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ABSTRACT. In this paper, we discuss best approximation and best coapproximation in met­
ric linear spaces. We obtain some results on the characterizations, existence and uniqueness
of elements of best approximation and best coapproximation in metric linear spaces. We
also study single­valuedness and linearity of metric projection and metric coprojection.
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1. INTRODUCTION AND PRELIMINARIES

A new tool in approximation theory, called best coapproximation by Papini and
Singer [13], was introduced in normed linear spaces by C. Franchetti and M. Furi
[1]. Subsequently, this theory has been developed to a large extent in normed lin­
ear spaces and in Hilbert spaces by C. Franchetti and M. Furi, H. Mazaheri, T.D.
Narang, P.L. Papini and I. Singer, Geetha S. Rao and her coworkers, and by many
others (see e.g. [1], [3], [4], [8], [13]­[16] and references cited therein). However, the
situation in case of metric linear spaces and metric spaces is somewhat different.
Although, some attempts have been made in this direction (see e.g. [9]­[12]) but
still the theory is less developed as compared to the theory of best approximation.
The present paper is also a step in this direction. This paper mainly deals with
the characterizations of elements of best approximation and best coapproximation
in metric linear spaces. Some results concerning the existence and uniqueness
of elements of best approximation and best coapproximation have been discussed.
We also study single­valuedness and linearity of metric projection and metric co­
projection.
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Let G be a closed subset of a metric space (X, d). An element g0 ∈ G is called a
best approximation (best coapproximation) to x ∈ X if

d(x, g0) ≤ d(x, g) (d(g0, g) ≤ d(x, g))

for all g ∈ G. The set of all such g0 ∈ G is denoted by PG(x)(RG(x)). The set G is
called proximinal (coproximinal) if PG(x) (RG(x)) contains at least one element
for every x ∈ X. If for each x ∈ X, PG(x)(RG(x)) has exactly one element, then
the set G is called Chebyshev (co− Chebyshev).

We shall denote the set {x ∈ X : g0 ∈ PG(x)} ({x ∈ X : g0 ∈ RG(x)}) by
P−1
G (g0) (R

−1
G (g0)).

For a proximinal (coproximinal) subset G of X, the mapping PG(RG) : X →
2G(≡ the collection of all subsets of G) defined by PG(x) = {g0 ∈ G : d(x, g0) ≤
d(x, g) for every g ∈ G} (RG(x) = {g0 ∈ G : d(g0, g) ≤ d(x, g) for every g ∈ G})
is called metric projection (metric coprojection).

A linear space X together with a translation invariant metric d (i.e., d(x+ z, y+
z) = d(x, y) for all x, y, z ∈ X) such that addition and scalar multiplication are
continuous in (X, d) is called a metric linear space.

Every normed linear space is a metric linear sapce but a metric linear space
need not be normable (see [17], p.31­36).

Remarks 1.1.

(i) A proximinal subset of a metric space need not be coproximinal:
Let X = R2 and G = {(x, y) ∈ R2 : x2 + y2 = 1}, then G is a compact
subset of R2 and hence proximinal. However, G is not coproximinal as
(0, 0) ∈ R2 does not have any best coapproximation in G.

(ii) A coproximinal subset of a metric space need not be proximinal:
Let X = R−{1} and M = (1, 2], then M is a coproximinal subset of X but
is not proximinal.

(iii) A Chebyshev subset of a metric space need not be co­Chebyshev:
Let X = R and G = [1, 2], then G is Chebyshev but not co­Chebyshev.

(iv) A co­Chebyshev subset of a metric space need not be Chebyshev:
Let X = R2 with the metric d((x1, y1), (x2, y2)) = |x1 − x2|+ |y1 − y2| and
G = {(x, y) ∈ R2 : x = y}. Then G is a proximinal subset of X. We have
PG(x, y) = {α(x, x) + (1 − α)(y, y) : 0 ≤ α ≤ 1}, i.e., G is not Chebyshev,
but RG(x, y) = {(x+y

2 , x+y
2 )}, i.e., G is co­Chebyshev.

