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In 2006, Bhaskar and Lakshmikantham proved a fixed point theorem for a mixed
monotone mapping in a metric space endowed with partial order, using a weak con-
tractivity type of assumption. Recently Luong and Thuan proved some results of
coupled fixed point that generalized main results of them. In this paper, By using the
samet’s method and by using different conditions we prove some coupled fixed point
theorems for mapping having mixed monotone property in partially ordered metric
space. Also by considering the results of Berinde and Burcut and using the main idea
of Samet and Vetro extend the concept of «—admissibility for tripled fixed point the-
orems in metric spaces. As an application, we discuss the existence and solution of a
nonlinear integral equation.
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1. INTRODUCTION

In 1987, Guo and Lakshmikantham introduced the notion of coupled fixed
points [6]. In the last decade of the previous century other authors obtained im-
portant results in this area. In 2006 Bhaskar and Lakshmikantham introduced
notions of a mixed monotone mapping and a coupled fixed point [7]. They proved
fixed point theorem for a mixed monotone mapping in a metric space endowed with
partial order, using a weak contractivity type of assumption.

Recently Luong and Thuan proved some results of coupled fixed point that gener-
alized main results of them [10].
Let us recall some basic definitions of mixed monotone property and c-admissiblity,

[11]-[10].
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Definition 1.1. [7], Let (X, <) be a partially ordered set and F' : X x X — X.
The mapping F' is said to have the mixed monotone property if F'(z,y) is monotone
non-decreasing in z and is monotone non-increasing in ¥, that is, forany z,y € X,
x1,29 € X, 11 <19 = F(a1,y) < F(22,9)

and

yi,92 € X, y1 Syp = F(z,y1) 2 F(z,12).

Definition 1.2. [7], An element (z,y) € X x X is called coupled fixed point of the
mapping F': X x X — X ifa = F(z,y), and y = F(y, z).

Definition 1.3. [2], An element (z,y, z) € X x X x X is called a tripled fixed point
of F: X xXxX— XifF(z,y,2) =z, F(y,z,2) =y, and F(z,x,y) = z.

Definition 1.4. [11], Let (X, d) be a metric space and T : X — X be a given
mapping. we say that T is an o — 1) — contractive mapping, if there exist two
functions ¥ € ¥ and o : X x X — [0,00) such that :

oz, y)d(Tz, Ty) < Y(d(z,y)) forall x,y€ X.
Definition 1.5. [11],Let 7 : X — X and o : X x X — [0,00). we say that T is
a — admissible if
r,ye X, alz,y) >1= a(Tz,Ty) > 1.
Definition 1.6. [9] Let f : X — X anda: X x X — (—o00,+00). We say that f isa

triangular a—admissible mapping if (T1) a(z,y) > 1 = a(fz, fy) > 1, z,y € X
(T2)

implies «(z,y) > 1,z,y,z € X.

Example 1.7. [9] Let X = R, fz = e’ and a(z,y) = ¥/r—y+ 1. Hence, fis a
triangular a—admissible mapping. Again, if a(z,y) = /z—y+1> 1thenz >y
which implies fx > fy. That is, «(fxz, fy) > 1. Moreover, if

afr,2z) > 1
a(z,y) > 1,
then z — y > 0, and hence a(:my) > 1.

Lemma 1.8. [11] (A Coupled Fixed Point is a Fixed Point). Let ' : X x X — X be a
given mapping. Define the mappingT : X x X — X x X by

T(x,y) = (F(z,y), F(y,z)), forall (z,y) € X x X.
Then, (x,y) is a coupled fixed point of F' if and only if (x,y) is a fixed point of T'.

Let ® denote all functions ¢ : [0,00) — [0, 00) which satisfy
(i) ¢ is continuous and non-decreasing,
(i) ¢(t) = 0 if and only if ¢t = 0,
(iii)p(t + s) < p(t) + ¢(s), Vt, s € [0,00)
and ¥ denote all functions 1 : [0,00) — [0, 0c0) which satisfy lim;—,,1(t) > 0 for all
r > 0and lim;_,,+1(t) = 0.
In [10] the authors gave examples of this functions.

Theorem 1.9. (see[11]) let (X, d) be a complete metric space and T : X — X be
an o — ) —contractive mapping satisfying the following condition:
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(i) T is a—admissible,
(i) there exists xg € X such that a(xg, Txg) > 1,
(iii) 7" is continuous.
Then, T' has a fixed point, that is, there exists x* € X such that Tz* = z*.
Theorem 1.10. [10]Let (X, <) be a partially ordered set and suppose there is a
metric d on X such that (X,d) is a complete metric space. let F : X x X — X

be a mapping having the mixed monotone property on X such that there exist two
elements g, yo € X with

2o < F(0,y0) and yo = F(yo, o).
Suppose there exist p € ® and 1) € ¥ such that

P(d(F (,y), F(u,0)) < Sip(d(w, u) + d(y, v)) — o Loy
SJorallx,y,u,v € X withz > u and y < v. Suppose either

(a) F'is continuous or

(b) X has the following property:
(i) if a non-decreasing sequence {mn} — x, thenx,, < z foralln,
(i) if a non-increasing sequence {y,} — y, theny < y, for all n,

then F' has a coupled fixed point in X.

2. THE MAIN RESULTS

Theorem 2.1. Let (X,d) be a complete metric space and F : X x X — X be a
mapping having the mixed monotone property on X . suppose that there existy € ¥
and ¢ € ® and a function o : X% x X? — [0, 00) such that

(@) (0.0) (A (Pla), P, ) € S u) +d(y.v) — (L2402

(2.1)

if F is o — admissible and there exists (zg,yo) € X x X such that

a((zo, o), (F(zo,Y0), F'(yo,0))) = 1 and a((F'(yo, o), F' (0, Y0)), (o, Z0)) > 1,
and there exists xg,yo € X such that

zo < F(xo,y0) and yo > F(yo, o).

and for all x,y,u,v € X Suppose either

(a) F'is continuous or

(b) X has the following property:
(i) if a non-decreasing sequence {xn} — x, thenx,, < z foralln,
(i) if a non-increasing sequence {y,} — y. theny < y, for all n

then F' has a coupled fixed point in X.

