T. V. Su and Dinh Dieu Hang, J. Nonlinear Anal. Optim. Vol. 11(1) (2020), 1-14

Journal of Nonlinear Anaiysis and Optimization
Volume 11(1) (2020)

http://www.math.sci.nu.ac.th JNAO
ISSN : 1906-9685

J. Nonlinear Anal. Optim.

CLOSEDNESS OF THE OPTIMAL SOLUTION SETS FOR
GENERAL VECTOR ALPHA OPTIMIZATION PROBLEMS

TRAN VAN SU*! AND DINH DIEU HANG?

1 Department of Mathematics, Quang Nam University, 102 Hung Vuong, Tamky, Vietnam
2 Department of Basic Sciences, Thai Nguyen University of Information and Communication

Technology, Thai Nguyen, Vietnam

ABSTRACT. The aim of the paper is to study the closedness of the optimal solution
sets for general vector alpha optimization problems in Hausdorff locally convex topological
vector spaces. Firstly, we present the relationships between the optimal solution sets of
primal and dual general vector alpha optimization problems. Secondly, making use of the
upper semicontinuity of a set-valued mapping, we discuss the results on closedness of the
optimal solution sets for general vector alpha optimization problems in infinite-dimensional
spaces.
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1. INTRODUCTION

It is well known that the closedness, upper (lower) semicontinuity and connected-
ness or contractibility of optimal solution sets in set-valued optimization problems
play an important role in the theory of set-valued analysis and applied analysis (see,
e.g.,[l,2,3,4,5,06,7,8 9,10, 13, 17] and the references therein). In recent years,
Gong [5] studied the connectedness and path connectedness of efficient solution sets
of vector equilibrium problems using the scalarization results; Gong and Yao [6, 7]
discussed the results about the lower semicontinuity and connectedness of the effi-
cient solution sets for parametric generalized systems which was introduced by Ding
and Park [4] with monotone bifunction in real locally convex Hausdorff topological
vector spaces; Khanh and Luu [9] obtained the result on the upper semicontinuity of
solution set of quasivariational inequalities in Hausdorff topological vector spaces;
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Khanh and Anh [10] investigated the Holder continuity of solution to parametric
multivalued vector equilibrium problems in metric linear spaces; Wu and Wu [17]
have discussed the characterization of solution sets of a general convex program on
a normed vector space using the Gateaux differentiable.

On characterizations of the solution sets for general alpha vector optimization
problems have been extensively investigated in recent years because of their fields
of applications (see, e.g., [11, 12, 13, 14, 15, 16] and the references therein). For
example, Lin and Tan [11, 12] introduced and studied the solution existence results
for the systems of quasivariational inclusion problems of type I and related problems
in infinite dimensional spaces. On using the upper and lower semicontinuity of set-
valued mappings, Tan [15, 16] together with Su [14] have received the result on
existences of solution of generalized systems.

However, so far as we known, there are no results in the literature on the closed-
ness of the efficient solutions for dual and primal general vector alpha optimization
problems in Hausdorff locally convex topological vector spaces. The purpose of the
article is to discuss the closedness for efficient solutions of this problems.

The organization of this paper is as follows. In Section 2, we recall some basic con-
cepts and related properties. Section 3 is devoted to the relationships between the
optimal solution sets of dual and primal general vector alpha optimization problems
in Hausdorff locally convex topological vector spaces. In this section, the closedness
of optimal solution sets plays a central role in this paper. In Section 4, we make a
conclusion to emphasis the obtained results again.

2. PRELIMINARIES

Throughout this paper, let X and Y be two Hausdorff locally convex topological
vector spaces in which Y be partially ordered by a convex cone C. We recall that C
is a cone if tc € C for every ¢ € C and every nonnegative number ¢. C' is said to be
a convex set if for any ¢,d € C, the line segment [c,d] = {tc+ (1 —¢t)d: 0 <t < 1}
belongs to C. If C' is a convex set then a cone C is called a convex cone. If C' is
a closed and convex set then a cone C is called a closed and convex cone. We set
I(C) :== Cn (=C). In this case, if I(C) = {0} then a cone C is called a pointed
cone. We denote D instead of a nonempty subset of X, and F': D = Y stands for
a set-valued mapping F' from D into Y. The domain and the graph of F' are defined
respectively by

dom F ={z €D : F(z) # 0},
graph F = {(z,y) € DxY : z €domF, y € F(z)}.

