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1. Introduction

Let E be an ordered Banach space with the partial order≤ . A mapping T : E → E
said to be monotone if Tx ≤ Ty for all x, y ∈ E with x ≤ y and monotone
nonexpansive if T is monotone and

‖Tx− Ty‖ ≤ ‖x− y‖,
for all x, y ∈ E with x ≤ y.

In 2015, Dehaish and Khamsi [1] consider Mann’s iteration {xn} for a monotone
nonexpansive mapping T : C → C defined by

xn+1 = βnxn + (1− βn)Txn,

for each n ≥ 1, where {βn} in (0, 1) for finding some order fixed points of monotone
nonexpansive mappings in uniformly convex ordered Banach spaces for prove some
weak convergence theorems. The results of Dehaish and Khamsi , they gave the
control condition {βn} in [a, b] with a > 0 and b < 1, but their results do not entail
βn = 1

n+1

Thus, to improve the results mentioned above, in 2016, Song et al. [2] they
proved some weak convergence theorems of Mann’s iteration satisfies the following
condition:

∞∑
n=1

βn(1− βn) =∞.

Clearly, this control condition {βn} contains βn = 1
n+1 as a special case.

In 2016, Song et al. [3] considered the convergence theorems of Mann’s iteration
for a monotone α-nonexpansive mapping T in an ordered Banach space E.

In 2017, Muangchoo-in et al. [4] introduced the notion of a monotone (α, β)-
nonexpansive mapping T in an ordered Banach space E and proved some existence
theorems of fixed points by using the assumption lim inf

n−→∞
‖xn − Txn‖ = 0. and some

weak and strong convergence theorems of Ishikawa type iteration as follows are
obtained : {

yn = (1− sn)xn + snTxn,
xn+1 = (1− sn)xn + snT (yn)

(1.1)

for each n ≥ 1, where {sn} is the sequences in [0, 1]. Under the control condition

lim inf
n−→∞

sn(1− sn) > 0 or lim sup
n−→∞

sn(1− sn) > 0.

In 2013, Sahu, D.R. [5] introduced Normal S-iteration process defined as follows :
For C a convex subset of normed space X and a non-linear mapping T of C into
itself, for each x1 ∈ C, the sequence {xn} in C is defined by{

yn = (1− sn)xn + snTxn,
xn+1 = T (yn)

(1.2)

for each n ≥ 1, where {sn} is the sequences in (0, 1).
Motivated by the results mentioned above, in this paper, we show some existence

of a fixed point of a monotone (α, β)-nonexpansive mapping in ordered Banach
spaces by do not use the condition lim inf

n−→∞
‖xn − Txn‖ = 0. And we prove some

weak and strong convergence theorems of Normal S-iteration for a monotone (α, β)-
nonexpansive mapping under the condition

lim sup
n−→∞

sn(1− sn) > 0, lim inf
n−→∞

sn(1− sn) > 0.

Finally, we give a numerical example to illustrate the main result in this paper.
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2. Preliminaries

Let P be a closed and convex cone of a real Banach space E. A partial order “≤”
with respect to P in E is defined as follows:

x ≤ y (x < y) if and only if y − x ∈ P (y − x ∈ P̊ ),

for all x, y ∈ E, where P̊ is the interior of P .
In this paper, let E be a Banach space with the norm ‖ · ‖ and the partial order

≤. Let F (T ) = {x ∈ E : Tx = x} denote the set of all fixed points of a mapping T .
Also, we assume that the order intervals are convex and closed. Recall that an order
interval is any of the subsets

[x,→) = {p ∈ E;x ≤ p} or (←, x] = {p ∈ E; p ≤ x}

for any a ∈ C. An order interval [x, y] for all x, y ∈ E is given by

[x, y] = [x,→) ∩ (←, y] = {z ∈ E : x ≤ z ≤ y}. (2.1)

Then the convexity of the order interval [x, y] implies that

x ≤ tx+ (1− t)y ≤ y, (2.2)

for all x, y ∈ E with x ≤ y.
A Banach space E is said to be:

(1) strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x 6= y;

(2) uniformly convex if, for all ε ∈ (0, 2], there exists δ > 0 such that ‖x+y‖2 <
1− δ for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε.

The following inequality was shown by Xu [6] in a uniformly convex Banach space
E, which is known as Xu’s inequality.