Proof. Let xg,yo € X be such that xy < F(zg,y0) and yo > F(x0,y,). we construct
sequences {z,} and {y,} in X as follows

Tnt1 = F(TnyYn) and ypnt1 = F(Yn,xn) for allmn >0 2.2)
We shall show that
Ty < Tpy1 and Yp > Ypa1 for all n > 0. (2.3)

We shall use the mathematical induction.
Let n = 0. Since zy < F(zo,%0) and yo > F(yo,x0) and 1 = F(x0,y0) and
y1 = F(yo,x0), we have zo < x1 and yo > y; thus (2.28) hold for n = 0.
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Now suppose that (2.28) hold for some fixed n > 0, then since z, < z,4; and
Yn = Yn+1, and by mixed monotone property of F', we have

Tp42 = F(xn+17yn+1) > F(xna ynJrl) > F((Enyyn) = Tn+1 (2.4)

Yn+2 = F(yn+1,l’n+1) S F(yruxn-i-l) S F(ynaxn) = Yn+1 (25)

Now from (2.29) and (2.30), we obtain

Tpt+1 < Tpt2 and Yni1 = Ynto
Thus by the mathematical induction we conclude that (2.28) hold for all n > 0.
Since z,, > z,-1 and y, < y,_1, so we have

p(d(@n, 2nt1)) = P(d(F (20, yn), F(Tn-1,Yn-1)))
S a((xnflaynfl)a (F(xnfhynfl)aF(ynflu(Enfl)))SO(d(F((Enyyn%F((Enfhynfl)))

<

d(Tp—1,2n) + d(Yn—1,Yn) ) (2.6)

e (dlnmr,an) + dlyn-r90) — ;

DN |

P(dyns yo+1)) = ¢ (AF Wo1,0-1). F(yasa))

< a((Fn-15201) P@a1,9n-1)s Wn-1:20-1) )0 (AF (W1, 30-1), Flgn, 20)))

d(ynfla yn) + d(l’n,h xn))

< (o1 0) + (e s,20)) — o '

Adding (2.33) to (2.36 ), we get

B((Gt,€2), (1)) (AP @y )y F@n1,9n-1))) + @(AF W1, 0-1), F(ysa))))

(2.7

< w(d(fcm Tn-1) + d(yn, ynfl)) - 2w(d(“"""’ Zn-1) ;r 4y Y1) ) (2.8)
with
B((C1,¢2), (11,m2)) = min {a((xn,l,yn,l), (F(:vn,l,yn,l),F(yn,l,xn,l))>,
(2.9)
a((F(yn—laxn—1)7F(xn—la yn—l))a (%—hyn—l)) }
(2.10)

If we consider Y = X x X, so we can define 5 : Y x Y — [0, 00), such that for all
¢=(C,¢)n=(m,m) €Y

B((C1,¢2)s (m;m2)) = min{e((C1, C2), (m1,m2)), (2, M), (C2,C1))-

and T : Y — Y is given by (1.8). let ¢ = ((1,{2),7 = (m,n2) € Y such that
B(¢,m) > 1, we obtain immediately that 5(7¢,Tn) > 1. also there exists (z9,yo) €
Y such that:

B((z0,y0), (F(z0,y0), F(y0,70))) > 1. (2.11)
By property (iii) of ¢, we have
p(d(@ns1,20) + d(Ynt1,9n)) < 0(d(@nt1.20)) + Q(AYn, Yntr)).  (2.12)

From (2.37), (2.40) and (2.41), we have
%O(d(xn—&-la Tn) + d(Yn+1, yn)) < B((Tn, Yn), (Tn-1, yn—l))@(d(mn-‘rla Tn) + d(Ynt1, yn))
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d@m JUn—l) + d(yn, yn—l)
2

< o (dlans 1) + dlyn 1) ) = 20 .
(2.13)

Which implies

o(d(@nt1, ) + d(Yns1,Yn)) < @(d(@n, Tn_1) + d(Yn, Yn—1)).
Using the fact that ¢ is non-decreasing, we get

A(@nt1,Tn) + d(Ynt1,Yn) < d(@n, Tn-1) + d(Yn, Yn—1)-

Set §, = d(znt1,2n) + d(Ynt1,yn) then sequence {4, } is decreasing. Therefore,
there is some § > 0 such that

We shall show that § = 0. Suppose to the contrary, that § > 0, Then taking the limit
as n — oo of both sides of (2.41) and have in mind that we suppose lim;_,,. 1(¢) > 0
for all r > 0 and ¢ is continuous, we have

w(6) = lim ¢(d, —hm{ n1—2¢( 5 )}

n—»oo
=p(0) -2, lim 1/)( =) < @(9).
a contradiction. Thus ¢ = 0, that is,
Uiy —000n = liMny—eo [d(an, Zn) + d(Ynt1, yn)} =0. (2.15)

In what follows, we shall prove that {z, } and {y, } are Cauchy sequences. Suppose,
to the contrary, that at least of {z,} or {y,} is not Cauchy sequence. Then there
exists an € > 0 for which we can find subsequences {Z, )}, {Zm )} of {z,} and

{Unt) s {Wm) } of {yn} with n(k) > m(k) > k such that
ATk, Tm(k)) + AYn(k)s Ym(k)) = €. (2.16)

Further,corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) > k and satisfying (2.45). Then

AT (k) =15 Tmk)) T AYn(k)—1, Ymk)) < € (2.17)

Using (2.45), (2.46) and the triangle inequality, we have

< d( (k) l‘n(k) 1)+ d(l“n 8 =15 Tm(k)) + AWUn(k) Yn(k)—1) + AYn(k) =15 Ym(k))

< d( Tn(k)s n(k)—l) + d(yn(k)a yn(k)—l) +e.
Letting k£ — oo and using (2.44)

limg ook = limp oo [d(a?n(k), Ton(k)) + A(Yn(k)s ym(k)):| =e. (2.18)
By the triangle inequality

T = ATy Tm(k)) T AUn(k)s Ym)) < ATnk)s To)+1) + AT £15 Tme)+1)
+ AT (k) +1> Tm(k)) T AYn(k)s Yn(r)+1)

