

**CONVERGENCE THEOREMS OF MONOTONE
(α, β)-NONEXPANSIVE MAPPINGS FOR NORMAL-S ITERATION
IN ORDERED BANACH SPACES WITH CONVERGENCE
ANALYSIS**

KHANITIN MUANGCHOO-IN^{1,2}, POOM KUMAM^{*2,3}, JEN-CHIH YAO⁴
AND CHING-FENG WEN⁵

¹ Department of Exercise and Sports Science, Faculty of Sports and Health Science, Thailand National Sports University Chaiyaphum Campus, 239, Moo. 4, Muang Chaiyaphum, Chaiyaphum 36000, Thailand. Email: kanitin22@gmail.com;

² KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrungh Khru, Bangkok 10140, Thailand Email: kanitin22@gmail.com, Email: poom.kum@kmutt.ac.th;

³ Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrungh Khru, Bangkok 10140, Thailand.
Email: poom.kum@kmutt.ac.th

⁴ Research Center for Interneuronal Computing, China Medical University Hospital China Medical University, Taichung, 40402, Taiwan. Email: yaojc@mail.cmu.edu.tw

⁵ Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan.
Email: cfwen@kmu.edu.tw

ABSTRACT. In this work, we prove some theorems of existence of fixed points for a monotone (α, β) -nonexpansive mapping in a uniformly convex ordered Banach space. Also, we prove some weak and strong convergence theorems of normal-S iteration under some control condition. Finally, we give two numerical examples to illustrate the main result in this paper.

KEYWORDS: Ordered Banach space; fixed point; monotone (α, β) -nonexpansive mapping; normal S-iteration

AMS Subject Classification: :47H07; 47H10.

^{*} Corresponding author.

Email address : poom.kum@kmutt.ac.th.

Article history : Received 18 June 2019 ; Accepted 10 January 2020.

1. INTRODUCTION

Let E be an ordered Banach space with the partial order \leq . A mapping $T : E \rightarrow E$ said to be *monotone* if $Tx \leq Ty$ for all $x, y \in E$ with $x \leq y$ and *monotone nonexpansive* if T is monotone and

$$\|Tx - Ty\| \leq \|x - y\|,$$

for all $x, y \in E$ with $x \leq y$.

In 2015, Dehaish and Khamsi [1] consider Mann's iteration $\{x_n\}$ for a monotone nonexpansive mapping $T : C \rightarrow C$ defined by

$$x_{n+1} = \beta_n x_n + (1 - \beta_n)Tx_n,$$

for each $n \geq 1$, where $\{\beta_n\}$ in $(0, 1)$ for finding some order fixed points of monotone nonexpansive mappings in uniformly convex ordered Banach spaces for prove some weak convergence theorems. The results of Dehaish and Khamsi, they gave the control condition $\{\beta_n\}$ in $[a, b]$ with $a > 0$ and $b < 1$, but their results do not entail $\beta_n = \frac{1}{n+1}$.

Thus, to improve the results mentioned above, in 2016, Song et al. [2] they proved some weak convergence theorems of Mann's iteration satisfies the following condition:

$$\sum_{n=1}^{\infty} \beta_n(1 - \beta_n) = \infty.$$

Clearly, this control condition $\{\beta_n\}$ contains $\beta_n = \frac{1}{n+1}$ as a special case.

In 2016, Song et al. [3] considered the convergence theorems of Mann's iteration for a monotone α -nonexpansive mapping T in an ordered Banach space E .

In 2017, Muangchoo-in et al. [4] introduced the notion of a monotone (α, β) -nonexpansive mapping T in an ordered Banach space E and proved some existence theorems of fixed points by using the assumption $\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$. and some weak and strong convergence theorems of Ishikawa type iteration as follows are obtained :

$$\begin{cases} y_n = (1 - s_n)x_n + s_nTx_n, \\ x_{n+1} = (1 - s_n)x_n + s_nT(y_n) \end{cases} \quad (1.1)$$

for each $n \geq 1$, where $\{s_n\}$ is the sequences in $[0, 1]$. Under the control condition

$$\liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0 \text{ or } \limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0.$$

In 2013, Sahu, D.R. [5] introduced Normal S-iteration process defined as follows : For C a convex subset of normed space X and a non-linear mapping T of C into itself, for each $x_1 \in C$, the sequence $\{x_n\}$ in C is defined by

$$\begin{cases} y_n = (1 - s_n)x_n + s_nTx_n, \\ x_{n+1} = T(y_n) \end{cases} \quad (1.2)$$

for each $n \geq 1$, where $\{s_n\}$ is the sequences in $(0, 1)$.

Motivated by the results mentioned above, in this paper, we show some existence of a fixed point of a monotone (α, β) -nonexpansive mapping in ordered Banach spaces by do not use the condition $\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$. And we prove some weak and strong convergence theorems of Normal S-iteration for a monotone (α, β) -nonexpansive mapping under the condition

$$\limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0, \quad \liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0.$$

Finally, we give a numerical example to illustrate the main result in this paper.

2. PRELIMINARIES

Let P be a closed and convex cone of a real Banach space E . A *partial order* “ \leq ” with respect to P in E is defined as follows:

$$x \leq y \ (x < y) \text{ if and only if } y - x \in P \ (y - x \in \mathring{P}),$$

for all $x, y \in E$, where \mathring{P} is the interior of P .

In this paper, let E be a Banach space with the norm $\|\cdot\|$ and the partial order \leq . Let $F(T) = \{x \in E : Tx = x\}$ denote the set of all fixed points of a mapping T . Also, we assume that the order intervals are convex and closed. Recall that an order interval is any of the subsets

$$[x, \rightarrow) = \{p \in E; x \leq p\} \text{ or } (\leftarrow, x] = \{p \in E; p \leq x\}$$

for any $a \in C$. An *order interval* $[x, y]$ for all $x, y \in E$ is given by

$$[x, y] = [x, \rightarrow) \cap (\leftarrow, y] = \{z \in E : x \leq z \leq y\}. \quad (2.1)$$

Then the convexity of the order interval $[x, y]$ implies that

$$x \leq tx + (1 - t)y \leq y, \quad (2.2)$$

for all $x, y \in E$ with $x \leq y$.

