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1. INTRODUCTION

Let E be an ordered Banach space with the partial order < . A mappingT : £ — E
said to be monotone if Tx < Ty for all z,y € E with x < y and monotone
nonexpansive if T is monotone and

1Tz =Tyl < ||z =yl
for all z,y € E with = < y.
In 2015, Dehaish and Khamsi [1] consider Mann’s iteration {x,} for a monotone
nonexpansive mapping 1 : C' — C defined by

Tn+1 = 677,-’&1 + (1 - ﬂn)Txna

for each n > 1, where {f3,,} in (0, 1) for finding some order fixed points of monotone
nonexpansive mappings in uniformly convex ordered Banach spaces for prove some
weak convergence theorems. The results of Dehaish and Khamsi , they gave the
control condition {f,} in [a,b] with a > 0 and b < 1, but their results do not entail
Bn = %ﬂ

Thus, to improve the results mentioned above, in 2016, Song et al. [2] they
proved some weak convergence theorems of Mann’s iteration satisfies the following
condition:

D Ba(l = By) = oo.
n=1

Clearly, this control condition {8,} contains /3, = %ﬂ as a special case.

In 2016, Song et al. [3] considered the convergence theorems of Mann’s iteration
for a monotone a-nonexpansive mapping 7" in an ordered Banach space E.

In 2017, Muangchoo-in et al. [1] introduced the notion of a monotone («, 3)-
nonexpansive mapping 7' in an ordered Banach space E and proved some existence
theorems of fixed points by using the assumption lrlbrgg |z, = Tyl = 0. and some

weak and strong convergence theorems of Ishikawa type iteration as follows are
obtained :
{ Yn = (1 — 8p)xn + 80Ty, (1.1)
Tnt1 = (1 = $p)Tn + 0T (yn) '
for each n > 1, where {s,} is the sequences in [0, 1]. Under the control condition
liminf s, (1 —s,) >0 or limsups, (1 —s,) > 0.

n——o0 n——o0

In 2013, Sahu, D.R. [7] introduced Normal S-iteration process defined as follows :
For C a convex subset of normed space X and a non-linear mapping 7" of C' into
itself, for each x; € C, the sequence {x,} in C is defined by

{ Yn = (1 = sp)xn + sy, Ty, (1.2)
Tpt+1 = T(yn) .
for each n > 1, where {s,,} is the sequences in (0,1).

Motivated by the results mentioned above, in this paper, we show some existence
of a fixed point of a monotone («, )-nonexpansive mapping in ordered Banach
spaces by do not use the condition lrllrggof |z, — Tzy|| = 0. And we prove some

weak and strong convergence theorems of Normal S-iteration for a monotone (c, 3)-
nonexpansive mapping under the condition

limsup s, (1 —s,) >0, liminfs,(1—s,)>0.
n—> oo n—oo

Finally, we give a numerical example to illustrate the main result in this paper.
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2. PRELIMINARIES

Let P be a closed and convex cone of a real Banach space E. A partial order “<”
with respect to P in F is defined as follows:

r<y(x<y)ifandonlyif y—xz€P (yfxel—g’),
for all z,y € E, where P is the interior of P.

In this paper, let E be a Banach space with the norm || - || and the partial order
<. Let F(T) = {x € E : Tx = z} denote the set of all fixed points of a mapping 7.
Also, we assume that the order intervals are convex and closed. Recall that an order
interval is any of the subsets

[z,=) ={p e E;z <p} or (&2l ={pe E;p<u}
for any a € C. An order interval [z,y] for all z,y € E is given by
[z yl =z, =) Nyl ={z € E:ax <2<y} (2.1)
Then the convexity of the order interval [z,y] implies that
r<trx+(1-ty <y, (2.2)
for all x,y € F with z <y.
A Banach space FE is said to be:
(1) strictly conver if |“EY|| < 1 for all z,y € E with ||z|| = |ly|| =1 and = # y;
(2) uniformly convez if, for all € € (0, 2], there exists 6 > 0 such that Hx%"” <
1 -4 for all z,y € F with ||z|| = |Jy]| =1 and ||z — y|| > &.