+ d(yn(k)-‘rh ynL(k)-‘rl) + d(y'm(k)-i-la ym(k))
= On(k) + Om(k) + A(@Tn)+1, Tmk)+1) + AYnk)+1> Ymk)+1)-
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Using the property of ¢, we have
o(ry) = @(5n(k) + 5m(k) + d(xn(k)Jrh xm(k)Jrl) + d(yn(k)+17 ym(k)+1))

< P(Gn(k) t Omr)) T LA Tnm) 11, Tmy+1)) + A Ynk) 41, Ymky+1))- (2.19)
Since n(k) > m(k), hence Tp,(x) > Tm(k) and Y (k) < Ym(k)- SO We have

(AT n(ky+ 15 Tm)+1)) = LAFE @k, Ynk))s F(@mrys Ym(r)))) (2.20)
< a((xn(k)a yn(k))7 (xm(k)a ym(k)))so(d(F(xn(k)a yn(k))7 F(xnb(k)a ym(k)))) (2.21)

2

1 d(
< iw(d(xn(k), Tin(k)) + A WYn)> Ym(k))) — 1/}(
(2.22)

= 3ot - (%), 229)
and
Q(AWYn)+1> Y +1)) = LAE Wnkys Tn))s F Gmey Tmr))))
< a((yn(k)a Tn(k))s Um(k)> Tm())) 2 (AF Wnky> Tnir))s F Yk Tmk))))

A(Yn(k)> Ym(k)) + ATn (k) Tm(k))
o ; )

—_

iw(d(yn(k)a ym(k)) + d(xn(k)a an(k))) -

= So(r) — v (%)- (2.24)
From (2.48)-(2.52), we have
(1) < 0 (8ngk) + ) + (%) — 27/1(%‘)
a contradiction. Therefore {z,} and {y,} are Cauchy sequences. Since X is
complete metric space, there exist x,y € X such that
limp ooy = and limy s o0cYn =Y. (2.25)
Now, suppose F' is continuous. Taking the limit as n — oo in (2.27) and by (2.53),

we get

T = llmn%mxn = limn—)ooF(:Cn—l,yn—l) = F(limn%ooxn—la lzmn%ooyn—l) =

F(x,y)

and

Y= lzmn—ﬂ)oyn = limn%ooF(yn—laxn—l) = F(limn%myn—lylimnﬁooxn—l) =
F(y, ).

Therefore F' has coupled fixed point.
Finally, suppose that (b) holds. by assumption (b), we have z,, > = and y,, < y for
all n. Since

d(a:,F(J:,y)) < d(xvxn+l) + d(xn+l?F(x7y)> = d(l‘,$n+1) + d<F(xnayn)?F(xay))
Therefore

e(d(z, F(z,y))) < o(d@,2n11)) + @ (d(F (20, yn), F(z,y)))

(d(:L' Tn41 )+a((xn,yn)v(CE,y))@(d(F(xnayn)aF(xay)))

<
< (A, 7u41)) + S (dlwn, 2) + dlyn,y)) — (L)),
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Taking the limit of above inequality, using (2.53) and the property of 1, we get
¢(d(x, F(z,y))) =0, thus d(z, F(z,y)) = 0. Hence z = F(x,y). Similarly, one can
show that y = F(y, x).

Thus we proved that F' has a coupled fixed point. O

Theorem 2.1. In addition to hypothesis of Theorem 2.1, if o and yg are comparable
then F' has a Fixed point.

Proof. By using a similar proof in Theorem (2.6) of [10] we can deduce the proof. [l

Corollary 2.2. In Theorem 2.1, if 2.1 replaced with:

a((x, y), (u, v))cp(d(F(:E, y), F(u, U))) < igp(d(z, u) + d(y, v) + d(u, F(u,v)) + d(v, F(v, u)))

—1

(2.26)
Sorall (x,y), (u,v) € X x X, then F has coupled fixed point.

Proof. Let xg,yo € X be such that 2o < F(xg,yo) and yo > F(x0,y,). we constract
sequences {x,} and {y,} in X as follows
Tnt1 = F(xn,yn) and yny1 = F(Yn, xn) for alln >0 2.27)
We shall show that
Ty < Tpy1 and Yp > Yna1 for all n > 0. (2.28)

We shall use the mathematical induction. Let n = 0. Since 2y < F(xo,y0) and
Yo > F(yo,x0) and 1 = F(x0,yo) and y1 = F(yo, o), we have ¢ < z7 and yo > 1
thus (2.28) hold for n = 0.

Now suppose that (2.28) hold for some fixed n > 0, then since z,, < x,4; and
Yn = Yn+1, and by mixed monotone property of F', we have

Tn+4+2 = F(xn—&-layn—i-l) 2 F(-/L‘nayn-&-l) Z F(-rnzyn) = Tn+1 (229)

Yn4+2 = F(yn+17xn+1) < F(vayxn+1) < F(yna zn) = Yn+1 (2.30)
Now from (2.29) and (2.30), we obtain

Tn41 S Tn+2 and Yn+1 Z Yn+2-
Thus by the mathematical induction we conclude that (2.28) hold for all n > 0.
Since z,, > z,—1 and vy, < y,—1, SO we have

Sﬁ(d(T/m xﬂ+1)) - (p(d(F(In—la yn—l)a F(In; yn))) (2.31)

< a((@n-1:90-1): (F@at,9n-1), F@no1:20-1)) ) @ (AF @1, yn-1), P, 90))

(2.32)

1
4
—l/) d(xn—l"rn) + d(yn—layn) + d(xn—17F(x7z—17yn—1)) + d(yn—lvF(yn—la xn—l))

4
< So(dar. ) + o)) - o ntn) Aot
©(d(Yns Yn+1)) = P(AF (Yn-1,Tn-1), F (Yn,Tn))) (2.34)

@(d(xn—h xn) + d(yn—17 yn) + d(xn—la F(xn—la yn—l)) + d(yn—la F(yn—h xn—l)))

)

(d(m, u) + d(y,v) + d(u, F(u,v)) + d(v, F(v,u)

(2.33)
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< a((F(yn—hxn—l), F(‘rnflaynfl))a (Yn—1, xnfl))W(d(F(ynfla Tn-1), F(yn,xn)))

(2.35)
1
< EW(d(yn—la yn) + d(gjn—la xn) + d(yn—h F(yn—h zn—l)) + d(xn—la F(In—la yn—l)))
_ w(d(yn—la Yn) + d(Tn_1,2n) + dYn—1, F(Yn—1,7n1)) + d(xn_1, F(2n_1, yn—l)))
4

d(ynfla yn) + d(xnfla xn))

< %Qp(d(ynfla yn) + d(xn*h xn)) - ¢< 2

Adding (2.33) to (2.36 ), we get

ﬁ(((la@)a(7717772))<90(d(F(xmyn)aF(In—layn—l))) Jr@(d(F(yn—laxn—l),F(ymxn))))

d(xrn xnfl) + d(yn7 ynfl))
5 .