Lemma 2.1. [6] For any real numbers q > 1 and r > 0, a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing convex
function g : [0,+∞) −→ [0,+∞) with g(0) = 0 such that

‖tx+ (1− t)y‖q ≤ t‖x‖q + (1− t)‖y‖q − ω(q, t)g(‖x− y‖), (2.3)

for all x, y ∈ Br(0) = {x ∈ E; ‖x‖ ≤ r} and t ∈ [0, 1], where ω(q, t) = tq(1 − t) +
t(1− t)q.
In particular, take q = 2 and t = 1

2 ,∥∥∥x+ y

2

∥∥∥2 ≤ 1

2
‖x‖2 +

1

2
‖y‖2 − 1

4
g(‖x− y‖). (2.4)

Lemma 2.2. [7] Let K be a nonempty closed convex subset of a reflexive Banach
space E. Assume that ρ : K −→ R is a proper convex lower semi-continuous and
coercive function. Then the function ρ attains its minimum on K, that is, there
exists x ∈ K such that

ρ(x) = inf
y∈K

ρ(y).

Lemma 2.3. [8] A Banach space E is said to satisfy Opial’s condition if, whenever
any sequence {xn} in E converges weakly to a point x,

lim sup
n−→∞

||xn − x|| < lim sup
n−→∞

||xn − y||

for any y ∈ E such that y 6= x.

Definition 2.4. [4] Let K be a nonempty closed subset of an ordered Banach space
(E,≤). A mapping T : K → K is said to be :
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(1) monotone (α, β)-nonexpansive if T is monotone and, for some α, β < 1,

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + β‖Ty − x‖2 + (1− (α+ β))‖x− y‖2,
for all x, y ∈ K with x ≤ y, which is equivalent to

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖ [‖x− y‖+ ‖Tx− Ty‖] . (2.5)

(2) monotone quasi-nonexpansive if T is monotone, F (T ) 6= ∅ and ‖Tx− p‖ ≤
‖x− p‖
for all p ∈ F (T ) and x ∈ K with x ≤ p or p ≤ x.

Remark 2.5. If β = α, then (α, β)-nonexpansive is α-nonexpansive mapping.

3. Main Results

3.1. The existence of fixed points. We denote

F≤(T ) = {p ∈ F (T ) : p ≤ x1}, F≥(T ) = {p ∈ F (T ) : x1 ≤ p}.
Note that, since the partial order ≤ is defined by the closed convex cone P , it is

obvious that both F≤(T ) and F≥(T ) are closed convex.
Now, we introduce the following lemma to find fixed points of a monotone

(α, β)-nonexpansive mapping in Banach space E:

Lemma 3.1. Let K be a nonempty closed and convex subset of a Banach space
(E,≤). Let T : K → K be a monotone mapping and assume that the sequence {xn}
defined by Normal S-iteration (1.2) and x1 ≤ Tx1 (or Tx1 ≤ x1). Then we have

(1) xn ≤ yn ≤ xn+1 (or xn ≥ yn ≥ xn+1);

(2) xn ≤ x (orx ≤ xn) for all n ≤ 1 if {xn} weakly converges to a point x ∈ K.

Proof. (1) Let k1, k2 ∈ K such that k1 ≤ k2. Then we have

k1 ≤ (1− α)k1 + αk2 ≤ k2
for all α ∈ [0, 1] since order intervals are convex. By the assumption, we have
x1 ≤ Tx1 and so the inequality is true for n = 1. Assume that xk ≤ Txk for k ≥ 2.
We will show that xk+1 ≤ Txk+1 by convexity and monotonicity, we have

xk ≤ (1− sk)xk + skTxk = yk ≤ Txk,
i.e., xk ≤ yk ≤ Txk ≤ Tyk = xk=1. since yk ≤ xk+1 by T is monotone then
Tyk = xk+1 ≤ Txk+1. By induction, we can conclude that xn ≤ Txn is true for all
n ≥ 1.
Now we have xn ≤ Txn for all n ≥ 1 by convexity

xn ≤ (1− sn)xn + snTxn = yn ≤ Txn,
since T is monotonicity xn ≤ yn then Txn ≤ Tyn, that is xn ≤ yn ≤ Txn ≤ Tyn =
xn+1. Hence, we conclude that xn ≤ yn ≤ xn+1

