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ABSTRACT. The main objective of this work is to modify the sequence {z,} of the
explicit projection algorithm of asymptotically nonexpansive semigroups. We prove the
strong convergence theorem of a sequence {z,} to the common fixed point of asymptoti-
cally nonexpansive semigroups and the solutions of split equilibrium problems. Our main
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authors.
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1. INTRODUCTION

R, where R is the set of real numbers. The equilibrium problem for F': CxC —
R is to find x € C such that

F(z,y) >0, VYyeC. (1.1)

The set of solutions of (1.1) is denoted by EP.

The split equilibrium problem was introduced by Moudafi [12], he considers the
following pair of equilibrium problems in different spaces. Let H; and Hs be two
real Hilbert spaces, let F1 : C'xC — R and F5 : @ x @ — R be nonlinear bifunctions
and let A : Hy — Hj be a bounded linear operator which C' and @ are closed convex
subsets of H; and Hj, respectively. Then the split equilibrium problem (SEP) is to
find z* € C such that

Fi(z*,2) >0, VxeC. (1.2)
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and such that
Yyt e Art €Q, Fua(y',y) >0, VyeQ. (1.3)
The solution set of SEP (1.2)-(1.3) is denote by Q = {p € EP(F}) : Ap € EP(F2)}.
Recall that, a mapping T : C' — C and a self mapping f of C' is a contraction
if ||f(z) — f(y)] < aflz — y|| for some o € (0,1) and T is a nonexpansive if | Tz —
Ty| < ||z — yl| for all z,y € C, and T is asymptotically nonexpansive [5] if there
exists a sequence {k,} with k, > 1 for all n and lim, o k, = 1 and such that
Tz — T™y|| < kyllz —y|| for all n > 1 and z,y € C. A point z € C is a
fixed point of T provided T = x. Denote by Fix(T) the set of fixed points of
T; that is, Fiz(T) = {x € C : Tx = z}. Recall also that a one-parameter family
T ={T()|0 <t < oo} of self-mappings of a nonempty closed convex subset C' of
a Hilbert space H is said to be a (continuous) Lipschitian semigroup on C (see, e.
g., [19]) if the following conditions are satisfied:
) TO)x =z,ze€C
(13) T(s+t)(x) =T(s)T(t),s,t > 0,2 € C
(#31) for each x € C, the maps t — T'(t)x is continuous on [0, c0)
(tv) there exists a bounded measurable function L : [0,00) — [0,00) such that,
for each t > 0
IT(t)x — Tyl < Lellz — yl, 2,y € C.

A Lipschitzian semigroup T is called nonexpansive (or a contraction semigroup) if
L; = 1forallt > 0, and asymptotically nonexpansive semigroup if limsup,_, ., L <
1, respectively. We use Fiiz(7T) to denote the common fixed point set of the semi-
group; that is Fiz(T) ={z € C : T(t)x = z,t > 0}.

In 2010, Tian [16] introduced the following general iterative scheme for finding an
element of set of solutions to the fixed point of nonexpansive mapping in a Hilbert
space. Define the sequence {z,} by

Tnl1 = an’)’f(l'n) + (I - /u'anB)Txna (14)

where B is k—Lipscitzian and n—strongly monotone operator. Then he prove that
if the sequence {a, } satisfies appropriate conditions, the sequence {z,} gererate by
(1.4) converges strongly to the unique solution z* € Fiz(T') of variational inequality

<(’7f—,LLB)$*,£U—IL‘*> SO,VLL’EF”:(T) (15)

In 2011, Ceng et al. [1] added the metric project to the method of Tian (1.4)
and studied the following explicit iterative scheme to find fixed points:

Tnt1 = Polanyf(zn) + (I — panB)Txy,). (1.6)

They prove the strong converge of {z,} to a fixed point z* € Fiz(T) of the same
variational in equality (1.5).

In 2008, Plubtieng and Punpaeng [13] introduced the following implicit itera-
tive algorithm to prove a strong convergence theorem for fixed point problem with
nonexpansive semigroup:

Tn = anfan) + (I — ozn)i /OSn T(s)xnds, (1.7)

Sn

where x,, is a continuous net and s, is a positive real divergent net.

In 2014, Kazmi and Rizvi [3] studied the following implcit iterative algorithm.
Under some asummptions, they obtain some strong convergence theorem for EP(1.1)
and the fixed point problem:

Up = Tibl(xn—&-éA*(Triz—I)Axn),
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Sn
Tn = apvf(zn)+ (I—cunB)si/0 T(s)unds, (1.8)
n
where s,, and 7, are the continuous nets in (0, 1).

In the same year, Zhou and Zhao [17] introduce an explicit iterative scheme
for finding a common element of the set of solutions SEP and fixed point for a
nonexpansive semigroup in real Hilbert spaces. Starting with an arbitrary =, € H,
define sequences {z,} and {u,} by

u, = TF(w,+ A% (T — I)Ax,),
1 Sn
Tny1 = Po|anyf(z,)+ T — ,uanB)S—/ T(s)unds} . (1.9)
n Jo

Under suitable conditions, some strong convergence theorems for approximating
to these common elements are proved.

