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ABSTRACT. In this paper, we state some coupled fixed point theorems for general-
ized α-ψ-contractive mappings in partially ordered metric-type spaces. In addition, some
particular cases and consequences of our theorems are given. Moreover, we give some
examples to illustrate the obtained results.
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1. INTRODUCTION

The notion of a metric-type space was introduced by Khamsi in [5] as follows.

Definition 1.1 ([5], Definition 2.7). Let X be a non-empty set, K ≥ 1 be a real
number and D : X ×X −→ [0,∞) be a mapping satisfying the following.

(i) D(x, y) = 0 if and only if x = y;
(ii) D(x, y) = D(y, x) for all x, y ∈ X;
(iii) For all x, y1, y2, . . . , yn, z ∈ X, we have

D(x, z) ≤ K[D(x, y1) +D(y1, y2) + . . .+D(yn, z)].

Then D is called a metric-type on X and (X,D,K) is called a metric-type space.

Remark 1.2. (X, d) is a metric space if and only if (X, d, 1) is a metric-type space.

Some other authors in [2], [3] and [4] considered another metric-type space, where
the condition (3) in Definition 1.1 is replaced by

D(x, y) ≤ K[D(x, z) +D(z, y)]
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for all x, y, z ∈ X and proved several other fixed point and common fixed point
results in this metric-type space. In this paper, we consider the metric-type space
in the sense of Definition 1.1.

The convergence and the completeness in the metric type-spaces were defined
as follows.

Definition 1.3 ([5], Definition 2.8). Let (X,D,K) be a metric-type space and {xn}
be a sequence in X.

(i) {xn} is said to converge to x ∈ X, written as lim
n→∞

xn = x, if lim
n→∞

D(xn, x) = 0.

(ii) {xn} is said to be Cauchy if lim
n,m→∞

D(xn, xm) = 0.

(iii) (X,D,K) is said to be complete if every Cauchy sequence is a conver-
gent sequence.

Remark 1.4. On the metric-type space, we always use the topology induced by
its convergence.

In [1], Bhaskar and Lakshmikantham introduced the notions of mixed monotone
property and coupled fixed point for contractive mapping F : X ×X −→ X, where
X is a partially ordered metric space as follows.

Definition 1.5 ([1], Definition 1.1). Let (X,⪯) be a partially ordered set and
F : X × X −→ X be a mapping. Then F is said to have the mixed monotone
property if F (x, y) is monotone non-decreasing in x and monotone non-increasing
in y, that is, for any x, y ∈ X,

x1, x2 ∈ X, x1 ⪯ x2 implies F (x1, y) ⪯ F (x2, y),

and

y1, y2 ∈ X, y1 ⪯ y2 implies F (x, y1) ⪰ F (x, y2).

Definition 1.6 ([1], Definition 1.2). An element (x, y) ∈ X × X is said to be a
coupled fixed point of the mapping F : X ×X −→ X if

F (x, y) = x and F (y, x) = y.

Moreover, in [1], the authors proved some coupled fixed point theorems for a
mixed monotone mapping, see [1, Theorem 2.1], [1, Theorem 2.2] and [1, Theorem
2.4]. Afterwards, in [7], the authors established coupled coincidence and coupled
common fixed point theorems for nonlinear contractive mappings in partially or-
dered complete metric spaces which extend the results of [1]. For more details
on coupled fixed point theory, we also refer the reader to [8, 11, 14] and refer-
ences therein.

Recently, Samet et al. [15] introduced the α-ψ-contractive and the α-admissible
mapping with α : X × X −→ [0,∞) and proved fixed point theorems for map-
pings in complete metric spaces. After that, some authors studied fixed point
results for a new α-ψ-contractive and various classes of mappings which are based
on α-admissible mappings, see for example [6, 12, 13] and references therein. Most
recently, Mursaleen et al. [9] introduced the notions of α-admissible mapping with
α : X2 ×X2 −→ [0,∞) and α-ψ-contractive as follows.

Denote by Ψ the family of non-decreasing functions ψ : [0,∞) −→ [0,∞) such

that
∞∑

n=1
ψn(t) <∞ for all t > 0, where ψn is the n-th iterate of ψ satisfying:

(i) ψ−1(0) = 0;
(ii) ψ(t) < t for all t > 0;
(iii) lim

r→t+
ψ(r) < t for all t > 0.



COUPLED FIXED POINT THEOREMS 37

Lemma 1.7 ([9], Lemma 3.1). If ψ : [0,∞) −→ [0,∞) is non-decreasing and right
continuous, then lim

n→∞
ψn(t) = 0 for all t ≥ 0 if and only if ψ(t) < t for all t > 0.