(v) The set P−1
G (g0)(R

−1
G (g0)) is a closed set for every g0 ∈ G.

(vi) If G is a subspace of a metric linear space (X, d) then P−1
G (0)

∩
G = {0}

and R−1
G (0)

∩
G = {0}, where P−1

G (0) = {x ∈ X : 0 ∈ PG(x)} and
R−1

G (0) = {x ∈ X : 0 ∈ RG(x)}.
(vii) If G is subspace of a metric linear space (X, d), then g0 ∈ PG(x) (g0 ∈

RG(x)) if and only if x − g0 ∈ P−1
G (0) (x − g0 ∈ R−1

G (0)) and PG(x + g) =
PG(x) + g (RG(x+ g) = RG(x) + g) for every g ∈ G.

(viii) If G is subspace of a metric linear space (X, d), then d(g, 0) = d(g,R−1
G (0))

for every g ∈ G.
For a closed linear subspace G of a metric linear space (X, d), the canonical

mapping π of X onto X/G is defined as π(x) = x + G, x ∈ X. This mapping π is
linear, continuous and open (see [17], p.29).

Let (X, d) be a metric linear space and x, y ∈ X. We say that x is orthogonal to
y, x ⊥ y if d(x, 0) ≤ d(x, αy) for every scalar α. For a subset G of X, we say that
G ⊥ x if g ⊥ x for every g ∈ G.
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2. MAIN RESULTS

This section mainly deals with the characterizations, existence and unique­
ness of elements of best approximation and best coapproximation in metric lin­
ear spaces. We start with the following theorem which gives equivalent conditions
under which coproximinal subspaces are co­Chebyshev:

Theorem 2.1. Let G be a coproximinal subspace of a metric linear space (X, d),
then the following are equivalent:
(i) RG is one­valued and linear.
(ii) R−1

G (0) is a linear subspace of X.

Proof. (i)⇒ (ii). Let x, y ∈ R−1
G (0) and α, β be scalars. Then RG(x) = {0} and RG(y) =

{0}. Since RG is linear, we have RG(αx + βy) = αRG(x) + βRG(y) = {0}. This
implies that αx+ βy ∈ R−1

G (0).
(ii)⇒ (i). Let g1, g2 ∈ RG(x). This gives x − g1, x − g2 ∈ R−1

G (0). Since R−1
G (0) is a

subspace, we have (x− g1)− (x− g2) ∈ R−1
G (0), i.e., g2 − g1 ∈ R−1

G (0). This gives
g2 − g1 ∈ R−1

G (0)
∩
G = {0} and so g1 = g2. Hence RG is one­valued.

Let x, y ∈ X and α, β be scalars. Suppose g1 ∈ RG(x) and g2 ∈ RG(y). This gives
x−g1, y−g2 ∈ R−1

G (0). Since R−1
G (0) is a subspace, we have α(x−g1)+β(y−g2) ∈

R−1
G (0), i.e., (αx+βy)− (αg1+βg2) ∈ R−1

G (0). Now, RG(αx+βy)− (αg1+βg2) =
RG(αx+ βy − (αg1 + βg2)) = {0}, as RG is single­valued. Hence RG(αx+ βy) =
αg1 + βg2 = αRG(x) + βRG(y). □

Proceeding on similar lines, we obtain the following theorem which gives equiv­
alent conditions under which proximinal subspaces are Chebyshev:

Theorem 2.2. Let G be a proximinal subspace of a metric linear space (X, d), then
the following are equivalent:
(i) PG is one­valued and linear.
(ii) P−1

G (0) is a linear subspace of X.

Remarks 2.3. (i) For normed linear spaces, Theorem 2.1 was proved in [12] and
Theorem 2.2 in [2].
(ii) If we take G to be only a proximinal subset containing zero, then P−1

G (0) is a
subspace but G need not be Chebyshev.

Example 2.4. Let X = R with usual metric and G = (−∞, 1]
∪
[2,∞). Then

P−1
G (0) = {0} is a subspace but G is not a Chebyshev set.

