Journal of Nonlinear Analysis and Optimization Volume 11(1) (2020) http://www.math.sci.nu.ac.th

ISSN: 1906-9685

J. Nonlinear Anal. Optim.

APPROXIMATION OF SOLUTIONS OF SPLIT INVERSE PROBLEM FOR MULTI-VALUED DEMI-CONTRACTIVE MAPPINGS IN HILBERT SPACES

A.U. BELLO,^{1,2} C.E. CHIDUME,² AND M. ISYAKU*,^{1,2}

Department of Mathematical Sciences, Federal University, Dutsin-Ma Katsina, Nigeria.
Department of Pure and Applied Mathematics, AUST, Abuja, Nigeria.

ABSTRACT. Let H_1 and H_2 be real Hilbert spaces and $A_j: H_1 \longrightarrow H_2$, $1 \le j \le r$ be bounded linear linear operators, $U_i: H_1 \longrightarrow 2^{H_1}$, $1 \le i \le n$ and $T_j: H_2 \longrightarrow 2^{H_2}$, $1 \le j \le r$ be multi-valued demi-contractive operators. An iterative scheme is constructed and shown to converge weakly to a solution of generalized split common fixed points problem (GSCFPP). Under additional mild condition, the scheme is shown to converge strongly to a solution of GSCFPP. Moreover, our scheme is of special interest.

KEYWORDS: Fixed Point; Multivalued Demi-Contractive Mappings; Split Inverse Problem.

AMS Subject Classification: 47H04, 470H10.

1. Introduction

Let X and Y be two real Banach spaces. A split inverse problem is to find a point $x^* \in X$ that solves IP_1 such that $y^* = Ax^* \in Y$ solves IP_2 , where IP_1 and IP_2 are two inverse problems. A simple generalization of inverse problem is split convex feasibility problem (SCFP) which was introduced in 1994 by Censor and Elfving [18] in finite dimensional Hilbert spaces for modelling inverse problems arising from signal detection, computer temography, image recovery and radiation therapy treatment planning (see, e.g., [5], [16], [19] and [18]). The (SCFP) is formulated as follows:

find a point
$$x^* \in C$$
 such that $Ax^* \in Q$, (1.1)

where H_1 , H_2 are real Hilbert spaces, $A: H_1 \to H_2$ bounded linear operator, and $C \subseteq H_1$, $Q \subseteq H_2$ are non-empty, closed and convex sets.

In what follows we denote the solution set of the (SCFP) by

$$\Gamma \equiv \Gamma(U, A) := \{ y \in C : Ay \in Q \}. \tag{1.2}$$

Article history: Received 20 July 2018; Accepted 8 December 2019.

^{*} Corresponding author.
Email address: mustyisyaku@gmail.com.

In 2002, Byrne in [5] proved that x^* is a solution to (1.2) if and only if it is a fixed point of

$$P_C(I - rA^*(I - P_O)A),$$

where A^* is the adjoint operator of A, P_C and P_D are the metric projections from H_1 onto C and from H_2 onto Q, respectively, and r > 0 is a positive constant. Indeed, this can be easily shown using characterization of projection mapping. Censor and Segal proposed in [21], the following algorithm to solve (1.2)

Algorithm: see [[21], Algorithm 2].

let $x^* \in H_1 := \mathbb{R}^n$ be arbitrary and for $k \in \mathbb{N}$ let

$$x_{k+1} = U(x_k + \gamma A^*(T - I)Ax_k), \tag{1.3}$$

where $\gamma \in (0, \frac{2}{L})$, L being the spectral radius of the operator A^*A and I is the identity operator.

In 2010, Moudafi [32] proved the following result for approximation of solution of SCFP involving demicontractive mappings. Given a bounded linear operator $A: H_1 \to H_2$, let $U: H_1 \to H_1$ and $T: H_2 \to H_2$ be demi-contractive (with constants β , μ , respectively) with nonempty Fix(U) = C and Fix(T) = Q. Assume that U-I and T-I are demi-closed at 0. If $\Gamma \neq \emptyset$, then any sequence $\{x_k\}$ generated by

$$x_{k+1} = (1 - \alpha_k)u_k + \alpha_k U(u_k), \ k \ge 0, \tag{1.4}$$

where $u_k = x_k + \gamma A^*(T-I)Ax_k$, $\gamma \in (0, \frac{1-\mu}{\lambda})$, λ being the spectral radius of the operator A^*A and $\alpha_k \in (0,1)$,

converges weakly to $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu}{L})$ and $\alpha_k \in (\delta, 1-\beta-\delta)$ for small enough $\delta > 0$.

Recently, inspired and motivated by the result of Moudafi [32], Tang et al. [42] proposed a cyclic algorithm (Algorithm 2 below) to solve the SCFP for demi-contractive operators $\{U_i\}_{i=1}^p$ and $\{T_j\}_{j=1}^r$. Then they proved that the sequence generated by the proposed algorithm converges weakly to the solution of SCFP. Their work extends those of Moudafi [32], Censor and Segal [21] and others.

Algorithm 2: [42]

Let $x_0 \in H_1$ be arbitrary and let the sequence $\{x_k\}$ be defined by

$$x_{k+1} = (1 - \alpha_k)u_k + \alpha_k U_{i(k)}(u_k), \ k > 0, \tag{1.5}$$

where $u_k = x_k + \gamma A^*(T_{j(k)} - I)Ax_k$, $i(k) = k \pmod{p} + 1$ and $j(k) = k \pmod{r} + 1$, $\gamma \in (0, \frac{1-\mu}{\lambda})$, λ being the spectral radius of the operator A^*A and $\alpha_k \in (0, 1)$.