A Banach space E is said to be:

- (1) *strictly convex* if $\|\frac{x+y}{2}\| < 1$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$;
- (2) *uniformly convex* if, for all $\varepsilon \in (0, 2]$, there exists $\delta > 0$ such that $\frac{\|x+y\|}{2} < 1 - \delta$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $\|x - y\| \geq \varepsilon$.

The following inequality was shown by Xu [6] in a uniformly convex Banach space E , which is known as *Xu's inequality*.

Lemma 2.1. [6] *For any real numbers $q > 1$ and $r > 0$, a Banach space E is uniformly convex if and only if there exists a continuous strictly increasing convex function $g : [0, +\infty) \rightarrow [0, +\infty)$ with $g(0) = 0$ such that*

$$\|tx + (1 - t)y\|^q \leq t\|x\|^q + (1 - t)\|y\|^q - \omega(q, t)g(\|x - y\|), \quad (2.3)$$

for all $x, y \in B_r(0) = \{x \in E; \|x\| \leq r\}$ and $t \in [0, 1]$, where $\omega(q, t) = t^q(1 - t) + t(1 - t)^q$.

In particular, take $q = 2$ and $t = \frac{1}{2}$,

$$\left\| \frac{x+y}{2} \right\|^2 \leq \frac{1}{2}\|x\|^2 + \frac{1}{2}\|y\|^2 - \frac{1}{4}g(\|x - y\|). \quad (2.4)$$

Lemma 2.2. [7] *Let K be a nonempty closed convex subset of a reflexive Banach space E . Assume that $\rho : K \rightarrow \mathbb{R}$ is a proper convex lower semi-continuous and coercive function. Then the function ρ attains its minimum on K , that is, there exists $x \in K$ such that*

$$\rho(x) = \inf_{y \in K} \rho(y).$$

Lemma 2.3. [8] *A Banach space E is said to satisfy Opial's condition if, whenever any sequence $\{x_n\}$ in E converges weakly to a point x ,*

$$\limsup_{n \rightarrow \infty} \|x_n - x\| < \limsup_{n \rightarrow \infty} \|x_n - y\|$$

for any $y \in E$ such that $y \neq x$.

Definition 2.4. [4] Let K be a nonempty closed subset of an ordered Banach space (E, \leq) . A mapping $T : K \rightarrow K$ is said to be :

(1) *monotone (α, β) -nonexpansive* if T is monotone and, for some $\alpha, \beta < 1$,

$$\|Tx - Ty\|^2 \leq \alpha\|Tx - y\|^2 + \beta\|Ty - x\|^2 + (1 - (\alpha + \beta))\|x - y\|^2,$$

for all $x, y \in K$ with $x \leq y$, which is equivalent to

$$\begin{aligned} \|Tx - Ty\|^2 &\leq \|x - y\|^2 + \frac{\alpha + \beta}{1 - \beta}\|Tx - x\|^2 \\ &\quad + \frac{2}{1 - \beta}\|Tx - x\|[\|x - y\| + \|Tx - Ty\|]. \end{aligned} \quad (2.5)$$

(2) *monotone quasi-nonexpansive* if T is monotone, $F(T) \neq \emptyset$ and $\|Tx - p\| \leq \|x - p\|$

for all $p \in F(T)$ and $x \in K$ with $x \leq p$ or $p \leq x$.

Remark 2.5. If $\beta = \alpha$, then (α, β) -nonexpansive is α -nonexpansive mapping.

3. MAIN RESULTS

3.1. The existence of fixed points.

We denote

$$F_{\leq}(T) = \{p \in F(T) : p \leq x_1\}, \quad F_{\geq}(T) = \{p \in F(T) : x_1 \leq p\}.$$

Note that, since the partial order \leq is defined by the closed convex cone P , it is obvious that both $F_{\leq}(T)$ and $F_{\geq}(T)$ are closed convex.

Now, we introduce the following lemma to find fixed points of a monotone (α, β) -nonexpansive mapping in Banach space E :

Lemma 3.1. *Let K be a nonempty closed and convex subset of a Banach space (E, \leq) . Let $T : K \rightarrow K$ be a monotone mapping and assume that the sequence $\{x_n\}$ defined by Normal S-iteration (1.2) and $x_1 \leq Tx_1$ (or $Tx_1 \leq x_1$). Then we have*

- (1) $x_n \leq y_n \leq x_{n+1}$ (or $x_n \geq y_n \geq x_{n+1}$);
- (2) $x_n \leq x$ (or $x \leq x_n$) for all $n \leq 1$ if $\{x_n\}$ weakly converges to a point $x \in K$.

Proof. (1) Let $k_1, k_2 \in K$ such that $k_1 \leq k_2$. Then we have

$$k_1 \leq (1 - \alpha)k_1 + \alpha k_2 \leq k_2$$

for all $\alpha \in [0, 1]$ since order intervals are convex. By the assumption, we have $x_1 \leq Tx_1$ and so the inequality is true for $n = 1$. Assume that $x_k \leq Tx_k$ for $k \geq 2$. We will show that $x_{k+1} \leq Tx_{k+1}$ by convexity and monotonicity, we have

$$x_k \leq (1 - s_k)x_k + s_kTx_k = y_k \leq Tx_k,$$

i.e., $x_k \leq y_k \leq Tx_k \leq Ty_k = x_{k+1}$. since $y_k \leq x_{k+1}$ by T is monotone then $Ty_k = x_{k+1} \leq Tx_{k+1}$. By induction, we can conclude that $x_n \leq Tx_n$ is true for all $n \geq 1$.