Example 2.4 also shows that one of the main result (Theorem 2.6) proved in [5]
is not valid.

We require the following lemmas proved in [12] ([10]) for our next results:

Lemma 2.5. Let G be a linear subspace of a metric linear space (X, d), then the
following are equivalent:
(i) G is proximinal (coproximinal).
(ii) X = G+ P−1

G (0) (X = G+R−1
G (0)).

Lemma 2.6. Let G be a linear subspace of a metric linear space (X, d) then the
following are equivalent:
(i) G is Chebyshev (co­Chebyshev ).
(ii) X = G

⊕
P−1
G (0) (X = G

⊕
R−1

G (0)), where
⊕

means that the sum decomposi­
tion of each x ∈ X is unique.

The following theorem gives necessary and sufficient condition for the metric
coprojection to be linear.
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Theorem 2.7. Let G be a co­Chebyshev subspace of a metric linear space (X, d),
then the following are equivalent:
(i) RG is linear.
(ii) R−1

G (0) is a subspace.
(iii) R−1

G (0) contains a subspace N for which X = G
⊕

N .

Proof. (i)⇒ (ii) follows from Theorem 2.1.
(ii)⇒(iii) is obvious by Lemma 2.6.
(iii)⇒ (i). Let x, y ∈ X and α, β be scalars.. Then x = g1 + n1 and y = g2 + n2

for some g1, g2 ∈ G and n1, n2 ∈ N . Therefore, x − g1, y − g2 ∈ N . Since N is a
subspace, we have α(x − g1) + β(y − g2) ∈ N ⊆ R−1

G (0) for all scalars α, β. This
gives (αx+ βy)− (αg1 + βg2) ∈ R−1

G (0), i.e., RG(αx+ βy − (αg1 + βg2)) = {0}(as
G is co­Chebyshev), i.e., RG(αx+ βy) = αg1 + βg2 = αRG(x) + βRG(y). □

Proceeding on similar lines, we obtain the following theorem which gives neces­
sary and sufficient conditions for the metric projection to be linear.

Theorem 2.8. Let G be a Chebyshev subspace of a metric linear space (X, d), then
the following are equivalent:
(i) PG is linear.
(ii) P−1

G (0) is a subspace.
(iii) P−1

G (0) contains a subspace N for which X = G
⊕

N .

Remarks 2.9. For normed linear spaces, Theorem 2.7 was proved in [15] and The­
orem 2.8 in [2].

The following theorem gives necessary and sufficient conditions for the set R−1
G (0)

to be Chebyshev:

Theorem 2.10. Let G be a coproximinal subspace of a metric linear space (X, d). If
R−1

G (0) is an additive group then the following are equivalent:
(i) R−1

G (0) is a Chebyshev set.
(ii) G = {x ∈ X : d(x,R−1

G (0)) = d(x, 0)}.

Proof. (i)⇒ (ii). Suppose x ∈ X is such that

d(x,R−1
G (0)) = d(x, 0). (2.1)

Then there exist g ∈ G such that ǧ = x − g ∈ R−1
G (0) (as G is a coproximinal

subspace and so by Lemma 2.5, X = G + R−1
G (0)). Therefore d(x, ǧ) = d(g, 0) =

d(g,R−1
G (0)) = d(x − ǧ, R−1

G (0)) = d(x,R−1
G (0)), as R−1

G (0) is an additive group.
This implies ǧ ∈ PR−1

G (0)(x). From (2.1), we have 0 ∈ PR−1
G (0)(x). Since R−1

G (0) is
Chebyshev, we have ǧ = 0 and so x = g ∈ G. Also, by Remark 1.1 (8), we have
d(g, 0) = d(g,R−1

G (0)) for all g ∈ G. Consequently, the result follows.
(ii)⇒ (i). Let x ∈ X. Then there exist g ∈ G such that ǧ = x−g ∈ R−1

G (0). Therefore

d(x,R−1
G (0)) = d(x− ǧ, R−1

G (0)) = d(x, ǧ) (as x− ǧ ∈ G)

i.e., R−1
G (0) is proximinal.