On the other hand, if we assume Tx1 ≤ x1, then we can show that xn ≥ yn ≥ xn+1

(2) From Dehaish and Khamsi [1, Lemma 3.1]), we have the conclusion. This
completes the proof. �

Next, we show some existence theorems of fixed points of monotone (α, β)-
nonexpansive mappings in a uniformly convex ordered Banach space (E,≤).
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Theorem 3.1. Let K be a nonempty and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and a mapping T : K → K be a monotone (α, β)-
nonexpansive mapping. Assume x1 ≤ Tx1 and the sequence {xn} defined by Normal
S-iteration (1.2) is bounded with xn ≤ w for some w ∈ K. Then F≥(T ) 6= ∅.

Proof. From Lemma 3.1, we have x1 ≤ · · · ≤ xn ≤ xn+1. Let Cn = {z ∈ K : xn ≤ z}
for all n ≥ 1. Then Cn is closed convex and w ∈ Cn. So Cn is nonempty. Let

C∗ =
∞⋂
n=1

Cn. Then C∗ is a nonempty and closed convex subset of K. Since {xn} is

bounded, we can define a function ρ : C∗ −→ [0,+∞) by

ρ(z) = lim sup
n−→∞

‖xn − z‖2,

for all z ∈ C∗. it follows from Lemma 2.2 that, there exists z∗ ∈ C∗ such that

ρ(z∗) = inf
z∈C∗

ρ(z). (3.1)

By the definition of C∗, we have

x1 ≤ x2 ≤ x3 ≤ · · · ≤ xn ≤ xn+1 ≤ · · · ≤ z∗.
Since T is monotone, it follows from Lemma 3.1 that

xn ≤ Txn+1 ≤ Tz∗,

for each k ≥ 1, which means that Tz∗ ∈ C∗ and hence z∗+Tz∗

2 ∈ C∗. Thus, by (3.1),
we have

ρ(z∗) ≤ ρ
(z∗ + Tz∗

2

)
, ρ(z∗) ≤ ρ(Tz∗). (3.2)

On the other hand, it follows from Definition 2.4 that

‖Txn − Tz∗‖2 ≤ ‖xn − z∗‖2 +
α+ β

1− β
‖Txn − xn‖2

+
2

1− β
‖Txn − xn‖

[
|α|‖xn − z∗‖+ |β|‖Txn − Tz∗‖

]
.

Since the sequence {xn} is bounded and lim inf
k−→∞

‖xn − Txn‖ = 0, we have

‖Txn − Tz∗‖2 ≤ ‖xn − z∗‖2,
and then

lim sup
k−→∞

‖Txn − Tz∗‖2 ≤ lim sup
k−→∞

‖xn − z∗‖2. (3.3)

Thus, using (3.3), we have

ρ(Tz∗) = lim sup
k−→∞

‖xn − Tz∗‖2

= lim sup
k−→∞

‖Txn − Tz∗‖2

≤ lim sup
k−→∞

[‖xn − z∗‖2

= ρ(z∗). (3.4)

Now, we show that z∗ = Tz∗. From Lemma 2.1 with q = 2 and t = 1
2 and (3.4)

that is,

ρ
(z∗ + Tz∗

2

)
= lim sup

k−→∞

∥∥∥xn − z∗ + Tz∗

2

∥∥∥2
= lim sup

k−→∞

∥∥∥xn − z∗
2

+
xn − Tz∗

2

∥∥∥2
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≤ lim sup
k−→∞

(1

2
‖xn − z∗‖2 +

1

2
‖xn − Tz∗‖2 −

1

4
g(‖z∗ − Tz∗‖)

)
≤ 1

2
ρ(z∗) +

1

2
ρ(Tz∗)− 1

4
g(‖z∗ − Tz∗‖)

= ρ(z∗)− 1

4
g(‖z∗ − Tz∗‖).

By Lemma 2.1, we have

1

4
g(‖z∗ − Tz∗‖) ≤ ρ(z∗)− ρ

(z∗ + Tz∗

2

)
≤ 0.

Thus we have g(‖z∗ − Tz∗‖) = 0 and so z∗ = Tz∗ by the property of g. �

Theorem 3.2. Let K be a nonempty and closed convex subset of a uniformly convex
ordered Banach space (E,≤) and a mapping T : K → K be a monotone (α, β)-
nonexpansive mapping. Assume Tx1 ≤ x1 and the sequence {xn} defined by Normal
S-iteration (1.2) is bounded with w ≤ xn for some w ∈ K Then F≤(T ) 6= ∅.