Definition 1.8 ([10], Definition 3.2). Let (X, d,⪯) be a partially ordered metric
space and F : X ×X −→ X be a mapping. Then F is said to be α-ψ-contractive
if there exist two functions α : X2 ×X2 −→ [0,∞) and ψ ∈ Ψ such that

α
(
(x, y), (u, v)

)d(F (x, y), F (u, v))+ d
(
F (y, x), F (v, u)

)
2

≤ ψ
(d(x, u) + d(y, v)

2

)
for all x, y, u, v ∈ X with x ⪰ u and y ⪯ v.

Definition 1.9 ([9], Definition 3.3). Let F : X ×X −→ X and α : X2 ×X2 −→
[0,∞) be two mappings. Then F is said to be α-admissible if

α
(
(x, y), (u, v)

)
≥ 1 implies α

((
F (x, y), F (y, x)

)
,
(
F (u, v), F (v, u)

))
≥ 1

for all x, y, u, v ∈ X.

Furthermore, in [9], the authors established some coupled fixed point results on
partially ordered metric spaces which are generalizations of the main results in [1],
see [9, Theorem 3.4], [9, Theorem 3.5] and [9, Theorem 3.6].

The aim of this paper is to state some coupled fixed point theorems for general-
ized α-ψ-contractive mappings in partially ordered metric-type spaces. In addition,
some particular cases and consequences of our theorems are given. Moreover, we
give some examples to illustrate the obtained results.

2. MAIN RESULTS

We start with an example about a non-continuous metric-type as follows.

Example 2.1. Let X =
{
0, 1,

1

2
, . . . ,

1

n
, . . .

}
and D : X × X −→ [0,∞) be de-

fined by

D(x, y) =



0 if x = y
1 if x ̸= y and x, y ∈ {0, 1}

|x− y| if x, y ∈
{
0,

1

n
,
1

m

}
, where n,m ≥ 2

1

3
if x, y ∈

{
1,

1

n

}
, where n ≥ 2.

Then, D is a non-continuous metric-type with K = 3.

Proof. For all x, y ∈ X, we have D(x, y) ≥ 0, D(x, y) = 0 if and only if x = y and
D(x, y) = D(y, x). For all x, y1, . . . , yk, y ∈ X, k ≥ 1, we will show that

D(x, y) ≤ 3[D(x, y1) +D(y1, y2) + . . .+D(yk, y)]. (2.1)

Put

σ = D(x, y1) +D(y1, y2) + . . .+D(yk, y).

We only consider three following cases.

Case 1. D(x, y) = D(0, 1) = 1 or D(x, y) = D
(
1,

1

n

)
=

1

3
for n ≥ 2. Then

σ ≥
1

3
.
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Case 2. D(x, y) = D
(
0,

1

n

)
=

1

n
for n ≥ 2. Then σ ≥

1

3
if there exists

i ∈ {1, . . . , k} such that yi = 1 and σ ≥
1

n
if yi ̸= 1 for all i = 1, . . . , k.

Case 3. D(x, y) = D
( 1
n
,
1

m

)
=

∣∣∣ 1
n
−

1

m

∣∣∣. Then σ ≥
1

3
if there exists i ∈ {1, . . . , k}

such that yi = 1 and σ ≥
∣∣∣ 1
n
−

1

m

∣∣∣ if yi ̸= 1 for all i = 1, . . . , k.

From the above cases, we conclude that (2.1) holds. This proves that D is a
metric-type on X with K = 3.

Now, we have lim
n→∞

D
( 1
n
, 0
)
= lim

n→∞

1

n
= 0. However, lim

n→∞
D
( 1
n
, 1
)
=

1

3
̸=

1 = D(0, 1). This proves that D is non-continuous. □

Next, we introduce the notion of a generalized α-ψ-contractive mapping in a
partially ordered metric-type space as follows.

Definition 2.2. Let (X,D,K,⪯) be a partially ordered metric-type space and
F : X ×X −→ X be a mapping. Then F is said to be generalized α-ψ-contractive
if there exist two functions α : X2 ×X2 −→ [0,∞) and ψ ∈ Ψ such that

α
(
(x, y), (u, v)

)D(
F (x, y), F (u, v)

)
+D

(
F (y, x), F (v, u)

)
2

≤ ψ
(M(x, y, u, v)

2

)
(2.2)

for all x, y, u, v ∈ X with x ⪯ u and y ⪰ v, where

M(x, y, u, v) = max
{
D(u, F (x, y)) +D(v, F (y, x)), D(x, F (x, y)) +D(y, F (y, x)),

D(x, u) +D(y, v),
D(u, F (u, v)) +D(v, F (v, u))

2K
,

D(x, F (u, v)) +D(y, F (v, u))

2K

}
.