Very recently, in [25], Gibali proved the following strong convergence result for demicontractive operators; Let H_1 and H_2 be two real Hilbert spaces, $A: H_1 \to H_2$ be a bounded linear operator. Let $U: H_1 \to H_1$ and $T: H_2 \to H_2$ be demi-contractive (with constants β , μ , respectively) with nonempty Fix(U) = C and Fix(T) = Q. Assume that U-I and T-I are demi-closed at 0 and that there exists $\sigma \neq 0 \in H_1$, such that

$$\begin{cases} \langle U(q) - q, \sigma \rangle \ge 0 \ \forall \ q \in H_1, \\ \langle A^*(T - I)Ay, \sigma \rangle \ge 0 \ \forall \ y \in H_1. \end{cases}$$
(1.6)

If $\Gamma \neq \emptyset$, then for a suitable $x_0 \in H_1$ any sequence $\{x_k\}$ generated by

$$x_{k+1} = (1 - \alpha_k)u_k + \alpha_k U(u_k), \ k > 0, \tag{1.7}$$

where $u_k = x_k + \gamma A^*(T - I)Ax_k$, $\gamma \in (0, \frac{1-\mu}{\lambda})$, λ being the spectral radius of the operator A^*A and $\alpha_k \in (0, 1)$,

converges strongly to $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu}{L})$ and $\alpha_k \in (\delta, 1-\beta-\delta)$ for small enough $\delta > 0$.

Motivated by the works of Moudafi [32], A. Gibali [25], Censor and Segal [21], it is our purpose in this paper to solve a general split common fixed points problem formulated as follows:

Find a point
$$x^* \in C := \bigcap_{i=1}^n C_i$$
 such that $A_i x^* \in Q_i$, (1.8)

where $A_j: H_1 \to H_2$ are bounded linear operators, $C_i = Fix(U_i), \ 1 \le i \le n$ and $Q_j = Fix(T_j), \ 1 \le j \le r$ with $U_i: H_1 \to H_1$ and $T_j: H_2 \to H_2$ multi-valued demi-contractive operators (with constants $\beta_i, \ 1 \le i \le n$ and $\mu_j, \ 1 \le j \le r$, respectively).

2. Preliminaries

We begin with the following definitions and lemmas.

Definition 2.1. Let $T: H \to H$ be an operator and $D \subseteq H$ and $F(T) = \{x \in K : x = Tx\}.$

• The operator T is called nonexpansive, if $\forall x, y \in D$

$$||Tx - Ty|| \le ||x - y|| \tag{2.1}$$

• T is called quasi-nonexpansive, if $\forall (x,q) \in D \times F(T)$

$$||Tx - q|| < ||x - q|| \tag{2.2}$$

• T is called k-strictly pseudo-contractive (see e.g., [28]), if there exists $k \in [0,1)$ such that $\forall (x,y) \in D$

$$||Tx - Ty||^2 \le ||x - y||^2 + k||x - y - (Tx - Ty)||^2$$
(2.3)

• T is called demi-contractive (see e.g., [3, 20, 27]), if there exists $\beta \in [0, 1)$ such that $\forall (x, q) \in D \times Fix(T)$

$$||Tx - q||^2 \le ||x - q||^2 + \beta ||x - Tx||^2$$
(2.4)

Definition 2.2. Let H be a real Hilbert space, an operator T is called demiclosed at $q \in H$ (see e.g., [2]), if

for any sequence $\{x_k\}_{k=1}^{\infty}$ such that $x_k \rightharpoonup x^*$ and $Tx_k \to q$, we have $Tx^* = q$.

Definition 2.3. Let H be a real Hilbert space. The map $D: 2^H \times 2^H \longrightarrow \mathbb{R}^+$ defined by

$$\begin{split} D(A,B) &= \max\{\sup_{y \in A} d(y,B), \sup_{x \in B} d(x,A)\} \text{ for all } A,B \in 2^H, \\ where &\quad d(y,B) := \inf_{x \in A} d(x,y), \end{split}$$

is called Pompeiu-Hausedorff distance.

Remark 1. In general, the map D is not a metric. However, it becomes a metric if it is defined on a set of closed and bounded subsets of H.

Let $T: H \to 2^H$ be a multi-valued mapping. An element $x^* \in H$ is said to be a fixed point of T if $x^* \in Tx^*$. We denote by F(T) the fixed points set of T i.e.,

$$F(T) := \{ x \in H : x \in Tx \}. \tag{2.5}$$

Definition 2.4. Let H be a real Hilbert space and CB(H) be a set of closed and bounded subsets of H. $T: H \to 2^{CB(H)}$ be a multi-valued mapping. Then, T is said to be demi-closed at zero if for any sequence $\{x_k\} \subset H$ with $x_k \to x^*$, and $d(x_k, Tx_k) \longrightarrow 0$, we have $x^* \in Tx^*$.

Definition 2.5. Let H be a real Hilbert space.

• A multi-valued mapping $T: \mathcal{D}(T) \subseteq H \to 2^{CB(H)}$ is said to be nonexpansive (see e.g., [22]), if

$$D(Tx, Ty) \le ||x - y|| \ \forall \ x, y \in \mathcal{D}(T)$$
(2.6)

• The mapping $T:\mathcal{D}(T)\subseteq H\to 2^H$ is said to be quasi-nonexpansive if $F(T)\neq\emptyset$ and

$$D(Tx, Tx^*) \le ||x - x^*|| \ \forall \ x \in \mathcal{D}(T), \ x^* \in F(T).$$
 (2.7)

• The mapping $T: \mathcal{D}(T) \subseteq H \to 2^H$ is said to be k-strictly pseudo-contractive if there exists there exists a constant $k \in [0,1]$ such that for all $u \in Tx, v \in Ty$

$$(D(Tx, Ty))^2 \le ||x - y||^2 + k||x - y - (u - v)||^2$$
; and (2.8)

• $T: \mathcal{D}(T) \subseteq H \to 2^H$ is said to be demi-contractive if $F(T) \neq \emptyset$ and there exists a constant $k \in [0,1]$ such that for all $x \in \mathcal{D}(T)$, $u \in Tx$

$$(D(Tx, \{y\}))^2 \le ||x - y||^2 + k||x - u||^2.$$
(2.9)

The class of demi-contractive operators is a very important generalization of non-expansive operators Also some operators that arise in optimization problems are of demi-contractive type. See for example, Chidume and Maruster [11].