Next, we studies some examples for relationship between a nonexpansive semi-
group and an asymptotically nonexpansive semigroup for motivation of this work.

Example 1.1. Let H; = Hy = Rand let 7 := {T(s) : 0 < s < oo}, where
T(s)x = ﬁx,h’x € R. We see that for any z,y € R
1 1 1
T -T = — = (—
7G5} = T(sholl = 5007~ (gl = (e

then we have 7 is nonexpansive semigroup. If L, = 1 we have limsup,_, . Ls =1
then 7 is asymptotically nonexpansive semigroup.

)z —=yll,

Example 1.2. Let H; = Hy = R and let 7 := {T(s) : 0 < s < oo}, where

T(s)r = fjg;x,\m € R. We see that for any z,y € R

2+25) (2—|—23) ”_(2—|—2s
11250 T/ = s

put L = (§132) we have limsup,_,, Ly = limsup,_, . ($32

totically nonexpansive semigroup. If we let s = 1 we have figz = % £ 1, then T is
not necessary nonexpansive semigroup.

IT(s)z = T(s)yll = II( )z = yll,

) =1 then T is asymp-

From above example we see that a mapping 7 is a nonexpansive semigroup
then 7 is asymptotically nonexpansive semigroup. But 7 is an asymptotically
nonexpansive semigroup is not necessary nonexpansive semigroup.

Inspired and motivate by above and [17], the purpose of this paper to introduce
an explicit iterative scheme for finding a common element of the set of solutions
SEP and fixed point for an asymptotically nonexpansive semigroup in real Hilbert
spaces.

2. PRELIMINARIES

In this section, we collect and give some useful lemmas that will be used for
our main result in the next section.

Lemma 2.1. Let H be a real Hilbert space, then the following hold:
(i) Iz +yl?* < llz]|* + 2z, y) + [lyl|*, Yo, y € H;
() ||tz + (1 = t)y||* = t]|z]|> + (1 = )|y [|* = t(1 = t)[l= — y|[*, ¢ € [0, 1], Va,y € H.
(iii) ||z + yl|* < |2 + 2(y, x + y), Yo,y € H.

Let C be a nonempty closed convex subset of H. Then for any x € H, there
exists a unique nearest point of C, denoted by Pox, such that || — Poz|| < ||z —y||



44 J. NONLINEAR ANAL. OPTIM. VOL. 11(1) (2020)

foe all y € C, such P is called the metric projection from H into C'. We know that
P is nonexpansive. It is also known that Pox € C' and

(x — Pocx,Pocx —2z) >0, Yee HzeC. (2.1)
It is easy to see that (2.1) is equivalent to
lz —z||*> > ||z — Pox||®* + ||Pox — 2||?, Yz € H,z€C. (2.2)

Let B : C' — H be a nonlinear mapping. Recall the following definitions.
Definition 2.2. B is said to be

(i) monotone if

(Bx — By,z —y) >0, Vx,ye€C, (2.3)
(ii) strongly monotone if there exists a constant o > 0 such that
(Bx — By,x —y) > a|lz —y|?>, Va,ye€C, (2.4)

for such a case, B is said to be a—strongly monotone,
(iii) a—inverse strongly monotone(a—ism) if there exists a constant a > 0 such

that
<B$—By7$—y> ZOéHBSC—By||2, vxayecv (25)
(iv) k—Lipschitz continuous if exists a constant k& > 0 such that
|1Bx — By|| < kllz —yll, Vz,yeC. (2.6)

Remark 2.3. Let F = uB — vf, where B is a k—Lipschitz and n—strongly mono-
tone operator on H with £ > 0 and f is a Lipschitz mapping on H with coeffi-
cient L > 0, 0 < v < un/L. Tt is a simple matter to see that the operator F is
(un — ~yL)—strongly monotone over H; that is

<.7:x—.7:y,ac—y> Z(MU_’YL)”x_y||27 sz?yEHv (27)

Lemma 2.4. [6] Let T be a nonexpansive mapping of a closed convex subset C of a
Hilbert space H. If T has a fized point, then I —T is demiclosed; that is, whenever
the sequence of x,, is weakly convergent to x and (I — T)x,, is strongly convergent
toy, then (I —T)x =y.

Lemma 2.5. [10] Assume that A is a strongly positive linear bounded operator on
Hilbert space H with coefficient 7 > 0 and 0 < p < ||A|| =Y. Then ||I —pA| < 1—pr.

Lemma 2.6. [7] Let C be a nonempty bounded closed convex subset of real Hilbert
space H and let T := {T(s) : 0 < s < 0o} an asymptotically nonexpansive semigroup
on C, If {z,} is a sequence in C satisfying the properties:

(i) xp,, — z; and

(#) limsup,_, ., limsup,, , o [|T(¢)x, — x| =0,
then z € Fiz(T).