Our first result is the following.

Theorem 2.3. Let (X,D,K,⪯) be a partially ordered and complete metric-type
space and F : X × X −→ X be a mapping having the mixed monotone property
such that

(i) F is generalized α-ψ-contractive;
(ii) F is α-admissible;
(iii) F is continuous;
(iv) There exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0), y0 ⪰ F (y0, x0) and

α
(
(x0, y0),

(
F (x0, y0), F (y0, x0)

))
≥ 1.

Then F has a coupled fixed point.

Proof. Let x0, y0 ∈ X be such that x0 ⪯ F (x0, y0), y0 ⪰ F (y0, x0) and

α
(
(x0, y0),

(
F (x0, y0), F (y0, x0)

))
≥ 1.

Let x1, y1 ∈ X be such that x1 = F (x0, y0) and y1 = F (y0, x0). Let x2, y2 ∈ X
be such that F (x1, y1) = x2 and F (y1, x1) = y2. Continuing this process, we can
construct two sequences {xn} and {yn} in X as follows

xn+1 = F (xn, yn) and yn+1 = F (yn, xn)
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for all n ∈ N. We will show that

xn ⪯ xn+1, yn ⪰ yn+1 (2.3)

for all n ∈ N by the mathematical induction.
Let n = 0. We have x0 ⪯ F (x0, y0) = x1 and y0 ⪰ F (y0, x0) = y1. Thus, (2.3)

holds for n = 0. Now, suppose that (2.3) holds for some fixed n ∈ N. Then, since
xn ⪯ xn+1, yn ⪰ yn+1 and the mixed monotone property of F , we have

xn+2 = F (xn+1, yn+1) ⪰ F (xn, yn+1) ⪰ F (xn, yn) = xn+1

and

yn+2 = F (yn+1, xn+1) ⪯ F (yn, xn+1) ⪯ F (yn, xn) = yn+1.

From the above, we have xn+1 ⪯ xn+2 and yn+1 ⪰ yn+2. Therefore, by the mathe-
matical induction, we conclude that (2.3) holds for all n ∈ N.

If there exists some n ∈ N such that xn+1 = xn and yn+1 = yn, then F (xn, yn) =
xn and F (yn, xn) = yn, that is, F has a coupled fixed point. Now, we assume that
xn+1 ̸= xn or yn+1 ̸= yn for all n ∈ N. Since F is α-admissible and

α
(
(x0, y0), (x1, y1)

)
= α

(
(x0, y0),

(
F (x0, y0), F (y0, x0)

))
≥ 1,

we get α
((
F (x0, y0), F (y0, x0)

)
,
(
F (x1, y1), F (y1, x1)

))
≥ 1. Thus,

α
(
(x1, y1), (x2, y2)

)
≥ 1.

By the mathematical induction, we have

α
(
(xn, yn), (xn+1, yn+1)

)
≥ 1 (2.4)

for all n ∈ N. Since F is generalized α-ψ-contractive and using (2.3), (2.4), we get

D(xn, xn+1) +D(yn, yn+1)

2

=
D
(
F (xn−1, yn−1), F (xn, yn)

)
+D

(
F (yn−1, xn−1), F (yn, xn)

)
2

≤ α
(
(xn−1, yn−1), (xn, yn)

)
×

×
D
(
F (xn−1, yn−1), F (xn, yn)

)
+D

(
F (yn−1, xn−1), F (yn, xn)

)
2

≤ ψ
(M(xn−1, yn−1, xn, yn)

2

)
(2.5)

where

M(xn−1, yn−1, xn, yn)

= max
{
D(xn, F (xn−1, yn−1)) +D(yn, F (yn−1, xn−1)),

D(xn−1, F (xn−1, yn−1)) +D(yn−1, F (yn−1, xn−1)),

D(xn−1, xn) +D(yn−1, yn),
D(xn, F (xn, yn)) +D(yn, F (yn, xn))

2K
,

D(xn−1, F (xn, yn)) +D(yn−1, F (yn, xn))

2K

}
= max

{
D(xn, xn) +D(yn, yn)), D(xn−1, xn) +D(yn−1, yn),

D(xn−1, xn) +D(yn−1, yn),
D(xn, xn+1) +D(yn, yn+1)

2K
,

D(xn−1, xn+1) +D(yn−1, yn+1)

2K

}
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≤ max
{
D(xn−1, xn) +D(yn−1, yn), D(xn, xn+1) +D(yn, yn+1),

D(xn−1, xn) +D(yn−1, yn) +D(xn, xn+1) +D(yn, yn+1)