It is obvious that, the class of multi-valued quasi-nonexpansive is properly contained in the class of multi-valued demi-contractive operators. Indeed, consider the following example:

Example 1. (see e.g., [8]) Let $H = \mathbb{R}$ with the usual metric. Define $T : \mathbb{R} \to \mathbb{R}$ by

$$Tx = \begin{cases} [-3x, -\frac{5x}{2}], & x \in [0, \infty), \\ [-\frac{5x}{2}, -3x], & x \in (-\infty, 0]. \end{cases}$$
 (2.10)

We have that $F(T) = \{0\}$ and T is a multi-valued demi-contractive mapping which is not quasi-nonexpansive. In fact, for each $x \in (-\infty, 0) \cup (0, \infty)$, we have

$$(D(Tx,T0))^{2} = |-3x-0|^{2}$$
$$= 9|x-0|^{2},$$

which implies that T is not quasi-nonexpansive. Also, we have that

$$(d(x,Tx))^2 = |x - (-\frac{5x}{2})|^2$$

$$= \frac{49}{4}|x|^2.$$

Thus,

$$(D(Tx,T0))^{2} = |x-0|^{2} + 8|x-0|^{2}$$
$$= |x-0|^{2} + \frac{32}{49} (d(x,Tx))^{2}.$$

Therefore, T is a demi-contractive mapping with constant $k = \frac{32}{49} \in (0,1)$.

Lemma 2.6. Let $(X, \langle \cdot, \cdot \rangle)$ be an IPS. Then for any $x, y \in X$, and $\alpha \in [0, 1]$ the following inequality holds:

$$\|\alpha x + (1 - \alpha)y\|^2 = \alpha \|x\|^2 - \alpha (1 - \alpha) \|x - y\|^2 + (1 - \alpha) \|y\|^2$$
(2.11)

Lemma 2.7. (see, e.g., [10]) Let $A, B \in CB(X)$ and $a \in A$. For every $\gamma > 0$, there exists $b \in B$ such that

$$d(a,b) \le D(A,B) + \gamma. \tag{2.12}$$

Lemma 2.8. (see,e.g., [10]) Let X be a reflexive real Banach space and $A, B \in CB(X)$. Assume that B is weakly closed. Then, for every $a \in A$, there exists $b \in B$ such that

$$||a - b|| \le D(A, B).$$
 (2.13)

Lemma 2.9. (see,e.g., [12]) Let E be a normed linear space, $B_1 \in CB(E)$ and $x_0 \in E$ arbitrary. Then the following hold;

$$D(\{x_0\}, B_1) = \sup_{b_1 \in B_1} ||x_0 - b_1||$$

Lemma 2.10. (Opial's lemma) Let H be a real Hilbert space and $\{x_k\}$ a sequence in H such that there exists a nonempty set $\Gamma \subset H$ satisfying the following;

- i) For every $y \in \Gamma$, $\lim ||x_k y||$ exists.
- ii) Any weak-cluster point of the sequence x_k belong to Γ . Then, there exists $\bar{x} \in \Gamma$ such that $\{x_k\}$ converges weakly to \bar{x} .

Lemma 2.11. Let $T: \mathcal{D}(T) \subseteq H \to 2^H$ be a demi-contractive, then

$$\langle x - u, x - p \rangle \ge \frac{1 - \beta}{2} ||x - u||^2 \ \forall u \in Tx.$$
 (2.14)

Proof. Definition of T gives

$$(D(Tx,p))^2 \le ||x-p||^2 + \beta ||x-u||^2 \ \forall u \in Tx$$

 $D(Tx,p) \le \sqrt{||x-p||^2 + \beta ||x-u||^2} \ \forall u \in Tx$

We have by lemma (2.9) that $D(Tx, p) = \sup_{u \in Tx} ||u - p||$. Using this result we get

$$-\beta ||x - u||^2 \le ||x - p||^2 - ||u - p||^2 \ \forall u \in Tx \dots (i)$$

We observe that $2\langle x - u, x - p \rangle = \|x - u\|^2 + \|x - p\|^2 - \|u - p\|^2$, this implies $\|x - p\|^2 - \|u - p\|^2 = 2\langle x - u, x - p \rangle - \|x - u\|^2$. Using this in (i) we have

$$-\beta ||x - u||^2 \le 2\langle x - u, x - p \rangle - ||x - u||^2,$$

hence,

$$\frac{1-\beta}{2}||x-u||^2 \le \langle x-u, x-p \rangle \ \forall u \in Tx,$$

which completes the proof.

3. Main Result

We now prove weak and strong convergence for our proposed iterative scheme. However, we begin with the following lemma.

3.1. Weak Convergence Result.

$$\begin{cases} q_k = x_k + \gamma \sum_{j=1}^r A_j^*(b_{j,k} - A_j x_k), \text{ where } b_{j,k} \in T_j(A_j x_k) \ \forall 1 \le j \le r \\ x_{k+1} = (1 - \alpha_k) q_k + \frac{\alpha_k}{n} \sum_{i=1}^n u_{i,k}, \text{ where } u_{i,k} \in U_i(q_k) \ \forall \ 1 \le i \le n, \end{cases}$$
(3.1)

where U_i and T_j are multi-valued demi-contractive for each $1 \le i \le n$, $1 \le j \le r$, respectively, $\gamma \in \left(0, \frac{1-\mu_{max}}{rL}\right)$ with μ_{max} the maximum of demi-contractive constants of U_i and L being the spectral radius of the operator A^*A and $\alpha_k \in (0, 1)$.