For A C X, we denote as usual by intA, ¢l A intead of the interior and the closure
of A, respectively. The set of Ideal, Pareto, Proper and Weak minimal points of A
with respect to C' is denoted respectively as

IMin(A|C), PMin(A|C), PrMin(A|C) and W Min(A|C).

The set of Ideal, Pareto, Proper and Weak maximal points of A with respect to C
is denoted respectively as

IMax(A|C), PMax(A|C), PrMaz(A|C) and WMaxz(A|C).

The concepts of Ideal, Pareto, Proper and Weak minimal and maximal points can
be found in Luc [13].
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In this paper, the primal general vector alpha optimization problems correspond-
ing to D, F and C (to short, (GVOP)q min) are defined as follows: finding # € D
such that

F(z) naMin(F(D)|C) # 0.
The set of such points T is said to be a solutions set of (GV OP),, min Which is denoted
by aSmin(D, F, C). The elements of aMin(F (D)|C) are called alpha optimal values
of (GVOP) g min, where a = I, a« = P, a = Pr and o = W instead of the case of
Ideal, Pareto, Proper and Weak efficient points, respectively.

The dual general vector alpha optimization problems corresponding to D, F' and
C of problem (GVOP)q min, which is denoted by (GVOP)4 max, can be defined as
follows: finding € D such that

F@)NnaMaz(F(D)|C) # 0.

The set of such points Z is said to be a solutions set of (GVOP),, max which is de-
noted by aSmax(D, F,C). The elements of aMax(F(D)|C) are called alpha optimal
values of (GVOP)q,max- The set D is sometimes called the set of alternatives and
F (D) is the set of outcomes.

We next recall the following definitions which will be needed in the paper.

Definition 2.1. ([13]) Let A be a nonempty subset of Y. We say that

(i) = € A is an ideal efficient (or ideal minimal) point of A with respect to C
ify—a e C for every y € A.

The set of ideal minimal points of A is denoted by IMin(A|C).

(ii) € A is an efficient (or Pareto-minimal, or nondominated) point of A
with respect to C' if there is no y € A with z —y € C\ [(C), where
(C):=Cn(=0).

The set of efficient points of A is denoted by PMin(A|C).

(iii) = € A is a (global) proper efficient point of A with respect to C' if there
exists a convex cone C which is not the whole space and contains C'\ I(C)
in its interior such that

z € PMin(A|C).

The set of proper efficient points of A is denoted by PrMin(A|C).
(iv) Supposing that intC' is nonempty, = € A is a weak efficient point of A with
respect to C' if
x € PMin(Alint C U {0}).
The set of weak efficient points of A is denoted by WMin(A|C).

The concepts of upper and lower semicontinuity with a set-valued mapping play
an important role in the paper.
Definition 2.2. ([15, 16]) Let F : D = Y be a set-valued mapping,.

(i) F is said to be upper C'— continuous in T € domF if for any neighborhood
V' of the origin in Y, there exists a neighborhood U of T such that

F(z) CF(@)+V +C VzeUndomkF.

(ii) F is said to be lower C'— continuous in T € domF if for any neighborhood
V' of the origin in Y, there exists a neighborhood U of T such that

F@) Cc F(x)+V —-C VzeUndomF.
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(iii) If F is upper C'— continuous and lower C'— continuous in T € domF
simultaneously, we say that F' is C— continuous in .

(iv) If F is upper (resp. lower) C'— continuous in any points of T € domF, we
say that F' is upper (resp., lower) C'— continuous on D.

Let  # A C Y, C C Y be a convex cone. By making use of the concepts
in Definition 2.1, we receive the equivalences of efficiency, which can be stated as
follows.

Proposition 2.3. ([13]) A equivalent definition of efficiency:

(i) z € IMin(A|C) if and only if € A and A C z + C.
(ii) z € IMaz(A|C) if and only if x € A and AC z — C.
(iii) x € PMin(A|C) if and only if AN (x — C) C x4+ I(C), or equivalently,
when C' 1is pointed, v € PMin(A|C) if and only if AN (z — C) = {z}.
(iv) When C is not the whole space, x € WMin(A|C) if and only if AN (x —
intC) = 0, or equivalently, there is noy € A such that x —y € {0} U intC
and noty —x € {0} U intC.