The following inequality was shown by Xu [6] in a uniformly convex Banach space

FE, which is known as Xu’s inequality.

Lemma 2.1. [6] For any real numbers ¢ > 1 and r > 0, a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing conver
function g : [0, 4+00) — [0, +00) with g(0) = 0 such that

[tz + (1= O)yl|* < =] + (1 = Dyl = w(a gz —ylD), (2.3)

for all z,y € B, (0) = {z € E;||z|| <r} and t € [0,1], where w(q,t) = t1(1 —1t) +
t(1—t)9.
In particular, take g = 2 and t = %,

x+yH2 1, 9. 1, o 1

<= Syl = =g(llz = yl). 2.4
|52 = 50l + 512 = 290z = ol (2.4)
Lemma 2.2. [7] Let K be a nonempty closed convex subset of a reflexive Banach

space E. Assume that p : K — R is a proper convex lower semi-continuous and
coercive function. Then the function p attains its minimum on K, that is, there
ezists x € K such that

px) = Jnf p(y).

Lemma 2.3. [8] A Banach space E is said to satisfy Opial’s condition if, whenever
any sequence {x,} in E converges weakly to a point x,

limsup ||z, — z|| < limsup ||z, — ||

n—> 00 n—:o0

for any y € E such that y # x.

Definition 2.4. [4] Let K be a nonempty closed subset of an ordered Banach space
(E,<). A mapping T : K — K is said to be :
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(1) monotone («, B )-nonexpansive if T is monotone and, for some a, § < 1,
Tz = Ty||* < o||Tz — y|?> + BTy — = + (1 = (a + )= — yl%,
for all z,y € K with <y, which is equivalent to
a+p
1Tz =Tyl < |lz - y[I* + mllTﬂf —z?

2
+m||T$—ﬂf|| llz = yll + |7z — Tyl]. (2.5)
(2) monotone quasi-nonezpansive if T is monotone, F(T) # () and [Tz — p|| <
| = pll
forallpe F(T) and x € K with x < por p < z.

Remark 2.5. If 8 = a, then («a, §)-nonexpansive is a-nonexpansive mapping.

3. MAIN RESULTS

3.1. The existence of fixed points. We denote
F(T)={peF({T):p<m}, Fx(T)={pecF(T):x1 <p}

Note that, since the partial order < is defined by the closed convex cone P, it is
obvious that both F<(T') and F~(T) are closed convex.

Now, we introduce the following lemma to find fixed points of a monotone
(a, B)-nonexpansive mapping in Banach space E:

Lemma 3.1. Let K be a nonempty closed and convexr subset of a Banach space
(E,<). Let T : K — K be a monotone mapping and assume that the sequence {x}
defined by Normal S-iteration (1.2) and 1 < Tz (or Tzy < x1). Then we have

(1) Tn S Yn S Tn+1 (07” Tn 2 Yn Z xn—&-l);
(2) z, <z (orx < x,) for alln <1 if {x,} weakly converges to a point x € K.

Proof. (1) Let k1, ke € K such that k; < ky. Then we have
]fl § (]. — Oé)k’l +C¥]€Q § kg

for all a € [0,1] since order intervals are convex. By the assumption, we have
x1 < Tzx; and so the inequality is true for n = 1. Assume that z < Tz for k > 2.
We will show that 1 < Txiy1 by convexity and monotonicity, we have

xp < (1= sp)ap + spTay = yp < Tay,

ie, x < yp < Tap < Tyr = xp=1. since yx < xpy1 by T is monotone then
Ty, = vip+1 < Txk41. By induction, we can conclude that x,, < Tz, is true for all
n>1.

Now we have z, < Tz, for all n > 1 by convexity

since T' is monotonicity x, <y, then Tz, < Ty,, that is z,, <y, <Tx, <Ty, =
Zn+1. Hence, we conclude that z, <y, < 5,41
On the other hand, if we assume Txy < x1, then we can show that x, > y, > xp 41

(2) From Dehaish and Khamsi [, Lemma 3.1]), we have the conclusion. This
completes the proof. O

Next, we show some existence theorems of fixed points of monotone (a,f)-
nonexpansive mappings in a uniformly convex ordered Banach space (F, <).
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Theorem 3.1. Let K be a nonempty and closed convex subset of a uniformly convex
ordered Banach space (E,<) and a mapping T : K — K be a monotone («,3)-
nonezpansive mapping. Assume x1 < Tx1 and the sequence {x,} defined by Normal
S-iteration (1.2) is bounded with x, < w for some w € K. Then F>(T) # (.

