only, as follows:

gs(t) =

{
1 t ∈ Js,
0 otherwise,

(5.3)

where Js =
(

0+(s−1)(T−0)
L , 0+s(T−0)

L

)
, s = 1, 2, ..., L

The set Ω = J × A × U will be covered with a grid, where the grid will be defined
by taking all points in Ω as zj = (tj , x1j , x2j , x3j , x4j , uj); the points in the grid
will be numbered sequentially from 1 to N , which can be estimated numerically.
Instead of the infinitedimensional linear programming problem (4.1), we consider
the following .nite dimensional linear programming problem, where zi ∈ w (w is a
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approximately dense subset of Ω).
Minimize

∑N
j=1 αjf0(zj)

subject to :



∑N
j=1 αjϕ

(i)
f = ∆ϕi i = 1, 2, ...,M1,∑N

j=1 αjψr(zj) = 0 r = 1, 2, ...,M2,∑N
j=1 αjgs(zj) = ags s = 1, 2, ..., L.

(5.4)

Now, by the solution of this problem, we can get the coefficients αj , and from the
analysis in Rubio [17] we can obtain the piecewiseconstant control function u(.)
which approximate the action of the optimal measure.

6. Numerical Simulations

In this section, the optimality system is numerically solved by applying MATLAB
. The values of the parameters are presented in the following Table 1.

Parameters α βAI βSI σRS σIS δ ω ϵ
V alues 0.5 0.2 0.4 0.4 0.3 0.2 0.5 10

We consider the initial population contain susceptible nodes S(0) = 7, infected
nodes I(0) = 1, recovered nodes R(0) = 1 and antidotal nodes A(0) = 1 for
numerical simulation. Let us t ∈ J = [0, 25], andX(t) = [x1(t), x2(t), x3(t), x4(t)] ∈
A = A1 × A2 × A3 × A4, where A1 = A2 = [0, 7], A3 = [0, 5], A4 = [0, 2.5]. Let
the sets J and A2 be divided into 10 equal subintervals, the set A1, A3 and A2 are
divided respectively into 4 equal subintervals, and also the set U = [0, 1] divided
into 4 equal subintervals, so that Ω = J × A × U is divided into 25600 equal
subsets. We assume Zj = (tj , x1j , x2j , x3j , x4j , uj), j = 1, ..., 25600 and

temp = k1 + 4(i− 1) + 16(j − 1) + 64(k − 1) + 640 ∗ (f − 1) + 2560(l − 1)

where

x1j(temp) = −0.1 +
7

4
f ; x2j(temp) = −0.15 +

7

15
k;

x3j(temp) = −0.25 +
5

4
j; x4j(temp) = −0.35 +

2.5

4
i;

uj(temp) = −0.45 +
0.1

4
k1; tj(temp) = 2.5l;

l = 1, . . . 10; f = 1 . . . 4; k = 1 . . . 10; j = 1 . . . 4; i = 1 . . . 4; k1 = 1 . . . 4.

Also, we get M1 = 4, L = 4 and M2 = 24. And the functions ϕif i = 1 . . . 4 ,
h = 1 . . . , 8, will be chosen as the form (5.1). We have an linear programming (LP)
with 25620 unknowns and 44 constrains which solved by the revised simplex code
of the optimization toolbox in MATLAB. The total CPU time required on a laptop
with CPU 5 GHz and 4 GB of RAM was 25.65 minutes.
In the following figures, the population size of each individual without control is
marked by solid line,while the one with control is marked by dashdotted line. The
following figure represents the population size of susceptible nodes without control
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and with control. The result shows that the rate of infected susceptible nodes with
optimal control strategy becomes slower and smaller number of nodes is infected
from the computer virus. Also, represents the infected population in both cases.
The population size of infected nodes without the optimal control strategy is larger
than the nodes with control strategy.

In following figures, the recovered population becomes larger after control and
the antidotal population also becomes larger after the control. Thus, after the
optimal control strategy is introduced into this SIRA model, the infection rate of
susceptible decreases and more infected nodes are recovered or become suscepti
ble.

Finally, we need the optimal strategy to control the infected nodes, which is pre
sented in following figure.

7. Conclusion

Our numerical results show that the number of infected nodes after the control
is much smaller than that of infected nodes before the control. Therefore, it has
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a realistic significance in the computer virus research by introducing an optimal
control into an SIRA computer virus spread model. Viral attacks against computer
networks are an important research area because the defense strategies need to be
able to avoid infection propagation. In this work we presented the SIRA model based
on epidemiological studies and conditions for the asymptotically stability of the
disease free equilibrium were deduced. Some simulations were performed showing
how a parameter, analogous to the epidemic basal reproduction rate, affects the
dynamics of the infection propagation.
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