Lemma 3.1. Let $A_j: H_1 \to H_2, \ 1 \leq j \leq r$ be bounded linear operators, $U_i: H_1 \to 2^{H_1}, \ 1 \leq i \leq n$ and $T_j: H_2 \to 2^{H_2}, \ 1 \leq j \leq r$ be multi-valued demi-contractive (with constants β_i , μ_j , respectively) such that $U_i(p) = \{p\}$ for all $p \in F(U_i)$ and nonempty $Fix(U_i) = C_i$ and $Fix(T_j) = Q_j$ with $U_i(x)$ and $T_j(y)$ closed and bounded $\forall i$ and j and $\forall x \in H_1, \ y \in H_2$. Then for arbitrary $x_0 \in H_1$, the sequence $\{x_k\}$ generated by algorithm (3.1) is Féjer monotone with respect to Γ , that is for every $x \in \Gamma$,

$$||x_{k+1} - x|| \le ||x_k - x|| \ \forall \ k \in \mathbb{N},$$

provided that $\gamma \in (0, \frac{1-\mu_{max}}{rL})$ and $\alpha_k \in (0, 1)$.

Proof. Set $L := \sup_{\substack{1 \leq i \leq n \\ 1 \leq j \leq r}} A_i^* A_j$, $\mu_{max} := \sup_{1 \leq i \leq n} U_i$, $\beta_{max} := \sup_{1 \leq j \leq r} T_j$; where U_i and T_j are demi-contractive constants of U_i and T_j , respectively. Let $p \in \Gamma$ then from (3.1), we have

$$||x_{k+1} - p||^2 = ||(1 - \alpha_k)q_k + \frac{\alpha_k}{n} \sum_{i=1}^n u_{i,k} - p||^2$$

$$= ||q_k - p + \frac{\alpha_k}{n} \sum_{i=1}^n (u_{i,k} - q_k)||^2$$

$$= ||q_k - p||^2 + 2\frac{\alpha_k}{n} \langle q_k - p, \sum_{i=1}^n (u_{i,k} - q_k) \rangle$$

$$+ \frac{\alpha_k^2}{n^2} ||\sum_{i=1}^n (u_{i,k} - q_k)||^2$$

$$= ||q_k - p||^2 + 2\frac{\alpha_k}{n} \sum_{i=1}^n \langle u_{i,k} - q_k, q_k - p \rangle$$

$$+ \frac{\alpha_k^2}{n^2} ||\sum_{i=1}^n (u_{i,k} - q_k)||^2$$

$$= ||q_k - p||^2 - 2\frac{\alpha_k}{n} \sum_{i=1}^n \langle q_k - u_{i,k}, q_k - p \rangle$$

$$+ \frac{\alpha_k^2}{n^2} ||\sum_{i=1}^n (u_{i,k} - q_k)||^2$$

Using lemma (2.11), we have

$$\leq \|q_k - p\|^2 - \frac{\alpha_k}{n} \sum_{i=1}^n (1 - \beta_i) \|q_k - u_{i,k}\|^2 + \frac{\alpha_k^2}{n^2} \|\sum_{i=1}^n (u_{i,k} - q_k)\|^2$$

$$\leq \|q_k - p\|^2 - \frac{\alpha_k}{n} (1 - \beta_{max_i}) \sum_{i=1}^n \|q_k - u_{i,k}\|^2 + \frac{\alpha_k^2}{n} \sum_{i=1}^n \|(u_{i,k} - q_k)\|^2.$$

Therefore.

$$||x_{k+1} - p||^{2} \leq ||q_{k} - p||^{2} - \frac{\alpha_{k}}{n} (1 - \beta_{max}) \sum_{i=1}^{n} ||q_{k} - u_{i,k}||^{2}$$

$$+ \frac{\alpha_{k}^{2}}{n} \sum_{i=1}^{n} ||(u_{i,k} - q_{k})||^{2}$$

$$= ||q_{k} - p||^{2}$$

$$- \frac{\alpha_{k}}{n} ((1 - \beta_{max}) - \alpha_{k}) \sum_{i=1}^{n} ||u_{i,k} - q_{k}||^{2} \dots (3.0.1)$$

Also from (3.1), we obtain

$$||q_k - p||^2 = ||x_k - p + \gamma \sum_{j=1}^r A_j^*(b_{j,k} - A_j x_k)||^2$$

$$= ||x_k - p||^2 + 2\gamma \sum_{j=1}^r \langle x_k - p, A_j^*(b_{j,k} - A_j x_k) \rangle$$

$$+ \gamma^2 ||\sum_{j=1}^r (b_{j,k} - A_j x_k)||^2$$

$$= ||x_k - p||^2 - 2\gamma \sum_{j=1}^r \langle A_j x_k - A_j p, A_j x_k - b_{j,k} \rangle$$

$$+ \gamma^2 ||\sum_{j=1}^r (b_{j,k} - A_j x_k)||^2$$

Using lemma (2.11), we get

$$\leq \|x_k - p\|^2 - \gamma \sum_{j=1}^r (1 - \mu_j) \|b_{j,k} - A_j x_k\|^2$$

$$+ \gamma^2 r L \|b_{j,k} - A_j x_k\|^2$$

Hence,

$$||q_k - p||^2 \leq ||x_k - p||^2 - \gamma \sum_{j=1}^r (1 - \mu_{max}) ||b_{j,k} - A_j x_k||^2$$

$$+ \gamma^2 r L ||b_{j,k} - A_j x_k||^2$$

$$\leq ||x_k - p||^2 - \gamma (1 - \mu_{max}) \sum_{j=1}^r ||b_{j,k} - A_j x_k||^2$$

$$+ \gamma^2 r L ||b_{j,k} - A_j x_k||^2$$

$$\leq ||x_k - p||^2 - \gamma((1 - \mu_{max}) - \gamma rL) \sum_{j=1}^r ||b_{j,k} - A_j x_k||^2.$$

Substituting this in (3.0.1) we have,

$$||x_{k+1} - p||^{2} \leq ||x_{k} - p||^{2} - \gamma((1 - \mu_{max}) - \gamma rL) \sum_{j=1}^{r} ||b_{j,k} - A_{j}x_{k}||^{2}$$

$$- \frac{\alpha_{k}}{n} ((1 - \beta_{max}) - \alpha_{k}) \sum_{i=1}^{n} ||u_{i,k} - q_{k}||^{2} \dots (3.0.2)$$

$$\leq ||x_{k} - p||^{2}$$

provided $\gamma \in \left(0, \frac{1-\mu_{max}}{rL}\right)$ and $\alpha_k \in \left(0, 1-\beta_{max}\right)$. Hence, $\{x_k\}$ is Féjer monotone.