Proof. From Lemma 3.1, we have 21 < --- <z, < x,11. Let C,, = {2 € K : x,, < 2}
for all n > 1. Then C), is closed convex and w € C,. So C, is nonempty. Let

o0
C* = () C,. Then C* is a nonempty and closed convex subset of K. Since {x,} is
n=1
bounded, we can define a function p : C* — [0,400) by
p(2) = lim sup |z — 2|1%,
n——oo
for all z € C*. it follows from Lemma 2.2 that, there exists z* € C* such that
*) = inf . 3.1
p(z") = inf p(z) (3.1)
By the definition of C*, we have
1<z <a3 < <y <apgg <o < 2N
Since T is monotone, it follows from Lemma 3.1 that

T < T$n+1 < TZ*7

for each k£ > 1, which means that T'2* € C** and hence # € C*. Thus, by (3.1),
we have

. 2+ Tz* " "
P <p(Z5), p(7) < p(T2), (3:2)

On the other hand, it follows from Definition 2.4 that
[T = TP < llon = 22 + T4 1720 = 2

2 * *

+ gl T — [ladllen = 2*[| + 18I T2y — T2"|l].
Since the sequence {z,} is bounded and llim inf ||z, — Tx,|| = 0, we have
—00

ITan = T2 < llon — 27|12,

and then

limsup || Tz, — T2z*||* < limsup ||z, — z*|?. (3.3)
k— o0 k— o0

Thus, using (3.3), we have
p(Tz*) = limsup ||z, — Tz*|?

k—00
= limsup ||Tz,, — Tz*|?
k—>00
< limsup|||z,, — 2*||?
k—>00

— p(="). (3.4)

Now, we show that z* = T2*. From Lemma 2.1 with ¢ =2 and ¢ = § and (3.4)
that is,

zZr+Tz* . 25+ Tz" 2
p(i) = limsup ||z, — ————
2 k— o0 2
ok — T* 2
= lim sup H In 2 + In i
k—> o0 2 2
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: 1 * (|2 1 * (|2 1 * *
<timsup (3l — 2+ 3 2w — 72| — Zg(l=* — T2°1)
< Loty + Lo@a) - Loqre - T
< 5plz 5Tz 79Uz z

= p(=") - go(ll=* ~ T=*]).

By Lemma 2.1, we have

1 N N N Zf+Tz*
90" =T=") < p(=") = p(—5—) < 0.
Thus we have g(||z* —Tz*||) = 0 and so z* = T'z* by the property of g. O

Theorem 3.2. Let K be a nonempty and closed convex subset of a uniformly convex
ordered Banach space (E,<) and a mapping T : K — K be a monotone («, 3)-
nonexpansive mapping. Assume Txy < x1 and the sequence {x,} defined by Normal
S-iteration (1.2) is bounded with w < x,, for some w € K Then F<(T) # 0.

Proof. the proof same Theorem 3.1, by let 11 <, < - < 27. O

3.2. The convergence of Normal S-iteration. In this section, we prove some
convergence theorems of Normal S-iteration for a monotone («, )-nonexpansive
mapping in an ordered Banach space F.

Theorem 3.3. Let K be a nonempty and closed convex subset of a uniformly
convez ordered Banach space (E,<) and a mapping T : K — K be a monotone
(a, B)-nonexpansive mapping. Assume the sequence {x,} is defined by Normal S-
iteration(1.2) with x1 < Ty (or Txq < x1) and F>(T) # 0 (or F<(T) # 0). Then
we have

(1) the sequence {x,} is bounded;

(2) [|zns1 —pll < |lzn —pl| and limy,—, o0 ||, — p|| exists for allp € F>(T) # 0

(or F<(T) # 0);
(3) liminf, o ||zn — Txyn|| = 0 provided limsup,, . sn(1 —s,) > 0;
(4) lim, o0 ||xn — Tp|| = 0 provided liminf, o s,(1 —s,) > 0.