2

}
= max

{
D(xn−1, xn) +D(yn−1, yn), D(xn, xn+1) +D(yn, yn+1)

}
. (2.6)

From (2.5) and (2.6), we have

D(xn, xn+1) +D(yn, yn+1)

2

≤ ψ
(max

{
D(xn−1, xn) +D(yn−1, yn), D(xn, xn+1) +D(yn, yn+1)

}
2

)
.(2.7)

If there exists some n ≥ 1 such that

max
{
D(xn−1, xn)+D(yn−1, yn), D(xn, xn+1)+D(yn, yn+1)

}
= D(xn, xn+1)+D(yn, yn+1),

then (2.7) becomes

D(xn, xn+1) +D(yn, yn+1)

2
≤ ψ

(D(xn, xn+1) +D(yn, yn+1)

2

)
.

It is a contradiction to ψ(t) < t for all t > 0. Therefore,

max
{
D(xn−1, xn)+D(yn−1, yn), D(xn, xn+1)+D(yn, yn+1)

}
= D(xn−1, xn)+D(yn−1, yn)

for all n ≥ 1. Then, (2.7) becomes

D(xn, xn+1) +D(yn, yn+1)

2
≤ ψ

(D(xn−1, xn) +D(yn−1, yn)

2

)
. (2.8)

Repeating the above process, we get

D(xn, xn+1) +D(yn, yn+1)

2
≤ ψn

(D(x0, x1) +D(y0, y1)

2

)
(2.9)

for all n ≥ 1. For ε > 0 there exists n(ε) ∈ N such that∑
n≥n(ε)

ψn
(D(x0, x1) +D(y0, y1)

2

)
<

ε

2K
. (2.10)

Let n,m ∈ N be such that m > n > n(ε). Then, by using (2.10), we have

D(xn, xm) +D(yn, ym)

2

≤ K
m−1∑
k=n

D(xk, xk+1) +D(yk, yk+1)

2

≤ K
m−1∑
k=n

ψk
(D(x0, x1) +D(y0, y1)

2

)
≤ K

∑
n≥n(ε)

ψn
(D(x0, x1) +D(y0, y1)

2

)
<
ε

2
. (2.11)

It implies that D(xn, xm) +D(yn, ym) < ε. Therefore,

D(xn, xm) ≤ D(xn, xm) +D(yn, ym) < ε

and

D(yn, ym) ≤ D(xn, xm) +D(yn, ym) < ε.
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This implies {xn} and {yn} are two Cauchy sequences in (X,D,K). Since X is a
complete metric-type space, we have {xn} and {yn} are convergent in (X,D,K).
Then there exist x, y ∈ X such that

lim
n→∞

xn = x, lim
n→∞

yn = y (2.12)

Since F is continuous and xn+1 = F (xn, yn) and yn+1 = F (yn, xn), taking the limit
as n→ ∞, we get

x = lim
n→∞

xn+1 = lim
n→∞

F (xn, yn) = F (x, y)

and

y = lim
n→∞

yn+1 = lim
n→∞

F (yn, xn) = F (y, x),

that is, F (x, y) = x and F (y, x) = y. Therefore, F has a coupled fixed point. □

In the next theorem, we omit continuous hypothesis of F .

Theorem 2.4. Let (X,D,K,⪯) be a partially ordered and complete metric-type
space, where D is continuous in each variable and F : X ×X −→ X be a mapping
having the mixed monotone property such that

(i) F is generalized α-ψ-contractive;
(ii) F is α-admissible;
(iii) If {xn} and {yn} are two sequences in X such that lim

n→∞
xn = x, lim

n→∞
yn = y

and α
(
(xn, yn), (xn+1, yn+1)

)
≥ 1 for all n ∈ N, then α

(
(xn, yn), (x, y)

)
≥ 1;

(iv) There exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0), y0 ⪰ F (y0, x0) and

α
(
(x0, y0),

(
F (x0, y0), F (y0, x0)

))
≥ 1.

Then F has a coupled fixed point.