Proof. the proof same Theorem 3.1, by let xn+1 ≤ xn ≤ · · · ≤ x1. �

3.2. The convergence of Normal S-iteration. In this section, we prove some
convergence theorems of Normal S-iteration for a monotone (α, β)-nonexpansive
mapping in an ordered Banach space E.

Theorem 3.3. Let K be a nonempty and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by Normal S-
iteration(1.2) with x1 ≤ Tx1 (or Tx1 ≤ x1) and F≥(T ) 6= ∅ (or F≤(T ) 6= ∅). Then
we have

(1) the sequence {xn} is bounded;

(2) ‖xn+1− p‖ ≤ ‖xn− p‖ and limn−→∞ ‖xn− p‖ exists for all p ∈ F≥(T ) 6= ∅
(or F≤(T ) 6= ∅);

(3) lim infn−→∞ ‖xn − Txn‖ = 0 provided lim supn−→∞ sn(1− sn) > 0;

(4) limn−→∞ ‖xn − Txn‖ = 0 provided lim infn−→∞ sn(1− sn) > 0.

Proof. Without loss of generality, we assume that x1 ≤ p ∈ F≥(T ) 6= ∅. Now,
we claim xn ≤ p for all n ≥ 1. In fact, a mapping T is monotone, we have
x1 ≤ Tx1 ≤ Tp = p and x1 ≤ y1 ≤ Tx1 ≤ p then we have y1 ≤ p. Again from T
is monotone, then Ty1 ≤ Tp = p from x1 ≤ Ty1. By convex we can get x2 ≤ p,
and so x1 ≤ x2 ≤ p. Suppose that xk ≤ p for some k ≥ 2. Then Txk ≤ Tp = p by
monotonicity, from the condition (1) of Lemma 3.1 we have xk ≤ yk ≤ Txk ≤ Tyk
and xk ≤ yk ≤ Txk ≤ p. Since yk ≤ p then Tyk ≤ Tp = p. And xk ≤ Tyk by
convexity

xk ≤ (1− sk)xk + skTyk = xk+1 ≤ Tyk.
That is, we get xk+1 ≤ p. Hence we conclude xn ≤ p for all n ≤ 1.
It follows from Lemma 3.1 that ‖Txn − p‖ ≤ ‖xn − p‖ for all n ≥ 1 and so

‖yn − p‖ = ‖(1− sn)xn + snTxn − p‖
≤ (1− sn)‖xn − p‖+ sn‖T (xn)− p‖
≤ (1− sn)‖xn − p‖+ sn‖xn − p‖
= ‖xn − p‖.

Consequently, we have

‖xn+1 − p‖ = ‖T (yn)− p‖
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≤ ‖yn − p‖
≤ ‖xn − p‖
· · ·
≤ ‖x1 − p‖.

Then the sequence {‖xn − p‖} is non-increasing and bounded and hence the conclu-
sions (1) and (2) hold.

Now, we show that the conclusion (3) and (4) hold. From Lemma 2.1 with q = 2,
t = sn and Lemma 3.1 it follows that,

‖xn+1 − p‖2 = ‖Tyn − p‖2

= ‖yn − p‖2

≤ ‖(1− sn)(xn − p) + sn(Txn − p)‖2

≤ (1− sn)‖xn − p‖2 + sn‖xn − p‖2 − sn(1− sn)g(‖xn − Txn‖)
= ‖xn − p‖2 − sn(1− sn)g(‖xn − Txn‖)

which implies that

sn(1− sn)g(‖xn − Txn‖) ≤ ‖xn − p‖2 − ‖xn+1 − p‖2.

Then it follows from the conclusion (2) that

lim sup
n−→∞

sn(1− sn)g(‖xn − Txn‖) = 0.

From the conclusion (3), since lim supn−→∞ sn(1− sn) > 0,(
lim sup
n−→∞

sn(1− sn)

)(
lim inf
n−→∞

g(‖xn − Txn‖)
)
≤ lim sup

n−→∞
sn(1− sn)g(‖xn − Txn‖),

we have

lim inf
n−→∞

g(‖xn − Txn‖) = 0.

