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ABSTRACT. In this paper we utilize a generalized almost contractive mapping to establish
some coupled best proximity point results which are global optimization results of find­
ing the minimum distances between two sets. The results are obtained in metric spaces
with a partial ordering defined therein. There is a blending of analytic and order theoretic
approaches in the proofs. We illustrate the main theorem through an example.
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1. INTRODUCTION AND PRELIMINARIES

Best proximity point results are related to the problem of finding minimum
distances which is by itself a classical problem considered in many areas of math­
ematics. It occupies an important position in the calculus of variation [16]. In
geometrical studies it is related to the concept of geodesic [3]. In our case the ob­
jects are subsets of metric spaces. The minimum distance between pairs of subsets
are realized by utilizing best proximity points of non­self mappings.

Technically, (X, d) denotes a metric space throughout the paper and A, B ⊆ X.
We use the following notations.

D(x, B) = inf {d(x, b) : b ∈ B}, where x ∈ X,

d(A, B) = inf {d(a, b) : a ∈ A and b ∈ B},
A0 = {a ∈ A : d(a, b) = d(A, B) for some b ∈ B},
B0 = {b ∈ B : d(a, b) = d(A, B) for some a ∈ A}.
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It is to be noted that for every a ∈ A0 there exists b ∈ B0 such that d(a, b) =

d(A, B) and conversely, for every b
′ ∈ B0 there exists a

′ ∈ A0 such that d(a
′
, b

′
) =

d(A, B).
Let T : A −→ B be a non­self mapping. Then x∗ ∈ A is a best proximity point

of T if d(x∗, Tx∗) = d(A, B) [10]. A best proximity point reduces to a fixed
point in case where A = B. A best proximity point problem can be described as
the problem of finding an optimal approximate solution of the fixed point equation
x = Tx although the exact solution need not exist. This is an approach to the global
optimization problem of finding minimum distance between two sets by minimizing
globally the quantity d(x, Tx) such that the minimum value d(A, B) is attained
at some point.

At this, point it is pertinent to point out the difference between proximity point
results and best approximation results. Unlike former, the best approximation
results are not necessarily optimal. For instance, the famous Ky Fan’s best ap­
proximation result is not an optimality result [11].

Eldred et al [10] introduced best proximity points. Interest in results associated
with this concept increased rapidly which has resulted in the publication of a good
number of papers on this topic. Side by side, coupled fixed point theorems also
occupied large research interest in recent times with the publication of results like
[5, 6, 12, 15, 17]. Coupled mapping was utilized in research on best proximity
pairs in the work of [20] and was followed by works like [13, 14, 18, 19]. Our
purpose is to establish coupled best proximity point theorems in a metric space
where a partial order is defined. In the sequel we use an almost contraction like
inequality. These inequalities featured in the study of generalized contractions
originated by Berinde [4]. This category of inequalities has been utilized in a good
number of papers which are predominantly on fixed point studies, some instances
being [1, 2, 7, 8, 9]. We utilize this idea for finding best proximity pairs through
coupled maps. Precisely, we utilize a generalized almost contraction mapping for
the purpose of obtaining coupled best proximity points. The above mentioned
mapping is assumed to be defined from one set A × A to the other set B. Then
under suitable conditions, by applying fixed point methodologies, we obtained a
coupled best proximity point of the above mentioned mapping which realizes the
minimum distance. The main result has one corollary and an illustrative example.
Separate order theoretic condition is imposed to ensure the uniqueness of the
coupled best proximity point in the main result.

The following are the requisite mathematical concepts for the discussions in this
paper.

Throughout this paper, (X, d, ⪯) denotes a partially ordered metric space where
⪯ is a partially order on the metric space (X, d).

Definition 1.1 ([12]). A mapping g : A×A −→ A is said to have the mixed monotone
property if

u, v ∈ A, u ⪯ v =⇒ g(u, y) ⪯ g(v, y), for all y ∈ A;

and
p, q ∈ A, p ⪯ q =⇒ g(x, p) ⪰ g(x, q), for all x ∈ A.