(2.36)

< @(d(fﬂm Tp—1) + d(Yn, ynfl)) - 21/f( (2.37)

With

B((¢1,¢2), (m1,m2)) = min {a((xn—hyn—l), (F(xn—l,yn—l)vF(yn—laxn—l))>a
(2.38)

O‘((F(yn—la Tp-1), F(Tn-1, yn—l))a (Tp_1, yn—l)) }
(2.39)

If we consider Y = X x X, so we can define 5 : Y x Y — [0, 0), such that for all
C = (C17C2)a77 = (7717772) ey

B((C15¢2)s (m;m2)) = min{e((C1, C2), (m1,m2)), (2, M), (C2,C1))-

and T : Y — Y is given by (1.8). let ¢ = ((1,{2),7 = (m,n2) € Y such that
B(¢,n) > 1, we obtain immediately that 3(T°(,Tn) > 1. also there exists (zo,y0) €
Y such that:

B((z0,v0), (F(z0,0), F(y0,70))) > 1. (2.40)
By property (iii) of ¢, we have
P(d(@ni1,20) + dYnt1,9n)) < @(d(@ns1,20)) + 0(d(Yn, Ynt1))- (2.41)
From (2.37), (2.40) and (2.41), we have
P(d(@ny1,2n) + dYny1Yn)) < B0, Yn)s (@n—1,Yn—1))0(d(@ni1,20) + d(Yni1,Yn))

< w(d(azn,xn_l) + d(yn,yn_l)> B 2¢(d(xn,xn_1) ; d(yn,yn_l))

(2.42)
Which implies
@(d(xn-‘rl; xn) + d(yn-i-h yn)) < @(d(-rnv J:n—l) + d(y’ru yn—l)) .

Using the fact that ¢ is non-decreasing, we get

d(xn+17 xn) + d(yn+1a yn) S d(l’n, xnfl) + d(yn; yn71)~
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Set 6, = d(Zpn+1,%n) + d(Yn+1,yn) then sequence {6, } is decreasing. Therefore,
there is some J > 0 such that
limy 00 0n = limn—)oo[d(xn-i-la xn) + d(yn+la yn)] =4 (2.43)

We shall show that § = 0. Suppose to the contrary, that § > 0, Then taking the limit
as n — oo of both sides of (2.41) and have in mind that we suppose lim;_,,. () > 0
for all r > 0 and ¢ is continuous, we have

¢(0) = Jim p(6n) = Jim [ [ ()]
=¢(d) -2 lim w( —) < @(0).
a contradiction. Thus ¢ = 0, that is,
liMy—000n = liMn—0o [d(xm_l, Zn) + d(Ynt1, yn)} =0. (2.44)

In what follows, we shall prove that {z, } and {y, } are Cauchy sequences. Suppose,
to the contrary, that at least of {x,} or {y,} is not Cauchy sequence. Then there
exists an ¢ > 0 for which we can find subsequences {Z,,)}, {Zmu)} of {z,} and

{Uny b {Yme) } of {yn} with n(k) > m(k) > k such that
AT k), Tom(k)) + AYn(k)s Ym(k)) = €- (2.45)

Further,corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) > k and satisfying (2.45). Then

A(Tn(k)y—1> Tmk)) T AYnk)—1> Ymk)) < € (2.46)
Using (2.45), (2.46) and the triangle inequality, we have
e <1k = d(Tn(r), Tm(k)) + AYn(k)s Ym(k))

+ d(@mk)ys F(@m)s Ymx))) + dUm)s FYm)s Tmk)))

< d(Tn(k)s Tnky—1) T ATnm) -1 Tmk)) T AYnk)> Ynk)—1) + AUn(k)—1> Ym(k))

+ AT (k) Tm(k+1)) T AYm(k)s Ymk+1))

< On(k—1) T €+ Omk) < 20n(k—1) T €
Letting kK — oo and using (2.44)

limy_soori = limp o0 [d(xn(k)7 Ton(k)) + AYn(k)s Ym(k))

Fd( T (k) s F(Tm(k)> YUm(r))) + d(ym(k)aF(ym(k)vxm(k)))} =e. (247
By the triangle inequality

Tk = d(Tp (k) Tm(k)) + AYn(k) Ym(k))
+ d( @) F(@mr), Ymk))) T AYmry, F(Ym)s Tm(r)))
< d(Tn(kys Tnky+1) + ATnm) 115 Tmk)+1) T ATy 115 Tmk)) + AYn(k)s Yn(k)+1)
A(Yn(k)+1> Ymk)+1) T AYmk)+1 Ymk)) T ATmk)s Tmk+1) + AYmk)s Ym(k+1))
= On(k) T 20m(k) + A Trk)+15 Tk +1) + AYn(k)+15 Ym(k)+1)-
Using the property of ¢, we have
@(rr) = ©(On) + 20m@m) + A(@nw)+1: Tmry+1) + AWYn(e) 415 Ym()+1))

< P(On(r) + 20mk)) + P(A(Tnk) 11 Tmk)+1)) + PA(Ynk) 115 Ym(k)+1)) - (2.48)
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Since n(k) > m(k), hence 2,y > (k) and Yy (k) < Ym(k). SO We have

(@ )11, Tmr)+1)) = C(AEF (T, Ynk))s F (@) Ym)))) (2.49)