Hence we have

lim inf
n−→∞

‖xn − Txn‖ = 0,

by the properties of g. From the conclusion (4), since lim infn−→∞ sn(1− sn) > 0,(
lim inf
n−→∞

sn(1− sn)
)(

lim sup
n−→∞

g(‖xn − Txn‖)
)
≤ lim sup

n−→∞
sn(1− sn)g(‖xn − Txn‖),

we have

lim
n−→∞

g(‖xn − Txn‖) = lim sup
n−→∞

g(‖xn − Txn‖) = 0.

Hence we have

lim
n−→∞

‖xn − Txn‖ = 0,

by the properties of g. �

Theorem 3.4. Let K be a nonempty and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume that E satisfies Opial’s condition and the
sequence {xn} is defined by Normal S-iteration(1.2) with x1 ≤ Tx1 (or Tx1 ≤ x1).
If F≥(T ) 6= ∅ (or F≤(T ) 6= ∅) and lim infn−→∞ sn(1 − sn) > 0, then the sequence
{xn} converges weakly to a fixed point z of T .
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Proof. It follows from Theorem 3.3 that {xn} is bounded and limn−→∞ ‖xn−Txn‖ =
0. Then there exists a subsequence {xnk

} of {xn} such that {xnk
} converges weakly

to a point z ∈ K. From Lemma 3.1, it follows that x1 ≤ xnk
≤ z (or z ≤ xnk

≤ xn)
for all k ≥ 1.
From Definition 2.4 that

‖Tx− Ty‖2 ≤ ‖x− y‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− y‖+ |β|‖Tx− Ty‖

]
.

Since the sequence {xn} is bounded and limk−→∞ ‖xnk
− Txnk

‖ = 0, we have

lim sup
k−→∞

‖Txnk
− Tz‖2 ≤ lim sup

k−→∞
‖xnk

− z‖2

and hence

lim sup
k−→∞

‖Txnk
− Tz‖ ≤ lim sup

k−→∞
‖xnk

− z‖. (3.5)

Now, we prove that z = Tz. In fact, suppose that z 6= Tz. Then, by (3.5) and
Opial’s condition, we have

lim sup
k−→∞

‖xnk
− z‖ ≤ lim sup

k−→∞
‖xnk

− Tz‖

≤ lim sup
k−→∞

(‖xnk
− Txnk

‖+ ‖Txnk
− Tz‖)

≤ lim sup
k−→∞

‖xnk
− z‖,

which is a contraction. This implies that z ∈ F≥(T ) (or z ∈ F≤(T )). Using the
conclusion (2) of Theorem 3.3, limn−→∞ ‖xn − z‖ exists.

Now, we show that the sequence {xn} converge weakly to the point z. Suppose
that this does not hold. Then there exists a subsequence {xnj

} to converge weakly
to a point x ∈ K and z 6= x. Similarly, we must have x = Tx and limn−→∞ ‖xn−x‖
exists. It follows from Opial’s condition that

lim
n−→∞

‖xn − z‖ < lim
n−→∞

‖xn − x‖ = lim sup
j−→∞

‖xnj
− x‖ < lim

n−→∞
‖xn − z‖,

which is a contradiction and hence we get x = z. �

Theorem 3.5. Let K be a nonempty compact and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by Normal S-
iteration(1.2) with x1 ≤ Tx1. If lim supn−→∞ sn(1 − sn) > 0, then the sequence
{xn} converges strongly to a fixed point p ∈ F≥(T ).

Proof. Since K is compact, there exists a subsequence {xnk
} of {xn} such that {xnk

}
converges strongly to a point p ∈ K. From Lemma 3.1, it follows that x1 ≤ xnk

≤ p
for all k ≥ 1. By Theorem 3.1, we have F≥(T ) 6= ∅ and it follows from Theorem 3.3
that {xn} is bounded and

lim inf
n−→∞

‖xn − Txn‖ = 0.

Assume that

lim inf
k−→∞

‖xnk
− Txnk

‖ = 0.

From Definition 2.4 that

‖Tx− Tp‖2 ≤ ‖x− p‖2 +
α+ β

1− β
‖Tx− x‖2



CONVERGENCE THEOREMS OF MONOTONE (α, β)-NONEXPANSIVE MAPPINGS 81

+
2

1− β
‖Tx− x‖

[
|α|‖x− p‖+ |β|‖Tx− Tp‖

]
.