Proof. Following the proof of Theorem 2.3, there exist x, y ∈ X such that

lim
n→∞

xn = x, lim
n→∞

yn = y, (2.13)

and
α
(
(xn, yn), (xn+1, yn+1)

)
≥ 1 (2.14)

for all n ∈ N. By using (2.13), (2.14) and hypothesis (3), we get

α
(
(xn, yn), (x, y)

)
≥ 1 (2.15)

for all n ∈ N. Since F is generalized α-ψ-contractive and using (2.15), we get

D(F (x, y), x) +D(F (y, x), y)

2

≤ K
D(F (x, y), F (xn, yn)) +D(F (y, x), F (yn, xn))

2

+K
D(F (xn, yn), x) +D(F (yn, xn), y)

2

= K
D(F (x, y), F (xn, yn)) +D(F (y, x), F (yn, xn))

2

+K
D(xn+1, x) +D(yn+1, y)

2

≤ Kα
(
(xn, yn), (x, y)

)D(F (x, y), F (xn, yn)) +D(F (y, x), F (yn, xn))

2

+K
D(xn+1, x) +D(yn+1, y)

2
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≤ Kψ
(M(xn, yn, x, y)

2

)
+K

D(xn+1, x) +D(yn+1, y)

2

≤ K
M(xn, yn, x, y)

2
+K

D(xn+1, x) +D(yn+1, y)

2
, (2.16)

where

M(xn, yn, x, y)

= max
{
D(x, F (xn, yn)) +D(y, F (yn, xn)), D(xn, F (xn, yn)) +D(yn, F (yn, xn)),

D(xn, x) +D(yn, y),
D(x, F (x, y)) +D(y, F (y, x))

2K
,

D(xn, F (x, y)) +D(yn, F (y, x))

2K

}
= max

{
D(x, xn+1) +D(y, yn+1), D(xn, xn+1) +D(yn, yn+1),

D(xn, x) +D(yn, y),
D(x, F (x, y)) +D(y, F (y, x))

2K
,

D(xn, F (x, y)) +D(yn, F (y, x))

2K

}
. (2.17)

Letting n→ ∞ in (2.17), using (2.12) and the continuity in each variable property
of D, we get

lim
n→∞

M(xn, yn, x, y) =
D(x, F (x, y)) +D(y, F (y, x))

2K
. (2.18)

Letting n→ ∞ in (2.16), using (2.13) and (2.18), we obtain

D(x, F (x, y)) +D(y, F (y, x)) ≤ D(x, F (x, y)) +D(y, F (y, x))

2
.

It impliesD(x, F (x, y))+D(y, F (y, x)) = 0. Hence, D(x, F (x, y)) = D(y, F (y, x)) =
0. Therefore, F (x, y) = x and F (y, x) = y. Thus, F has a coupled fixed point. □

In the following theorem, we will prove the uniqueness of the coupled fixed point.
If (X,⪯) is a partially ordered set, then we endow the product X × X with the
partially ordered relation as follows.

(x, y) ⪯ (u, v) ⇐⇒ x ⪯ u, y ⪰ v

for all (x, y), (u, v) ∈ X ×X.

Theorem 2.5. In addition to the hypothesis of Theorem 2.3 or Theorem 2.4, sup-
pose that for every (x, y), (s, t) in X × X, there exists (u, v) in X × X such that
(u, v) is comparable to (x, y), (s, t) and

α
(
(x, y), (u, v)

)
≥ 1, α

(
(s, t), (u, v)

)
≥ 1.

Then F has a unique coupled fixed point.

Proof. Following the proof of Theorem 2.3 and Theorem 2.4, F has a coupled fixed
point. Suppose that (x, y) and (s, t) are two coupled fixed points of F . By the
assumption, there exists (u, v) in X×X such that (u, v) is comparable to (x, y) and
(s, t) and

α
(
(x, y), (u, v)

)
≥ 1, α

(
(s, t), (u, v)

)
≥ 1. (2.19)

We define two sequences {un} and {vn} as follows

u0 = u, v0 = v, un+1 = F (un, vn), vn+1 = F (vn, un)
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for all n ∈ N.
Since (u, v) is comparable to (x, y), we may assume that (x, y) ⪯ (u, v) = (u0, v0).

By using the mathematical induction and the mixed monotone property of F , we
can show that x ⪯ un and y ⪰ vn for all n ∈ N.

If un = x and vn = y for all n ∈ N. Thus, lim
n→∞

un = x and lim
n→∞

vn = y. Now,

we assume that un ̸= x or vn ̸= y for some n ∈ N. Since F is α-admissible and
using (2.19), we have

α
(
(F (x, y), F (y, x)), (F (u, v), F (v, u))

)
≥ 1.

Since u0 = u and v0 = v, we get

α
(
(F (x, y), F (y, x)), (F (u0, v0), F (v0, u0))

)
≥ 1.