Suppose that for some x ∈ X, there exist ǧ1, ǧ2 ∈ PR−1
G (0)(x), i.e.,

d(x, ǧ1) = d(x,R−1
G (0)) = d(x− ǧ1, R

−1
G (0))

and
d(x, ǧ2) = d(x,R−1

G (0)) = d(x− ǧ2, R
−1
G (0))

Then by hypothesis, x− ǧ1, x− ǧ2 ∈ G. Since G is a subspace, (x− ǧ1)− (x−
ǧ2) ∈ G, i.e., ǧ1 − ǧ2 ∈ G. Also R−1

G (0) is an additive group, we have ǧ1 − ǧ2 ∈
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R−1
G (0). Therefore, ǧ1 − ǧ2 ∈ R−1

G (0)
∩
G = {0} and so ǧ2 = ǧ1. Hence R−1

G (0) is
Chebyshev. □

Let G be a linear subspace of a metric linear space (X, d). We say that G is a
quasi− orthogonal set if G ⊥ P−1

G (0), i.e., g ⊥ g′ for all g ∈ G and g′ ∈ P−1
G (0).

Concerning quasi­orthogonality of subspaces, we have

Lemma 2.11. Let G be a quasi­orthogonal subspace of a metric linear space (X, d)
then d(g, 0) = d(g, P−1

G (0)).

Proof. Since G is a quasi­orthogonal subspace, G ⊥ P−1
G (0), i.e., g ⊥ g′ for all

g ∈ G and g′ ∈ P−1
G (0), i.e., d(g, 0) ≤ d(g, αg′) for all g ∈ G, g′ ∈ P−1

G (0) and all
scalars α. Taking α = 1, we obtain d(g, 0) ≤ d(g, g′) for all g ∈ G, g′ ∈ P−1

G (0).
This implies d(g, 0) ≤ infg′∈P−1

G (0) d(g, g
′) = d(g, P−1

G (0)) for all g ∈ G. Also,
d(g, P−1

G (0)) = infg′∈P−1
G (0) d(g, g

′) ≤ d(g, 0) for all g ∈ G. Consequently, d(g, 0) =
d(g, P−1

G (0)). □

Using Lemma 2.11, we have the following result which characterizes Cheby­
shevity of P−1

G (0):

Theorem 2.12. Let G be a proximinal, quasi­orthogonal subspace of a metric linear
space (X, d). If P−1

G (0) is an additive group then the following are equivalent:
(i) P−1

G (0) is a Chebyshev set.
(ii) G = {x ∈ X : d(x, P−1

G (0)) = d(x, 0)}.

Proof. The proof runs on similar lines as that of Theorem 2.10. □

Remarks 2.13.

(i) For normed linear spaces, Theorem 2.12 was proved in [5].
(ii) It was shown in [11] that if G is a proximinal (coproximinal) subspace of a

metric linear space (X, d) and P−1
G (0) (R−1

G (0)) is a convex set, then G is
Chebyshev (co­Chebyshev). If we take G to be a proximinal (coproximinal)
subset containing zero instead of a subspace then G need not be Chebyshev
(co­Chebyshev). Example 2.4 and the following example confirm these
facts.

Example 2.14. Let X = R and G = [0,∞), then R−1
G (0) = (−∞, 0] and RG(−1) =

[0, 1], i.e., R−1
G (0) is a convex set but G is not co­Chebyshev.

Concerning the coproximinality of quotient spaces, we have

Lemma 2.15. Let G be a closed linear subspace of a metric linear space (X, d) and
F a coproximinal subspace of X containing G. Then F/G is coproximinal in X/G.