1
< ¢ (d(xn(k)v Tin(k)) + AWYn (k) Ymk)) + A @y, F (@) Ymi))) + A Ymkys F k) Tmi))))
w(d(xn(k)»xm(k)) + d(Yn(k)ys Ymk)) + ATy F(@m), Ymr))) + d(ym(k)aF(ym(k)axm(k))))
4
1 Tk
= Jolr )—w(z) 2.50)
(AW k)y+1 Ym)+1)) = L(AF Yn(r)s Tuk))s F Uk Tm)))) (2.51)

< a((Yn(k)s Tnik))s Um)s Tmr))) 2 (AF Yngeys Tnk))s F Yk Tmr))))
Zgo(d( (k) Ym(k)) T ATy Tmk)) + AWy FUme) Tma))) + Q@) F(@mir), Ymx))))

#J( A(Yn (k) Ymk)) + A @nk)s Tmk)) T AYmk)s FUmk)s Tmi))) + ATmy, F(@m, ym(k))))
4

—_

- 1 Tk
= 100 = ()
(2.52)
From (2.48)-(2.52), we have

@) < ¢ (3ngry + 2ma)) + hiolri) =20 (% ).

Letting kK — oo and using (2.44) and (2.47), we have

#(£) < 9(0) + 3ple) = Aimpoeth (%) = Sp(e) = Aimr ety (%) < 0e),
a contradiction. Therefore {z,} and {y,} are Cauchy sequences. Since X is
complete metric space, there exist x,y € X such that
Uiy ooy = & and limp_soolYn = Y- (2.53)

Now, suppose I’ is continuous. Taking the limit as n — oo in (2.27) and by (2.53),
we get

T = liMmp_oo®n = limn%ooF(xnfl,ynfl) = F(limn%ooxnfla lzmn%ooynfl) =

F(z,y)

and

Y = limp_00Yn = limn—moF(yn—hxn—l) = F(limnaooyn—hlimn—mxn—ﬁ =

F(y,x).

Therefore F' has coupled fixed point.
Finally, suppose that (b) holds. by assumption (b), we have z,, > = and y,, < y for
all n. Since

d(z, F(z,y)) < d(z,vpq1) + d(@py1, F(2,y) = d(@, 2ny1) + d(F (20, Yn), F,9)).
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Therefore
< (p(d T, Tp41 )+Oé((znayn ) (d(F 5177:,1/n F(Z‘7y)))
< p(d(z.2ni)) + iw(d(zn, 2) + Ao ) + dn, F(wn, 92) + Ay, Fn,2.))

)+
)+

- d(n, F (xmyn))>

(d(x7 xn-i-l)) + i@(d(xna Qf) + d(yna Zl) + d(l'n, xn-&-l) + d(yn7 y7z+1))
(d(xn’ x) + d(ym y) + d(yn, yn+1) + d(xna xn-‘rl))
(

(d(xm l‘) + d(ym y) + d(yna (yn, xn)
¥

_w 4

-+ i(p(d(xml') + d(yn»y) + 5”) - w(

d(xn,x) + d(yn, y) + 5n).

= d(xv‘rnJrl)) 4

(2.54)
Taking the limit of above inequality, using (2.53) and the property of 1), we get
¢(d(z, F(z,y))) =0, thus d(z, F(z,y)) = 0. Hence z = F(z,y). Similarly, one can
show that y = F(y, x)
Thus we proved that F' has a coupled fixed point. O

Theorem 2.2. Let (X, d) be a complete metric space o : X x X — [0, 00) a function,
Y e W, andT : X — X be a continuous, non-decreasing triangular a—admissible
mapping such that

a(z,y)y(d(Tz,Ty)) < w(%(d(w‘, Ty) + d(y7Tsc))) - s@(d(a?»Ty), d(y,Tx))
(2.55)

Forallz,y € X,

where ¢ : [0,00) x [0,00) — [0,00) is a continuous function such that o(x,y) = 0 if
and only if x = y. and there exists o € X such that a(xg,Txo) > 1. ThenT has a
fixed point.

Proof. Take xy € X such that a(zg,Tzp) > 1 and define sequence {z,} in X with
Tpt1 =Ty

a(xzo, Txo) = a(xg,x1) > 1 = a(Txo, Tx1) = a(x1,22) > 1.

By continuity of this process we have a(x,, z,+1) > 1, Thus

¢(d(xn; zn—&-l)) = ¢(d(Txn—17 Txn)) S O‘(In—h In)ﬂ}(d(TIn_l, Txn))

< w(%(d(:cn,l, Tx,) + d(a?n,TwnA))) - gp(d(mn,l,Txn),d(a:n,T:cn,l))
< ¢(%(d($n—1a Tnt1) + d(xn’xn))) - ‘P(d(m”—l’x”“)’ d<x”’x"))

< ¢(%(d($n—1y $n+1))> - w(d(xn_h Tnt1), 0) < ¢<%d($n—1’l‘n+1))-
Since 1 is non-decreasing function, we get
w(d(xn,xnﬂ)) < w(%d(xnl,xnﬂ)) = d(Xp, Tnt1 < %d(xn,l,mnﬂ).
Hence d(x,, xn+1)n>1 is non-decreasing sequence and there is 7 > 0 such that
r= nl;néo AT, Tpg1)- (2.56)

Also we have
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(:En;xn+1) % (mn717$n+1) < Q(d(-rn lyxn) +d(xn7xn+1>)

limp—ood(Zn—1,Tnt+1) = 2r Letting n — oo and using (2.56), we get
r < limp—oo3d(Tp—1,Tn41) < 5(r+7).