Thus, α
(
(x, y), (u1, v1)

)
≥ 1. Therefore, by the mathematical induction, we obtain

α
(
(x, y), (un, vn)

)
≥ 1 (2.20)

for all n ∈ N. Since F is generalized α-ψ-contractive and (2.20), we get

D(x, un+1) +D(y, vn+1)

2

=
D(F (x, y), F (un, vn)) +D(F (y, x), F (vn, un))

2

≤ α
(
(x, y), (un, vn)

)D(F (x, y), F (un, vn)) +D(F (y, x), F (vn, un))

2

≤ ψ
(M(x, y, un, vn)

2

)
(2.21)

where

M(x, y, un, vn)

= max
{
D(un, F (x, y)) +D(vn, F (y, x)), D(x, F (x, y)) +D(y, F (y, x)),

D(x, un) +D(y, vn),
D(un, F (un, vn)) +D(vn, F (vn, un))

2K
,

D(x, F (un, vn)) +D(y, F (vn, un))

2K

}
= max

{
D(un, x) +D(vn, y), D(x, x) +D(y, y),

D(x, un) +D(y, vn),
D(un, un+1) +D(vn, vn+1)

2K
,

D(x, un+1) +D(y, vn+1)

2K

}
= max

{
D(x, un) +D(y, vn),

D(un, un+1) +D(vn, vn+1)

2K
,

D(x, un+1) +D(y, vn+1)

2K

}
≤ max

{
D(x, un) +D(y, vn),

D(x, un) +D(y, vn) +D(x, un+1) +D(y, vn+1)

2
,

D(x, un+1) +D(y, vn+1)
}

= max
{
D(x, un) +D(y, vn), D(x, un+1) +D(y, vn+1)

}
. (2.22)
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From (2.21) and (2.22), we have

D(x, un+1) +D(y, vn+1)

2

≤ ψ
(max

{
D(x, un) +D(y, vn), D(x, un+1) +D(y, vn+1)

}
2

)
. (2.23)

If there exists some n ∈ N such that

max
{
D(x, un) +D(y, vn), D(x, un+1) +D(y, vn+1)

}
= D(x, un+1) +D(y, vn+1),

then (2.23) becomes

D(x, un+1) +D(y, vn+1)

2
≤ ψ

(D(x, un+1) +D(y, vn+1)

2

)
<

D(x, un+1) +D(y, vn+1)

2
. (2.24)

It is a contradiction. Therefore,

max
{
D(x, un) +D(y, vn), D(x, un+1) +D(y, vn+1)

}
= D(x, un) +D(y, vn)

for all n ∈ N , then (2.23) becomes

D(x, un+1) +D(y, vn+1)

2
≤ ψ

(D(x, un) +D(y, vn)

2

)
.

Repeating the above process, we get

D(x, un+1) +D(y, vn+1)

2
≤ ψn

(D(x, u1) +D(y, v1)

2

)
(2.25)

for n ≥ 1. Letting n→ ∞ in (2.25) and using Lemma 1.7, we get

lim
n→∞

(
D(x, un+1) +D(y, vn+1)

)
= 0.

This implies that lim
n→∞

D(x, un+1) = lim
n→∞

D(y, vn+1) = 0. Thus, lim
n→∞

un = x and

lim
n→∞

vn = y. Therefore, from the above, we have

lim
n→∞

un = x, lim
n→∞

vn = y. (2.26)

Similarly, we can show that

lim
n→∞

un = s, lim
n→∞

vn = t. (2.27)

From (2.26) and (2.27), we conclude that x = s and y = t. Hence, F has a unique
coupled fixed point. □

Since every metric space (X, d) is a metric-type space (X, d, 1), from Theorem 2.3,
Theorem 2.4 and Theorem 2.5, we get two following corollaries.

Corollary 2.6. Let (X, d,⪯) be a partially ordered and complete metric space and
F : X ×X −→ X be a mapping having the mixed monotone property such that

(i) There exist two functions α : X2 ×X2 −→ [0,∞) and ψ ∈ Ψ such that

α
(
(x, y), (u, v)

)d(F (x, y), F (u, v))+ d
(
F (y, x), F (v, u)

)
2

≤ ψ
(N(x, y, u, v)

2

)
for all x, y, u, v ∈ X with x ⪰ u and y ⪯ v, where

N(x, y, u, v) = max
{
d(u, F (x, y)) + d(v, F (y, x)), d(x, F (x, y)) + d(y, F (y, x)),

d(x, u) + d(y, v),
d(u, F (u, v)) + d(v, F (v, u))

2
,
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d(x, F (u, v)) + d(y, F (v, u))

2

}
;

(ii) F is α-admissible;
(iii) Suppose either

(a) F is continuous or
(b) If {xn} and {yn} are sequences in X such that lim

n→∞
xn = x, lim

n→∞
yn = y,

α
(
(xn, yn), (xn+1, yn+1)

)
≥ 1 for all n ∈ N, then α

(
(xn, yn), (x, y)

)
≥ 1;

(iv) There exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0), y0 ⪰ F (y0, x0) and

α
(
(x0, y0),

(
F (x0, y0), F (y0, x0)

))
≥ 1.