Now we have $x_n \leq Tx_n$ for all $n \geq 1$ by convexity

$$x_n \leq (1 - s_n)x_n + s_nTx_n = y_n \leq Tx_n,$$

since T is monotonicity $x_n \leq y_n$ then $Tx_n \leq Ty_n$, that is $x_n \leq y_n \leq Tx_n \leq Ty_n = x_{n+1}$. Hence, we conclude that $x_n \leq y_n \leq x_{n+1}$

On the other hand, if we assume $Tx_1 \leq x_1$, then we can show that $x_n \geq y_n \geq x_{n+1}$

(2) From Dehaish and Khamsi [1, Lemma 3.1]), we have the conclusion. This completes the proof. \square

Next, we show some existence theorems of fixed points of monotone (α, β) -nonexpansive mappings in a uniformly convex ordered Banach space (E, \leq) .

Theorem 3.1. *Let K be a nonempty and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume $x_1 \leq Tx_1$ and the sequence $\{x_n\}$ defined by Normal S -iteration (1.2) is bounded with $x_n \leq w$ for some $w \in K$. Then $F_{\geq}(T) \neq \emptyset$.*

Proof. From Lemma 3.1, we have $x_1 \leq \dots \leq x_n \leq x_{n+1}$. Let $C_n = \{z \in K : x_n \leq z\}$ for all $n \geq 1$. Then C_n is closed convex and $w \in C_n$. So C_n is nonempty. Let $C^* = \bigcap_{n=1}^{\infty} C_n$. Then C^* is a nonempty and closed convex subset of K . Since $\{x_n\}$ is bounded, we can define a function $\rho : C^* \rightarrow [0, +\infty)$ by

$$\rho(z) = \limsup_{n \rightarrow \infty} \|x_n - z\|^2,$$

for all $z \in C^*$. it follows from Lemma 2.2 that, there exists $z^* \in C^*$ such that

$$\rho(z^*) = \inf_{z \in C^*} \rho(z). \quad (3.1)$$

By the definition of C^* , we have

$$x_1 \leq x_2 \leq x_3 \leq \dots \leq x_n \leq x_{n+1} \leq \dots \leq z^*.$$

Since T is monotone, it follows from Lemma 3.1 that

$$x_n \leq Tx_{n+1} \leq Tz^*,$$

for each $k \geq 1$, which means that $Tz^* \in C^*$ and hence $\frac{z^* + Tz^*}{2} \in C^*$. Thus, by (3.1), we have

$$\rho(z^*) \leq \rho\left(\frac{z^* + Tz^*}{2}\right), \quad \rho(z^*) \leq \rho(Tz^*). \quad (3.2)$$

On the other hand, it follows from Definition 2.4 that

$$\begin{aligned} \|Tx_n - Tz^*\|^2 &\leq \|x_n - z^*\|^2 + \frac{\alpha + \beta}{1 - \beta} \|Tx_n - x_n\|^2 \\ &\quad + \frac{2}{1 - \beta} \|Tx_n - x_n\| [|\alpha| \|x_n - z^*\| + |\beta| \|Tx_n - Tz^*\|]. \end{aligned}$$

Since the sequence $\{x_n\}$ is bounded and $\liminf_{k \rightarrow \infty} \|x_n - Tx_n\| = 0$, we have

$$\|Tx_n - Tz^*\|^2 \leq \|x_n - z^*\|^2,$$

and then

$$\limsup_{k \rightarrow \infty} \|Tx_n - Tz^*\|^2 \leq \limsup_{k \rightarrow \infty} \|x_n - z^*\|^2. \quad (3.3)$$

Thus, using (3.3), we have

$$\begin{aligned} \rho(Tz^*) &= \limsup_{k \rightarrow \infty} \|x_n - Tz^*\|^2 \\ &= \limsup_{k \rightarrow \infty} \|Tx_n - Tz^*\|^2 \\ &\leq \limsup_{k \rightarrow \infty} (\|x_n - z^*\|^2) \\ &= \rho(z^*). \end{aligned} \quad (3.4)$$

Now, we show that $z^* = Tz^*$. From Lemma 2.1 with $q = 2$ and $t = \frac{1}{2}$ and (3.4) that is,

$$\begin{aligned} \rho\left(\frac{z^* + Tz^*}{2}\right) &= \limsup_{k \rightarrow \infty} \left\| x_n - \frac{z^* + Tz^*}{2} \right\|^2 \\ &= \limsup_{k \rightarrow \infty} \left\| \frac{x_n - z^*}{2} + \frac{x_n - Tz^*}{2} \right\|^2 \end{aligned}$$

$$\begin{aligned}
&\leq \limsup_{k \rightarrow \infty} \left(\frac{1}{2} \|x_n - z^*\|^2 + \frac{1}{2} \|x_n - Tz^*\|^2 - \frac{1}{4} g(\|z^* - Tz^*\|) \right) \\
&\leq \frac{1}{2} \rho(z^*) + \frac{1}{2} \rho(Tz^*) - \frac{1}{4} g(\|z^* - Tz^*\|) \\
&= \rho(z^*) - \frac{1}{4} g(\|z^* - Tz^*\|).
\end{aligned}$$

By Lemma 2.1, we have

$$\frac{1}{4} g(\|z^* - Tz^*\|) \leq \rho(z^*) - \rho\left(\frac{z^* + Tz^*}{2}\right) \leq 0.$$

Thus we have $g(\|z^* - Tz^*\|) = 0$ and so $z^* = Tz^*$ by the property of g . \square

Theorem 3.2. *Let K be a nonempty and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume $Tx_1 \leq x_1$ and the sequence $\{x_n\}$ defined by Normal S-iteration (1.2) is bounded with $w \leq x_n$ for some $w \in K$. Then $F_{\leq}(T) \neq \emptyset$.*

Proof. the proof same Theorem 3.1, by let $x_{n+1} \leq x_n \leq \dots \leq x_1$. \square

3.2. The convergence of Normal S-iteration. In this section, we prove some convergence theorems of Normal S-iteration for a monotone (α, β) -nonexpansive mapping in an ordered Banach space E .