Lemma 2.7. [7] Let C be a nonempty bounded closed convex subset of real Hilbert
space H and let T := {T(s) : 0 < s < 0o} an asymptotically nonexpansive semigroup
on C, then for any u > 0,
1 [t 1 [t
lim sup lim sup sup ||f/ T(s)xds — T(u)(f/ T(s)xds)|| = 0.

u—oco t—oo zeC t 0 t 0
Lemma 2.8. [9] Let T be an asymptotically nonexpansive mapping defined on a
bounded convex subset C' of a Hilbert space H. If {x,} is a sequence in C such that
xp, —x and Tx,, — x, — 0, then x € F(T).
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Lemma 2.9. [11] Let C be a nonempty closed convex subset of H. Let {x,} be a
sequence in H and w € H. Let ¢ = Pou. If {z,} is such that wy(z,) C C and
satisfies the condition

[n —ull < flu—qll
for alln > 1, then x, — q.

Definition 2.10. [12] A mapping T : H — H is said to be averaged if it can be
written as the average of the identity mapping and a nonexpansive mapping; that
is,

T=(1-¢el+¢S, (2.8)
where € € (0,1),S5 : H — H is nonexpansive, and I is the identity operator on H.

Proposition 2.11. [12]
(i) If T = (1—¢€)S+¢€V, where S : H — H is averaged, V : H — H s
nonexpansive, and € € (0,1), then T is averaged.
(ii) The composite of finite many averaged mappings is averaged.
(iii) If T is v —ism, then for v > 0,~4T is (v/7y) — ism.
(iv) T is averaged if and only if its complement I — T is v — ism for some
v> 3.
Assumption 2.12. [I] For solving the equilibrium problem for a bifunction F :
C x C = R, let us assume that F satisfies the following conditions:
(A1) F(z,x2) =0 for all x € C;
(A2) F is monotone, that is F(x,y) + F(y,x) <0 for all z,y € C;
(A3) for each x,y € C,

lim F(tz + (1 —t)z,y) < F(z,y); (2.9)
t—0
(A4) for each x € C, y — F(x,y) is convex and lower semicontinuous.

Lemma 2.13. [2] Let C be a nonempty closed convex subset of H, and let F be a
bifunction of C x C into R satisfying (A1)(A4). Let r > 0 and x € H. Then there
exists z € C' such that

1
F(z,y)+—-(y—z,2z—z) >0, VyeC. (2.10)
T
Define a mapping T, : H — C' as follows:
1
TF(z) = {z € C’:F(m,y)—!—;(y—z,z—x) >0, Vye C’}, (2.11)

for all x € H. Then the following hold:
(i) TF is single valued;
(i) TF is firmly nonexpansive; that is, for any x,y € H

IT e = T7ylI* < (Traw = Try, @ — y); (2.12)
(iii) F(TF) = EP(F);
(iv) EP(F) is closed and convez.

Lemma 2.14. [3] Let C be a nonempty closed convex subset of a Hilbert space H,
and let F': C x C — R be a bifunction. Let x € C and r1,r2 € (0,00). Then

|TEz — T 2| < ‘ 21T 2| + ll=])). (2.13)
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Lemma 2.15. [14] Assume that {a,},{bn}, {cn} are sequence of nonnegative real
numbers such that
ant1 < (1 —cp)an +by,n >0
where {a,} is asequence in (0,1) and {b,} is a sequence in R such that
(i) X5Zoen = oo,
(if) limsup,,_, oo l;—: <0 or X22|bp| < 0.

Then lim,_,o an, = 0.

3. MAIN RESULTS

Let f : Hi — H; be a contractive mapping with constant 8 € (0,1) and
let A: HH — Hy,B: Hi — H; be a n—strongly monotone and 6—Lipschitzian
with 6 > 0,n > 0. In this work, we may assume that 0 < u < %Q and 0 <
v < p(n — ”792)/5 = 5. Let & = {I'(s) : 0 < s < oo} be an aymptotically
nonexpansive semigroup on C' such that I' = F(J)NQ # 0. Assume {r,} and {s,}
are the continuous nets of positive real numbers such that lim,,_,o7r, = > 0 and
lim,, g 8, = +00.

In this section, we introduce the following explicit iterative scheme that the nets
{un} and {z,} are generated by

Up = Tfj(gcn—i—éA*(Tiz—I)A:vn),

Tni1 = Polagyf(za)+ ([ — u()an)i /Osn T(s)unds] , (3.1)

Sn
where Po : Hy — C,6 € (0,1/L), L is the spectral radius of the operator A*A and
A* is the adjoint of A.
We prove the strong convergence of {u,} and {x,} to a fixed point z* € F(S)
which solve the following variational inequality:

(WF —~g)z™, 2" —7) <0,¥z e ' = F(J) N Q. (3.2)
In the sequel, we denote by {y,} the sequence defined by
1 [°n
Yp = — T(s)unds. (3.3)
Sn 0

