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COUPLED FIXED POINTS IN PARTIALLY ORDERED METRIC SPACES BY

SAMET,S METHOD AND APPLICATION
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In 2006, Bhaskar and Lakshmikantham proved a fixed point theorem for a mixed
monotone mapping in a metric space endowed with partial order, using a weak con­
tractivity type of assumption. Recently Luong and Thuan proved some results of
coupled fixed point that generalized main results of them. In this paper, By using the
samet,s method and by using different conditions we prove some coupled fixed point
theorems for mapping having mixed monotone property in partially ordered metric
space. Also by considering the results of Berinde and Burcut and using the main idea
of Samet and Vetro extend the concept of α−admissibility for tripled fixed point the­
orems in metric spaces. As an application, we discuss the existence and solution of a
nonlinear integral equation.
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1. INTRODUCTION

In 1987, Guo and Lakshmikantham introduced the notion of coupled fixed
points [6]. In the last decade of the previous century other authors obtained im­
portant results in this area. In 2006 Bhaskar and Lakshmikantham introduced
notions of a mixed monotone mapping and a coupled fixed point [7]. They proved
fixed point theorem for a mixed monotone mapping in a metric space endowed with
partial order, using a weak contractivity type of assumption.
Recently Luong and Thuan proved some results of coupled fixed point that gener­
alized main results of them [10].
Let us recall some basic definitions of mixed monotone property and α­admissiblity,
[11]­[10].
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Definition 1.1. [7], Let (X,≤) be a partially ordered set and F : X × X → X.
The mapping F is said to have the mixed monotone property if F (x, y) is monotone
non­decreasing in x and is monotone non­increasing in y, that is, for any x, y ∈ X,
x1, x2 ∈ X, x1 ≤ x2 =⇒ F (x1, y) ≤ F (x2, y)

and
y1, y2 ∈ X, y1 ≤ y2 =⇒ F (x, y1) ≥ F (x, y2).

Definition 1.2. [7], An element (x, y) ∈ X ×X is called coupled fixed point of the
mapping F : X ×X → X if x = F (x, y), and y = F (y, x).

Definition 1.3. [2], An element (x, y, z) ∈ X×X×X is called a tripled fixed point
of F : X ×X ×X → X if F (x, y, z) = x, F (y, z, x) = y, and F (z, x, y) = z.

Definition 1.4. [11], Let (X, d) be a metric space and T : X → X be a given
mapping. we say that T is an α − ψ − contractive mapping, if there exist two
functions ψ ∈ Ψ and α : X ×X → [0,∞) such that :

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)) forall x, y ∈ X.

Definition 1.5. [11], Let T : X → X and α : X × X → [0,∞). we say that T is
α− admissible if

x, y ∈ X, α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 1.6. [9] Let f : X → X and α : X×X → (−∞,+∞). We say that f is a
triangular α−admissible mapping if (T1) α(x, y) ≥ 1 ⇒ α(fx, fy) ≥ 1, x, y ∈ X
(T2) {

α(x, z) ≥ 1
α(z, y) ≥ 1

implies α(x, y) ≥ 1, x, y, z ∈ X.

Example 1.7. [9] Let X = R, fx = ex
7

and α(x, y) = 5
√
x− y + 1. Hence, f is a

triangular α−admissible mapping. Again, if α(x, y) = 5
√
x− y + 1 ≥ 1 then x ≥ y

which implies fx ≥ fy. That is, α(fx, fy) ≥ 1. Moreover, if{
α(x, z) ≥ 1;
α(z, y) ≥ 1,

then x− y ≥ 0, and hence α(x, y) ≥ 1.

Lemma 1.8. [11] (A Coupled Fixed Point is a Fixed Point). Let F : X ×X → X be a
given mapping. Define the mapping T : X ×X −→ X ×X by

T (x, y) = (F (x, y), F (y, x)), forall (x, y) ∈ X ×X.

Then, (x, y) is a coupled fixed point of F if and only if (x, y) is a fixed point of T .

Let Φ denote all functions φ : [0,∞) → [0,∞) which satisfy
(i) φ is continuous and non­decreasing,
(ii) φ(t) = 0 if and only if t = 0,
(iii)φ(t+ s) ≤ φ(t) + φ(s), ∀t, s ∈ [0,∞)
and Ψ denote all functions ψ : [0,∞) → [0,∞) which satisfy limt→rψ(t) > 0 for all
r > 0 and limt→o+ψ(t) = 0.
In [10] the authors gave examples of this functions.

Theorem 1.9. (see [11] ) let (X, d) be a complete metric space and T : X → X be
an α− ψ−contractive mapping satisfying the following condition:
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(i) T is α−admissible,
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,
(iii) T is continuous.

Then, T has a fixed point, that is, there exists x∗ ∈ X such that Tx∗ = x∗.