Then F has a coupled fixed point.

Corollary 2.7. In addition to the hypothesis of Corollary 2.6, suppose that for every
(x, y), (s, t) in X ×X, there exists (u, v) in X ×X such that (u, v) is comparable to
(x, y), (s, t) and

α
(
(x, y), (u, v)

)
≥ 1, α

(
(s, t), (u, v)

)
≥ 1.

Then F has a unique coupled fixed point.

Remark 2.8. We see that [9, Theorem 3.4] and [9, Theorem 3.5] are two direct
consequences of Corollary 2.6, [9, Theorem 3.6] is a direct consequence of Corol-
lary 2.7.

By using similar arguments as in the proofs of [15, Theorem 3.4], [15, Theo-
rem 3.5] and [15, Theorem 3.6], from Theorem 2.3, Theorem 2.4 and Theorem 2.5,
we get following results.

Proposition 2.9. Let (X,D,K,⪯) be a partially ordered and complete metric-type
space and F : X × X −→ X be a mapping having the mixed monotone property
such that

(i) There exists λ ∈ [0, 1) such that

D
(
F (x, y), F (u, v)

)
+D

(
F (y, x), F (v, u)

)
≤ λmax

{
D(u, F (x, y)) +D(v, F (y, x)), D(x, F (x, y)) +D(y, F (y, x)),

D(x, u) +D(y, v),
D(u, F (u, v)) +D(v, F (v, u))

2K
,

D(x, F (u, v)) +D(y, F (v, u))

2K

}
,

for all x, y, u, v ∈ X with x ⪰ u and y ⪯ v;
(ii) F is continuous;
(iii) There exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0).

Then F has a coupled fixed point.

Proposition 2.10. Let (X,D,K,⪯) be a partially ordered and complete metric-
type space where D is continuous in each variable and F : X × X −→ X be a
mapping having the mixed monotone property such that

(i) There exists λ ∈ [0, 1) such that

D
(
F (x, y), F (u, v)

)
+D

(
F (y, x), F (v, u)

)
≤ λmax

{
D(u, F (x, y)) +D(v, F (y, x)), D(x, F (x, y)) +D(y, F (y, x)),

D(x, u) +D(y, v),
D(u, F (u, v)) +D(v, F (v, u))

2K
,
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D(x, F (u, v)) +D(y, F (v, u))

2K

}
,

for all x, y, u, v ∈ X with x ⪰ u and y ⪯ v;
(ii) X has the following properties: If {xn} is a non-decreasing sequence in X

such that lim
n→∞

xn = x and {yn} is a non-increasing sequence in X such

that lim
n→∞

yn = y, then xn ⪯ x and yn ⪰ y for all n ∈ N;
(iii) There exist x0, y0 ∈ X such that x0 ⪯ F (x0, y0) and y0 ⪰ F (y0, x0).

Then F has a coupled fixed point.

Proposition 2.11. In addition to the hypothesis of Corollary 2.9 or Corollary 2.10,
suppose that for every (x, y), (s, t) in X ×X, there exists (u, v) in X ×X such that
(u, v) is comparable to (x, y) and (s, t). Then F has a unique coupled fixed point.

Finally, in order to support the useability of our results, let us introduce some
following examples.

Example 2.12. Let X = {1, 2, 3} with the partially ordered relation as follows.

x ⪰ y if and only if x ≥ y and x, y ∈ {1, 2}.
Define a function D : X ×X −→ [0,∞) such that

D(1, 1) = D(2, 2) = D(3, 3) = 0,

D(1, 2) = D(2, 1) = D(1, 3) = D(3, 1) = 1,

D(2, 3) = D(3, 2) = 4.

Then, (X,D,K) is a complete metric-type space with K = 2. Consider a mapping
F : X ×X −→ X by

F (1, 1) = F (2, 2) = F (2, 1) = F (1, 2) = 1,

F (3, 3) = F (3, 1) = F (1, 3) = F (2, 3) = F (3, 2) = 2.

Define a function α : X2 ×X2 −→ [0,∞) by

α
(
(x, y), (u, v)

)
=

 1 if x = y = u = v = 1,
1

2
if otherwise.

Then, for all (x, y), (u, v) ∈ X ×X with x ⪰ u, y ⪯ v, we have

α
(
(x, y), (u, v)

)D(
F (x, y), F (u, v)

)
+D

(
F (y, x), F (v, u)

)
2

= α
(
(x, y), (u, v)

)D(1, 1) +D(1, 1)

2
= 0

≤ ψ
(M(x, y, u, v)

2

)
.