Theorem 3.3. *Let K be a nonempty and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume the sequence $\{x_n\}$ is defined by Normal S-iteration (1.2) with $x_1 \leq Tx_1$ (or $Tx_1 \leq x_1$) and $F_{\geq}(T) \neq \emptyset$ (or $F_{\leq}(T) \neq \emptyset$). Then we have*

- (1) the sequence $\{x_n\}$ is bounded;
- (2) $\|x_{n+1} - p\| \leq \|x_n - p\|$ and $\lim_{n \rightarrow \infty} \|x_n - p\|$ exists for all $p \in F_{\geq}(T) \neq \emptyset$ (or $F_{\leq}(T) \neq \emptyset$);
- (3) $\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$ provided $\limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0$;
- (4) $\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$ provided $\liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0$.

Proof. Without loss of generality, we assume that $x_1 \leq p \in F_{\geq}(T) \neq \emptyset$. Now, we claim $x_n \leq p$ for all $n \geq 1$. In fact, a mapping T is monotone, we have $x_1 \leq Tx_1 \leq Tp = p$ and $x_1 \leq y_1 \leq Tx_1 \leq p$ then we have $y_1 \leq p$. Again from T is monotone, then $Ty_1 \leq Tp = p$ from $x_1 \leq Ty_1$. By convex we can get $x_2 \leq p$, and so $x_1 \leq x_2 \leq p$. Suppose that $x_k \leq p$ for some $k \geq 2$. Then $Tx_k \leq Tp = p$ by monotonicity, from the condition (1) of Lemma 3.1 we have $x_k \leq y_k \leq Tx_k \leq Ty_k$ and $x_k \leq y_k \leq Tx_k \leq p$. Since $y_k \leq p$ then $Ty_k \leq Tp = p$. And $x_k \leq Ty_k$ by convexity

$$x_k \leq (1 - s_k)x_k + s_kTy_k = x_{k+1} \leq Ty_k.$$

That is, we get $x_{k+1} \leq p$. Hence we conclude $x_n \leq p$ for all $n \leq 1$.

It follows from Lemma 3.1 that $\|Tx_n - p\| \leq \|x_n - p\|$ for all $n \geq 1$ and so

$$\begin{aligned}
\|y_n - p\| &= \|(1 - s_n)x_n + s_nTx_n - p\| \\
&\leq (1 - s_n)\|x_n - p\| + s_n\|Tx_n - p\| \\
&\leq (1 - s_n)\|x_n - p\| + s_n\|x_n - p\| \\
&= \|x_n - p\|.
\end{aligned}$$

Consequently, we have

$$\|x_{n+1} - p\| = \|T(y_n) - p\|$$

$$\begin{aligned}
&\leq \|y_n - p\| \\
&\leq \|x_n - p\| \\
&\dots \\
&\leq \|x_1 - p\|.
\end{aligned}$$

Then the sequence $\{\|x_n - p\|\}$ is non-increasing and bounded and hence the conclusions (1) and (2) hold.

Now, we show that the conclusion (3) and (4) hold. From Lemma 2.1 with $q = 2$, $t = s_n$ and Lemma 3.1 it follows that,

$$\begin{aligned}
\|x_{n+1} - p\|^2 &= \|Ty_n - p\|^2 \\
&= \|y_n - p\|^2 \\
&\leq \|(1 - s_n)(x_n - p) + s_n(Tx_n - p)\|^2 \\
&\leq (1 - s_n)\|x_n - p\|^2 + s_n\|x_n - p\|^2 - s_n(1 - s_n)g(\|x_n - Tx_n\|) \\
&= \|x_n - p\|^2 - s_n(1 - s_n)g(\|x_n - Tx_n\|)
\end{aligned}$$

which implies that

$$s_n(1 - s_n)g(\|x_n - Tx_n\|) \leq \|x_n - p\|^2 - \|x_{n+1} - p\|^2.$$

Then it follows from the conclusion (2) that

$$\limsup_{n \rightarrow \infty} s_n(1 - s_n)g(\|x_n - Tx_n\|) = 0.$$

From the conclusion (3), since $\limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0$,

$$\left(\limsup_{n \rightarrow \infty} s_n(1 - s_n)\right) \left(\liminf_{n \rightarrow \infty} g(\|x_n - Tx_n\|)\right) \leq \limsup_{n \rightarrow \infty} s_n(1 - s_n)g(\|x_n - Tx_n\|),$$

we have

$$\liminf_{n \rightarrow \infty} g(\|x_n - Tx_n\|) = 0.$$

Hence we have

$$\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0,$$

by the properties of g . From the conclusion (4), since $\liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0$,

$$\left(\liminf_{n \rightarrow \infty} s_n(1 - s_n)\right) \left(\limsup_{n \rightarrow \infty} g(\|x_n - Tx_n\|)\right) \leq \limsup_{n \rightarrow \infty} s_n(1 - s_n)g(\|x_n - Tx_n\|),$$

we have

$$\lim_{n \rightarrow \infty} g(\|x_n - Tx_n\|) = \limsup_{n \rightarrow \infty} g(\|x_n - Tx_n\|) = 0.$$

Hence we have

$$\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0,$$

by the properties of g . \square

Theorem 3.4. *Let K be a nonempty and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume that E satisfies Opial's condition and the sequence $\{x_n\}$ is defined by Normal S-iteration(1.2) with $x_1 \leq Tx_1$ (or $Tx_1 \leq x_1$). If $F_{\geq}(T) \neq \emptyset$ (or $F_{\leq}(T) \neq \emptyset$) and $\liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0$, then the sequence $\{x_n\}$ converges weakly to a fixed point z of T .*

Proof. It follows from Theorem 3.3 that $\{x_n\}$ is bounded and $\lim_{n \rightarrow \infty} \|x_n - Tx_n\| = 0$. Then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges weakly to a point $z \in K$. From Lemma 3.1, it follows that $x_1 \leq x_{n_k} \leq z$ (or $z \leq x_{n_k} \leq x_n$) for all $k \geq 1$.