Theorem 1.10. [10]Let (X,≤) be a partially ordered set and suppose there is a
metric d on X such that (X, d) is a complete metric space. let F : X × X → X
be a mapping having the mixed monotone property on X such that there exist two
elements x0, y0 ∈ X with

x0 ≤ F (xo, y0) and y0 ≥ F (y0, x0).

Suppose there exist φ ∈ Φ and ψ ∈ Ψ such that

φ(d(F (x, y), F (u, v))) ≤ 1
2φ(d(x, u) + d(y, v))− ψ

(
d(x,u)+d(y,v)

2

)
for all x, y, u, v ∈ X with x ≥ u and y ≤ v. Suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non­decreasing sequence {xn} → x, then xn ≤ x for all n,
(ii) if a non­increasing sequence {yn} → y, then y ≤ yn for all n,

then F has a coupled fixed point in X.

2. The main results

Theorem 2.1. Let (X, d) be a complete metric space and F : X × X → X be a
mapping having the mixed monotone property on X. suppose that there exist ψ ∈ Ψ
and φ ∈ Φ and a function α : X2 ×X2 → [0,∞) such that

α
(
(x, y), (u, v)

)
φ
(
d
(
F (x, y), F (u, v)

))
≤ 1

2
φ
(
d(x, u) + d(y, v)

)
− ψ

(d(x, u) + d(y, v)

2

)
.

(2.1)

if F is α− admissible and there exists (x0, y0) ∈ X ×X such that

α((x0, y0), (F (x0, y0), F (y0, x0))) ≥ 1 and α((F (y0, x0), F (x0, y0)), (y0, x0)) ≥ 1,

and there exists x0, y0 ∈ X such that

x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0),

and for all x, y, u, v ∈ X Suppose either

(a) F is continuous or
(b) X has the following property:

(i) if a non­decreasing sequence {xn} → x, then xn ≤ x for all n,
(ii) if a non­increasing sequence {yn} → y, then y ≤ yn for all n

then F has a coupled fixed point in X.

Proof. Let x0, y0 ∈ X be such that x0 ≤ F (x0, y0) and y0 ≥ F (x0, yo). we construct
sequences {xn} and {yn} in X as follows

xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for all n ≥ 0 (2.2)

We shall show that

xn ≤ xn+1 and yn ≥ yn+1 for all n ≥ 0. (2.3)

We shall use the mathematical induction.
Let n = 0. Since x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0) and x1 = F (x0, y0) and

y1 = F (y0, x0), we have x0 ≤ x1 and y0 ≥ y1 thus (2.28) hold for n = 0.
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Now suppose that (2.28) hold for some fixed n ≥ 0, then since xn ≤ xn+1 and
yn ≥ yn+1, and by mixed monotone property of F , we have

xn+2 = F (xn+1, yn+1) ≥ F (xn, yn+1) ≥ F (xn, yn) = xn+1 (2.4)

yn+2 = F (yn+1, xn+1) ≤ F (yn, xn+1) ≤ F (yn, xn) = yn+1 (2.5)

Now from (2.29) and (2.30), we obtain
xn+1 ≤ xn+2 and yn+1 ≥ yn+2.
Thus by the mathematical induction we conclude that (2.28) hold for all n ≥ 0.
Since xn ≥ xn−1 and yn ≤ yn−1, so we have

φ(d(xn, xn+1)) = φ(d(F (xn, yn), F (xn−1, yn−1)))

≤ α
(
(xn−1, yn−1),

(
F (xn−1, yn−1), F (yn−1, xn−1)

))
φ
(
d(F (xn, yn), F (xn−1, yn−1))

)
≤ 1

2
φ
(
d(xn−1, xn) + d(yn−1, yn))− ψ

(d(xn−1, xn) + d(yn−1, yn)

2

)
. (2.6)

φ(d(yn, yn+1)) = φ
(
d(F (yn−1, xn−1), F (yn, xn))

)
≤ α

(
(F (yn−1, xn−1), F (xn−1, yn−1)), (yn−1, xn−1)

)
φ
(
d(F (yn−1, xn−1), F (yn, xn))

)
≤ 1

2
φ
(
d(yn−1, yn) + d(xn−1, xn)

)
− ψ

(d(yn−1, yn) + d(xn−1, xn)

2

)
. (2.7)

Adding (2.33) to (2.36 ), we get

β((ζ1, ζ2), (η1, η2))
(
φ(d(F (xn, yn), F (xn−1, yn−1))) + φ(d(F (yn−1, xn−1), F (yn, xn)))

)
≤ φ

(
d(xn, xn−1) + d(yn, yn−1)

)
− 2ψ

(d(xn, xn−1) + d(yn, yn−1)

2

)
. (2.8)

with

β
(
(ζ1, ζ2), (η1, η2)

)
= min

{
α
(
(xn−1, yn−1),

(
F (xn−1, yn−1), F (yn−1, xn−1)

))
,

(2.9)

α
((
F (yn−1, xn−1), F (xn−1, yn−1)

)
, (xn−1, yn−1)

)}
.