It can be easily seen that the following equalities hold

aMin(A| — C) = aMax(A|C),

aMaz(Al — C) = aMin(A|C),

where « is one of the notions I, P, Pr and W. Moreover, it follows from Proposition
2.2 in Luc [13] that the following inclusions are true:

PrMin(A|C) C PMin(A|C) C WMin(A|C).

If, in addition, IMin(A|C) # () then
PMin(A|C) = IMin(A|C).

Finally, the strict convexity of a set-valued mapping will be provided.

Definition 2.4. ([13]) Let D be a convex subset of domF with F': D = Y. We say
that

(i) F is called strictly C— convex on D, when intC # (), if for 1,25 € D, x1 #
x2, t€(0,1),ie. 0<t <1,

F(txy + (1 —t)x2) CtF(z1) + (1 —t)F(x2) — intC.

(ii) F is called strictly C'— quasiconvex on a nonempty convex subset D C X,
when intC # ), iffory € Y, x1,20 € D, 1 # 12, t € (0,1),ie. 0 <t <1,

F(x1),F(z2) Cy— C implies F(tx; + (1 —t)xs) C y — intC.
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3. CLOSEDNESS OF THE OPTIMAL SOLUTION SETS FOR PROBLEMS (GVOP)y min
AND (GVOP)q, max

In this section, we discuss the closedness and relationships between the optimal
solution sets of dual and primal general vector alpha optimization problems in
Hausdorff locally convex topological vector spaces corresponding to D, F' and C,
where « is one of the qualifications: Pareto, Proper, Ideal and Weak.

Proposition 3.1. Let aSyin(D, F,C) be the solution set of (GVOP)q min, where
« is one of the notions I, P, Pr and W. We have the following assertions hold.

(i) ISmin(D, F,C) C PSpmin(D, F,C). Moreover, if IMin(F(D)|C) # 0 then
ISmin(DaFv C) = PSmin(D7Fa C)a

and it is has at most a solution whenever C' is pointed.
(ii) PrSmin(D, F,C) C PSnin(D, F,C) C WSmin(D, F,C).

Proof. Case (i): Let us assume that x be a solution of (GVOP)  min, which yields
that

F(z) N IMin(F(D)|C) # 0.
By definitions, it can be easily seen that

F(x)N PMin(F(D)|C) # 0.

Therefore, the vector x is an optimal solution of (GVOP)pmin. Making use of
Proposition 2.2 [13] in the case IMin(F(D)|C) # 0, and we obtain the result as
required.

Case (ii): Tt is evident that

F(z)N PrMin(F(D)|C) C F(x) N PMin(F(D)|C)
C F(z)NnWMin(F(D)|C) Vz e D.
Consequently,
PrSumin(D, F,C) C PSpin(D, F,C) C WSmin(D, F,C),

which proves the claim. O

Proposition 3.2. Let aSmax(D, F,C) be the solution set of (GV OP)qa max, where
« is one of the notions I, P, Pr and W. We have the following assertions hold.

(i) ISmax(D, F,C) C PSmax(D, F,C). Moreover, if IMax(F(D)|C) # 0 then
ISmax(DaF> C) = PSmax(DaFa C)>

and it is has at most a solution whenever C' is pointed.
(ii) PrSmax(D, F,C) C PSpax(D, F,C) C WSnax(D, F,C).

Proof. Case (i): Let = be a solution of (GVOP) max, which means that
F(z)NIMaz(F(D)|C) # 0.

By definitions, it is not hard to see that
F(z) N PMax(F(D)|C) # 0.