Proof. Without loss of generality, we assume that 27 < p € F>(T) # (. Now,
we claim x, < p for all n > 1. In fact, a mapping T is monotone, we have
21 <Txy <Tp=pand 21 <y, < Tz < p then we have y; < p. Again from T
is monotone, then Ty, < Tp = p from x1; < Ty;. By convex we can get x5 < p,
and so z1 < o < p. Suppose that zp < p for some k > 2. Then Tz < Tp = p by
monotonicity, from the condition (1) of Lemma 3.1 we have z < yp < Txp < Tyi
and xp < yp < Tz < p. Since yx < p then Ty, < Tp = p. And x < Ty by
convexity

xrp < (1= sp)ap + sk Ty = 21 < Typ.
That is, we get zr4+1 < p. Hence we conclude z,, < p for all n < 1.
It follows from Lemma 3.1 that [|Tz, — p| < ||z, — p|| for all n > 1 and so

lyn = pll = (1 = sn)zn + snTxn — pl|
< (I =sp)llzn = pll + sullT(zn) — pl|
< (L =sp)llzn —pll + snllzn —pll
= ||, — pl.
Consequently, we have

[#n41 =l = T (yn) =2l
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S ”yn _pH
< lzn =l
< [lz1 —pll.

Then the sequence {||x,, — p||} is non-increasing and bounded and hence the conclu-
sions (1) and (2) hold.

Now, we show that the conclusion (3) and (4) hold. From Lemma 2.1 with ¢ = 2,
t = s, and Lemma 3.1 it follows that,

[Znt1 = pI* = | Tyn — pl?
= llyn — pl?
< (1= 80)(@n = p) + sn(T2n —p)|?
< (1= su)l|ln = plI* + snllen — plI* = sn(1 = su)g(|lzn — Tal))
= [lzn = plI* = su(1 = sn)g(2n — T )
which implies that

sn(L = sn)g(|lzn — Tzll) < o — plI* = lznss — plI*.
Then it follows from the conclusion (2) that

lim sup s, (1 — s,)g(||x, — Txy,]|) = 0.

n—oQ

From the conclusion (3), since limsup,,__,. s,(1 —s5,) > 0,

(limsup Sn(1— sn)> (hminfg(”xn - Tan)) < limsup s, (1 = 8p)g(||xn — Tzy|),
n—>00 n—s 00

n—>oo
we have
liminf g(||x,, — T'z,]|) = 0.

n—oQ

Hence we have
liminf ||, — Tz,| =0,
n—oo

by the properties of g. From the conclusion (4), since liminf,, . $,(1 — s,) > 0,

<liminf sn(1 — sn)) <limsupg(mn - Txn|)> < limsup sn (1 — $0)9(|zn — Tan ),

n—>00 n—>o00 n—-» 00
we have

lim g(||x, — Txy,||) = limsup g(||zn, — Tz,]|) = 0.
n—oo

n—aoo
Hence we have
|x — Tan| =0,

lim |
n—o0

by the properties of g. O

Theorem 3.4. Let K be a nonempty and closed convexr subset of a uniformly
convex ordered Banach space (E,<) and a mapping T : K — K be a monotone
(a, B)-nonexpansive mapping. Assume that E satisfies Opial’s condition and the
sequence {x,} is defined by Normal S-iteration(1.2) with x1 < Txy (or Tzy < x1).
If F>(T) # 0 (or F<(T) # 0) and liminf,_, s,(1 —s,) > 0, then the sequence
{zn} converges weakly to a fized point z of T.
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Proof. Tt follows from Theorem 3.3 that {x,,} is bounded and lim,, o |[|2n —T 2| =
0. Then there exists a subsequence {z,, } of {z,} such that {x,, } converges weakly
to a point z € K. From Lemma 3.1, it follows that z1 < x,, <z (or z <z, < z,)
for all £ > 1.