(2.10)

If we consider Y = X ×X, so we can define β : Y × Y → [0,∞), such that for all
ζ = (ζ1, ζ2), η = (η1, η2) ∈ Y

β((ζ1, ζ2), (η1, η2)) = min{α((ζ1, ζ2), (η1, η2)), α((η2, η1), (ζ2, ζ1)).

and T : Y → Y is given by (1.8). let ζ = (ζ1, ζ2), η = (η1, η2) ∈ Y such that
β(ζ, η) ≥ 1, we obtain immediately that β(Tζ, Tη) ≥ 1. also there exists (x0, y0) ∈
Y such that:

β
(
(x0, y0), (F (x0, y0), F (y0, x0))

)
≥ 1. (2.11)

By property (iii) of φ, we have

φ
(
d(xn+1, xn) + d(yn+1, yn)

)
≤ φ(d(xn+1, xn)) + φ(d(yn, yn+1)). (2.12)

From (2.37), (2.40) and (2.41), we have

φ
(
d(xn+1, xn) + d(yn+1, yn)

)
≤ β((xn, yn), (xn−1, yn−1))φ

(
d(xn+1, xn) + d(yn+1, yn)

)
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≤ φ
(
d(xn, xn−1) + d(yn, yn−1)

)
− 2ψ

(d(xn, xn−1) + d(yn, yn−1)

2

)
.

(2.13)

Which implies

φ
(
d(xn+1, xn) + d(yn+1, yn)

)
≤ φ

(
d(xn, xn−1) + d(yn, yn−1)

)
.

Using the fact that φ is non­decreasing, we get

d(xn+1, xn) + d(yn+1, yn) ≤ d(xn, xn−1) + d(yn, yn−1).

Set δn = d(xn+1, xn) + d(yn+1, yn) then sequence {δn} is decreasing. Therefore,
there is some δ ≥ 0 such that

limn→∞δn = limn→∞[d(xn+1, xn) + d(yn+1, yn)] = δ. (2.14)

We shall show that δ = 0. Suppose to the contrary, that δ > 0, Then taking the limit
as n→ ∞ of both sides of (2.41) and have in mind that we suppose limt→r ψ(t) > 0
for all r > 0 and φ is continuous, we have

φ(δ) = lim
n→∞

φ(δn) = lim
n→∞

[
φ(δn−1)− 2ψ

(δn−1

2

)]
= φ(δ)− 2 lim

δn−1→δ
ψ
(δn−1

2

)
< φ(δ).

a contradiction. Thus δ = 0, that is,

limn→∞δn = limn→∞

[
d(xn+1, xn) + d(yn+1, yn)

]
= 0. (2.15)

In what follows, we shall prove that {xn} and {yn} are Cauchy sequences. Suppose,
to the contrary, that at least of {xn} or {yn} is not Cauchy sequence. Then there
exists an ε > 0 for which we can find subsequences {xn(k)}, {xm(k)} of {xn} and
{yn(k)}, {ym(k)} of {yn} with n(k) > m(k) ≥ k such that

d(xn(k), xm(k)) + d(yn(k), ym(k)) ≥ ε. (2.16)

Further,corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) ≥ k and satisfying (2.45). Then

d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k)) < ε. (2.17)

Using (2.45), (2.46) and the triangle inequality, we have

ε ≤ rk : = d(xn(k), xm(k)) + d(yn(k), ym(k))

≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)) + d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k))

≤ d(xn(k), xn(k)−1) + d(yn(k), yn(k)−1) + ε.

Letting k → ∞ and using (2.44)

limk→∞rk = limk→∞

[
d(xn(k), xm(k)) + d(yn(k), ym(k))

]
= ε. (2.18)

By the triangle inequality

rk = d(xn(k), xm(k)) + d(yn(k), ym(k)) ≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1)

+ d(xm(k)+1, xm(k)) + d(yn(k), yn(k)+1)

+ d(yn(k)+1, ym(k)+1) + d(ym(k)+1, ym(k))

= δn(k) + δm(k) + d(xn(k)+1, xm(k)+1) + d(yn(k)+1, ym(k)+1).
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Using the property of φ, we have
φ(rk) = φ

(
δn(k) + δm(k) + d(xn(k)+1, xm(k)+1) + d(yn(k)+1, ym(k)+1)

)
≤ φ(δn(k) + δm(k)) + φ(d(xn(k)+1, xm(k)+1)) + φ(d(yn(k)+1, ym(k)+1)). (2.19)