Theorem 3.1. Let Hi and Hsy be two real Hilbert spaces and let C C Hy and
Q C Hy be nonempty closed subsets. Let A : Hy — Hy be a bounded linear operator.
Assume that Fy : C x C — R and Fy : Q X Q — R are the bifunctions satisfying
Assumption 2.12 and Fy is upper semicontinuous in the first argument. Let the
sequence {u,} and {x,} be generated by (3.1), and suppose that the sequence {au, }
satisfies the following conditions:

(i) an €(0,1) and lim, o v, = 0;

(i) X8 g, =05

A . o
(iii) edther X0 glan+1 — an| < 00 or limy, o0 o = 1.
where s, = X [7"LTds — 1 as n — oo. Then the sequence {u,} and {z,}

converge strongly to x* € T' = F(3) N Q, where x* = Pr(I — uB + vf)x*, which is
the unique solution of the variational inequality (3.2).

Proof. For a, € (0,1) and Vz € Hy, define a mapping G : H; — Hs by
1 Sn
Gz = Po |apyf(x) + (I — panB)— / T(S)Tf;l (x+ 5A*(TTIZ2 —I)Az)ds]| .
n Jo
(3.4)
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From Lemma 2.13 we easily know that TTIZ 1 and TTIZ 2 hoth are firmly nonexpansive
mappings and are averaged operators. From Proposition 2.11, we can obtain that
the operator (I 4+ 6A*(TF2 — I)A) is averaged and hence nonexpansive. Following
Lemma 2.14 and Vz,y € Hyi, we get

n

IGe— Gyl = |Pe [ozwf(w)Jr(I—uanB)l / "T<s>T£1<x+6A*<T£2—I)Ax)ds]
0

- R [awﬂy) +(1=po,B) | )Ty + 647 (T I>Ay>ds} ||

Sn

< | {an'yf(x) + (- ,uoan)Si /Sn T(s)TF (x + SA*(TF> — I)Ax)ds}
n JO

= ot + @ sy - [T 047 - Dayas]
< any|lf(@) = f)

(1 anT)HSi / T(s)(TF (x4 54T (T — 1) Ax))

n JOo

~T(s) (T (y + SA*(TF2 — 1) Ay))ds]]|
< allf(z) — f)l

H1=anr) o [T @+ 547 (TE - D Av)

n J0

~T(s)(TF (y + 6A* (T2 — ) Ay))||ds
< anyllf(z) - f(y)”,

= apr) / " LT (2 + 6A*(TF2 — 1) Au)

Sn 0

T (y + 6A* (T2 — 1) Ay))||ds

< anlf@) = f@) + (- aur) - [ LE o ylds
n JO
1 Sn T

< anyllf(@) = fy)l + (1 - aﬂ)g/o Lids ||z —yl|
< apBllr =yl + (1 —anm)snllz —y|

= (1—an(rsp —98))llz -yl (3.5)
Since v < 7 and a,, € (0,1) then (1 — oy (75, —¥B)) < 1, it follows that G is
contraction, by Banach contraction principle, there exists a unique a fixed point x*.
Next, we proved that {uy},{z,} are bounded. Let p € T = F(S) N}, we obtain
that p = T,fllp and p = Tfpr and p = T'(s)p. From (3.1), we have
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51 4+ 64° (T2 = D A, —
T (I + A" (T = 1) Ay, — T p)?

lun — pII?

< e + 5A*(TT1:"‘ — Az, —p|?
< lan = pl|? + [|0AN(TF2 — 1) Az, | + 262, — p, A*(TF2 — 1) Azy,)
< lwn = pl? + 2(TE — I)Aw,, AA (TP — 1) Az,,)

+26(A(xn — p), (TTI:“ — D) Ax,)
< wn = pl? + LO*((TE? — 1) Az, (T — 1) Az,,)

+20(A(zy — p) + (TF> — 1Az, — (TF? — I) Az, A (TF? — 1) Azy,)
< lwn = pl® + LO?|(T772 — 1) Az, ||

+20 {(TF> Az, — Ap, (TF> — 1) Az,) — |(TF> — 1) Az, ||}
< lwn = pl® + LOP|(T772 — 1) Az, ||

420 { ST — DA, P~ (T - Do, 2}
< lwn = pl® + LP(T72 — D) Azn|* = O[[(T2 — 1) Az, |?
= lzn = pl* + (L6 = DT — 1) Az, . (3.6)
Since 6 € (0,1/L), we have
l[tn = pll < [[2n — pl|. (3.7)
Put y, = = [ T(s)unds, it follows that