From Definition 2.4 that

a+p
Tz = Ty|* < [lz - y[I* + 7||T1‘ —z|?

1—
2
15T =l [ladllz =yl + Bl Tz — Tyll].
Since the sequence {z,} is bounded and limy_, o ||n, — Ty, || = 0, we have
limsup || Tx,, — Tz||* < limsup ||z,, — 2|
k— o0 k— o0
and hence
limsup ||T2,, — Tz|| < limsup ||z,, — z]|. (3.5)
k— o0 k— o0

Now, we prove that z = T'z. In fact, suppose that z # Tz. Then, by (3.5) and
Opial’s condition, we have

limsup ||z, — z|| < limsup ||z, — Tz||

k—> 00 k—> 00
< limsup(|0n, — Tn || + | T2, — T2])
k—> o0
< limsup ||z,, — 2|,
k—> o0

which is a contraction. This implies that z € F>(T) (or z € F<(T')). Using the
conclusion (2) of Theorem 3.3, lim,,_, ||z, — 2| exists.

Now, we show that the sequence {z,} converge weakly to the point z. Suppose
that this does not hold. Then there exists a subsequence {x,,} to converge weakly
to a point z € K and z # z. Similarly, we must have z = Tz and lim,,_, ||zn — z||
exists. It follows from Opial’s condition that

lim ||z, —z2[ < lim |z, — 2| =limsup ||z,, —z| < lm |z, — 2|,
which is a contradiction and hence we get x = z. O

Theorem 3.5. Let K be a nonempty compact and closed convex subset of a uniformly
convex ordered Banach space (E,<) and a mapping T : K — K be a monotone
(a0, B)-nonexpansive mapping. Assume the sequence {x,} is defined by Normal S-
iteration(1.2) with x1 < Txy. If limsup,,_ . Sn(l — s,) > 0, then the sequence
{zn} converges strongly to a fized point p € F>(T).

Proof. Since K is compact, there exists a subsequence {x,, } of {z,} such that {z,, }
converges strongly to a point p € K. From Lemma 3.1, it follows that z; < x,, <p
for all £ > 1. By Theorem 3.1, we have F>(T') # 0 and it follows from Theorem 3.3
that {x,} is bounded and

liminf ||, — Tz,| = 0.
n—-aoQ
Assume that
liminf ||z, — Tz, || = 0.
k— o0 ) )

From Definition 2.4 that

a+0
[Tz —Tp|* < |la —p|* + mHTf —z?
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2

+ mllTﬂﬂ —z|[lallz = pll + 8] Tz — Tp]|].
Since the sequence {x,, } is bounded and
lim ||z, —p|| =0, lim |z, —Tx,,]| =0,
k— o0 k—> 00

we have

limsup || T2, — Tp|* <0

k— o0
and hence

lim ||Tz,, —Tp| =0. (3.6)
k— 00

Therefore, we have

limsup ||z, — Tp| < limsup(||zn, — TTn, || + |T2n, —Tp||) =0

k—s o0 k—>o00
and so limy_, ||y, —T'p|| = 0, which implies that p € F>(T). Using the conclusion
(2) of Theorem 3.3, limy o0 ||Zn, — p|| exists and so limg_, o ||z, —p|| =0. O

Theorem 3.6. Let K be a nonempty compact and closed convex subset of a uniformly
convex ordered Banach space (E,<) and a mapping T : K — K be a monotone
(o, B)-nonexpansive mapping. Assume the sequence {x,} is defined by Normal S-
iteration(1.2) with x1 < Txy. Ifliminf, o s,(1—s,) > 0, then the sequence {,}
converges strongly to a fized point p € F>(T).

Proof. Since K is compact, there exists a subsequence {x,, } of {z,} such that {x,, }
converges strongly to a point p € K. From Lemma 3.1, it follows that z; < x,, <p
for all k > 1. By Theorem 3.1, we have F>(T') # 0 and it follows from Theorem 3.3
that {z,} is bounded and

liminf ||, — Tz,| = 0.
n—oo
Without loss of generality, we can assume that
liminf ||z, — T2y, | = 0.
k— o0
From Definition 2.4 that

a+p
Tz —Tp|* < ||lz —plI* + mHTiU — x|

2
+ m”TﬂU —z||[lalllz = pll + |BI| Tz — Tpl].