Since n(k) > m(k), hence xn(k) ≥ xm(k) and yn(k) ≤ ym(k). so we have

φ
(
d(xn(k)+1, xm(k)+1)

)
= φ

(
d(F (xn(k), yn(k)), F (xm(k), ym(k)))

)
(2.20)

≤ α
(
(xn(k), yn(k)), (xm(k), ym(k))

)
φ
(
d(F (xn(k), yn(k)), F (xm(k), ym(k)))

)
(2.21)

≤ 1

2
φ
(
d(xn(k), xm(k)) + d(yn(k), ym(k))

)
− ψ

(d(xn(k), xm(k)) + d(yn(k), ym(k))

2

)
(2.22)

= 1
2φ(rk)− ψ

(
rk
2

)
, (2.23)

and

φ
(
d(yn(k)+1, ym(k)+1)

)
= φ

(
d(F (yn(k), xn(k)), F (ym(k), xm(k)))

)
≤ α

(
(yn(k), xn(k)), (ym(k), xm(k))

)
φ
(
d(F (yn(k), xn(k)), F (ym(k), xm(k)))

)
≤ 1

2
φ
(
d(yn(k), ym(k)) + d(xn(k), xm(k))

)
− ψ

(d(yn(k), ym(k)) + d(xn(k), xm(k))

2

)
= 1

2φ(rk)− ψ
(

rk
2

)
. (2.24)

From (2.48)­(2.52), we have

φ(rk) ≤ φ
(
δn(k) + δm(k)

)
+ φ(rk)− 2ψ

(
rk
2

)
.

a contradiction. Therefore {xn} and {yn} are Cauchy sequences. Since X is
complete metric space, there exist x, y ∈ X such that

limn→∞xn = x and limn→∞yn = y. (2.25)

Now, suppose F is continuous. Taking the limit as n→ ∞ in (2.27) and by (2.53),
we get

x = limn→∞xn = limn→∞F (xn−1, yn−1) = F
(
limn→∞xn−1, limn→∞yn−1

)
=

F (x, y)

and

y = limn→∞yn = limn→∞F (yn−1, xn−1) = F
(
limn→∞yn−1, limn→∞xn−1

)
=

F (y, x).

Therefore F has coupled fixed point.
Finally, suppose that (b) holds. by assumption (b), we have xn ≥ x and yn ≤ y for
all n. Since

d(x, F (x, y)) ≤ d(x, xn+1) + d(xn+1, F (x, y)) = d(x, xn+1) + d(F (xn, yn), F (x, y))

Therefore

φ
(
d(x, F (x, y))

)
≤ φ

(
d(x, xn+1)

)
+ φ

(
d(F (xn, yn), F (x, y))

)
≤ φ

(
d(x, xn+1)

)
+ α

(
(xn, yn), (x, y)

)
φ
(
d(F (xn, yn), F (x, y))

)
≤ φ

(
d(x, xn+1)

)
+ 1

2φ
(
d(xn, x) + d(yn, y)

)
− ψ

(
d(xn,x)+d(yn,y)

2

)
.
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Taking the limit of above inequality, using (2.53) and the property of ψ, we get
φ
(
d(x, F (x, y))

)
= 0, thus d(x, F (x, y)) = 0. Hence x = F (x, y). Similarly, one can

show that y = F (y, x).
Thus we proved that F has a coupled fixed point. �

Theorem 2.1. In addition to hypothesis of Theorem 2.1, if x0 and y0 are comparable
then F has a Fixed point.

Proof. By using a similar proof in Theorem (2.6) of [10] we can deduce the proof. �

Corollary 2.2. In Theorem 2.1, if 2.1 replaced with:

α
(
(x, y), (u, v)

)
φ
(
d
(
F (x, y), F (u, v)

))
≤ 1

4
φ
(
d(x, u) + d(y, v) + d(u, F (u, v)) + d(v, F (v, u))

)
−ψ

(d(x, u) + d(y, v) + d(u, F (u, v)) + d(v, F (v, u)

4

)
.

(2.26)

for all (x, y), (u, v) ∈ X ×X, then F has coupled fixed point.

Proof. Let x0, y0 ∈ X be such that x0 ≤ F (x0, y0) and y0 ≥ F (x0, yo). we constract
sequences {xn} and {yn} in X as follows

xn+1 = F (xn, yn) and yn+1 = F (yn, xn) for all n ≥ 0 (2.27)

We shall show that

xn ≤ xn+1 and yn ≥ yn+1 for all n ≥ 0. (2.28)