Let $A_j: H_1 \to H_2$, $1 \leq j \leq r$ be bounded linear operators, $U_i: H_1 \to 2^{H_1}$, $1 \leq i \leq n$ and $T_j: H_2 \to 2^{H_2}$, $1 \leq j \leq r$ be multi-valued demi-contractive (with constants β_i, μ_j , respectively) such that $U_i(p) = \{p\}$ for all $p \in F(U_i)$ and nonempty $Fix(U_i) = C_i$ and $Fix(T_j) = Q_j$ with $U_i(x)$ and $T_j(y)$ closed and bounded $\forall i$ and j and $\forall x \in H_1, y \in H_2$.

If $\Gamma \neq \emptyset$, then any sequence $\{x_k\}$ generated by algorithm (3.1) converges weakly to a split common fixed point $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu_{max}}{rL})$ and $\alpha_k \in (\delta, 1-\beta_{max}-\delta)$ for small enough $\delta > 0$.

Proof. From (3.0.2), we obtained that $\{||x_k - p||\}$ is monotone decreasing thus, $\{x_k\}$ is bounded and $\lim ||x_k - p||$ exists say, y^* .

Since $\{x_k\}$ is bounded, we have that there exists $\{x_{k_v}\}$ such that

$$x_{k_v} \rightharpoonup x^* \ as \ v \to \infty$$
, which implies that $A_j x_{k_v} \longrightarrow A_j x^* \ as \ v \to \infty$, and thus $A_j x_{k_v} \rightharpoonup A_j x^* \dots (3.0.3)$

From (3.0.2) also, we have

$$\lim \|b_{j,k} - A_j x_k\| = 0 \text{ as } k \to \infty,$$
 which implies that $d(T_j(A_j x_k), A_j x_k) \le \|b_{j,k} - A_j x_k\| \longrightarrow 0 \ \forall 1 \le j \le r,$ then, $d(T_j(A_j x_k), A_j x_k) \longrightarrow 0,$ thus, $d(T_j(A_j x_k), A_j x_k) \longrightarrow 0 \ \forall 1 \le j \le r \dots (3.0.4)$

Since $(T_i - I)$ is demi-closed at 0, we have from (3.0.3) and (3.0.4) that

$$A_j x^* \in T_j(A_j x^*)$$

$$\Rightarrow A_j x^* \in F(T_j) \ \forall 1 \le j \le r$$

We also have that

$$q_{k_v} = x_{k_v} + \gamma \sum_{j=1}^r A_j^* (b_{j,k} - A_j x_{k_v})$$

Therefore,

$$q_{k_v} \longrightarrow x^* \dots (3.0.5)$$

From (3.0.2), we have
$$\|u_{i,k} - q_k\| \longrightarrow 0$$
 as $k \longrightarrow 0$,
this implies that $d(U_i(q_k), q_k) \le \|u_{i,k} - q_k\| \ \forall 1 \le i \le n$,
then, $d(U_i(q_k), q_k) \longrightarrow 0 \ \forall 1 \le i \le n$,
hence, $d(U_i(q_{k_n}), q_{k_n}) \longrightarrow 0 \ \forall 1 \le i \le n$.

This together with (3.0.5) imply that $x^* \in U_i(x^*)$ with implies that $x^* \in F(U_i)$ for each i = 1, 2, ..., n,

hence, $x^* \in \cap_{i=1}^n F(U_i)$ and $A_j x^* \in F(T_j)$ for each j=1,2,...,r. Hence, $x^* \in \Gamma$. We have shown for any subsequence $\{x_{k_v}\}$ of $\{x_k\}$ such that $x_{k_v} \rightharpoonup x^*$ that $x^* \in \Gamma$. Thus, applying Opial's lemma we have that there exists $x^{**} \in \Gamma$ such that the sequence $x_k \rightharpoonup x^{**}$.

Hence, weak convergence for $\{x_k\}$ is established.

We now prove strong convergence for our iterative scheme.

3.2. Strong Convergence Result. Let H_1 and H_2 be two real Hilbert spaces and $A_j: H_1 \to H_2, \ 1 \leq j \leq r$ be bounded linear operators, $U_i: H_1 \to 2^{H_1}, \ 1 \leq i \leq n$ and $T_j: H_2 \to 2^{H_2}, \ 1 \leq j \leq r$ be multi-valued demi-contractive (with constants $\beta_i, \ \mu_j$, respectively) such that $U_i(p) = \{p\}$ for all $p \in F(U_i) = C_i$ and $T_j(p) = \{p\}$ for all $p \in F(T_j) = Q_j$ with $U_i(x)$ and $T_j(y)$ closed and bounded $\forall i = 1, 2, ..., n \ and \ j = 1, 2, ..., r \ and \ \forall x \in H_1, \ y \in H_2$. Suppose that there exists $\sigma \neq 0 \in H_1$, such that

$$\begin{cases} \langle u_i - q, \sigma \rangle \ge 0 \ \forall \ 1 \le i \le n, \ u_i \in U_i(q) \ and \ q \in H_1, \\ \langle A_j^*(b_j - A_j y), \sigma \rangle \ge 0 \ \forall \ 1 \le j \le r, \ b_j \in T_j(A_j y) \ and \ y \in H_1. \end{cases}$$
(3.2)

If $\Gamma \neq \emptyset$, then for a suitable $x_0 \in H_1$ any sequence $\{x_k\}$ generated by (3.1) converges strongly to $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu_{max}}{rL})$ and $\alpha_k \in (\delta, 1-\beta_{max}-\delta)$ for small enough $\delta > 0$.