Definition 1.2 ([14]). A mapping g : A × A −→ B is said to have proximal mixed
monotone property if for all x, y ∈ A

u ⪯ v
d(a, g(u, y)) = d(A, B),
d(b, g(v, y)) = d(A, B)

 ⇒ a ⪯ b
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and
p ⪯ q
d(c, g(x, p)) = d(A, B),
d(d, g(x, q)) = d(A, B)

 ⇒ c ⪰ d,

where u, v, p, q, a, b, c, d ∈ A.

If A = B in the above definition, the notion of the proximal mixed monotone
property reduces to that of the mixed monotone property.

Definition 1.3. A mapping F : A×A −→ B is said to have proximal mixed mono­
tone property on A0 ×A0 if for all x, y ∈ A0

u ⪯ v
d(a, g(u, y)) = d(A, B),
d(b, g(v, y)) = d(A, B)

 ⇒ a ⪯ b

and
p ⪯ q
d(c, g(x, p)) = d(A, B),
d(d, g(x, q)) = d(A, B)

 ⇒ c ⪰ d,

where u, v, p, q, a, b, c, d ∈ A0.

Lemma 1.4 ([14]). Let (X, d, ⪯) be a partially ordered metric space and A, B are
nonempty subsets of X. Assume A0 is non­empty. Let g : A×A −→ B be a mapping
such that g(A0 × A0) ⊆ B0 and g has proximal mixed monotone property. Then for
all u, v, p, q, w ∈ A0

u ⪯ v and p ⪰ q
d(v, g(u, p)) = d(A, B),
d(w, g(v, q)) = d(A, B)

 ⇒ v ⪯ w.

Lemma 1.5 ([14]). Let (X, d, ⪯) be a partially ordered metric space and A, B are
nonempty subsets of X. Assume A0 is non­empty. Let g : A×A −→ B be a mapping
such that g(A0 × A0) ⊆ B0 and g has proximal mixed monotone property. Then for
all u, v, p, q, z ∈ A0

u ⪯ v and p ⪰ q
d(q, g(p, u)) = d(A, B),
d(z, g(q, v)) = d(A, B)

 ⇒ q ⪰ z.

Definition 1.6 ([20]). A point (a, b) ∈ A×A is said to be a coupled best proximity
point of the mapping g : A×A −→ B if d(a, g(a, b)) = d(A, B) and d(b, g(b, a)) =
d(A, B).

2. MAIN RESULTS

Theorem 2.1. Let (X, ⪯) be a partially ordered set and suppose that there is
a metric d on X such that (X, d) is a complete metric space. Let (A, B) be a
pair of non­empty closed subsets of X such that A0 is non­empty and closed. Let
F : A×A −→ B be a mapping such that F (A0×A0) ⊆ B0 and F has proximal mixed
monotone property on A0 × A0. Suppose that there exist nonnegative real numbers
a, b and L with a+ b < 1 such that for all x, y, u, v, p, q ∈ A0

x ⪯ u and y ⪰ v,
d(p, F (x, y)) = d(A, B),
d(q, F (u, v)) = d(A, B)

 =⇒ d(p, q) ≤ N(x, y, u, v, p, q),

where
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N(x, y, u, v, p, q) = a d(x, u)+b d(y, v)+Lmin {d(p, u), d(q, x), d(p, x), d(q, u)}.
Suppose either
(a) F is continuous or
(b) X has the following properties:

(i) if a nondecreasing sequence {xn} −→ x, then xn ⪯ x, for all n ≥ 0;
(ii) if a nonincreasing sequence {yn} −→ y, then y ⪯ yn, for all n ≥ 0.

Also, suppose that there exist elements (x0, y0), (x1, y1) ∈ A0 × A0 such that
d(x1, F (x0, y0)) = d(A, B) and d(y1, F (y0, x0)) = d(A, B) with x0 ⪯ x1 and
y0 ⪰ y1. Then F has a coupled best proximity point in A0 ×A0.