Thus the vector z is a solution of problem (GV OP) p max. If, in addition, IMax(F(D)|C) #
(), taking into account of Proposition 2.2 [13], we arrive at the desired conclusion.
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Case (ii): It is evident that
F(z) N PrMaz(F(D)|C) C F(z) N PMax(F(D)|C)
C F(z)NWMax(F(D)|C) Vx € D.
Therefore,
PrSmax(D, F,C) C PSpax(D, F,C) C W Snax(D, F,C),

as was to be shown. O

Proposition 3.3. Let D be a nonempty convex subset in X and the set-valued
mapping F': D 3Y be either strictly C— convex or strictly C— quasiconvex on D.
Assume, furthermore, that F(x) is convex set for all x € D. Then

PSmin(D7 Fa C) = WSmin(D7 Fa C)
If, in addition, IMin(F(D)|C) # 0, then

ISmin(D; F7 C) = WSmin(Da F7 C),

and it is has at most a solution whenever C' is pointed.

Proof. Making use of the result obtained in Proposition 3.1 (ii), it suffices to prove
that
W Smin(D, F,C) C PSmin(D, F,C).
Take arbitrary © € WSy, (D, F,C) and prove that © € PSyin(D, F,C). In fact,
we assume to the contrary, that @ ¢ PSSy (D, F,C). By definition, one finds an
element y € D such that
F(y) C F(z) - C\{0}.
It is well known that
c\{o}cc, c\{o}+Ccc,
intC C C, intC 4+ C = intC,
1 1
§F(x) + §F(x) =F(z) Vx € D.

We set
1 n 1
z2=—-x+ -y.
2" oY
Since D is convex set, it ensures that z € D. Using the definition of strictly C'—

quasiconvexity on D and the set F(z) convex, it follows that
1 1

F(z) C iF(x) + iF(y) — intC
C %F(m) + %F(x) - %C\ {0} — intC
C %F(w) + %F(x) —C —intC
C F(z) — intC,

which contradicting the condition & € WS, (D, F,C). So, we have the following
equality
PSuin(D, F,C) =W Snmin(D, F,C).
The last case is due to preceding Proposition 3.1 and we get the required conclusion.
O
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Remark 3.4. It is worth noting that the results obtained in Proposition 3.3 are
still holds for the senses

PSmax(DaFv C) = WSmax(DaFv C)
and
ISmax(DaFa O) = WSmax(DaF7 C),

if the set-valued mapping F' is strictly (—C)— convex or strictly (—C')— quasiconvex
on D.

Theorem 3.1. Let D be a nonempty closed subset in X and the set-valued mapping
F:D=2Y be upper C— continuous on D and assumming, in addition, that C' be
a closed convex cone in'Y and F(x) compact for any x € D. Then ISy (D, F,C)
is closed.

Proof. Assume to the contrary, that there exists sequence (z4)q C ISmin(D, F,C)
such that

To — T, (3.1)
where T & 1.5,,in(D, F,C). From the initial assumption, we have that D is a closed
subset in X and (z4)o C D, and so, it follows that T € D. It is well known that F'
is upper C'— continuous on D, which yields that F is also upper C'— continuous at
7. Making use of Definition 2.2, for any open convex neighborhood V' of the origin
in Y, there exists a neighborhood U of T in X such that

1
F(z) CF(f)+§V+C’ Va e UNdomkF. (3.2)
It follows from (3.1) that there exists cg > 0 such that

o € UNdomFE for every a > «p.

From (3.2) we obtain the following inclusion
1
F(zy) C F(T) + §V + C for every a > ag. (3.3)

We arbitrarily take o > «g. It is clear that F' is upper C— continuous at x,. For
the preceding open convex neighborhood V, there exists a neighborhood U, of z,
satisfying

1
F(Uy NdomF) C F(xa)+§V+C’. (3.4)
Since V' is convex, it holds that
1 1
§V + §V cV.
Combining (3.3)-(3.4) yields that
F(U,NdomF) C F(z)+V +C. (3.5)

By the initial hypotheses, F(Z) is a compact set, C' is a closed cone and V is an
open neighborhood arbitrarily, and thus, it follows from (3.5) that

F(U,NdomF) C F(z)+ C. (3.6)
Let us see that
F(zo) NIMin(F(D)|C)=0 Ya> a.
In fact, if it was not so, then there would exists an element y,, € F(x,) with a > ag

such that
F(D) Cya+C.
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Because a > «y, it follows from (3.6) that
Yo € F(T) + C.