Proof. Let $x^* \in \Gamma$ and choose $x_0 \in H_1$ such that

$$\langle x_0 - x^*, \sigma \rangle > 0,$$

then there exists $\epsilon > 0$ such that

$$\langle x_0 - x^*, \sigma \rangle \ge \epsilon ||x_0 - x^*||^2.$$

We now proof by induction that

$$\langle x_{k+1} - x^*, \sigma \rangle \ge \epsilon ||x_{k+1} - x^*||^2 \ \forall \ k \ge 0.$$
 (3.3)

Indeed, assume it holds up to some $k \geq 0$, then

$$\langle x_{k+1} - x^*, \sigma \rangle = \langle x_{k+1} - x_k + x_k - x^*, \sigma \rangle$$

$$= \langle x_{k+1} - x_k, \sigma \rangle + \langle x_k - x^*, \sigma \rangle$$

$$= \langle \gamma \sum_{j=1}^r A_j^*(b_{j,k} - A_j x_k) + \frac{\alpha_k}{n} \sum_{i=1}^n (u_{i,k} - q_k), \sigma \rangle$$

$$+ \langle x_k - x^*, \sigma \rangle$$

$$= \gamma \sum_{j=1}^r \langle A_j^*(b_{j,k} - A_j x_k), \sigma \rangle + \frac{\alpha_k}{n} \sum_{i=1}^n \langle (u_{i,k} - q_k), \sigma \rangle$$

$$+ \langle x_k - x^*, \sigma \rangle.$$

Since $\gamma > 0$, $\alpha_k > 0$ and by (3.1) we get

$$\langle x_{k+1} - x^*, \sigma \rangle \ge \langle x_k - x^*, \sigma \rangle$$

by the induction assumption we have that

$$\langle x_{k+1} - x^*, \sigma \rangle \ge \epsilon ||x_k - x^*||^2$$

by lemma (3.1) the sequence $\{x_k\}$ generated by algorithm (3.1) is Féjer monotone with respect to Γ , so that

$$\langle x_{k+1} - x^*, \sigma \rangle \ge \epsilon ||x_{k+1} - x^*||^2.$$

Therefore, (3.2) holds for all $k \geq 0$.

By theorem (3.3) we have

$$x_k \rightharpoonup x^*$$
, so that $\langle g, x_k \rangle \longrightarrow \langle g, x^* \rangle \ \forall \ g \in H_1.$

In particular, for $g = \sigma \in H_1$ we get

$$\langle \sigma, x_k \rangle \longrightarrow \langle \sigma, x^* \rangle which implies \langle \sigma, x_k - x^* \rangle \longrightarrow 0 \ as \ k \longrightarrow +\infty.$$

From (3.2) we have

$$||x_k - x^*||^2 \le \frac{1}{\epsilon} \langle x_k - x^*, \sigma \rangle \longrightarrow 0 \text{ as } k \longrightarrow +\infty.$$
hus
$$||x_k - x^*||^2 \longrightarrow 0 \text{ as } k \longrightarrow +\infty.$$

Consequently, $||x_k - x^*|| \longrightarrow 0$ as $k \longrightarrow +\infty$; and hence $x_k \longrightarrow x^* \in \Gamma$ This completes the proof.

The following corollary is a special case of theorem (3.3) when i = j = 1

Corollary 3.2. Let H_1 and H_2 be two real Hilbert spaces and $A: H_1 \to H_2$ be a bounded linear operator, $U: H_1 \to H_1$ and $T: H_2 \to H_2$ be multi-valued demi-contractive (with constants β , μ , respectively) such that $U(p) = \{p\}$ for all $p \in F(U) = C$ and $T(p) = \{p\}$ for all $p \in F(T) = Q$ with U(x) and T(y) closed and bounded $\forall x \in H_1, y \in H_2$.

Assume that there exists $\sigma \neq 0 \in H_1$, such that

$$\begin{cases} \langle u - q, \sigma \rangle \ge 0 \ \forall \ u \in U(q) \ and \ q \in H_1, \\ \langle A^*(b - Ay), \sigma \rangle \ge 0 \ \forall \ b \in T(Ay) \ and \ y \in H_1. \end{cases}$$
(3.4)

If $\Gamma \neq \emptyset$, then for a suitable $x_0 \in H_1$ any sequence $\{x_k\}$ generated by algorithm (3.1) converges strongly to $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu}{L})$ and $\alpha_k \in (\delta, 1-\beta-\delta)$ for small enough $\delta > 0$.

The following result generalizes theorem of Moudafi [32] which is a special case of theorem (3.3) where n = r = 1, and U and T are single-valued demi-contractive.

Corollary 3.3. Let H_1 and H_2 be two real Hilbert spaces, $A: H_1 \to H_2$ be a bounded linear operator. Let $U: H_1 \to H_1$ and $T: H_2 \to H_2$ be demi-contractive (with constants β , μ , respectively) with nonempty Fix(U) = C and Fix(T) = Q. Assume that U-I and T-I are demi-closed at 0 and that there exists $\sigma \neq 0 \in H_1$, such that

$$\begin{cases} \langle U(q) - q, \sigma \rangle \ge 0 \ \forall \ q \in H_1, \\ \langle A^*(T - I)Ay, \sigma \rangle \ge 0 \ \forall \ y \in H_1. \end{cases}$$
(3.5)

If $\Gamma \neq \emptyset$, then for a suitable $x_0 \in H_1$ any sequence $\{x_k\}$ generated by algorithm (3.1) converges strongly to $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu}{L})$ and $\alpha_k \in (\delta, 1-\beta-\delta)$ for small enough $\delta > 0$.