1 [
—/ T(s)unds — pH
0

lyn —pl =

Sn
1| [
. / (T(s)un — T(s)p)ds
n 0
<l — pll < llzn — pl. (3.8)
And we obtain that
1o
lnss —pl = [P [awﬂxmu—uanm / T<s>unds] —pH
n J0O
1 Sn
< a,ﬁf(mn)—l—(l—uanB)—/ T(s)unds—pH
Sn 0
1 Sn
= [Jantrsten) o)+ 1 = penB) = [ Ty — (1 - o, 3
n J0O
1 Sn
< anlhstan) - a4 (1= an) | = [T T s -
n JO
1 Sn
< ol (en) = pBpll+ (1 = anr) - [T s)u, = T(s)pl ds
1 Sn
< anllvfn) = nBpll+ (= awr) o [ LT Jun pl ds
n JO
1 Sn
< anlfen) = uBpl + (1= anr) - [ LTds Jun ]
n JO
< aullyf (@) — uBpll + (1 = anr)sn lun — p
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< anllf(zn) = fFO + anllvf(p) — uBpl| + (1 — anT)sy, lun — pl|
< anyBllzn = pll + anllvf(p) — uBpl| + (1 — anT)s, |z, — pl|
< [0 — an(t5, —vB)]lzn — p| + anllvf(p) — uBp)| (3

Since {s, — an(7s, — vB)} is convergence sequence of real number then it is a
bounded dequence, we have K € R such that

Zns+1 —pll < K@y — pll + anllvf(p) — uBp)|, (3.11)

we have {x,,} is bounded and therefore {u,}, {y»} and {f(z,)} are bounded. From
(3.10), {||lzn — p||} is bounded and decreasing sequence, hence lim,_, ||z, — D]
exists.

Next, we claim that lim,_,« ||y — u,|| = 0. From (3.9), we have

lznsr —pl* <

n
2

1[5
< (1 —a,r)? —/ T(s)upds —p
Sn 0
+2a, (v f(zn) — vf(p) +7f(p) — uBp,xn — p)
< (1= anm)?|lun = pl* + 20098 xn — D
+2a, (v f(p) — uBp,Tn — p)
< lun = plI? + ant?|Jzn — plI* + 2008z — D

+2an ||vf(p) — uBpll||zn — p
< lwn = pl? +6(L8 = DT = DAz, |* + ant?||2n — pl?
+20,7B|| 25 — pll + 2007 f (p) — pBp|[|zn — |-
From (3.12), we obtain
§(L—=LOI(TE — DAz, |” < lzn — pl* = [lona —pl?
+an (T2 |z, — pl* + 298]|2n — pll
+2|vf(p) — uBplll|zn —pl).  (3.13)

Since {z,,} is bounded, lim,, o ||z, — p|| exists, lim, o o, = 0 and 6(1 — LJ) > 0,
we obtain that

lim |[(TF> — I)Az,| =0. (3.14)
n—oo :
From (3.1), we have
lun = pl* = [T (1 + 84T — DAy, — p|”

= ||TE(I + 64X (T — 1) A)w, — T p)?
< {un - pon+ A (TE — Aoy — p)

1 *
= 5 lllun =Pl + wn + 6AN(T2 = 1) Ay = p|)”

~llun = p =[x + 0A™(T;2 — I)Azy — p]|*} (3.15)
1 *

< 5 {llun = plP + lln = Pl = lun = 20 = SAN(T = 1) Az}
1 *

< Slllun = plI* + llon = pl* = llun = 2al* = S A™(T2 = D) A |

+20]| Aun — @) [II(T2 — 1) Awnll}-

an(Vf(wn) — pBp) + (I — MCYnB)i /OS" T(s)upds — (I — po, B)p

10)

2

(3.12)
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Hence, we obtain

= pI? = llun — 20 |® = S| AX(T2 = 1) Az ®
+20[|A(un — 2 II|(T2 — 1) Az |
2 =PI = llun — 20 l® + 26| Alun — 2a) (T2 = 1) Aznll.

(3.16)

lun — pII?

IN

It follows from (3.12) and (3.16) that

[2ne1 = plI> < lup = plI* + an7?(|lzn — pl|* + 2007820 — p
+2anvf(p) — uBplll|xn — pll
< ||xn —p||2 — ||tn — $n||2 + 25||A(un - xn)”H(Triz - I)Aan

+O‘n7—2”$n —p||2

+2a,yBlzn — pll + 20|17 f(p) — pBpll||zn — p| (3.17)
= |, —p||2 — ||tr — xn”z + 26| Aup — mn)llH(Trli2 - I)AmnH
-|-Oén7'2M1,

where My = 72|z, — p||*> + 2vB||xn — p|| + 2|17 f(p) — uBp||||zn — p||. From (3.17),
we obtain

=21 < | = plI* = llns1 = pl* + +20] A(un — 2) [|(T2 = 1) Az || + 07 My

(3.18)

From (3.18), (3.14), {z,} is bounded, lim,_, ||z, — p|| exists lim, o0 o, = 0 and
6 > 0, we obtain

lim |lu, — 2,| = 0. (3.19)

n—oo

Next, we prove that lim,_, « ||Zpn+1 —Z»|| = 0. From (1.4) and Lemma 2.14, we have

ftn = tpgr|| = [ TE(T + 6AY(TE — 1) Az — TE (I + 6A* (TP — 1) A)an_y |
< @ +6A (TS — D Azy,) — (wno1 + A" (T2 — ) Azyy)||
+ 1= TR (2, 4 5A (T — 1) Axy)