We shall use the mathematical induction. Let n = 0. Since x0 ≤ F (x0, y0) and
y0 ≥ F (y0, x0) and x1 = F (x0, y0) and y1 = F (y0, x0), we have x0 ≤ x1 and y0 ≥ y1
thus (2.28) hold for n = 0.
Now suppose that (2.28) hold for some fixed n ≥ 0, then since xn ≤ xn+1 and
yn ≥ yn+1, and by mixed monotone property of F , we have

xn+2 = F (xn+1, yn+1) ≥ F (xn, yn+1) ≥ F (xn, yn) = xn+1 (2.29)

yn+2 = F (yn+1, xn+1) ≤ F (yn, xn+1) ≤ F (yn, xn) = yn+1 (2.30)

Now from (2.29) and (2.30), we obtain
xn+1 ≤ xn+2 and yn+1 ≥ yn+2.
Thus by the mathematical induction we conclude that (2.28) hold for all n ≥ 0.
Since xn ≥ xn−1 and yn ≤ yn−1, so we have

φ(d(xn, xn+1)) = φ(d(F (xn−1, yn−1), F (xn, yn))) (2.31)

≤ α
(
(xn−1, yn−1),

(
F (xn−1, yn−1), F (yn−1, xn−1)

))
φ
(
d(F (xn−1, yn−1), F (xn, yn))

)
(2.32)

≤ 1

4
φ
(
d(xn−1, xn) + d(yn−1, yn) + d(xn−1, F (xn−1, yn−1)) + d(yn−1, F (yn−1, xn−1))

)
−ψ

(d(xn−1, xn) + d(yn−1, yn) + d(xn−1, F (xn−1, yn−1)) + d(yn−1, F (yn−1, xn−1))

4

)
≤ 1

2
φ
(
d(xn−1, xn) + d(yn−1, yn)

)
− ψ

(d(xn−1, xn) + d(yn−1, yn)

2

)
(2.33)

φ(d(yn, yn+1)) = φ(d(F (yn−1, xn−1), F (yn, xn))) (2.34)
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≤ α
((
F (yn−1, xn−1), F (xn−1, yn−1)

)
, (yn−1, xn−1)

)
φ
(
d(F (yn−1, xn−1), F (yn, xn))

)
(2.35)

≤ 1

4
φ
(
d(yn−1, yn) + d(xn−1, xn) + d(yn−1, F (yn−1, xn−1)) + d(xn−1, F (xn−1, yn−1))

)
− ψ

(d(yn−1, yn) + d(xn−1, xn) + d(yn−1, F (yn−1, xn−1)) + d(xn−1, F (xn−1, yn−1))

4

)
≤ 1

2
φ
(
d(yn−1, yn) + d(xn−1, xn)

)
− ψ

(d(yn−1, yn) + d(xn−1, xn)

2

)
. (2.36)

Adding (2.33) to (2.36 ), we get

β((ζ1, ζ2), (η1, η2))
(
φ
(
d(F (xn, yn), F (xn−1, yn−1))

)
+ φ

(
d(F (yn−1, xn−1), F (yn, xn))

))
≤ φ

(
d(xn, xn−1) + d(yn, yn−1)

)
− 2ψ

(d(xn, xn−1) + d(yn, yn−1)

2

)
. (2.37)

With

β
(
(ζ1, ζ2), (η1, η2)

)
= min

{
α
(
(xn−1, yn−1),

(
F (xn−1, yn−1), F (yn−1, xn−1)

))
,

(2.38)

α
((
F (yn−1, xn−1), F (xn−1, yn−1)

)
, (xn−1, yn−1)

)}
.

(2.39)

If we consider Y = X ×X, so we can define β : Y × Y → [0,∞), such that for all
ζ = (ζ1, ζ2), η = (η1, η2) ∈ Y

β((ζ1, ζ2), (η1, η2)) = min{α((ζ1, ζ2), (η1, η2)), α((η2, η1), (ζ2, ζ1)).

and T : Y → Y is given by (1.8). let ζ = (ζ1, ζ2), η = (η1, η2) ∈ Y such that
β(ζ, η) ≥ 1, we obtain immediately that β(Tζ, Tη) ≥ 1. also there exists (x0, y0) ∈
Y such that:

β
(
(x0, y0), (F (x0, y0), F (y0, x0))

)
≥ 1. (2.40)

By property (iii) of φ, we have

φ
(
d(xn+1, xn) + d(yn+1, yn)

)
≤ φ(d(xn+1, xn)) + φ(d(yn, yn+1)). (2.41)

From (2.37), (2.40) and (2.41), we have

φ
(
d(xn+1, xn) + d(yn+1, yn)

)
≤ β((xn, yn), (xn−1, yn−1))φ

(
d(xn+1, xn) + d(yn+1, yn)

)
≤ φ

(
d(xn, xn−1) + d(yn, yn−1)

)
− 2ψ

(d(xn, xn−1) + d(yn, yn−1)

2

)
.

(2.42)

Which implies

φ
(
d(xn+1, xn) + d(yn+1, yn)

)
≤ φ

(
d(xn, xn−1) + d(yn, yn−1)

)
.