Proof. By the hypothesis of the theorem there exist elements (x0, y0), (x1, y1) ∈
A0 ×A0 such that x0 ⪯ x1 and y0 ⪰ y1 and

d(x1, F (x0, y0)) = d(A, B) and d(y1, F (y0, x0)) = d(A, B). (2.1)

Since F (A0 ×A0) ⊆ B0, there exists an element (x2, y2) ∈ A0 ×A0 such that

d(x2, F (x1, y1)) = d(A, B) and d(y2, F (y1, x1)) = d(A, B). (2.2)

Hence by the Lemmas 1.4 and 1.5, we have x1 ⪯ x2 and y1 ⪰ y2.
Continuing this process, we construct the sequences {xn} and {yn} in A0 such

that
xn ⪯ xn+1 and yn ⪰ yn+1 for all n ≥ 0 (2.3)

and

d(xn+1, F (xn, yn)) = d(A, B) and d(yn+1, F (yn, xn)) = d(A, B). (2.4)

Now,
xn ⪯ xn+1 and yn ⪰ yn+1,
d(xn+1, F (xn, yn)) = d(A, B),
d(xn+2, F (xn+1, yn+1)) = d(A, B)

 =⇒

d(xn+1, xn+2) ≤ N(xn, yn, xn+1, yn+1, xn+1, xn+2), (2.5)

where
N(xn, yn, xn+1, yn+1, xn+1, xn+2) = a d(xn, xn+1) + b d(yn, yn+1)

+L min {d(xn+1, xn+1), d(xn+2, xn), d(xn+1, xn), d(xn+2, xn+1)}
= a d(xn, xn+1) + b d(yn, yn+1).

So, we have
d(xn+1, xn+2) ≤ a d(xn, xn+1) + b d(yn, yn+1). (2.6)

Similarly, it can be obtained that

d(yn+1, yn+2) ≤ a d(yn, yn+1) + b d(xn, xn+1). (2.7)

Combination of (2.6) and (2.7) implies that

d(xn+1, xn+2) + d(yn+1, yn+2) ≤ (a+ b) [d(xn, xn+1) + d(yn, yn+1)]. (2.8)

Let rn = d(xn, xn+1)+ d(yn, yn+1) and k = a+ b. By repeated application of (2.8),
we get

0 ≤ rn ≤ k rn−1 ≤ k2 rn−2 ≤ ... ≤ kn r0. (2.9)

Let m, n ∈ N with m < n. Then
d(xm, xn) + d(ym, yn) ≤ d(xm, xm+1) + d(ym, ym+1) + d(xm+1, xm+2) +

d(ym+1, ym+2) + · · ·+ d(xn−1, xn) + d(yn−1, yn)
≤ rm+rm+1+ ...+rn−1 ≤ [km+km+1+ ...+kn−1]r0
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≤ km

1− k
r0 −→ 0 as m −→ ∞ (since 0 ≤ k < 1).

Then it follows that

lim
m, n→∞

d(xm, xn) = 0 and lim
m, n→∞

d(ym, yn) = 0,

which implies that both {xn} and {yn} are Cauchy sequences in A0. Since A0 is a
closed subset of the complete metric space (X, d), A0 is also complete. Now from
the completeness of A0, there exists x∗, y∗ ∈ A0 such that

lim
n→∞

xn = x∗; that is, lim
n→∞

d(xn, x
∗) = 0 (2.10)

and
lim
n→∞

yn = y∗; that is, lim
n→∞

d(yn, x
∗) = 0. (2.11)

Let the condition (a) holds.
Taking limit as n −→ ∞ in (2.4) and using (2.10), (2.11) and the continuity of F ,
we have

d(x∗, F (x∗, y∗)) = d(A, B) and d(y∗, F (y∗, x∗)) = d(A, B).

Therefore, (x∗, y∗) is a coupled best proximity point of F .
Next we suppose that the condition (b) holds.