Hence by using of continuity 1, ¢, we have

b(r) < v (2(20) — p(2r,0).
Which implies that ¢(2r,0) = 0 = r = 0 and limy,—cod(Zpn, Tny1) = 7 = 0. Now we
show that {z,} is a cauchy sequence in z. Suppose to the contrary that {z,, } is not
cauchy sequence, then there exists € > 0 for which we can find two subsequence
{zm,} and {z,, } of {x,} such that n, is the smallest index for which n; > m; > 0,
d(Xn;, Tm,;) > €, Thus d(Tm,, Tn, ,) < €, and we have

e <d(@m;, Tn,) < d(@mys Timgyr) F A @y Tog_y) + (@015 Tny)
< 2d(Timys Tmgyy ) + A(@my, Ty ) + 2d(T,_y, T0,)
< 2d(Tpn,;, Trnyyy ) + €+ 3d(XTm,_ 15 T, )
Letting ¢ — co we get
limi oo (T, Tny) = UMiood(Tmyy 1> Tngyr) = iMoo (@, Tn,) = €. (2.57)
Also we have

w(d(xmLJrN ))

w( (Txm,, Txmq)) < O‘(xmwxni)w(d(Txmmemq))
0 (5@, Tan )+ da Tom)) — @(Aem, Ton, ), dlen,,, Trm,))
(4

( ( (T Tny) + d(mni_l,xmiﬂ))) — @(d(:ﬂmi,:ﬂm)7d(xni_1,xmi+l)).

By letting ¢« — co and use of continuity of ¢ and 1, we get

P(e) < Y(e) —plee).

Hence we get p(c,e) = 0, and € = 0, a contradiction, thus {x,,} is cauchy sequence
in X and there exists x € X such that lim,,_, .z, = .

Since T is continuous and z, — x, we obtain z,4; = Tz, — Tr and Tz = x.
Thus T has fixed point. O

IN

Theorem 2.3. let ' : X x X x X — X be a given mapping in complete metric space
(X, d) and suppose that there exist1) € ¥ and a functiona : X3 x X3 — [0, 00) such
that

1
a((@,y,2), (u,v,w))d(F(z,y, 2), Fu,0,w)) < 39(d(z,u) + d(y, v) + d(z,w))
(2.58)
Jorall (z,y,2), (u,v,2) € X x X x X. suppose also that
(@) Forall (z,y,z2),(u,v,w) € X x X x X, we have a((x,y, 2), (u,v,w)) =1 =

a((F(x,y,z),F(y,z,x),F(z,z,y)), (F(u,v,w),F(v w,u), F(w,u,v) ) >1,
(i) there exists (xo,Yo,20) € X x X x X such that
a((xo,ymzo), (F(xoyyo,Zo)vF(yov207960)7F(2079C071/0))) 21
a((F(yo,Zo,l”o)vF(Zml’ovyo)’F(Io,yO,Zo))»(y0,20,$0)> =1

a((ZOax07y0)a (F(ZO;any07)aF(x07y05Zo)aF(yO,ZO7xO))) 2 1
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(iii) and F' is continuous.
Then, F has a tripled fixed point, that is, there exists (x*,y*,z*) € X x X x X such
that z* = F(z*,y*, 2*) and y* = F(y*,2*,2*) and z* = F(z*, 2", y*).

Proof. The idea consists in transporting the problem to the complete metric space
(Y,6) where Y = X x X x X and 6((z,y, 2), (u,v,w)) = d(z,u) + d(y,v) + d(z,w)
for all (x,y, 2), (u,v,w) € X x X x X. also we have

a((x,y,z),(u,v,w))d(F(x,y,z),F(u v,w)) < ((5 x,y,2), (u,v w))) (2.59)
and

a((v,w,), (9, 2))d(P(v,w,0), F(y, 2,2)) < 20 (5((0,w,0), (3,2,2)) ) (2.60

OJ\*—‘

and

a((z,x,y),(w,u,v))d(F(z,x,y),F(w,u v)) < 7,/}(5 z,z,y), (W, u v))) (2.61)

w\H

Now if T : Y — Y is defined by
T(Tl,TQ,Tg) = (F(Tl,TQ,Tg),F(TQ,Tg,Tl),F(Tg,Tl,TQ)). (262)
for all (11,72,73) € Y,and :Y x Y — [0, 00) is the function defined by

ﬁ((£1;€27£3)a (77177727773)) =
min {oz((a:, Y, 2), (u, v, w)),a((v, w,u), (y, 2, x)),oa((z, z,y), (w,u, v)) },

Then by summing up the inequalities (2.59)-(2.61), and using of (2.62) we get

BEMI(T(2,y,2), T(u,v,w)) < ¥ (6((x,y, 2), (u,v,w))). (2.63)
for all £ = (£1,&,&3),n = (m1,1m2,m3) € Y. Then T is continuous and § —
1—contractive mapping and 5(£,n) > 1. It is easy to check that T is f—admissible
and we know that there exists (zg, yo, 2z0) € Y such that

B((x0, 90, 20), T (0,90, 20)) > 1.
All the hypotheses of 1.9 are satisfied, and so we deduce the existence of a fixed
point of T. U

Example 2.3. Let X = [0, +00) equipped with the standard metric d(x,y) = |z —y|
for all z,y € X. Then (X,d) is complete metric space. Define the mapping F' :
XxXxX —Xby

T x>y >z
0 otherwise

Pl = {
Clearly F is continuous mapping. Define o : X2 x X2 — [0, +00) by
1 u>v>w
ol b)) ={ | L

0 otherwise
Then, (2.58) is satisfied with ¢ (t) = % for all t > 0. Also it is easy to check that
a((m, Y, 2), (u,v,w)) > 1 implies

oz((F(a:, y,2), Fy,z,x), F(z,x, y))7 (F(u,v,w), F(v,w,u), F(w, u,v))) >1,

for all (x,y, 2), (u, v, w)
€ X x X x X. On the other hand, the condition (ii) of Theorem (2.3) is satisfied
with (xo, Yo, 20) = (0,0,0). All the required hypotheses of same Theorem are true
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and so we deduce the existence of a tripled fixed point of F.. Hence (0,0,0) is a
tripled fixed point of F'.