From Definition 2.4 that

$$\begin{aligned} \|Tx - Ty\|^2 &\leq \|x - y\|^2 + \frac{\alpha + \beta}{1 - \beta} \|Tx - x\|^2 \\ &\quad + \frac{2}{1 - \beta} \|Tx - x\| [|\alpha| \|x - y\| + |\beta| \|Tx - Ty\|]. \end{aligned}$$

Since the sequence $\{x_n\}$ is bounded and $\lim_{k \rightarrow \infty} \|x_{n_k} - Tx_{n_k}\| = 0$, we have

$$\limsup_{k \rightarrow \infty} \|Tx_{n_k} - Tz\|^2 \leq \limsup_{k \rightarrow \infty} \|x_{n_k} - z\|^2$$

and hence

$$\limsup_{k \rightarrow \infty} \|Tx_{n_k} - Tz\| \leq \limsup_{k \rightarrow \infty} \|x_{n_k} - z\|. \quad (3.5)$$

Now, we prove that $z = Tz$. In fact, suppose that $z \neq Tz$. Then, by (3.5) and Opial's condition, we have

$$\begin{aligned} \limsup_{k \rightarrow \infty} \|x_{n_k} - z\| &\leq \limsup_{k \rightarrow \infty} \|x_{n_k} - Tz\| \\ &\leq \limsup_{k \rightarrow \infty} (\|x_{n_k} - Tx_{n_k}\| + \|Tx_{n_k} - Tz\|) \\ &\leq \limsup_{k \rightarrow \infty} \|x_{n_k} - z\|, \end{aligned}$$

which is a contraction. This implies that $z \in F_{\geq}(T)$ (or $z \in F_{\leq}(T)$). Using the conclusion (2) of Theorem 3.3, $\lim_{n \rightarrow \infty} \|x_n - z\|$ exists.

Now, we show that the sequence $\{x_n\}$ converge weakly to the point z . Suppose that this does not hold. Then there exists a subsequence $\{x_{n_j}\}$ to converge weakly to a point $x \in K$ and $z \neq x$. Similarly, we must have $x = Tx$ and $\lim_{n \rightarrow \infty} \|x_n - x\|$ exists. It follows from Opial's condition that

$$\lim_{n \rightarrow \infty} \|x_n - z\| < \lim_{n \rightarrow \infty} \|x_n - x\| = \limsup_{j \rightarrow \infty} \|x_{n_j} - x\| < \lim_{n \rightarrow \infty} \|x_n - z\|,$$

which is a contradiction and hence we get $x = z$. \square

Theorem 3.5. *Let K be a nonempty compact and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume the sequence $\{x_n\}$ is defined by Normal S-iteration(1.2) with $x_1 \leq Tx_1$. If $\limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0$, then the sequence $\{x_n\}$ converges strongly to a fixed point $p \in F_{\geq}(T)$.*

Proof. Since K is compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges strongly to a point $p \in K$. From Lemma 3.1, it follows that $x_1 \leq x_{n_k} \leq p$ for all $k \geq 1$. By Theorem 3.1, we have $F_{\geq}(T) \neq \emptyset$ and it follows from Theorem 3.3 that $\{x_n\}$ is bounded and

$$\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0.$$

Assume that

$$\liminf_{k \rightarrow \infty} \|x_{n_k} - Tx_{n_k}\| = 0.$$

From Definition 2.4 that

$$\|Tx - Tp\|^2 \leq \|x - p\|^2 + \frac{\alpha + \beta}{1 - \beta} \|Tx - x\|^2$$

$$+ \frac{2}{1-\beta} \|Tx - x\| [|\alpha| \|x - p\| + |\beta| \|Tx - Tp\|].$$

Since the sequence $\{x_{n_k}\}$ is bounded and

$$\lim_{k \rightarrow \infty} \|x_{n_k} - p\| = 0, \quad \lim_{k \rightarrow \infty} \|x_{n_k} - Tx_{n_k}\| = 0,$$

we have

$$\limsup_{k \rightarrow \infty} \|Tx_{n_k} - Tp\|^2 \leq 0$$

and hence

$$\lim_{k \rightarrow \infty} \|Tx_{n_k} - Tp\| = 0. \quad (3.6)$$

Therefore, we have

$$\limsup_{k \rightarrow \infty} \|x_{n_k} - Tp\| \leq \limsup_{k \rightarrow \infty} (\|x_{n_k} - Tx_{n_k}\| + \|Tx_{n_k} - Tp\|) = 0$$

and so $\lim_{k \rightarrow \infty} \|x_{n_k} - Tp\| = 0$, which implies that $p \in F_{\geq}(T)$. Using the conclusion (2) of Theorem 3.3, $\lim_{k \rightarrow \infty} \|x_{n_k} - p\|$ exists and so $\lim_{k \rightarrow \infty} \|x_n - p\| = 0$. \square

Theorem 3.6. *Let K be a nonempty compact and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume the sequence $\{x_n\}$ is defined by Normal S-iteration (1.2) with $x_1 \leq Tx_1$. If $\liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0$, then the sequence $\{x_n\}$ converges strongly to a fixed point $p \in F_{\geq}(T)$.*

Proof. Since K is compact, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges strongly to a point $p \in K$. From Lemma 3.1, it follows that $x_1 \leq x_{n_k} \leq p$ for all $k \geq 1$. By Theorem 3.1, we have $F_{\geq}(T) \neq \emptyset$ and it follows from Theorem 3.3 that $\{x_n\}$ is bounded and

$$\liminf_{n \rightarrow \infty} \|x_n - Tx_n\| = 0.$$

Without loss of generality, we can assume that

$$\liminf_{k \rightarrow \infty} \|x_{n_k} - Tx_{n_k}\| = 0.$$

From Definition 2.4 that

$$\begin{aligned} \|Tx - Tp\|^2 &\leq \|x - p\|^2 + \frac{\alpha + \beta}{1 - \beta} \|Tx - x\|^2 \\ &\quad + \frac{2}{1 - \beta} \|Tx - x\| [|\alpha| \|x - p\| + |\beta| \|Tx - Tp\|]. \end{aligned}$$