— (@1 + OA (TP — D) Az )|

Tn—1

< an —xp—1 — 0A"A(xy — 2p—1)]|
+O|| AT, Awn — T772 | Aw |
+ '1 — DN TE (2, + 6AT (T — 1) Axy)
— (o1 + SAN(TE: | — 1) Az,y)||
< (len = a2 = 200 Al — 2|12 + O AN 2 — 2 ]2)®
+3||A|| <||Axn(xn —xpy)|| + 1 - T"—;l T2 Ay, — Axn—lll)
|1 2 U o 4 67T - DAz,
— (T + 6A*(TF> — 1) Axy,)|
< (12541 + 1A a2

+O AN (lzn — 2|l + T2 A2y — Azia])
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4 1_74"7_1
T

n

|TF (2, + SA*(T> — T) Az,)

— (Tn + 0A"(TF> — 1) Az, ||

< (A =6lAIP) @ — zp-1ll + SIAIP (|20 — Tn—1ll
+ |1 = Bl A| =T Ay — Ay
+ ‘1 _ It |TF (2 + 6A (TS — 1) Axy,)
— (@ + SA*(TS> — I)Azy) ||
Tn—1
= |lzn — 2ol + ] All1 — T2 Az, — Azp |
+ ‘1 - T:;l | TE (0, + SA*(TF2 — 1) Aw,,)
— (zn + 0AY(TF: — 1) Aw,,)||
Ty
= llon —@n-al + 6l AL - = S8l Allen + &), (3.20)
where
En = ||T£2Axn — Az ||
& = T (2 +6A" (TS — D) Azy) — (xn + 6A* (TS — 1) Ax,)||. (3.21)

From (3.3), we obtain

1 Sn Sn—1
lyn — yn-all = ”7/ T(s)unds — / T(s)up—1ds||
Sn Jo Sn—1 Jo
1 Sn 1 Sn
< = T(s)upds — — T(s)up—1ds||
Sn Jo Sn Jo
1 Sn 1 Sp—1
+||—/ T(8)up—1ds — / T(8)up—1ds||
Sn Jo Sn—1 Jo
1 Sn
< = 1T (s)(un — un—1)llds
S’I’L 0
1 Sn s1 Sn—1
+||— T(s)up—1ds — T(s)up—1ds||
Sn Jo Sn—1Jo
— 11 snt
< Sn”Un - un—lH + | — — T(S)Un_lds
Sn Sn—1 0
1 Sn
+— T(s)un—1ds|| . (3.22)
Sn Sn—1

From (3.20) and (3.22), we obtain

Tn—1
1y = yn-1ll < o = zn-all + AN = —=[(3]|Allen + &)

/ T(s)up—1ds

1 1 Sn—1
/ T(s)up—1ds
0 Sn—1

Sn Sn—1

1
+ —

Sn

(3.23)

From (3.1) again, we obtain

|lzns1 —znll = ||Polanyf(2n) + (I — ponB)yn]
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- PC [Oénfﬂf(fﬂnfl) + (I - Manle)ynfl] ||

< ey f(@n) + (I = panB)yn) — (0n—17f(2n-1)
(I~ o 1By )|
= [[(any(f(zn) = f(@n-1)) + V(0 — an—1)f(zn-1)
+ (I - /jfanB)(yn - ynfl) + M(an - anfl)ynfl)H
< anyBllen — znoall + vlan — |l f (@n-1)|l
+ (I = anT)[yn — yn-1ll + plon — cn—1lllyn-1)|l
< an’yﬁuxn - xn—l” + 7|an - an—l”'f(xn—l)n
Tn—1
U = an)(llen — zn-all + SIAIL = —=—[(3][Allen + &)
1 1 Sn—t 1 Sn
— = ’ / T(8)up—1ds|| + — / T(8)up—1ds||)
Sn Sp—1 0 n Sn—1
Fulon = an—1|l[yn-1l|
= (1 au(r =18 (n — a]
Tn—1
+len — an-afllf(@n-)l[1 = =[] Allen +&n))
1 1 Sn—1 1 Sn
+|— - T(s)up—1ds|| + — T(s)up—1ds
Sn Sn—1 0 Sn Sn—1
+ulan — an—1l[[yn—1]
< (A =ap(t =) 20 — 2p_1l|
T 1 1 1
—|—M2(’yan—an_1|—|—‘1— ! - _
n Sn Sn—1 Sn—1
+ plo, — an—1), (3.24)

where

/ ’ T(s)up—1ds

n<l1 Sn—1

My = max {sup(5||A||€n + &), sup (‘
n<l

) ,Sup IIyn1||} - (3.25)
n<l1

Since {z,}, {u,} and {y, } are bounded, we have { Az, } and {T'(s)u,—1} are bounded.
Then My < co.