Using the condition (b) of the theorem, (2.3), (2.10) and (2.11), we have

xn ⪯ x∗ and yn ⪰ y∗, for all n ≥ 0. (2.12)

Since x∗, y∗ ∈ A0 and F (A0 ×A0) ⊆ B0, there exists u, v ∈ A0 such that

d(u, F (x∗, y∗)) = d(A, B) and d(v, F (y∗, x∗)) = d(A, B). (2.13)

By (2.4), (2.12) and (2.13)

xn ⪯ x∗ and yn ⪰ y∗,
d(xn+1, F (xn, yn)) = d(A, B),
d(u, F (x∗, y∗)) = d(A, B)

 =⇒

d(xn+1, u) ≤ N(xn, yn, x
∗, y∗, xn+1, u), (2.14)

where
N(xn, yn, x

∗, y∗, xn+1, u) = a d(xn, x
∗) + b d(yn, y

∗)
+L min {d(xn+1, x

∗), d(u, xn), d(xn+1, xn), d(u, x
∗)}.

Using (2.10) and (2.11), we obtain

lim
n→∞

N(xn, yn, x
∗, y∗, xn+1, u) = 0. (2.15)

Taking the limit as n −→ ∞ in (2.14), using (2.10) and (2.15), we have d(x∗, u) ≤ 0,
which implies that d(x∗, u) = 0; that is, u = x∗.
Again, by (2.4), (2.12) and (2.13)

y∗ ⪯ yn and x∗ ⪰ xn,
d(v, F (y∗, x∗)) = d(A, B),
d(yn+1, F (yn, xn)) = d(A, B)

 =⇒

d(v, yn+1) ≤ N(y∗, x∗, yn, xn, v, yn+1), (2.16)
where

N(y∗, x∗, yn, xn, v, yn+1) = a d(y∗, yn) + b d(x∗, xn)
+L min {d(v, yn), d(yn+1, y

∗), d(v, y∗), d(yn+1, yn)}.
Using (2.10) and (2.11), we obtain

lim
n→∞

N(y∗, x∗, yn, xn, v, yn+1) = 0. (2.17)



150 CHOUDHURY, METIYA AND KONAR/JNAO : VOL.7, NO.1, (2016), 145­153

Taking the limit as n −→ ∞ in (2.16), using (2.11) and (2.17), we have d(v, y∗) ≤ 0
which implies that d(v, y∗) = 0; that is, v = y∗.
Since u = x∗ and v = y∗, we have from (2.13) that

d(x∗, F (x∗, y∗)) = d(A, B) and d(y∗, F (y∗, x∗)) = d(A, B).

Hence (x∗, y∗) is a coupled best proximity point of F . □

With the help of partially ordered set (X, ⪯) we endow the product space X×X
with the following partial order:

for (x, y), (u, v) ∈ X ×X, (u, v) ⪯ (x, y) ⇔ x ⪰ u, y ⪯ v.

Theorem 2.2. In addition to the hypotheses of Theorems 2.1, suppose that for every
(x, y), (x∗, y∗) ∈ A0×A0 there exists (u, v) ∈ A0×A0 such that (u, v) is comparable
to (x, y) and (x∗, y∗). Then F has a unique coupled best proximity point.

Proof. From Theorem 2.1, the set of coupled best proximity points F is non­empty.
Suppose that (x, y) and (x∗, y∗) are coupled best proximity points of F . So

d(x, F (x, y)) = d(A, B), d(y, F (y, x) = d(A, B), (2.18)

and
d(x∗, F (x∗, y∗)) = d(A, B), d(y∗, F (y∗, x∗) = d(A, B). (2.19)

Now, we show that (x, y) = (x∗, y∗).
By the assumption, there exists (u, v) ∈ A0 × A0 such that (u, v) is comparable
with (x, y) and (x∗, y∗).

Put (u0, v0) = (u, v).
Suppose that

(u0, v0) ⪯ (x, y); that is, u0 ⪯ x, v0 ⪰ y (the proof is similar in other case).
(2.20)

Since u = u0, v = v0 ∈ A0 and F (A0 × A0) ⊆ B0, there exists (u1, v1) ∈ A0 × A0

such that

d(u1, F (u0, v0)) = d(A, B) and d(v1, F (v0, u0)) = d(A, B). (2.21)

From (2.18), (2.19), (2.20) and (2.21), we have

u0 ⪯ x and v0 ⪰ y
d(u1, F (u0, v0)) = d(A, B)
d(x, F (x, y)) = d(A, B),

and
u0 ⪯ x and v0 ⪰ y
d(v1, F (v0, u0)) = d(A, B)
d(y, F (y, x)) = d(A, B).