Since the sequence $\{x_{n_k}\}$ is bounded and

$$\lim_{k \rightarrow \infty} \|x_{n_k} - p\| = 0, \quad \lim_{k \rightarrow \infty} \|x_{n_k} - Tx_{n_k}\| = 0,$$

we have

$$\liminf_{k \rightarrow \infty} \|Tx_{n_k} - Tp\|^2 \leq 0$$

and hence

$$\lim_{k \rightarrow \infty} \|Tx_{n_k} - Tp\| = 0. \quad (3.7)$$

Therefore, we have

$$\liminf_{k \rightarrow \infty} \|x_{n_k} - Tp\| \leq \liminf_{k \rightarrow \infty} (\|x_{n_k} - Tx_{n_k}\| + \|Tx_{n_k} - Tp\|) = 0$$

and so $\lim_{k \rightarrow \infty} \|x_{n_k} - Tp\| = 0$, which implies that $p \in F_{\geq}(T)$. Using the conclusion (2) of Theorem 3.3, $\lim_{k \rightarrow \infty} \|x_{n_k} - p\|$ exists and so $\lim_{k \rightarrow \infty} \|x_n - p\| = 0$. \square

Similarly, the following theorem can be proved:

Theorem 3.7. *Let K be a nonempty compact and closed convex subset of a uniformly convex ordered Banach space (E, \leq) and a mapping $T : K \rightarrow K$ be a monotone (α, β) -nonexpansive mapping. Assume the sequence $\{x_n\}$ is defined by Normal S-iteration (3.2) with $Tx_1 \leq x_1$. If either $\liminf_{n \rightarrow \infty} s_n(1 - s_n) > 0$ or $\limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0$, then the sequence $\{x_n\}$ converges strongly to a fixed point $p \in F_{\leq}(T)$.*

From Theorem 3.5, we have the following:

3.3. The numerical examples. Now, we give two numerical examples to illustrate the following examples, by we add Normal-S iteration for compare with Mann's iteration and Ishikawa's iteration of [4] in the first example. And the last, we show the example between Mann's iteration and Normal-S iteration.

Example 3.2. Let $T : [0, 1] \rightarrow [0, 1]$ be a mapping defined by

$$Tx = \begin{cases} 0.25 & \text{if } x \neq 1, \\ 0.5 & \text{if } x = 1. \end{cases}$$

for any $x \in [0, 1]$. Then T is a $(0.8, 0.2)$ -nonexpansive mapping. Define the sequences $s_n = \frac{1}{4} + \frac{1}{n^2}$ for each $n \geq 1$, then $\limsup_{n \rightarrow \infty} s_n(1 - s_n) > 0$. Then all the conditions of Theorem 3.5 are satisfied. Also, 0.25 is a fixed point of T .

TABLE 1. The convergent step of $\{x_n\}$ for Example with $s_n = \frac{1}{4} + \frac{1}{n^2}$

Number of iterations	Sequence of Mann	Sequence of Ishikawa	Sequence of Normal-S
1	0.500000	0.500000	0.500000
2	0.187500	0.3294046	0.2500000
4	0.2300347	0.2518192	0.2500000
6	0.2402544	0.2502132	0.2500000
8	0.2448648	0.2500322	0.2500000
10	0.2472181	0.2500053	0.2500000
12	0.2484731	0.2500009	0.2500000
14	0.2491557	0.2500001	0.2500000
16	0.2495311	0.2500000	0.2500000

Example 3.3. Let $T_1 : [-1.5, -1] \rightarrow [-1.5, -1]$ or $T_2 : [1, 1.5] \rightarrow [1, 1.5]$ be the mappings defined by

$$Tx = \arctan(5x).$$

The fixed points of mappings T_1 and T_2 are -1.4320322 and 1.4320322 respectively.

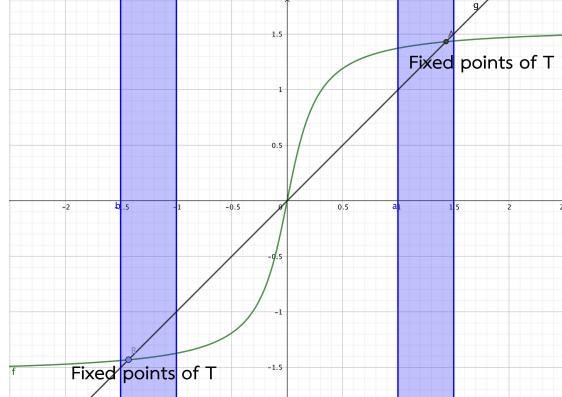
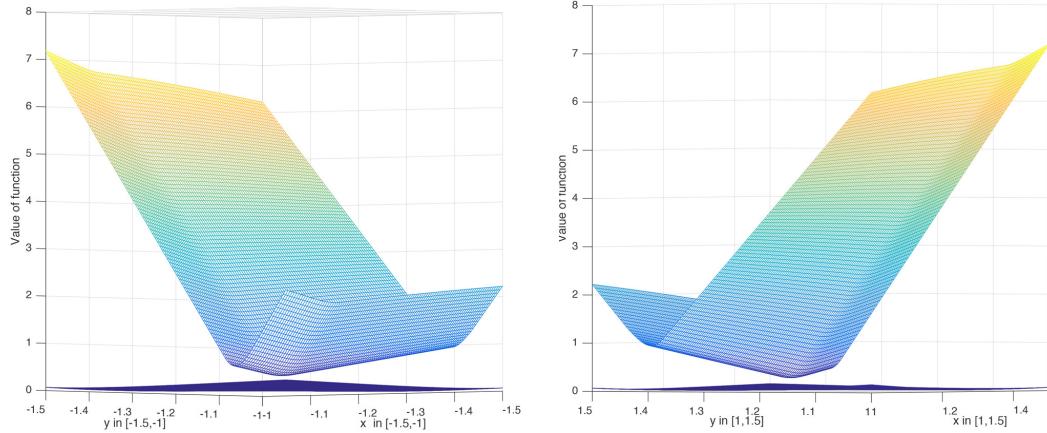
It is easy to see that T is monotone. Next we will show that T is a $(0.9, 0.1)$ -nonexpansive mapping. By using Matlab R2015b software, we get