One finds an element ¢, € C such that y, — ¢q € F(Z). On the other hand, for any
a > Qp,

F(D) C (Yo —ca) +Ca +C
C (yafca)+C’+C’
= (ya — ca) + C.
By virtue of Definition 2.1 together with the fact that F(z) C F(D), one obtains

Yo — Ca € F(T)NIMin(F(D)|C) Va > ay,
this means that T € ISy (D, F, C), this is a contradiction. We thus will be allowed
to say that the following relation is fulfilled
F(xq) NIMin(F(D)|C) =0 Va > ag,

it means that for any o > «g, the vector z, does not belong to the solution set
ISmin(D, F,C), which conflicts with the initial assumptions. So the optimal solution
set ISmin(D, F,C) is closed, and we get the desired conclusion. O

Proposition 3.5. Let D be a nonempty closed subset in X and the set-valued
mapping F : D =Y be upper (—C)— continuous on D and assumming, in addition,
that C be a closed conver cone in'Y and F(x) compact for any x € D. Then
ISmax(D, F,C) is closed.

Proof. We take @Q = —C, then @ is a closed convex cone in Y and the set-valued
mapping F' is upper @ — continuous on D. By using the obtained result in Theorem
3.1, we deduce that ISnin(D, F, Q) is closed. Therefore, the optimal solution set
1S8,0:(D, F,C) is also closed because the following equality holds

ISmax(Da F7 C) = ISmin(D7 Fa Q)7
which completing the proof. O

Theorem 3.2. Let D be a nonempty closed subset in X and the set-valued mapping
F:D =Y be upper (C)— continuous on D and assumming, in addition, that C be
a closed convex cone in'Y and F(x) compact for any x € D. Then PSwyin(D, F,C)
and PSmax(D, F,C) are closed.

Proof. We prove only the case PSyin(D, F,C) is closed because the closedness of
PSmax(D, F,C) is similarly proceeded. In fact, suppose to the contrary, that there
exists sequence (Zq)o C PSmin(D, F,C) such that

To — T,

where T ¢ PSnyin(D, F,C). Arguing similarly as for proving Theorem 3.1, there
exist neighborhoods U, (o > «yp) of z,, satisfying

F(Uy NndomF) C F(T) +1(C). (3.7)
We next have to show that
F(zo) N PMin(F(D)|C) =0 Ya > ap. (3.8)
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Indeed, if (3.8) does not hold, it means that there is at least an element z, € F(z4)
with a > ag such that
F(D)N (2o —C) C 2o +1(C) Va > ap.

It should be noted here that for every a > «, by using the proof of Theorem 3.1,
we obtain x, € U,, and moreover it leads to the following result holds

za € F(U, NdomF).
This along with (3.7) lead to there exists ¢, € I(C) with a > «q satisfying
Za — Co € F(T).
It can be seen that
intC C C, tintC = intC, tC =C, Vt > 0,
intC + C = intC, (—intC) + (-C) C —(C 4+ C) = —-C,
C+ C c C implies I(C)+1(C) C I(C).
We thus have the following relations
F(D)N(zq —Cco —C) CF(D)N(2zq —C—=0C)
CF(D)N (20 —C) Czo +1(C)
=2y — Ca T o +1(C)
C 2o —Ca +1(C)+1(C)
=24 — Ca +1(C) YVa > ap.
We set
Yo = Za — Ca-
Obviously,
Yo € F(T) N PMin(F(D)|C) Ya > ap.
So we conclude that T being an optimal solution of problem (GVOP)pmin, which

conflicts with the fact that T & PSmin (D, F, C). Therefore, the optimal solution set
of problem PSpin(D, F,C) is closed in X, which completes the proof. O

Theorem 3.3. Under the assumptions of Theorem 3.1. We have the following
assertions hold.
(i) If ISmin(D, F,C) # 0 then PSnin(D, F,C) is closed.
(i) If F s upper (—C)— continuous on D and ISpyax(D,F,C) # 0 then
PSiax(D, F,C) is closed.

Proof. By reasons of similarly, we prove only case (i). In fact, we may assume that
the optimal solution set ISpin(D, F,C) # (), then it is plain that

PSpin(D, F,C) = ISy (D, F,C).

