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ABSTRACT. In this paper, we prove the existence of solutions for a p−Biharmonic in
bounded domain, by applying the Bohnenblust­Karlin fixed point theorem. The regular­
ity of a such solution is also established.
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1. INTRODUCTION

We consider in this paper the critical situation, which is devoted to the study of
the p−Biharmonic problem

(P)

{
∆2

pu = V (x) | u |p∗−2 u+ f(x, u) in Ω,

u ∈ D2,p
0 (Ω), N

2 > p,

where Ω is a bounded domain in RN , ∆2
pu = ∆(|∆u|p−2∆u) is the p−Biharmonic

operator with ∆u = div (∇u) is the Laplace operator, 1 < p < N
2 , p

∗ = Np/(N −
2p), V ∈ L∞(Ω), V > 0 and f : Ω × R → R be a Carathéodory function where
f(x, 0) ̸= 0.

The nonlinear boundary value problem involving the p−Biharmonic operator
appears in physics and related sciences such as quantum mechanics, surface
diffusion on solids, flow in Hele­Shaw cells and also furnishes a model for studying
traveling wave in suspension bridges (cf.[12, 15]).

There are many results relating to these problems which have been widely stud­
ied in bounded domains. For example we just refer to [2, 4, 9, 10, 12, 13, 14, 19]...
This work is motivated by the papers [1] and [8]. Our problem aroused an inter­
esting result because of the lack of compactness, so we could not use the standard
variational methods, here by means of the point fixed due to Bohnenblust­Karlin,
we shall prove the existence of solution.
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Let us record the following definition,

Definition 1.1. We say that u is a weak solution for problem (P) if∫
Ω

|∆u|p−2∆u∆vdx−
∫
Ω

V (x)|u|p
∗−2uvdx−

∫
Ω

f(x, u)vdx = 0, ∀v ∈ D2,p
0 (Ω).

We recall that D2,p
0 (Ω) is the completion of C∞

0 (Ω) with the norm

∥ u ∥=
(∫

Ω

|∆u|pdx
) 1

p

.

Our main theorem is stated below.

Theorem 1.1. Under the standing hypothesis
(F ) |f(x, t)| ≤ C[1 + |t|r−1], C > 0 for all (x, t) ∈ Ω × R with r ∈ (1, p), then

problem (P) has a weak solution. Furthermore, this solution belongs to L∞(Ω).

We state the Bohnenblust­Karlin Theorem which provide a platform to establish
the main result of the paper.

Theorem 1.2. (cf.[5, 6, 17]) Let D be a nonempty subset of a Banach space X, which
is bounded, closed and convex. Suppose that L : D → 2X \ {0} be an upper semi­
continuous set­valued mapping with convex and closed values such that L(D) ⊂ D

and L(D) =
∪
x∈D

L(x) is relatively compact. Then L has a fixed point.

Recall (cf. [16]) that L is said to be a convex if the inclusion

λL(x) + (1− λ)L(y) ⊂ L(λx+ (1− λ)y)

holds for all x, y ∈ D and for every λ ∈ [0, 1].
We say that L has closed values if L(x) is a closed set for every x ∈ D.

2. Proof of the main result

Consider the Sobolev space
X = D2,p

0 (Ω)

with the norm

∥ u ∥=
(∫

Ω

|∆u|pdx
) 1

p

.

Define two operators A and B from X into X∗ by

A(u).v =

∫
Ω

|∆u|p−2∆u∆vdx,

B(u).v =

∫
Ω

f(x, u)vdx+

∫
Ω

V (x)|u|p
∗−2uvdx

where X∗ is the dual of X.

Proof of Theorem 1.1. We have the following properties,
(1) A is monotone, hemicontinuous, coercive.

In view of [7], we have the following inequality for p ≥ 2,

|x− y|p ≤ (|x|p−2x− |y|p−2y).(x− y), ∀x, y ∈ RN .

Thus,
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⟨A(u)−A(v), u− v⟩ =

∫
Ω

|∆u|p−2∆u∆(u− v)dx−
∫
Ω

|∆v|p−2∆v∆(u− v)dx

=

∫
Ω

(|∆u|p−2∆u− |∆v|p−2∆v)(∆u−∆v)dx

≥
∫
Ω

|∆u−∆v|pdx =∥ u− v ∥p, (2.1)

and then A is monotone. On the other hand, since A is the derivative operator of
the functional u → 1

p

∫
Ω
|∆u|pdx which is of class C1, then the continuity of the

operator A holds, so it is hemicontinuous.
Moreover, it is clear that A is coercive since A(u).u =∥ u ∥p .

(2) The operator B is compact.
Let (un)n be a bounded sequence in X. Up to a subsequence denoted also by (un)n,
we have

un ⇀ u in X,

by the compact embedding D2,p(Ω) into Lp(Ω), we have

un(x) → u(x) a.e. in Ω.

Since f is Carathéodory function which also verifies the condition (F ),

f(x, un)un → f(x, u)u, a.e in Ω.

By using Hölder’s inequality and Sobolev’s embedding and according to Dominated
convergence theorem, we obtain

B(un) → B(u).