Since F (A0 ×A0) ⊆ B0 and x, v0 ∈ A0, there exists x1 ∈ A0 such that

d(x1, F (x, v0)) = d(A, B).

Now we have

u0 ⪯ x,
d(u1, F (u0, v0)) = d(A, B)
d(x1, F (x, v0)) = d(A, B),

and
y ⪯ v0,
d(x, F (x, y)) = d(A, B)
d(x1, F (x, v0)) = d(A, B).


Using the proximal mixed monotone property of F , we have

u1 ⪯ x1 and x1 ⪯ x which implies that u1 ⪯ x.

Again, since F (A0 ×A0) ⊆ B0 and v0, x ∈ A0, there exists y1 ∈ A0 such that

d(y1, F (v0, x)) = d(A, B).
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Now we have
u0 ⪯ x,
d(v1, F (v0, u0)) = d(A, B)
d(y1, F (v0, x)) = d(A, B),

and
y ⪯ v0,
d(y, F (y, x)) = d(A, B)
d(y1, F (v0, x)) = d(A, B).


Using the proximal mixed monotone property of F , we have

v1 ⪰ y1 and y1 ⪰ y which implies that v1 ⪰ y.

Therefore, we have
(u1, v1) ⪯ (x, y). (2.22)

Continuing this process, we have sequences {un} and {vn} in A0 such that

d(un+1, F (un, vn)) = d(A, B), d(vn+1, F (vn, un)) = d(A, B) and (un, vn) ⪯ (x, y) for all n ≥ 0.
(2.23)

By (2.18) and (2.23)

un ⪯ x and vn ⪰ y
d(un+1, F (un, vn)) = d(A, B),
d(x, F (x, y)) = d(A, B)

 =⇒

d(un+1, x) ≤ N(un, vn, x, y, un+1, x), (2.24)
where

N(un, vn, x, y, un+1, x) = a d(un, x) + b d(vn, y)
+L min {d(un+1, x), d(x, un), d(un+1, un), d(x, x)}

= a d(un, x) + b d(vn, y).
Therefore, from (2.24), we have

d(un+1, x) = a d(un, x) + b d(vn, y). (2.25)

Again, by (2.18) and (2.23)

y ⪯ vn and x ⪰ un

d(y, F (y, x)) = d(A, B),
d(vn+1, F (vn, un)) = d(A, B)

 =⇒

d(y, vn+1) ≤ N(y, x, vn, un, y, vn+1), (2.26)
where

N(y, x, vn, un, y, vn+1) = a d(y, vn) + b d(x, un)
+L min {d(y, vn), d(vn+1, y), d(y, y), d(vn+1, vn)}

= a d(y, vn) + b d(x, un).
From (2.26) it follows that

d(y, vn+1) ≤ a d(y, vn) + b d(x, un). (2.27)

Combining (2.25) and (2.27), we have

d(un+1, x) + d(vn+1, y) ≤ (a+ b) [d(un, x) + d(vn, y)]. (2.28)

Since a+ b < 1, it follows from (2.28) that

d(un+1, x) + d(vn+1, y) ≤ d(un, x) + d(vn, y).