Adapting the result obtained in Theorem 3.1, we conclude that PSyn(D, F,C) is
closed and the claim follows. O

Theorem 3.4. Let D be a nonempty closed subset in X, the set-valued mapping
F: D =Y and assumming, in addition, that C be a closed convex cone with its
interior nonempty and be not the whole space in'Y and F(x) compact for any x € D.
Then

(i) WSmin(D, F,C) is closed if F is upper C— continuous on D .

(ii) WSmax(D, F,C) is closed if F is upper (—C)— continuous on D.
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Proof. We proof only case (i) by reasons of similarly. Assume to the contrary, that
there exists sequence (Z4)q C WSmin(D, F,C) and T & W Spin(D, F,C') such that

Lo — T.

Repeat the proof of preceding Theorem 3.1, then one finds ag > 0, U, is a neigh-
borhood of z,, such that

F(Uy NdomF) C F(z)+C Ya > ap. (3.9)
It is not difficult to check that
F(zo) N PMin(F(D)|C) =0 Ya > ap. (3.10)

Indeed, if (3.10) does not hold, then there exists at least an element w, € F(z4)
with a > g such that

wa € PMin(F(D)|C).
Because C' is not the whole space, making use of Proposition 2.3 in Luc [13] to
deduce that
F(D)N (wa - intC) =0 Ya > a.
Note that for every a > «, then z, € U,, which leads to the following result holds
wo € F(Uy NdomF).
Together this with (3.9), it yields that there exists ¢, € C with a > g satisfying
Wo — Co € F(T).
Since C' is a convex cone with its interior nonempty, it yields that the following

equality holds
C + intC = intC.

Consequently,
Wo — Co — INtC C wy — intC.
Therefore,
Wo — Co € F(T) NWMin(F(D)|C) Va > «ap,
which means that
T € WSnin(D, F,C),

contradicting the fact that T is not an optimal solution of problem (GV OP)w, min.
So the condition (3.10) holds, which leads to z, with a > « does not being
optimal solutions of (GV OP)w,min, a contradiction. From here we will be allowed to
conclude that the optimal solution set W Spin (D, F, C) is closed and this completes
the proof. O

Theorem 3.5. Let D be a nonempty closed subset in X, the set-valued mapping
F : D =Y and assumming, in addition, that C be a closed convex cone with its
interior nonempty, C \ I(C) be open, C' be not the whole space in Y and F(x)
compact for any x € D. Then

(i) PrSmin(D, F,C) is closed if F is upper C— continuous on D and the
problem (GVOP) min has solution.

(ii) PrSmax(D, F,C) is closed if F is upper (—C)— continuous on D and the
problem (GVOP) max has solution.
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Proof. Case (i): We take arbitrary sequence (z4)a C PrSmin(D, F,C) such that
To =T € X.
Since z,, € D for every a > 1 and the set D is closed, one gets T € D. By the initial
assumption it yields that the problem (GVOP); min has solution. On one hand, it
follows from Theorem 3.3 that the optimal solution set P.Sy,:,(D, F,C) is closed.
Making use of Proposition 3.1 to deduce that the following result holds
(xoe)oz C PSmin(D7Fa C)
Consequently,
T € PSnin(D, F,C).

By definitions, we get

F(z) N PMin(F(D)|C) # 0.
Taking § € F(T) such that

FD)n(y—C) c{y} +1UCO).
By picking

K =1(C)UintC.
Then K is a convex cone which is not the whole space and contains C'\ [(C) in its
interior. In fact, we get
C\I(C) = intC C int (1(0) U intc) = intkK.

On the other hand, it is evident that

F(D)N (Y- K) C{y} + U(K),
which yields that

y € F(Z)N PMin(F(D)|K).
Consequently,

T € PrSmin(D, F,C),

which completing the proof of case (i).

Case (ii): Arguing similarly as for the proof of case (i), where a cone C is replaced
by a cone —C', we also arrive at the conclusion. O

To close this paper, we give an example illustrating Theorem 3.5.

Example 3.6. Let X = R? = {# = (z1,22) : 71 € R, 22 € R}, Y = R,
D=[-1,0]x[-1,0) CR?, C =R, ={z €R : 2> 0}. We consider the set-valued
mapping F': D = R is defined by

F(z1,22) = {x1 + 22} (V(z1,22) € D).