It follows from condition (1) —(3) we have lim, oo 7, = 7 > 0, lim,, o0 85, = +00
and Lemma 2.15, we obtain that

lim ||@n+1 — 2] = 0. (3.26)
n—oo
Next, we claim that lim,,_,« || T(s)z, — | = 0. From (3.1) and (3.3), we obtain
1 Sn
lewi =l < | Pe ot + - panB) - [ 16 unds| - P,
nJo
1 Sn
< Jawrsten) + 1= wonB) = [ T(s)unds —
n Jo
1 [
< ap ||vf(zn) — ,uBS— T(s)unpds|| .
n Jo

(3.27)
Since lim,,—, o a, = 0 and {z, }, {w,} are bounded, we have

nh_>ngo |€n+1 — ynl = 0. (3.28)



ITERATIVE SCHEME FOR FIXED POINT PROBLEM AND SPLIT EQUILIBRIUM 53

From (3.26) and (3.28), we get

lZn = Ynll < |20 — Togall + [Tt — ynll, (3.29)
it follows that
il — yn] = 0. (3:30)
On the other hand, from (3.1), we have
1 sn
IT(s)2m — 2| = HT(s)wn EVARS / T(s)unds
Sn 0
1 Sn 1 Sn
+||T(s)— T(s)upds — — T(s)unpds
Sn Jo Sn Jo
1 Sn
+||— T(s)upds — x,
Sn 0
1 Sn
< lep— — T(s)unpds
Sn 0
1 Sn 1 Sn
+ T(s)—/ T(s)upds — — T(s)upds
Sn 0 Sn 0
1 sn
+||— T(s)upds — x,
Sn 0
1 Sn 1 Sn
< 2|z —yull + HT(S)/ T(s)up,ds — — T(s)unpds||,
Sn Jo Sn Jo

(3.31)

So without loss of generality, we assume that & = {T'(s) : 0 < s < 400} is asymp-
totically nonexpansive semigroup on C, and from Lemma 2, we have

1 Sn 1 Sn
lim HT(S)/ T(s)upds — — T(s)upds|| = 0. (3.32)
n—»00 sn Jo sn Jo
It follows from (3.30), (3.31) and (3.32), we have
ILm 1T (s)xy, — x| = 0. (3.33)

Next, we claim that there exists a common fixed point of EP(Fy) N EP(Fy).
Since {z,} is bounded on Hilbert space, there exists a subsequence {x,, } of {z,}

which converges weakly to some z € X. From (3.19), y,,, — z. Now, we show that
z € EP(F1). From (3.1) and (A2), for any y € H, we have

%@ = Un, Un — Tp) > Fi(y, un) (3.34)

and hence
<y — Up,, u_mxmrm> > Fi(y, un, )- (3.35)
Since “ix,.r,, — 0 and u,, — 2, from (A1), it follows that 0 > Fi(y, 2) for all

y € H. Fort with 0 <t <1andy € H, let yy = ty + (1 — t)z, then we get
0 > Fi(y, 2). From (A1) and (A2), we have

0= Fi(ye,y) <tF1(ye,y) + (1 =) Fi(ye, 2) < tF1(ye, y) (3.36)

and hence 0 < Fi(y:,y). From (A3), we have 0 < Fi(z,y) for all y € H. Therefor,
z € EP(Fy).
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Since z,, — z and A is a bounded linear operator, we obtain Az,, — Az.
Let v,, = Az, — Tfj Tp,. It follows from (3.14), we have lim, . v,, = 0 and
J

ATy, — Un,; = TTI‘;"‘J Tp,;. Then from Lemma 2.13, we get

1
Fy(Axp; — vn;,y) + — <y — (Azn,; —vn;), (ATp, — vn,;) — Axnj> >0,Vy € Q.

(3.37)
Since Fy is upper semicontinuous in the first argument, and limsup,, ,. mn =7 > 0,
we taking 7 — oo, we have

Fy(Az —wvy,,,y) 20,Vy € Q (3.38)

that is Az € EP(F3) and hence z € Q.
Next, we claim that ((uF —vf)z*,2* =) <0,V € I' = F(S) N Q. From (3.1),
putting

1 [
Zn = anyf(zn) + (I — popB)— / T(s)unds, (3.39)
n Jo
we can observe that
1 sn
Tn1 = PCZTL = PCZn — Zn + an’yf(xn) + (I - /,[,OénB); / T(S)u’ﬂds
n Jo
(3.40)
it follows that
1 1 1
(,UB - ’Yf)xn = ;(Pszz - Zn) + ;(xn - xn—i—l) + ;(I - ,UNnB)(yn - xn)
(3.41)
Hence, for each p € T = F(S) N, we obtain that
1 1
<(NB*7f)xn7xn7p> = a7<PCZn*Znaxn7p>+a7<xn*xn+17xn7p>
1
+047<(I - NNnB)(yn - In),xn *p>
1 1
= a7<PCZn — Zn,Tn _p> + a7<xn — Tn+4+1,Tn _p>