Corollary 2.4. Let (X, d) be a complete metric space and F': X x X x X — X bea
mapping having the mixed monotone property on X. Suppose that there exist ) € ¥
and ¢ € ¢ and a function o : X? x X3 — [0, 00) such that

a((@,9,2), (w,v,w)(A(F (. 2), Flu,v,w)) )

1 d(z,u) +d(y,v) + d(z,w
< 2o(daw) +d(y,0) +d(z,w)) — (AU TABITAE W)
If F' is a—admissible mapping satisfying the following conditions
() Forall (z,y,z), (u,v,w) € X x X x X, we have
a((z,y,2), (u,0,w)) 2 1=

(2.64)

o((F(,9.2), F(y, 2,2), F(z.2,9)), (Fu,v,w), F(o,w,0), F(w,u,0)) ) > 1
(i) there exists (xo,Yo,20) € X x X x X such that
a((x07y072:0)7 (F(x07y0720)7F(y07ZOuxo)aF(ZOam(hyO))) > 17

o((F(yo, 20,0), F (20,70, 30), F (0, 30, 20)) (90, 20, 70) ) > 1,

a((ZOaanyO)? (F(Z07$0,y07)aF($07yo,Zo)vF(ymZo,Jio))) > 1.

(iii) There exists xg, Yo, 20 € X such that
zo < F(0,%0,20) Yo = F(yo, 20, %0) and zo < F(z,0,%0),
(iv) forzx,y,z,u,v,w € X withx > u,y < v,z > w,
(v) Fis continuous or
(@) If a non-decreasing sequence {x,} — z, thenx,, < x for alln,
(b) If a non-increasing sequence {y,} — vy, theny, >y for alln,
(c) If a non-decreasing sequence {zn} — 2z, then z,, < z for all n. Then F' has tripled
fixed point in X.

3. APPLICATION

In this section, we study the existence of a solution to a nonlinear integral
equation, as an application to the fixed point theorem.
let © denote the class of those functions 0 : [0,00) — [0, 00) which satisfies the
following conditions:
(i) 0 is increasing.

(ii) There exists ¢ € ¥ such that 0(z) = § —1(5) for all z € [0, 00).
For example, 0(z) = kz, where 0 < k < £,0(z) = 2(57_11),9(:3) =5 - w are in
O.
Consider the following integral equation
b
z(t) = / (K(t,s) + Ka(t, 5))(f (s, 2(s)) + (s, 2(s))ds + h(t) (3.1)

tel=la,b].
We assume that K, K, f, g, ¢ satisfy the following conditions (i) K1(¢,s) > 0 and
Ks(t,s) < 0forallt,s € [a,b].
(ii) There exist A\, 4 > 0 and € © such that forall z,y € R, = > y.
0< f(t,z) = f(t,y) < A0z —y)
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and

—pb(x —y) < g(t,x) —g(t,y) <0

and Also

max{\, u} sup;e; [ (Ki(t,s) — Ka(t,5))ds < 1

(iii) Also there exists (xg,y0) € C(I) x C(I )such that for all ¢ € I, we have
e((xo(t), yo(t)), ([ K1(t,s)(f(s,20(s)) + g(s,90(s)))ds

+ [V Ko (t,5)(f(5,90()) + g(s,20(s)))ds + h(t),

([} K, 8)(F(s,50()) + g(s,@0(s)))ds + [) Ka(t,s)(f(s,20(5)) + g(s,0(5)))ds +
h(t)))) > 0.

and
(L2 (t, 8)(f (5, 50(s)) +9(s, zo(s )))ds+fbK2 (t,5)(f(s,z0(s))+9(s, yo(s)))ds+h(t),

)
([} K (t,5)(f(s,20(5)) + g(5,30(5)) )d8+f Ka(t,5)(f(s,y0(s))
+9(s,20(s)))ds + h(t), (yo g o zo(1))))) =

x(t

(V) Forallt € I,x,y € C(I (

e( [y Ka(t, 5)(f(s,2(5)) + g(s,y(s)) d5+f Ks(t,s)(f(s,y(s)) + g(s,z(s)))ds + h(t),
S B (t ) (£(s,9(5) + g, 2(s))ds + [, Ka(t, 8)(F(s,2(5)) + g5, y(5)))ds + h(t)),
(fy K1(t,5)(f(5,u(s)) + g(s,v(s ) d5+f Ks(t,s)(f(s,v(s)) + g(s, u(s)))ds + h(?),
({le(t,S)( (5,0(5)) +g(s,u(s)))ds+ [ Ka(t, s)(f(s,u(s)) +g(s,v(s)))ds+h(t)) >

)
) (1)), ( (),v(t))) = 0 implies that
)

Definition 3.1. An element (3,7) € C(I,R) x C(I,R) is called a coupled lower
and upper solution of the integral equation (3.1) if 8(¢) < ~(¢) and

/;(t; < [P E(t8)(f (s, B(5)) +g(s,7(s)ds + 7 Ka(t,s)(f(5,7(5)) +g(s, B(s)))ds +
t),
and

h(t; > [} K1t 5)(f(5,7(5)) +g(s, B(s)))ds + [ Kot 5)(f(s, B(5)) +9(s,7(s)))ds +
t),
forallt € [a,b].

Theorem 3.2. Consider the integral equation (3.1) with K1, Ko € C(I x I,R), f,g €
C(I xR,R) and h € C(I x R,R) and suppose that conditions of (i), (i), (ii4) and
(iv) are satisfied. Then the existence of a coupled lower and upper solution for (3.1)
provides the existence of a solution of (3.1) in C(I,R).

Proof. Let X = C(I,R). X is a partially ordered set if we define the following order
relation in X

z,y € C(I,R) & z(t) <y(t), forall ¢ € [a,b].

And (X, d) is a complete metric space with metric

d(x’ y) = SUP¢er |$(t) - y(t)|v x,y € C(IvR)

Suppose {u,} is a monotone non-decreasing sequence in X that converges to
u € X. Then for every t € I, the sequence of real numbers

ur(t) <ug(t) <...<u,(t) < ...

converges to u(t). Therefore, for all t € I,n € N, u,(t) < u(t). Hence u,, < u, for all
n.

Similarly, we can verify that lim v(¢) of a monotone non-increasing sequence v, (t)
in X is a lower bound for all the elements in the sequence. That is, v < v,, for all n.
Therefore, condition (b) of Theorem (2.1) holds. Also, X x X = C(I,R) x C(I,R)
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is a partially ordered set if we define the following order relation in X x X

(x,y), (u,v) € X x X, (x,y) < (u,v) & x(t) < u(t) and y(t) > v(t), vVt € I.