$$\begin{aligned} \min_{x, y \in [1, 1.5]} \{ & 0.9\|\arctan(5x) - y\|^2 + 0.1\|\arctan(5y) - x\|^2 + (1 - 0.9 - 0.1)\|x - y\|^2 \\ & - \|\arctan(5x) - \arctan(5y)\|^2 \} = 4.37 \cdot 10^{-0.6} > 0. \end{aligned}$$

then implies that

$$\|\arctan(5x) - \arctan(5y)\|^2 \leq 0.9\|\arctan(5x) - y\|^2 + 0.1\|\arctan(5y) - x\|^2 + (1 - 0.9 - 0.1)\|x - y\|^2$$

for all $x, y \in [1, 1.5]$. And it is true for all $x, y \in [-1.5, -1]$ too. Therefore T is a monotone $(0.9, 0.1)$ -nonexpansive mapping.

FIGURE 1. The fixed points of T are -1.4320322 and 1.4320322 FIGURE 2. The value of mappings T_1 and T_2

Next we show the numerical solution of T , the numerical solution of this example is presented in Table 2.

Note that, if we set $x = 1.5$, $y = 1$ and $\alpha = \beta = 0.9$ then, the mapping T is not α -nonexpansive mapping.

From observing the numerical behavior, if we choose x_0 nearly is the solution then the sequence convergence is fast. Next we will show the convergent behavior of $\{s_n\}$ for iterative comparison between Mann's iteration, Ishikawa's iteration and normal-S iteration. by fixing $x_0 = 1.2$ and using three groups of sequences s_n for $n \geq 1$ are :

- (i) $s_n = \frac{1}{4} + \frac{1}{n^k}$, $k \in \{0.01, 2, 5\}$;
- (ii) $s_n = \frac{1}{4} + \frac{1}{\log^k(n+1)}$, $k \in \{0.01, 2, 5\}$;
- (iii) $s_n = \frac{1}{4} + \frac{\log^k(n+1)}{n+2}$, $k \in \{0.01, 2, 5\}$;

All these sequences satisfy all condition of convergence theorems, Next figures describe the convergent behavior of three situations for value k .

TABLE 2. The convergent step of $\{x_n\}$ for Example 3.3 with $s_n = \frac{1}{4} + \frac{1}{n^2}$

Number of Iterations	Sequence value of Mann		Sequence value of Normal S	
	$x_0 = 1.2$	$x_0 = -1.3$	$x_0 = 1.2$	$x_0 = -1.3$
1	1.2000000	-1.3000000	1.2000000	-1.3000000
2	1.4570595	-1.4476837	1.4343860	-1.4335135
3	1.4457227	-1.4405986	1.4321554	-1.4321098
4	1.4412475	-1.4377994	1.4320401	-1.4320372
5	1.4386414	-1.4361689	1.4320327	-1.4320325
6	1.4369073	-1.4350837	1.4320322	-1.4320322
7	1.4356822	-1.4343169	1.4320322	-1.4320322
8	1.4347894	-1.4337581	1.4320322	-1.4320322
9	1.4341269	-1.4333435	1.4320322	-1.4320322
10	1.4336299	-1.4330323	1.4320322	-1.4320322

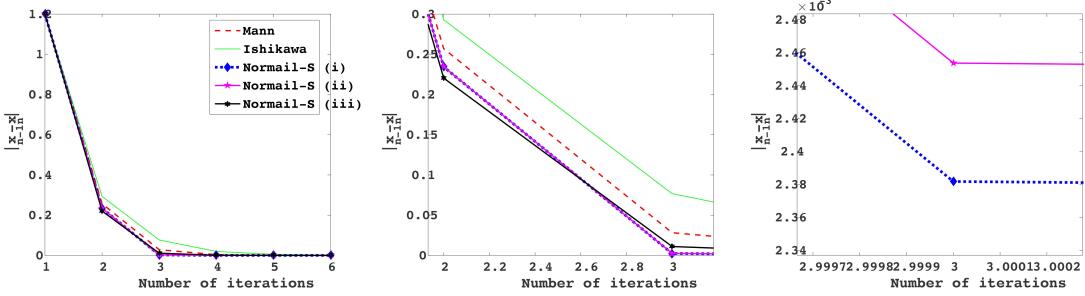


FIGURE 3. The behavior of sequence by fixing $k = 0.01$

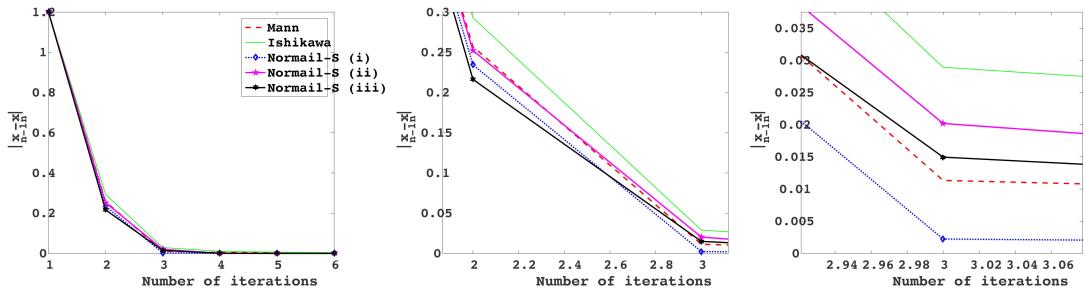
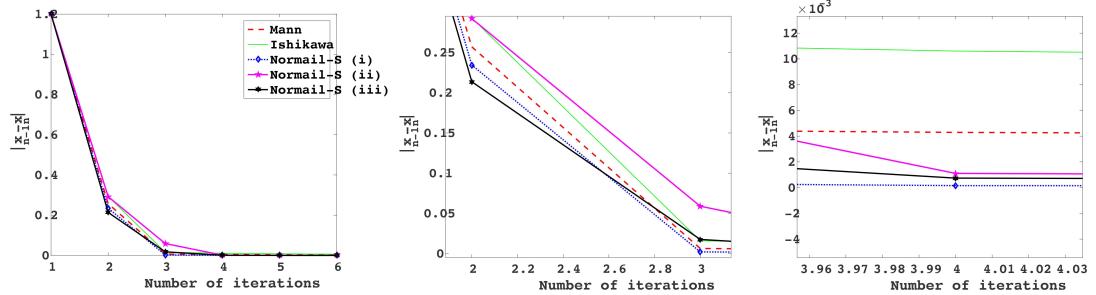
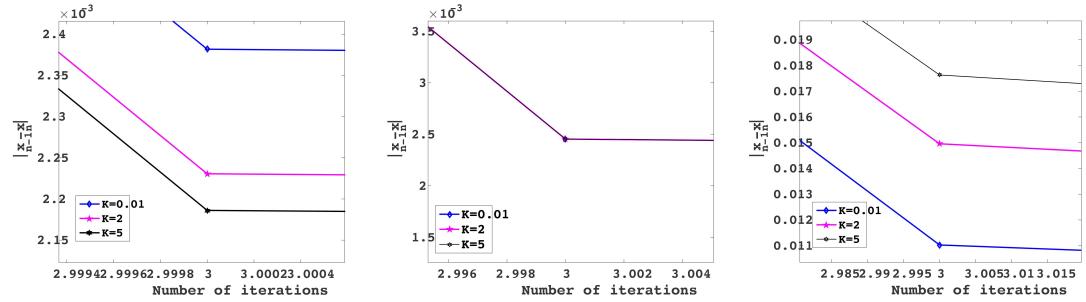