It can be easily seen that the cone C' # Y is closed and convex with intC' = Ry |
(where Ry := intR; ) and the cone C \ [(C') = R4 is open. Notice that for any
x € D, the set F(z) is compact. Let us see that F' be upper C'— continuous on D.
In fact, take arbitrary T := (Z1,T2) € D and € > 0, define the neighborhood U of T
by

U= {(Jcl,xg) ER? : (21 —71)2 + (22 — T2)? < (%)2}.

For every (x1,z2) € UN D (note that D = domF), we obtain the following system

{ (€1 —T1)2 + (22 — T2)? < (5)?

Z1+$2§0.
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We have that
F(x1,22) C F(T1,%2) + (—€,¢) + Ry (3.11)
Indeed, (3.11) is equivalent to
T1+ 22 €T1 + T2 + (—€,¢) + Ry,
or equivalently,
1+ X9 —T1 — T € (—€,+00).
Hence,
T1 4+ To — T — Ty > —€. (3.12)
It is well-known that
|1 + 22| < |21 + 22 — T1 — To| + [T + T2

< \/2((:51 —T1)2 4 (x2 — T2)?) + [T1 + T2
< e+ |T1 + Tl

So, (3.12) is fulfilled, which means that the set-valued mapping F' is upper C—
continuous on D. We next check that ISy, (D, F,C) # (. Indeed, we first pick
(x1,22) € D, ie., x; € [-1,0] for i = 1,2, and one second considers F(z1,x2) N
IMin(F(D)|C) # 0. By definitions, z1 +z2 € F(D) and F(D) C 1+ x2+ Ry. By
directly calculating,

Fo)= Y F(xl,xg):[—zo]

(z1,x2)€D
Thus,

1+ 29 > —2
T+ 1o < —2.
This system is equivalent to x1 + x5 = —2, but 1 > —1 and x5 > —1, which leads

to x1 = x5 = —1. So,
ISmin(D7F7 C) = {(715 71)} 7é @
Thanks to Theorem 3.5 that the solution sets PrSun (D, F, C) and PrSpnax(D, F, —C)

are closed. In fact, in this setting, it holds that PSy,(D, F,C) = {(-1,—-1)} and
further, it follows from Proposition 3.1 that

PrSmin(D,F,C) C {(-1,-1)}.
We have to show that (—1,—1) € PrSmin(D, F,C). In fact, we define a convex
cone C = Ry = [0,400). It is obvious that C' is not the whole space ¥ = R and

contains C'\ [(C) = intR in its interior such that (—1,—1) € PSyin(D, F, C), and
80, PrSmin(D, F,C) = {(—1,—-1)}, which means that it is a closed set. Similarly,
if we take C' = —Ry then PrSn.x(D,F,C) = {(—1,—1)} is a closed set, as it was
checked.

We close this paper by making some comparisons between the results obtained
in the paper and the existing one in the literature.

Remark 3.7. As far as we know, there have not been results on closedness of the
optimal solution sets for general vector alpha optimization problems in Hausdorff
locally convex topological vector spaces involving the upper (lower) C-continuity
of set-valued mapping. The differences between our result in the paper with the
well-known results of Cheraghi et al. [1], Farajzadeh et al. [2] and Farajzadeh
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and Shafie [3] are as follows. We study in this paper the relationships between the
optimal solution sets of primal and dual general vector alpha optimization prob-
lems in which the closedness of optimal solution sets for the same plays a central
role, while Cheraghi et al. [1] derived a link between subdifferential and Fréchet
differential with e—generalized weak subdifferential and provided a necessary and
sufficient condition for achieving a global minimum of a e—generalized weak sub-
differential function; Farajzadeh et al. [2] formulated the relationship between the
nonsmooth variational-like inequalities and vector optimization problems involving
the existence of solution; Farajzadeh and Shafie [3] obtained some existence theo-
rems of the solution of the system of vector quasi-equilibrium problems for a family
of multivalued mappings in the setting of topological order spaces.

4. CONCLUSION

In this paper, we have shown that the optimal solution sets of dual and primal
general vector alpha optimization problems in Hausdorff locally convex topological
vector spaces are closed. In addition, some the relationships between the optimal
solution sets of these problems are also obtained well.
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