Corollary 3.4. Let H_1 and H_2 be two real Hilbert spaces and $A_j: H_1 \to H_2$, $1 \le j \le r$ be bounded linear operators, $U_i: H_1 \to 2^{H_1}$, $1 \le i \le n$ and $T_j: H_2 \to 2^{H_2}$, $1 \le j \le r$ be multi-valued quasi-nonexpansive such that $U_i(p) = \{p\}$ for all

 $p \in F(U_i) = C_i$ and $T_j(p) = \{p\}$ for all $p \in F(T_j = Q_j \text{ with } U_i(x) \text{ and } T_j(y) \text{ closed}$ and bounded $\forall i = 1, 2, ..., n \text{ and } j = 1, 2, ..., r \text{ and } \forall x \in H_1, y \in H_2.$ Suppose that there exists $\sigma \neq 0 \in H_1$, such that

$$\begin{cases} \langle u_i - q, \sigma \rangle \ge 0 \ \forall \ 1 \le i \le n, \ u_i \in U_i(q) \ and \ q \in H_1, \\ \langle A_j^*(b_j - A_j y), \sigma \rangle \ge 0 \ \forall \ 1 \le j \le r, \ b_j \in T_j(A_j y) \ and \ y \in H_1. \end{cases}$$
(3.6)

If $\Gamma \neq \emptyset$, then for a suitable $x_0 \in H_1$ any sequence $\{x_k\}$ generated by algorithm (3.1) converges strongly to $x^* \in \Gamma$, provided that $\gamma \in (0, \frac{1-\mu_{max}}{rL})$ and $\alpha_k \in (\delta, 1-\beta_{max}-\delta)$ for small enough $\delta > 0$.

3.3. Numerical Examples. In order to illustrate numerical application, we consider a special case of our scheme for i = j = 1 and $H_1 = H_2 = \mathbb{R}^3$.

All computations in this section were performed using python 3.5.2 terminal based on linux running 64-bit. The first 100 iterations of our scheme are presented in Table 1, and relationship between $\|x-x^*\|$ - values and number of iterations are given in Figure 1, where $x^*=0\in\Gamma$.

Now, for $x_0 = (1, 1, 1) \in \mathbb{R}^3$, $\gamma = 0.2$, $\alpha_k = 1 - \alpha_k = 0.5$, $\forall k \ge 1$

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, T = \begin{bmatrix} \sqrt{\frac{3}{20}} & \sqrt{\frac{1}{20}} & 0 \\ \sqrt{\frac{1}{20}} & \sqrt{\frac{3}{20}} & \sqrt{\frac{3}{10}} \\ 0 & \sqrt{\frac{1}{5}} & \sqrt{\frac{1}{10}} \end{bmatrix}, \text{ and } U = \begin{bmatrix} \sqrt{\frac{1}{10}} & 0 & \sqrt{\frac{3}{10}} \\ 0 & \sqrt{\frac{1}{5}} & \sqrt{\frac{1}{10}} \\ \sqrt{\frac{3}{20}} & 0 & \sqrt{\frac{3}{20}} \end{bmatrix}$$

we have the following iterations for k = 100.

Iterations	$ x-x^* $
10	$1.09e^{-01}$
20	$7.00e^{-03}$
30	$4.00e^{-04}$
40	$3.37e^{-05}$
50	$2.30e^{-06}$
60	$1.54e^{-07}$
70	$1.04e^{-08}$
80	$6.10e^{-10}$
90	$4.72e^{-11}$
100	$3.20e^{-12}$

Table 1. The first 100 iterations generated by (3.1.6).

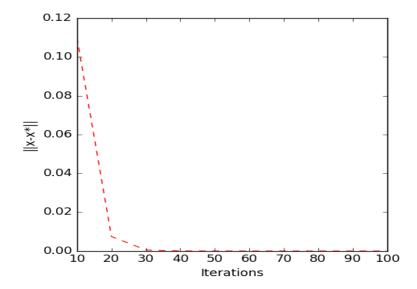


Figure 1. Relationship between $||x-x^*||$ - values and number of iterations.

4. Conclusion

In this paper, we have established the approximation of solution of general split inverse problem for multi-valued demi-contractive mappings in Hilbert spaces. Moreover, our result generalises many results in the literature. More precisely, theorem 3.3 generalises theorem 3.8 of [25]. Finally, lemma 2.11 and 3.1 are of special interest.

5. Acknowledgements

We wish to acknwoledge the reveiwers for their invaluable comments.

References

- O.A. Boikanyo; A strongly convergent algorithm for the split common fixed point problem, Appl. Math. Comput. 265 (2015), 844-853.
- F. E. Browder; Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-255.
- F. E. Browder and W. V. Petryshyn; Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl. 20 (1967), 297-228.
- C. Byrne; A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, (2004) 103-120.
- C. Byrne; Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Prob. 18 (2002), 441-453. http://dx.doi.org/10.1088/0266-5611/18/2/310.
- C. Byrne; Iterative projection onto convex sets using multiple Bregman distances, Inverse Probl. 15, (1999) 1295-1313.
- C. Byrne, Y. Censor, A. Gibali and S. Reich; The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759-775.