Since the sequence {xnk
} is bounded and

lim
k−→∞

‖xnk
− p‖ = 0, lim

k−→∞
‖xnk

− Txnk
‖ = 0,

we have

lim sup
k−→∞

‖Txnk
− Tp‖2 ≤ 0

and hence

lim
k−→∞

‖Txnk
− Tp‖ = 0. (3.6)

Therefore, we have

lim sup
k−→∞

‖xnk
− Tp‖ ≤ lim sup

k−→∞
(‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖) = 0

and so limk−→∞ ‖xnk
−Tp‖ = 0, which implies that p ∈ F≥(T ). Using the conclusion

(2) of Theorem 3.3, limk−→∞ ‖xnk
− p‖ exists and so limk−→∞ ‖xn − p‖ = 0. �

Theorem 3.6. Let K be a nonempty compact and closed convex subset of a uniformly
convex ordered Banach space (E,≤) and a mapping T : K → K be a monotone
(α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by Normal S-
iteration(1.2) with x1 ≤ Tx1. If lim infn−→∞ sn(1− sn) > 0, then the sequence {xn}
converges strongly to a fixed point p ∈ F≥(T ).

Proof. Since K is compact, there exists a subsequence {xnk
} of {xn} such that {xnk

}
converges strongly to a point p ∈ K. From Lemma 3.1, it follows that x1 ≤ xnk

≤ p
for all k ≥ 1. By Theorem 3.1, we have F≥(T ) 6= ∅ and it follows from Theorem 3.3
that {xn} is bounded and

lim inf
n−→∞

‖xn − Txn‖ = 0.

Without loss of generality, we can assume that

lim inf
k−→∞

‖xnk
− Txnk

‖ = 0.

From Definition 2.4 that

‖Tx− Tp‖2 ≤ ‖x− p‖2 +
α+ β

1− β
‖Tx− x‖2

+
2

1− β
‖Tx− x‖

[
|α|‖x− p‖+ |β|‖Tx− Tp‖

]
.

Since the sequence {xnk
} is bounded and

lim
k−→∞

‖xnk
− p‖ = 0, lim

k−→∞
‖xnk

− Txnk
‖ = 0,

we have

lim inf
k−→∞

‖Txnk
− Tp‖2 ≤ 0

and hence

lim
k−→∞

‖Txnk
− Tp‖ = 0. (3.7)

Therefore, we have

lim inf
k−→∞

‖xnk
− Tp‖ ≤ lim inf

k−→∞
(‖xnk

− Txnk
‖+ ‖Txnk

− Tp‖) = 0

and so limk−→∞ ‖xnk
−Tp‖ = 0, which implies that p ∈ F≥(T ). Using the conclusion

(2) of Theorem 3.3, limk−→∞ ‖xnk
− p‖ exists and so limk−→∞ ‖xn − p‖ = 0. �
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Similarly, the following theorem can be proved:

Theorem 3.7. Let K be a nonempty compact and closed convex subset of a uni-
formly convex ordered Banach space (E,≤) and a mapping T : K → K be a
monotone (α, β)-nonexpansive mapping. Assume the sequence {xn} is defined by
Normal S-iteration(1.2) with Tx1 ≤ x1. If either lim infn−→∞ sn(1 − sn) > 0 or
lim supn−→∞ sn(1− sn) > 0, then the sequence {xn} converges strongly to a fixed
point p ∈ F≤(T ).

From Theorem 3.5, we have the following:

3.3. The numerical examples. Now, we give two numerical examples to illustrate
the following examples, by we add Normal-S iteration for compare with Mann’s
iteration and Ishiwaka’s iteration of [4] in the first example. And the last, we show
the example between Mann’s iteration and Normal-S iteration.

Example 3.2. Let T : [0, 1]→ [0, 1] be a mapping defined by

Tx =

{
0.25 if x 6= 1,
0.5 if x = 1.

for any x ∈ [0, 1]. Then T is a (0.8, 0.2)-nonexpansive mapping. Define the sequences
sn = 1

4 + 1
n2 for each n ≥ 1, then lim supn→∞ sn(1−sn) > 0. Then all the conditions

of Theorem 3.5 are satisfied. Also, 0.25 is a fixed point of T .