Proof. Let x + G ∈ X/G, x ∈ X, and f be a best coapproximation to x. We prove
that f +G is a best coapproximation to x+G. Suppose it is not, then there exist
f ′+G ∈ F/G such that d(f+G, f ′+G) > d(x+G, f ′+G), i.e., infg∈G d(x−f ′, g) <
d(f − f ′, G). Then there exist some g0 ∈ G such that

d(x− f ′, g0) < d(f − f ′, G) ≤ d(f − f ′, g0)

i.e., d(x, f ′+g0) < d(f, f ′+g0). Thus f is not a best coapproximation to x from F ,
a contradiction. Hence f +G is a best coapproximation to x+G and consequently,
F/G is coproximinal in X/G. □

Concerning the coproximinality of F , we have
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Lemma 2.16. Let G be a proximinal subspace of a metric linear space (X, d) and F
a subspace of X containing G. If F/G is coproximinal in X/G then F is coproximinal
in X.

Proof. Let x ∈ X be arbitrary, then x + G ∈ X/G. Since F/G is coproximinal in
X/G, there is some f + G ∈ RF/G(x+G), i.e., d(f + G, f ′ + G) ≤ d(x + G, f ′ +
G) for evrey f ′ + G ∈ F/G. Since G is proximinal, there exist g0 ∈ G such
that d(f − f ′, g0) ≤ d(x − f ′, G) ≤ d(x − f ′, 0) for every f ′ ∈ F . This gives
f − g0 ∈ RF (x). Hence F is coproximinal in X. □

Using Lemmas 2.15 and 2.16, we obtain the following result:

Theorem 2.17. Let G be a proximinal subspace of a metric linear space (X, d) and
F a coproximinal subspace of X containing G. If π : X → X/G is the canonical map,
then π(RF (x)) = RF/G(x+G).

Concerning the co­Chebyshevity of quotient spaces, we have

Theorem 2.18. Let G be a proximinal subspace of a metric linear space (X, d) and
F a coproximinal subspace containing G. If R−1

F (0) is a convex set then F/G is a
co­Chebyshev subspace of X/G.

Proof. Using Theorem 2.17, we have π(RF (x)) = RF/G(x+G).

In view of Remark 2.13, it is sufficient to prove that R−1
F/G(G) is convex. For

this, let x+G, y +G ∈ R−1
F/G(G) and 0 < λ < 1. Since G ∈ RF/G(x+G) and G ∈

RF/G(y +G), there exist g ∈ RF (x) and h ∈ RF (y) such that π(g) = G = π(h).
Therefore, x− g, y − h ∈ R−1

F (0) (as g ∈ RF (x), h ∈ RF (y)).
Since R−1

F (0) is a convex set, we have λ(x − g) + (1 − λ)(y − h) ∈ R−1
F (0)

i.e., d(0, f) ≤ d(λ(x − g) + (1 − λ)(y − h), f) for all f ∈ F . This implies d(λg +
(1 − λ)h, λg + (1 − λ)h + f) ≤ d(λx + (1 − λ)y, f + λg + (1 − λ)h) for all f ∈ F .
Therefore, λg + (1− λ)h ∈ RF (λx+ (1− λ)y).

Also π(λg+ (1− λh)) = G. Therefore, G ∈ RF/G(λx+ (1− λ)y +G), i.e., λ(x+

G) + (1 − λ)(y + G) ∈ R−1
F/G(G) and so R−1

F/G(G) is convex. Hence F/G is co­
Chebyshev in X/G. □

Remarks 2.19. For normed linear spaces, Lemmas 2.15, 2.16 and Theorems 2.17,
2.18 were proved in [3].

Proceeding on similar lines, we obtain the following results on best approxima­
tion in quotient spaces. For normed linear spaces these results were proved in [5]
and [6]:

(i) Let G be a closed linear subspace of a metric linear space (X, d) and F a prox­
iminal subspace of X containing G. Then F/G is proximinal in X/G.
(ii) Let G be a proximinal subspace of a metric linear space (X, d) and F a subspace
of X containing G. If F/G is proximinal in X/G then F is proximinal in X.
(iii) Let G be a proximinal subspace of a metric linear space (X, d) and F a prox­
iminal subspace of X containing G. If π : X → X/G is the canonical map then
π(PF (x)) = PF/G(x+G).
(iv) Let G be a proximinal subspace and F a proximinal subspace of X containing
G. If P−1

F (0) is a convex set then F/G is a Chebyshev subspace of X/G.
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