Using the fact that φ is non­decreasing, we get

d(xn+1, xn) + d(yn+1, yn) ≤ d(xn, xn−1) + d(yn, yn−1).
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Set δn = d(xn+1, xn) + d(yn+1, yn) then sequence {δn} is decreasing. Therefore,
there is some δ ≥ 0 such that

limn→∞δn = limn→∞[d(xn+1, xn) + d(yn+1, yn)] = δ. (2.43)

We shall show that δ = 0. Suppose to the contrary, that δ > 0, Then taking the limit
as n→ ∞ of both sides of (2.41) and have in mind that we suppose limt→r ψ(t) > 0
for all r > 0 and φ is continuous, we have

φ(δ) = lim
n→∞

φ(δn) = lim
n→∞

[
φ(δn−1)− 2ψ

(δn−1

2

)]
= φ(δ)− 2 lim

δn−1→δ
ψ
(δn−1

2

)
< φ(δ).

a contradiction. Thus δ = 0, that is,

limn→∞δn = limn→∞

[
d(xn+1, xn) + d(yn+1, yn)

]
= 0. (2.44)

In what follows, we shall prove that {xn} and {yn} are Cauchy sequences. Suppose,
to the contrary, that at least of {xn} or {yn} is not Cauchy sequence. Then there
exists an ε > 0 for which we can find subsequences {xn(k)}, {xm(k)} of {xn} and
{yn(k)}, {ym(k)} of {yn} with n(k) > m(k) ≥ k such that

d(xn(k), xm(k)) + d(yn(k), ym(k)) ≥ ε. (2.45)

Further,corresponding to m(k), we can choose n(k) in such a way that it is the
smallest integer with n(k) > m(k) ≥ k and satisfying (2.45). Then

d(xn(k)−1, xm(k)) + d(yn(k)−1, ym(k)) < ε. (2.46)

Using (2.45), (2.46) and the triangle inequality, we have

ε ≤ rk := d(xn(k), xm(k)) + d(yn(k), ym(k))

+ d(xm(k), F (xm(k), ym(k))) + d(ym(k), F (ym(k), xm(k)))

≤ d(xn(k), xn(k)−1) + d(xn(k)−1, xm(k)) + d(yn(k), yn(k)−1) + d(yn(k)−1, ym(k))

+ d(xm(k), xm(k+1)) + d(ym(k), ym(k+1))

≤ δn(k−1) + ε+ δm(k) ≤ 2δn(k−1) + ε.

Letting k → ∞ and using (2.44)

limk→∞rk = limk→∞

[
d(xn(k), xm(k)) + d(yn(k), ym(k))

+d(xm(k), F (xm(k), ym(k))) + d(ym(k), F (ym(k), xm(k)))
]
= ε. (2.47)

By the triangle inequality

rk = d(xn(k), xm(k)) + d(yn(k), ym(k))

+ d(xm(k), F (xm(k), ym(k))) + d(ym(k), F (ym(k), xm(k)))

≤ d(xn(k), xn(k)+1) + d(xn(k)+1, xm(k)+1) + d(xm(k)+1, xm(k)) + d(yn(k), yn(k)+1)

+ d(yn(k)+1, ym(k)+1) + d(ym(k)+1, ym(k)) + d(xm(k), xm(k+1)) + d(ym(k), ym(k+1))

= δn(k) + 2δm(k) + d(xn(k)+1, xm(k)+1) + d(yn(k)+1, ym(k)+1).

Using the property of φ, we have
φ(rk) = φ

(
δn(k) + 2δm(k) + d(xn(k)+1, xm(k)+1) + d(yn(k)+1, ym(k)+1)

)
≤ φ(δn(k) + 2δm(k)) + φ(d(xn(k)+1, xm(k)+1)) + φ(d(yn(k)+1, ym(k)+1)). (2.48)
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Since n(k) > m(k), hence xn(k) ≥ xm(k) and yn(k) ≤ ym(k). so we have

φ
(
d(xn(k)+1, xm(k)+1)

)
= φ

(
d(F (xn(k), yn(k)), F (xm(k), ym(k)))

)
(2.49)

≤ α
(
(xn(k), yn(k)), (xm(k), ym(k))

)
φ
(
d(F (xn(k), yn(k)), F (xm(k), ym(k)))

)
≤ 1

4
φ
(
d(xn(k), xm(k)) + d(yn(k), ym(k)) + d(xm(k), F (xm(k), ym(k))) + d(ym(k), F (ym(k), xm(k)))

)
− ψ

(d(xn(k), xm(k)) + d(yn(k), ym(k)) + d(xm(k), F (xm(k), ym(k))) + d(ym(k), F (ym(k), xm(k)))

4

)
=

1

4
φ(rk)− ψ

(rk
4

)
(2.50)