1 1
+7<yn — Tn,Tn _p> + 7<Byn — Bxy,xn — p>-
Qo (7%}
(3.42)
From (3.42) taking limit n — oo, we have By, —Bx,, = Bz*—Bxz* = 0,y,—x, — 0
and Pz, — z, — Pox* — x* = 0, we have
(uB =~ f)Tn, 2 —p) <0, (3.43)

which implies that z = Pr(I — uB + ~vf).
Next, we claim that z € T' = F(S) N €. From (3.1), we have z,41 = Pcozy, and
for z* € I, we have

Tpnt1—x° = Pozp—2n+2n — 2
= Pozp —zn+an(vf(zn) — pBz*) + (I — pa, B)yn — (I — pa, B)z™.
(3.44)
Since P¢ is the metric projection from H; onto C, we obtain

(Pozn — #n, Pozn —2*) < 0. (3.45)
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It follows from (3.44) and (3.45), we have
*||2 (Pozn — 2Zny Tng1 — ) + an{(vf(zn) — pBx™), zpp1 — ™)
(I = panB)(yn — %), Tp+1 — %)

”zn-&-l -z

< an{(vf(xn) — pBx), xpye1 — ¥)
(I — pon B)(yn — %), Tpg1 — %)
< an¥(f(zn) — f(@7), Tn1 — 27)
+an(vf(z*) — uBx™), xpi1 — 2¥)
(I = panB)(yn — ), Tp1 — %)
< anyBllan — 2 |||l@ngr — 27| + an(yf(2") — pBa”), ang1 — %)
+(L = an7)[yn — 2"l Tpt1 — 27|
< aYBllan — 2||wnr — 27| + an (1 f(27) — pBa®), Tnp1 — %)
(1 — an?)llan — 2" llnss — 2|
< (I —an(m=vB8)lzn — &™[|[[znr — 27|
+an(vf(2") — pBz*), Tpi1 — %)
< U=l (o, — 0t~ o — o)
+an(vf(x") — pBx™), xpnp1 —x7), (3.46)

it implies that

* (12 (1704n(7_7’yﬂ))
"= Tra.c )
200,

Tt an(r —8)

[ 2y — 2|2

(Vf(@") = pBx™), tnyr — 27)

< (L=an(r =78)llzn — 2*|?
Ty ) ) g =)
< (1—an)|zn — z*||* + anby, (3.47)
where
an = an(T—=7B),
bn = ’ (vf(z") — pBx™),xny1 — a7). (3.48)

(1+an(T —75))

We see that X952, = 400 and limsup,,_,., b, < 0. From Lemma 2.15, we have
x, — x*. This completes the proof. O

Corollary 3.2. [17] Let Hy and Hsy be two real Hilbert spaces and let C C H,
and @ C Hy be nonempty closed subsets. Let A : Hi — Hy be a bounded linear
operator. Assume that F; : C x C — R and Fs : Q x Q — R are the bifunctions
satisfying Assumption 2.12 and Fy is upper semicontinuous in the first argument.
Let & = {T'(s) : 0 < s < oo} be a nonexpansive semigroup on C such that T' =
F(S)NQ #D. Let the sequence {un} and {x,} be generated by (5.1), and suppose
that the sequence {ay,} satisfies the following conditions:

(i) a, € (0,1) and lim,, 00 vy = 0;

(if) 222y, =0;

(iii) edther X2 glan+1 — an| < 00 or lim, 00 a(iil =1.
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where s, = X [7" LTds — 1 as n — oo. Then the sequence {u,} and {z,}
generated by (3.1) converge strongly to x* € T' = F(J) N Q, where * = Pr(l —

uB + v f)x*, which is the unique solution of the variational inequality (3.2).

Proof. From example 1.1 and example 1.2, we see that a nonexpansive semigroup is
T is asymptotically nonexpansive semigroup. Then this theorem cover by theorem
3.1. g

Corollary 3.3. Let Hy and Hy be two real Hilbert spaces and let C C Hy and
Q C Hy be nonempty closed subsets. Let A : Hy — Hs be a bounded linear operator.
Assume that F1 : C x C — R and Fy : Q x Q — R are the bifunctions satisfying
Assumption 2.12 and Fy is upper semicontinuous in the first argument. Let the
sequence {u,} and {x,} be generated by are generated by

Uy, = Trlzl(acn—|—(5A*(T7fz2 — 1) Az,,),
1 Sn
tan = anif(e) + (- panB)— [ T(s)unds, (3.49)
n J0O

the sequence {ay,} satisfies the following conditions:

(i) an € (0,1) and lim, o0 cvn = 0;
(ll) E%O:()Oln = 0;

(iii) edther £9% glan4+1 — an| < 00 or limy, o0 a‘z:l =1
~ _ 1 [Sn 7T
where s, = - [" Lyds — 1 as n — oo. Then the sequence {un} and {z,}

converge strongly to x* € T' = F(3) N Q, where v* = Pr(I — uB 4+ vf)x*, which is
the unique solution of the variational inequality (3.2).
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