Therefore, (2.2) holds for all ψ ∈ Ψ, and also the hypothesis of Theorem 2.3 are
fulfilled. Therefore, there exists a coupled fixed point of F . In this case, (1, 1) is a
coupled fixed point of F .

The following example show that Corollary 2.6 is proper generalization of some
results in [9].
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Example 2.13. Let X = {0, 1, 2} with the usual order ≤ on R and d be defined by

d(0, 0) = d(1, 1) = d(2, 2) = 0, d(1, 2) = d(2, 1) = 4,

d(0, 1) = d(1, 0) = d(0, 2) = d(2, 0) = 2.

Define a mapping F : X ×X −→ X as follows

F (0, 1) = F (1, 1) = F (2, 1) = 1,

F (0, 0) = F (1, 0) = F (2, 0) = 2,

F (0, 2) = F (1, 2) = F (2, 2) = 0.

Consider a function ψ(t) =
t

2
for all t ≥ 0 and a function α : X2 ×X2 −→ [0,∞)

such that

α
(
(x, y), (u, v)

)
=

 1 if x = y = u = v = 1,
3

10
if otherwise.

Then (X, d) is a complete metric space. For all (x, y), (u, v) ∈ X × X with x ⪯
u, y ⪰ v, we put

σ1 = (.u, F (x, y)) + d(v, F (y, x)), σ2 = d(x, F (x, y)) + d(y, F (y, x)),

σ3 =
d(u, F (u, v)) + d(v, F (v, u))

2
, σ4 =

d(x, F (u, v)) + d(y, F (v, u))

2
,

σ5 = d(x, u) + d(y, v), N = max{σ1, σ2, σ3, σ4, σ5},

L =
d(F (x, y), F (u, v)) + d(F (y, x), F (v, u))

2
.

Then, we have the following table.

u v x y L σ4 σ3 σ2 σ1 σ5 N
0 0 0 0 0 2 2 4 4 0 4
0 0 0 1 2 3 2 6 4 2 6
0 0 0 2 1 1 2 0 2 2 2
0 1 0 1 0 3 3 6 6 0 6
0 1 0 2 1 1 3 0 4 4 4
0 2 0 2 0 0 0 0 0 0 0
1 0 0 0 2 2 3 4 6 2 6
1 0 0 1 4 1 3 6 2 4 6
1 0 0 2 3 3 3 0 4 4 4
1 1 0 1 2 1 0 6 4 2 6
1 1 0 2 3 3 0 0 6 6 6
1 2 0 2 2 2 3 0 2 2 3
1 0 1 0 0 3 3 6 6 0 6
1 0 1 1 2 2 3 0 2 2 3
1 0 1 2 1 4 3 6 4 2 6
1 1 1 1 0 0 0 0 0 0 0
1 1 1 2 1 2 0 6 4 4 6
1 2 1 2 0 3 3 6 4 0 6
2 0 0 0 1 1 0 4 2 2 4
2 0 0 1 3 2 0 6 6 4 6
2 0 0 2 2 2 0 0 4 4 4
2 1 0 1 1 2 3 6 6 2 6
2 1 0 2 2 2 3 0 6 6 6
2 2 0 2 1 1 2 0 2 2 2
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2 0 1 0 1 2 0 6 2 4 6
2 0 1 1 3 3 0 0 6 6 6
2 0 1 2 2 3 0 6 4 6 6
2 1 1 1 1 1 3 0 4 4 4
2 1 1 2 2 1 3 6 2 8 8
2 2 1 2 1 2 2 6 6 4 6
2 0 2 0 0 0 0 0 0 0 0
2 0 2 1 2 1 0 6 4 2 6
2 0 2 2 1 1 0 4 2 2 4
2 1 2 1 0 3 3 6 6 0 6
2 1 2 2 1 3 3 4 4 4 4
2 2 2 2 0 2 2 4 4 0 4

Now, let (x, y, u, v) = (1, 0, 0, 1), we have

α
(
(x, y), (u, v)

)d(F (x, y), F (u, v))+ d
(
F (y, x), F (v, u)

)
2

=
3

10
.4 =

6

5
> 1 = ψ(2) = ψ

(d(1, 0) + d(0, 1)

2

)
.

Therefore, [9, Theorem 3.4] and [9, Theorem 3.5] are not applicable to F , (X, d), α
and ψ. Otherwise, the above calculations show that assumption (1) of Corollary 2.6
holds. Moreover, the assumptions of Corollary 2.6 are fulfilled. Therefore, there
exists a coupled fixed point of F . In this case, (1, 1) is a coupled fixed point of F .
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