φ
(
d(yn(k)+1, ym(k)+1)

)
= φ

(
d(F (yn(k), xn(k)), F (ym(k), xm(k)))

)
(2.51)

≤ α
(
(yn(k), xn(k)), (ym(k), xm(k))

)
φ
(
d(F (yn(k), xn(k)), F (ym(k), xm(k)))

)
≤ 1

4
φ
(
d(yn(k), ym(k)) + d(xn(k), xm(k)) + d(ym(k), F (ym(k), xm(k))) + d(xm(k), F (xm(k), ym(k)))

)
−ψ

(d(yn(k), ym(k)) + d(xn(k), xm(k)) + d(ym(k), F (ym(k), xm(k))) + d(xm(k), F (xm(k), ym(k)))

4

)
=

1

4
φ(rk)− ψ

(rk
4

)
.

(2.52)

From (2.48)­(2.52), we have

φ(rk) ≤ φ
(
δn(k) + 2δm(k)

)
+ 1

2φ(rk)− 2ψ
(

rk
4

)
.

Letting k → ∞ and using (2.44) and (2.47), we have

φ(ε) ≤ φ(0) + 1
2φ(ε)− 2limk→∞ψ

(
rk
4

)
= 1

2φ(ε)− 2limrk→εψ
(

rk
4

)
< φ(ε),

a contradiction. Therefore {xn} and {yn} are Cauchy sequences. Since X is
complete metric space, there exist x, y ∈ X such that

limn→∞xn = x and limn→∞yn = y. (2.53)

Now, suppose F is continuous. Taking the limit as n→ ∞ in (2.27) and by (2.53),
we get

x = limn→∞xn = limn→∞F (xn−1, yn−1) = F
(
limn→∞xn−1, limn→∞yn−1

)
=

F (x, y)

and

y = limn→∞yn = limn→∞F (yn−1, xn−1) = F
(
limn→∞yn−1, limn→∞xn−1

)
=

F (y, x).

Therefore F has coupled fixed point.
Finally, suppose that (b) holds. by assumption (b), we have xn ≥ x and yn ≤ y for
all n. Since

d(x, F (x, y)) ≤ d(x, xn+1) + d(xn+1, F (x, y)) = d(x, xn+1) + d(F (xn, yn), F (x, y)).
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Therefore

φ
(
d(x, F (x, y))

)
≤ φ

(
d(x, xn+1)

)
+ φ

(
d(F (xn, yn), F (x, y))

)
≤ φ

(
d(x, xn+1)

)
+ α

(
(xn, yn), (x, y)

)
φ
(
d(F (xn, yn), F (x, y))

)
≤ φ

(
d(x, xn+1)

)
+

1

4
φ
(
d(xn, x) + d(yn, y) + d(xn, F (xn, yn)) + d(yn, F (yn, xn))

)
−ψ

(d(xn, x) + d(yn, y) + d(yn, F (yn, xn)) + d(xn, F (xn, yn))

4

)
= φ

(
d(x, xn+1)

)
+

1

4
φ
(
d(xn, x) + d(yn, y) + d(xn, xn+1) + d(yn, yn+1)

)
−ψ

(d(xn, x) + d(yn, y) + d(yn, yn+1) + d(xn, xn+1)

4

)
= φ

(
d(x, xn+1)

)
+

1

4
φ
(
d(xn, x) + d(yn, y) + δn

)
− ψ

(d(xn, x) + d(yn, y) + δn
4

)
.

(2.54)

Taking the limit of above inequality, using (2.53) and the property of ψ, we get
φ
(
d(x, F (x, y))

)
= 0, thus d(x, F (x, y)) = 0. Hence x = F (x, y). Similarly, one can

show that y = F (y, x).
Thus we proved that F has a coupled fixed point. �

Theorem 2.2. Let (X, d) be a complete metric space α : X ×X → [0,∞) a function,
ψ ∈ Ψ, and T : X → X be a continuous, non­decreasing triangular α−admissible
mapping such that

α(x, y)ψ
(
d(Tx, Ty)

)
≤ ψ

(1
2

(
d(x, Ty) + d(y, Tx)

))
− φ

(
d(x, Ty), d(y, Tx)

)
.

(2.55)

For all x, y ∈ X,
where φ : [0,∞) × [0,∞) → [0,∞) is a continuous function such that φ(x, y) = 0 if
and only if x = y. and there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Then T has a
fixed point.