Table 1. The convergent step of {xn} for Example with sn = 1
4 + 1

n2

Number of iterations Sequence of Mann Sequence of Ishikawa Sequence of Normal-S
1 0.5000000 0.5000000 0.5000000
2 0.1875000 0.3294046 0.2500000
4 0.2300347 0.2518192 0.2500000
6 0.2402544 0.2502132 0.2500000
8 0.2448648 0.2500322 0.2500000
10 0.2472181 0.2500053 0.2500000
12 0.2484731 0.2500009 0.2500000
14 0.2491557 0.2500001 0.2500000
16 0.2495311 0.2500000 0.2500000

Example 3.3. Let T1 : [−1.5,−1] → [−1.5,−1] or T2 : [1, 1.5] → [1, 1.5] be the
mappings defined by

Tx = arctan(5x).

The fixed points of mappings T1 and T2 are −1.4320322 and 1.4320322 respectively.
It is easy to see that T is monotone. Next we will show that T is a (0.9, 0.1)-

nonexpansive mapping. By using Matlab R2015b software, we get

min
x,y∈[1,1.5]

{
0.9‖arctan(5x)− y‖2 + 0.1‖arctan(5y)− x‖2 + (1− 0.9− 0.1)‖x− y‖2

− ‖arctan(5x)− arctan(5y)‖2
}

= 4.37 · 10−0.6 > 0.

then implies that

‖arctan(5x)−arctan(5y)‖2 ≤ 0.9‖arctan(5x)−y‖2+0.1‖arctan(5y)−x‖2+(1−0.9−0.1)‖x−y‖2

for all x, y ∈ [1, 1.5]. And it is true for all x, y ∈ [−1.5,−1] too. Therefore T is a
monotone (0.9, 0.1)-nonexpansive mapping.
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Figure 1. The fixed points of T are −1.4320322 and 1.4320322

Figure 2. The value of mappings T1 and T2

Next we show the numerical solution of T , the numerical solution of this example
is presented in Table 2.

Note that, if we set x = 1.5, y = 1 and α = β = 0.9 then, the mapping T is not
α-nonexpansive mapping.

From observing the numerical behavior, if we choose x0 nearly is the solution
then the sequence convergence is fast. Next we will show the convergent behavior
of {sn} for iterative comparison between Mann’s iteration, Ishikawa’s iteration and
normal-S iteration. by fixing x0 = 1.2 and using three groups of sequences sn for
n ≥ 1 are :

(i) sn = 1
4 + 1

nk , k ∈ {0.01, 2, 5};
(ii) sn = 1

4 + 1
logk(n+1)

, k ∈ {0.01, 2, 5};

(iii) sn = 1
4 + logk(n+1)

n+2 , k ∈ {0.01, 2, 5}:
All these sequences satisfy all condition of convergence theorems, Next figures

describe the convergent behavior of three situations for value k.
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Table 2. The convergent step of {xn} for Example 3.3 with sn =
1
4 + 1

n2

Number of Iterations
Sequence value of Mann Sequence value of Normal S
x0 = 1.2 x0 = −1.3 x0 = 1.2 x0 = −1.3

1 1.2000000 -1.3000000 1.2000000 -1.3000000
2 1.4570595 -1.4476837 1.4343860 -1.4335135
3 1.4457227 -1.4405986 1.4321554 -1.4321098
4 1.4412475 -1.4377994 1.4320401 -1.4320372
5 1.4386414 -1.4361689 1.4320327 -1.4320325
6 1.4369073 -1.4350837 1.4320322 -1.4320322
7 1.4356822 -1.4343169 1.4320322 -1.4320322
8 1.4347894 -1.4337581 1.4320322 -1.4320322
9 1.4341269 -1.4333435 1.4320322 -1.4320322
10 1.4336299 -1.4330323 1.4320322 -1.4320322

Figure 3. The behavior of sequence by fixing k = 0.01

Figure 4. The behavior of sequence by fixing k = 2

The last figure describes the convergent behaviour for comparison k in three
groups
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Figure 5. The behavior of sequence by fixing k = 5

Figure 6. The convergent behaviour of each k for cases of group(i),
group(ii) and group(iii)

4. Conclusion

We get the results about the convergence theorems of monotone (α, β)-nonexpansive
mapping for the sequence {xn} is defined by normal-S iteration. In part of numerical,
we give the examples for show the convergent behavior of sequence {sn} of normal-S
iteration (in Figure 3 4 5 6)
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