Therefore, {d(un, x) + d(vn, y)} is a monotonically decreasing sequence of non­
negative real numbers and hence there exists a p ≥ 0 such that

lim
n→∞

[d(un, x) + d(vn, y)] = p. (2.29)

We show that p = 0. If possible, let p > 0.
Taking limit as n −→ ∞ in (2.28) and using (2.29), we have

p ≤ (a+ b) p < p, (since (a+ b) < 1)
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which is a contradiction. Therefore, p = 0. Hence

lim
n→∞

[d(un, x) + d(vn, y)] = 0, (2.30)

which implies that

lim
n→∞

d(un, x) = 0 and lim
n→∞

d(vn, y) = 0. (2.31)

Similarly, we can prove that

lim
n→∞

[d(un, x
∗) + d(vn, y

∗)] = 0, (2.32)

and hence

lim
n→∞

d(un, x
∗) = 0 and lim

n→∞
d(vn, y

∗) = 0. (2.33)

Using triangle inequality, (2.31) and (2.33), we have

d(x, x∗)+d(y, y∗) ≤ [d(x, un)+d(un, x
∗)+d(y, vn)+d(vn, y

∗)] −→ 0, as n −→ ∞.

Hence d(x, x∗) + d(y, y∗) = 0, which implies that d(x, x∗) = 0 and d(y, y∗) = 0;
that is, x = x∗ and y = y∗; that is, (x, y) = (x∗, y∗). Therefore, the coupled best
proximity point of F is unique. □

Example 2.3. Let X = R2 (R denotes the set of real numbers) and d be the
Euclidean metric on X. We define a partial order ⪯ on X such that (x, y) ⪯ (u, v)
if and only if x ≤ u and y ≤ v, for all (x, y), (u, v) ∈ X. Let

A = {(2, 0), (0, 2)} ∪ {(x, 0) : 2 ≤ x ≤ 3},
B = {(−2, 0), (0, −2)} ∪ {(0, x) : −3 ≤ x ≤ −2},
A0 = {(2, 0), (0, 2)} and B0 = {(−2, 0), (0, −2)}.

Let F : A×A → B be defined as

F ((x1, x2), (y1, y2)) = (−x2, −x1) for all (x1, x2), (y1, y2) ∈ A×A.

Let a, b and L be three nonnegative real numbers with a+ b < 1.
Here all the conditions of theorem 2.1 are satisfied and it is seen that ((2, 0), (0,

2)) and ((0, 2), (2, 0)) are two coupled best proximity points of F .

Considering L = 0 in Theorem 2.1, we have the following corollary.

Corollary 2.4. Let (X, ⪯) be a partially ordered set and suppose that there is
a metric d on X such that (X, d) is a complete metric space. Let (A, B) be a
pair of non­empty closed subsets of X such that A0 is non­empty and closed. Let
F : A×A −→ B be a mapping such that F (A0×A0) ⊆ B0 and F has proximal mixed
monotone property on A0 × A0. Suppose that there exist nonnegative real numbers
a and b with a+ b < 1 such that for all x, y, u, v, p, q ∈ A0

x ⪯ u and y ⪰ v,
d(p, F (x, y)) = d(A, B),
d(q, F (u, v)) = d(A, B)

 =⇒ d(p, q) ≤ a d(x, u) + b d(y, v).

Suppose that the condition (a) or (b) of the theorem 2.1 holds. Also, suppose that
there exist elements (x0, y0), (x1, y1) ∈ A0 × A0 such that d(x1, F (x0, y0)) =
d(A, B) and d(y1, F (y0, x0)) = d(A, B) with x0 ⪯ x1 and y0 ⪰ y1. Then F has a
coupled best proximity point in A0 ×A0.
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9. L. Ćirić, M. Abbas, R. Saadati, N. Hussain, Common fixed points of almost generalized contractive
mappings in ordered metric spaces, Appl. Math. Comput. 217 (2011), 5784–5789.

10. A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal.
Appl. 323 (2006), 1001­1006.

11. K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math Z. 122 (1969), 234 – 240.
12. T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces

and applications, Nonlinear Anal. 65 (2006), 1379–1393.
13. A. Gupta, S. S. Rajput, P. S. Kaurav, Coupled best proximity point theorem in metric spaces,

International Journal of Analysis and Applications 4 (2014), 201–215.
14. P. Kumam, V. Pragadeeswarar, M. Marudai, K. Sitthithakerngkiet, Coupled best proximity points

in ordered metric spaces, Fixed Point Theory Appl. 2014 (2014) : 107.
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