Since the sequence {x,, } is bounded and

lim ||z,, —p| =0, lm ||2n, — T, | =0,
k— 00 k— 00

we have

liminf || Tz,, — Tp||* <0

k— o0
and hence

lim ||Tz,, —Tp| =0. (3.7
k—s o0

Therefore, we have

liminf ||z, — Tp|| < lUminf(||z,, — Tz, || + |T2n, — Tpl]) =0
k—> 00 k—> 00

and so limy_, ||y, —T'p|| = 0, which implies that p € F>(T). Using the conclusion
(2) of Theorem 3.3, limy_, o0 ||z, — p|| exists and so limy_, ||z, —p|| =0. O
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Similarly, the following theorem can be proved:

Theorem 3.7. Let K be a nonempty compact and closed convex subset of a uni-
formly convex ordered Banach space (E,<) and a mapping T : K — K be a
monotone («, B)-nonexpansive mapping. Assume the sequence {x,} is defined by
Normal S-iteration(1.2) with Txy < xy1. If either liminf, o s,(1 —s,) > 0 or
limsup,,_ o $n(1 — sn) > 0, then the sequence {x,} converges strongly to a fized
point p € F<(T).

From Theorem 3.5, we have the following;:

3.3. The numerical examples. Now, we give two numerical examples to illustrate
the following examples, by we add Normal-S iteration for compare with Mann’s
iteration and Ishiwaka’s iteration of [4] in the first example. And the last, we show
the example between Mann’s iteration and Normal-S iteration.

Example 3.2. Let T : [0,1] — [0, 1] be a mapping defined by

Cf025 if z#,
T“"_{o.5 if x=1.

for any = € [0, 1]. Then T is a (0.8,0.2)-nonexpansive mapping. Define the sequences
Sn = %+ -3 for each n > 1, then limsup,,_, o $,(1—5,) > 0. Then all the conditions

of Theorem 3.5 are satisfied. Also, 0.25 is a fixed point of T'.

TABLE 1. The convergent step of {z,,} for Example with s, = 1 + %

’ Number of iterations \ Sequence of Mann \ Sequence of Ishikawa \ Sequence of Normal-S ‘

1 0.5000000 0.5000000 0.5000000
2 0.1875000 0.3294046 0.2500000
4 0.2300347 0.2518192 0.2500000
6 0.2402544 0.2502132 0.2500000
8 0.2448648 0.2500322 0.2500000
10 0.2472181 0.2500053 0.2500000
12 0.2484731 0.2500009 0.2500000
14 0.2491557 0.2500001 0.2500000
16 0.2495311 0.2500000 0.2500000

Example 3.3. Let Ty : [-1.5,—1] — [-1.5,—1] or T : [1,1.5] — [1,1.5] be the
mappings defined by
Tz = arctan(bx).
The fixed points of mappings 77 and T, are —1.4320322 and 1.4320322 respectively.
It is easy to see that T is monotone. Next we will show that 7" is a (0.9,0.1)-
nonexpansive mapping. By using Matlab R2015b software, we get

m[in | {0.9]|arctan(5z) — y||* + 0.1||arctan(5y) — z||* + (1 — 0.9 — 0.1)||z — y||?
z,ye[l,1.5

— ||arctan(5x) — arctan(5y)|\2} —437-10796 > .
then implies that
||arctan(5x)—arctan(5y)||2 < 0~9||a7"cmn(593)—y||2+0.1||a7"ctom(5y)—x||2-1—(1—0,9_0,1)Hm_y”?

for all z,y € [1,1.5]. And it is true for all z,y € [—1.5,—1] too. Therefore T is a
monotone (0.9, 0.1)-nonexpansive mapping.
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Fixed points of T

f—’,:@ ints of -
points{of T

FI1GURE 1. The fixed points of T" are —1.4320322 and 1.4320322

Value of function
IS
|

vaiue of runction

T T
A5 4 43 42 g4 11 1.1

12 13 12 14
yin[-1.5,-1] X in[-1.5-1] xin[1,1.5]

FIGURE 2. The value of mappings 77 and Tb

Next we show the numerical solution of 7', the numerical solution of this example
is presented in Table 2.