For any z,y € X, max{x(t),y(t)} and min{xz(t),y(t)}, for each ¢ € I, are in X
and are the upper and lower bounds of z,y, respectively. Therefore, for every
(x,y), (u,v) € X x X, there exists a (max{x,u}, min{y,v}) € X x X that is com-
parable to (z,y) and(u,v). Define F: X x X — X by

F(z,y)( / K (t,s)(f(s,z(s))+g(s,y(s)) ds+/ Ky (t,s)(f(s,y(s))+g(s,x(s)))ds+h(t)

forallt € [a,b)].
Now we shall show that [’ has the mixed monotone property. Indeed, for z; < zo,
that is, 21(t) < z2(t), for all ¢ € [a, b], we have

F(ay,y)(t) = F(az,y)(t) = [} Ki(t,5)(f(s,21(5)) + g(s,y(s)))ds

+ [P Kot 5)(f(s,9(s)) + g(s,1(5)))ds + h(t)
—ﬁKﬁ@U@uﬂﬂw@M»W
— [V Ko (t,8)(f(s,y(s)) + g(s,2(5)))ds — h(t)

= [P K1 (t,5)(f(s,21(5)) + f(5,22(s)))ds
(

+ [, Kot ) (g(s,21(5)) + g5, 72(s)))ds.
by Assumption (i) and (ii). Hence F(x1,y)(t) < F(x2,y)(t),Vt € I, that is,

< F(z2,y).
for all ¢ € [a, b], we have
z(s)) + g(s,y1(s)))ds
(t,s)(f(s,91(s ))+g(8 z(s)))ds + h(t)
— [ Ku(t,5)(f (s, 2(5)) + g(5,y2(5)))ds
— [, Ks(t, 8)(f(s,y2(s)) + 95, 2(5)))ds = h(t)
= [} Ka(t:5)(g(s,01(5)) — 9(s,y2(s)))ds
#ﬁ&@@(smﬁ) F(s,ya(s
by Assumption (i) and (ii). Hence F )( ) < F(xz,y2)(t),Vt € I, that is,
F(z,y1) < F(x,y2).
Thus, F(x,y) is monotone non-decreasing in 2 and monotone non-increasing in y.
Define the function a : C(I)* x C(I)* — [0, 00) by

a«awmmm>:{1 e(((1), y(1)), (u(t), (1)) > 0, t € T

0 otherwise.

F(z1,y)
Similarly, if y; > yo, that is, yl( ) > ya(t),
F(z,y1)(t) — F(z,y2)( f Ki(t,s)(f(s,
—|—f: Ks(t,s

/\\_/

(f( )
(f (s, )
s)(f( )
(4( )
I )

)
)
)
))ds
(,

Now, for > u, y < v, that is, x(t)z () y(t) <w(t) forall t € I, we have
a((2,y), (u,v)d(F(z,y), F(u,v)) < d(F(z,y), F(u,v))
:wmemww—mew

= supye; | [} Ku(t,s)(f(s,2(5)) + g(s,y(s)))ds

+ [2 Kt 8)(F(s,9(s)) + g(s,(5)))ds + ()

—(JY K1 (t,5)(f(5,u(s)) + g(s,v(s)))ds

+ [ Kt 8)(f(s,0(s)) + (s, uls)))ds + (1))

= suptez|[sz¥a (£, 8)[(f(5,2(5)) — f(s,u(5))) + (9(5,5(5)) — g(s,0(s)))lds
+was[< y(s)) = f(s,0(s))) + (g(s,2(5)) — g(s,u(s)))]ds|

= supyes | [} K1t s)[(f(s,2(5) — f(s,u(s ) = (g(5,0(s) — gls,y(s))ds
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— [P Kt 9)[(f(5,0(5)) — fls.y(s))) —
< supye; | [2 Ki(t, s)[M0(x(s) — u(s)) + u9(v(8) - y(s))]ds
— [P K (t, ) [N0(u(s) — y(s)) + pf(a(
< max{\, u} sup,e; [2(Ki(t,s) — Ka(t, s))[e)(x(s) — u(s)) + 0(v(s) — y(s))]ds.
As the function 0 is increasing and > u,y < v,
B(a(s) — u(s)) < O(d(z,u)), 8(v(s) — y(s)) < 8(d(v,y)).
for all s € [a, b], we obtain
d(F(z,y), F(u,v)) < max{\, u} supye; [L(K1(t,s) — Ka(t, )
x[0(2(s) — u(s)) + B(v(s) — y(s))lds. b
< max{\, u}.[0(d(x, u)) + 0(d(v,y))]. supse; [2 (K (t,s) — Ka(t,s))ds
< L[0(d(x,w)) + 6(d(v, y))]
< 9(d(z,u)) + 0(d(v, 1))
d(wvu);rd(my) _ w(d(%u);rd(v,y) ).

Therefore, for z > u,y < v, we have
d(F(agy),F(u 1))) d(ac u)-&-d(v,y) w(d(w,u);—d(v,y))'

Now, let (3,7) be a coupled lower and upper solution of the integral equation
(3.1) then we have B(t) < F(8,7v)(t) and v(t) > F(~,8)(¢t) for all t € [a,b], that is,
B < F(B,7) and 5 > F(7, ).

From condition (iv), for all (z,y), (u,v) € C
a((z,y), (u,v)) = 1= e((x(t),y(t)), (u(t),

— e((F((t),y(6)), P(y(), 2(0)), (Fu(t)

= a((F(z,y), F(y,2)), (F(u,v), F(v,u)))

Then F' is a-admissible.

From (iii), there exists (zg,yo) € C(I) x C(I) such that

a((zo, y0), (F((z0,50)), F (Yo, %0))) = 1, a((F (yo, x0), F'((x0,90))), (x0,%0)) = 1.

Finally, Theorem (3.2) give that F' has a coupled fixed point (z, y). Since 8 < v, then

the hypothesis of Theorem (3.2) is satisfied. Therefore © = y, that is x(t) = y(¢),

for all t € [a,b] implying = F(z,z) and x(t) is the solution of equation (3.1). O

—~

I) x C(I),

(1)) >0

;o(t), F(u(t), u(t)))) 2 0
>

<

1.
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