- C.E. Chidume et al.; The multiple-sets split equality fixed point problem for countable families of multi-valued demi-contractive mappings, Int. J. Math. Anal. Vol. 9 (2015), 453-469. http://dx.doi.org/10.12988/ijma.2015.412209.
- C.E. Chidume et al.; The split equality fixed point problem for demi-contractive mappings, (Accepted to appear 2014): J. Nonlinear Anal. and Opt., Theory and Applications.
- C. E. Chidume, C. O. Chidume, N. Djitté, and M. S. Minjibir; Convergence Theorems for Fixed Points of Multi-valued Strictly-Pseudocontractive Mappings in Hilbert Spaces, (2012, to appear). http://dx.doi.org/10.1155/2013/629468.
- 11. C.E. Chidume and S. Maruster; Iterative methods for the computation of fixed points of demi-contractive mappings, J. Comput. Appl. Math. Vol. **234** (2010), 861-882. http://dx.doi.org/10.1016/j.cam.2010.01.050.
- C.E. Chidume, M.E. Okpala; On a general class of Multi-valued Strictly-Pseudocontractive Mappings, J. of Nonlinear Anal. and Optim. Vol. 5 (2014), 07-20.
- A. Cegielski; General method for solving the split common fixed point problem, J. Optim. Theory Appl. 165 (2015), 385-404.
- Y. Censor et al.; On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim. Appl. (2011, accepted for publication). doi:10.1007/s10589-011-9401-7. http://arxiv.org/abs/0912.4367.
- Y. Censor, M.D. Altschule, W.D. Powlis; On the use of Cimminos simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning, Inverse Probl. 4, (1988) 607-623.
- Y. Censor, T. Bortfeld, B. Martin, A. Trofimov; A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol. 51, (2006) 2353-2365. http://dx.doi.org/10.1088/0031-9155/51/10/001.
- 17. Y. Censor, R. Davidi, G.T. Herman; Perturbation resilience and superiorization of iterative algorithms, Inverse Probl. 26, (2010) 065008 17 pp.
- Y. Censor, T. Elfving; A multiprojection algorithms using Bregman projection in a product space, Numer. Algorithms. 8, (1994) 221-239. http://dx.doi.org/10.1007/bf02142692.
- Y. Censor, T. Elfving, N. Kopf, T. Bortfeld; The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl. 21, (2005) 2071-2084.
- Y. Censor, A. Gibali and S. Reich; Algorithm for the split variational inequality problem, Numer. Algorithms 59 (2012), 301-323.
- Y. Censor, A. Segal; The split common fixed point problem for directed operators, J. Convex Anal. 16, (2009) 587-600.
- S. S. Chang et al.; The split feasibility problem for quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mappings, Appl. Math. Comput. Vol. 219 (2013), 10416-10424. http://dx.doi.org/10.1016/j.amc.2013.04.020.
- H. Cui, F. Wang; Iterative methods for the split common fixed point problem in Hilbert spaces, Fixed Point Theory Appl. (2014), 1-8.
- Y. Dang, Y. Gao; The strong convergence of a KM-CQ-like algorithm for a split feasibility problem, Inverse Probl. 27, (2011) 015007.
- A. Gibali; A new Split Inverse Problem and an application to least intensity feasible solutions,
 J. funct. Anal. and Appl. 2 (2017), 243-258.
- A. Gibali, K.H. Kúfer, P. Súass; Reformulating the pascoletti-Serafini problem as a bi-level optimization problem, Contemp. Math. 636, (2015) 121-129.
- T. L. Hicks and J. R. Kubicek; On the Mann iteration process in Hilbert space, J. Math. Anal. Appl. 59 (1977), 498-504.
- T. Jifang; Split common fixed point problem for a family of quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mapping, Acta Mathematicae Applicatae Sinica 37 (2014), 119-126.
- P. Kraikaew, S. Saejung; On split common fixed point problems, J. Math Anal. Appl. 415 (2014), 513-524.
- A. Moudafi; A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal. 74 (2011), 4083-4087.
- 31. A. Moudafi; A relax CQ algorithm for convex feasibility problems, Nonlinear Anal., 79 (2013), 117-121. http://dx.doi.org/10.1016/j.na.2012.11.013.
- 32. A. Moudafi; The split common fixed point problem for demi-contractive mappings, Inverse Probl. 26, (2010) 1-6.
- A. Moudafi; Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275-283.

- 34. A. Moudafi, Eman Al-Shemas; Simultaneous iterative methods for split equality problem, Transactions on Mathematical Programming and Applications, 1 (2013), 1-11.
- 35. St. Maruster; Quasi-nonexpansivity and the convex feasibility problem, An. Univ. Al. 15 (2005), 47-56.
- St. Maruster, and C. Popirlan; On the Mann-type iteration and convex feasibility problem, J. Comput. Appl. Math. 212 (2008), 390-396.
- 37. S. Maruster and C. Popirlan; On the Mann-type iteration and convex feasibility problem, J. Comput. Appl. Math. 212 (2008), 390-396. http://dx.doi.org/10.1016/j.cam.2006.12.012
- E. Masad and S. Reich; A note on the multiple-set split convex feasibility problem in Hilbert space, J. Non. Con. Anal. 8, (2007) 367-371.
- M. O. Osilike and A. Udomene; Demiclosedness principle and convergence theorems for stictly pseudocontractive mappings of the Browder-Petryshyn type, J. Math. Anal. Appl. 256 (2001), 431-445.
- R. J. Palta and T. R. Mackie, Eds; Intensity modulated radiation therapy: the state of art, in Medical Physics Monograph, 29, Medical Physics Publishing, Madison, Wis, USA, (2003).
- 41. B. Qu, N. Xiu; A note on the CQ algorithm for the split feasibility problem, Inverse Probl. 21, (2005) 1655-1666.
- Y. C. Tang, J.G. Peng, L.W. Liu; A cyclic algorithm for the split common fixed point problem of demi-contractive mappings in Hilbert spaces, Math. Model. Anal. 17, (2012) 457-466.
- 43. Y. Shehu, P. Cholamjiak; Another look at the split common fixed point problem for demicontractive operators, (Accepted to appear 2015): Inverse Probl. (2015) 1-18.
- 44. F. Schopfer, T. Schuster, A.K. Louis; An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Probl. 21, (2005) 1655-1666.