Note that, if we set © = 1.5, y = 1 and a = 8 = 0.9 then, the mapping T is not
a-nonexpansive mapping.

From observing the numerical behavior, if we choose xg nearly is the solution
then the sequence convergence is fast. Next we will show the convergent behavior
of {s,} for iterative comparison between Mann’s iteration, Ishikawa’s iteration and
normal-S iteration. by fixing xg = 1.2 and using three groups of sequences s,, for
n>1are:

(i) sn =

+ ek €{0.01,2,5};

1 .
+ m, ke {0.01,2,5},

log” (n
(iil) sp =7+ %, k € {0.01,2,5}:

All these sequences satisfy all condition of convergence theorems, Next figures
describe the convergent behavior of three situations for value k.

N N N e
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TABLE 2. The convergent step of {x,} for Example 3.3 with s, =

1 1
it

Number of Iterations

Sequence value of Mann

Sequence value of Normal S

o = 1.2 ‘ o = —1.3 o = 1.2 ‘ o = —-1.3
1 1.2000000  -1.3000000  1.2000000 -1.3000000
2 1.4570595  -1.4476837  1.4343860 -1.4335135
3 1.4457227  -1.4405986  1.4321554 -1.4321098
4 1.4412475  -1.4377994  1.4320401 -1.4320372
5 1.4386414 -1.4361689  1.4320327 -1.4320325
6 1.4369073  -1.4350837  1.4320322 -1.4320322
7 1.4356822 -1.4343169 1.4320322 -1.4320322
8 1.4347894  -1.4337581  1.4320322 -1.4320322
9 1.4341269 -1.4333435  1.4320322 -1.4320322
10 1.4336299 -1.4330323 1.4320322 -1.4320322
. x16°
-  _Mamn 2.48
1 Ishikawa 2.45 N\
**¢--Normail-S (i) -
K rmalen S
0.4 2.38 | S——
0.2 2.36
0 Py 2.34. . . " . N
1 2 3 4 5 6 2 2.2 2.4 2.6 2.8 3 2.99972.99982.9999 3 3.00013.0002
Number of iterations Number of iterations Number of iterations
F1GURE 3. The behavior of sequence by fixing k = 0.01
1.
1 __,:::‘i’kawa
~¢-Normail-§ (i)
—~—Normail-§ (ii)
0.8 —+—Normail-§ (iii)
0.4
o1 2 3" 4 5 6 2 2.2 2.4 2.6 2.8 .I.I3 2.942.962.98 3 3.023.043.06

Number of iterations

Number of iterations

FIGURE 4. The behavior of sequence by fixing k = 2

Number of iterations

The last figure describes the convergent behaviour for comparison k£ in three

groups
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1. ) x16°
- - Mann \:
Ishikawa
~¢-Normail-§ (i)
——Normail-§ (ii)
0.8 —+Normail-§ (iii)

1 2 3 1 5 6 2 2.2 2.4 2.6 2.8 3 3.963.973.983.99 4 4.014.024.03
Number of iterations Number of iterations Number of iterations

FI1GURE 5. The behavior of sequence by fixing k = 5

x16° x16°

1
1
-
o
x5l

2.2 [4g=0.01

——K=2 ——K=0.01
—+—K=5 ——K=2
2.15 15 k=5
2.99942.99962.9998 3 3.00023.0004 2.996 2.998 3 3.002 3.004 2.9852.992.9953 3.0053.013.015
Number of iterations Number of iterations Number of iterations

FIGURE 6. The convergent behaviour of each k for cases of group(i),
group(ii) and group(iii)

4. CONCLUSION

We get the results about the convergence theorems of monotone (o, 8)-nonexpansive
mapping for the sequence {x,,} is defined by normal-S iteration. In part of numerical,
we give the examples for show the convergent behavior of sequence {s,} of normal-S
iteration (in Figure 3 4 5 6)
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