Remark 2.1. Let (un)n ⊂ X and u ∈ X such that

un ⇀ u, A(un) → A(u),

then A(un).un → A(u).u, which yields ∥ un ∥p→∥ u ∥p . Because X is uniformly
convex so it follows that un → u.

(3) In our next step, let D ⊂ X be a bounded closed convex. Define the operator
L by

L(v) = {u : A(u) = B(v)}.
It has a closed. Indeed, let vn → v in X, un ∈ L(v) and un → u, so it would like to
show that u ∈ L(v).

We know that A and B are demicontinuous operators which imply that

A(un) ⇀ A(u), B(vn) ⇀ B(v).

As we have A(un) = B(vn), so it yields A(u) = B(v) (due to the uniqueness of the
limit) then u ∈ L(v).

Next it will be shown that L(D) =
∪

v∈D L(v) is relatively compact. Let (un)n ⊂∪
v∈D L(v) and vn ∈ D with A(un) = B(vn). Since D is bounded domain and B is

compact, hence B(D) is relatively compact. Afterwards, there is h ∈ X∗ such that

A(un) = B(un) → h,
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whence, A(un) is bounded, which means that (un)n is a bounded sequence, so we
may choose a subsequence denoted also by (un)n where un ⇀ u. As the operator
A is monotone, we have

⟨A(v)−A(un), v − un⟩ ≥ 0, ∀v ∈ X.

Therefore,
⟨A(v)− h, v − u⟩ ≥ 0,

in view of proposition of Minty (Proposition 2.2) in [18], we get

A(v) = h.

From Remark 2.1, it follows that un → u in X.
Now, let BR the ball of radius R, we are to prove that L(BR) ⊂ BR. Suppose that

A(u) = B(v) and ∥ v ∥≤ R, then

∥ u ∥p =

∫
Ω

|∆u|pdx =

∫
Ω

V (x)|v|p
∗−2vudx+

∫
Ω

f(x, v)vudx

≤ c1 ∥ v ∥p
∗−1∥ u ∥ +c2 ∥ u ∥∥ v ∥r−1, (2.2)

with c1 and c2 are two positive constants. Therefore,

∥ u ∥p−1≤ c1 ∥ v ∥p
∗−1 +c2 ∥ v ∥r−1 .

Because r ≤ p ≤ p∗, we may find R > 0 such that

c1 ∥ v ∥p
∗−1 +c2 ∥ v ∥r−1 ≤ c1R

p∗−1 + c2R
r−1

≤ Rp−1, (2.3)

from which we obtain

∥ u ∥≤ R.

We can see that all the assumptions of Bohnenblust­Karlin Theorem are satis­
fied, hence L has a fixed point which is a solution of the problem (P).

In the sequel, one proceeds as in [3], so we sketch the regularity property of this
solution. Let u be a solution of (P). We set

Λλ = {x ∈ Ω : u(x) ≥ λ}.

For k > 0 fixed, putting ωk = u − k if u(x) ≥ k and ωk = 0 else. From Cavalieri’s
principle we have ∫ ∞

−∞
|Λλ|dλ =

∫ ∞

k

|Λλ|dλ =

∫
Ω

ωkdx.

We point out that when k > 1 is greater enough, we have

|u|p
∗−1 = 0, a.e.in [|u| ≥ k],

since u ∈ Lp∗
(Ω).

Using the Hölder inequality, for k > k0 > 0, we entail that

∥ ωk ∥p ≤
∫
Ω

V (x)|u|p
∗−1ωkdx+

∫
Ω

| f(x, ωk)u | ωkdx

≤ c1

∫
[|u|≤1]∩Λk

|u|p
∗−1ωkdx+ c2

∫
[|u|≥1]∩Λk

ωkdx
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≤ c3(|Λk|1−
1
p∗ )(

∫
Ω

|ωk|p
∗
dx)

1
p∗ , (2.4)

moreover, we have

∥ ωk ∥p ≥ S(

∫
Ω

|ωk|p
∗
dx)

p
p∗ , (2.5)

where S is the best Sobolev constant for the embedding

D2,p
0 (Ω) ↪→ Lp∗

(Ω),

defined by

S = inf
u∈D2,p(Ω),u ̸=0

∫
Ω
|∆u|pdx(∫

Ω
|u|p∗dx

) p
p∗

,

so we get (∫
Ω

|ωk|p
∗
dx

) 1
p∗

≤ c
(
|Λk|(1−

1
p∗ )( 1

p−1 )
)
.

By the Cavalieri’s principle [11] and the last inequality, for k ≥ k0∫ ∞

k

|Λλ|dλ =

∫
Ω

ωkdx

≤ |Λk|1−
1
p∗ (

∫
Ω

|ωk|p
∗
dx)

1
p∗

≤ c(|Λk|1+
1
p∗

p∗−1
p−1 ). (2.6)

Accordingly, since

1 +
1

p∗
p∗ − 1

p− 1
> 1,

then easly we get
|Λk| = 0

and thus there is M > 0 such that

|u|∞ ≤ M.

□
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