FIGURE 4. The behavior of sequence by fixing $k = 2$

The last figure describes the convergent behaviour for comparison k in three groups

FIGURE 5. The behavior of sequence by fixing $k = 5$ FIGURE 6. The convergent behaviour of each k for cases of group(i), group(ii) and group(iii)

4. CONCLUSION

We get the results about the convergence theorems of monotone (α, β) -nonexpansive mapping for the sequence $\{x_n\}$ is defined by normal-S iteration. In part of numerical, we give the examples for show the convergent behavior of sequence $\{s_n\}$ of normal-S iteration (in Figure 3 4 5 6)

5. ACKNOWLEDGEMENTS

The author would like to thank the anonymous referees for their helpful suggestions and remarks. This project was supported by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, KMUTT. The third author was supported by a research Grant No. MOST 105-2115-M-039-002-MY3 and the last author was supported by a research Grant No. MOST 107-2115-M-037-001. This work was completed while the first author visit Center for Fundamental Science, and Research Center for Nonlinear Analysis and Optimization, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan, during 15 August 30 September 2018.

REFERENCES

1. B. A. B. Dehaish and M. A. Khamsi, Mann iteration process for monotone nonexpansive mappings, *Fixed Point Theory Appl.* 177 (2015).

2. Y. Song, K. Promluang, P. Kumam and Y. J. Cho, Fixed point theorems and iterative approximations for monotone nonexpansive mappings in ordered Banach spaces, *Fixed Point Theorem Appl.* 73 (2016).
3. Y. Song, P. Kumam and Y. J. Cho, Some convergence theorems of the Mann iteration for monotone α -nonexpansive mappings, *Appl. Math. Comput.* (2016), 74 – 82.
4. K. Muangchoo-in, D. Thongtha, P. Kumam and Y. J. Cho, Fixed point theorems and convergence theorems for monotone (α, β) -nonexpansive mappings in ordered Banach spaces, *Creat. Math. and Inf.* 26 (2017), 163 – 180.
5. D.R. Sahu, Application of the S-iteration process to constrained minimization problem and split feasibility problem, *Fixed Point Theory* 12 (2013), 187 – 204.
6. H. K. Xu, Inequality in Banach spaces with applications, *Nonlinear Anal.* 16 (1991), 1127 – 1138.
7. W. Takahashi, Nonlinear Functional Analysis–Fixed Point Theory and its Applications, Proceedings of the International Conference. (2000).
8. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings in Banach spaces, *Bull. Amer. Math. Soc.* 73 (1967), 591 – 597.
9. W. R. Mann, Mean value methods in iteration, *Proceedings of the American Mathematical Society*. 4 (1954), 15 – 26.
10. S. Ishikawa, Fixed points and iterations of non-expansive mappings in Banach spaces, *Proceedings of the American Mathematical Society*. 59 (1976), 65 – 71.
11. F. Kohsaka and W. Takahashi, Fixed point theorems for a class of nonlinear mappings relate to maximal monotone operators in Banach spaces, *Arch. Math.* 91 (2008), 166 – 177.
12. E. Naraghirad, N. C. Wong and J. C. Yao, Approximating fixed points of α -nonexpansive mappings in uniformly convex Banach spaces and $\text{Cat}(0)$, *Fixed point Theory Appl.* 57 (2013).
13. Y. Shehu and P. Cholamjiak, Another look at the split common fixed point problem for demicontractive operators, *RACSAM*. 110 (2016), 201-218.
14. W. Cholamjiak, P. Cholamjiak and S. Suantai, Convergence of iterative schemes for solving fixed point of multi-valued nonselfmappings and equilibrium problems, *J. Nonlinear Sci. Appl.* 8 (2015), 1245-1256.
15. P. Cholamjiak and S. Suantai, Weak convergence theorems for a countable family of strict pseudocontractions in Banach spaces, *Fixed Point Theory Appl.* 2010, 632137 (2010), doi:10.1155/2010/632137.
16. P. Cholamjiak and S. Suantai, Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions, *J. Glob. Optim.* 54 (2012), 185-197.
17. S. Chandok, Common Fixed Point Theorems for Generalized Contractions Mappings, *Thai Journal of Mathematics*. 16 (2018), 305-314.
18. M. Wattanataweekul and C. Klanarong Convergence Theorems for Common Fixed Points of Two G-Nonexpansive Mappings in a Banach Space with a Directed Graph, *Thai Journal of Mathematics*. 16 (2018), 503-516.