Proof. Take x0 ∈ X such that α(x0, Tx0) ≥ 1 and define sequence {xn} in X with
xn+1 = Txn.
α(x0, Tx0) = α(x0, x1) ≥ 1 ⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.
By continuity of this process we have α(xn, xn+1) ≥ 1, Thus

ψ
(
d(xn, xn+1)

)
= ψ

(
d(Txn−1, Txn)

)
≤ α(xn−1, xn)ψ

(
d(Txn−1, Txn)

)
≤ ψ

(1
2

(
d(xn−1, Txn) + d(xn, Txn−1)

))
− φ

(
d(xn−1, Txn), d(xn, Txn−1)

)
≤ ψ

(1
2

(
d(xn−1, xn+1) + d(xn, xn)

))
− φ

(
d(xn−1, xn+1), d(xn, xn)

)
≤ ψ

(1
2

(
d(xn−1, xn+1)

))
− φ

(
d(xn−1, xn+1), 0

)
≤ ψ

(1
2
d(xn−1, xn+1)

)
.

Since ψ is non­decreasing function, we get

ψ
(
d(xn, xn+1)

)
≤ ψ

(
1
2d(xn1 , xn+1)

)
⇒ d(xn, xn+1 ≤ 1

2d(xn−1, xn+1).

Hence d(xn, xn+1)n>1 is non­decreasing sequence and there is r > 0 such that

r = lim
n→∞

d(xn, xn+1). (2.56)

Also we have
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d(xn, xn+1) ≤ 1
2d(xn−1, xn+1) ≤ 1

2 (d(xn−1, xn) + d(xn, xn+1))

limn→∞d(xn−1, xn+1) = 2r Letting n→ ∞ and using (2.56), we get

r ≤ limn→∞
1
2d(xn−1, xn+1) ≤ 1

2 (r + r).

Hence by using of continuity ψ,φ, we have

ψ(r) ≤ ψ
(
1
2 (2r)

)
− φ(2r, 0).

Which implies that φ(2r, 0) = 0 ⇒ r = 0 and limn→∞d(xn, xn+1) = r = 0. Now we
show that {xn} is a cauchy sequence in x. Suppose to the contrary that {xn} is not
cauchy sequence, then there exists ε > 0 for which we can find two subsequence
{xmi

} and {xni
} of {xn} such that ni is the smallest index for which ni > mi > 0,

d(xni , xmi) ≥ ε, Thus d(xmi , xni−1) < ε, and we have

ε ≤ d(xmi
, xni) ≤ d(xmi , xmi+1) + d(xmi+1 , xni−1) + d(xni−1 , xni)

≤ 2d(xmi , xmi+1) + d(xmi , xni) + 2d(xmi−1 , xni)

≤ 2d(xmi , xmi+1) + ε+ 3d(xmi−1 , xni).

Letting i→ ∞ we get

limi→∞d(xmi , xni) = limi→∞d(xmi+1 , xni+1) = limi→∞d(xmi+1 , xni) = ε. (2.57)

Also we have

ψ
(
d(xmi+1 , xni)

)
= ψ

(
d(Txmi , Txni−1)

)
≤ α(xmi , xni)ψ

(
d(Txmi , Txni−1)

)
≤ ψ

(1
2

(
d(xmi , Txni−1) + d(xni−1 , Txmi)

))
− φ

(
d(xmi , Txni−1), d(xni−1 , Txmi)

)
= ψ

(1
2

(
d(xmi , xni) + d(xni−1 , xmi+1)

))
− φ

(
d(xmi , xni), d(xni−1 , xmi+1)

)
.

By letting i→ ∞ and use of continuity of φ and ψ, we get

ψ(ε) 6 ψ(ε)− φ(ε, ε).

Hence we get φ(ε, ε) = 0, and ε = 0, a contradiction, thus {xn} is cauchy sequence
in X and there exists x ∈ X such that limn→∞xn = x.
Since T is continuous and xn → x, we obtain xn+1 = Txn → Tx and Tx = x.
Thus T has fixed point. �
Theorem 2.3. let F : X×X×X → X be a given mapping in complete metric space
(X, d) and suppose that there exist ψ ∈ Ψ and a function α : X3×X3 → [0,∞) such
that

α
(
(x, y, z), (u, v, w)

)
d
(
F (x, y, z), F (u, v, w)

)
6 1

3
ψ
(
d(x, u) + d(y, v) + d(z, w)

)
(2.58)

for all (x, y, z), (u, v, z) ∈ X ×X ×X. suppose also that
(i) For all (x, y, z), (u, v, w) ∈ X ×X ×X, we have α

(
(x, y, z), (u, v, w)

)
> 1 ⇒

α
((
F (x, y, z), F (y, z, x), F (z, x, y)

)
,
(
F (u, v, w), F (v, w, u), F (w, u, v)

))
> 1,

(ii) there exists (x0, y0, z0) ∈ X ×X ×X such that

α
(
(x0, y0, z0),

(
F (x0, y0, z0), F (y0, z0, x0), F (z0, x0, y0)

))
> 1

α
((
F (y0, z0, x0), F (z0, x0, y0), F (x0, y0, z0)

)
, (y0, z0, x0)

)
> 1

α
(
(z0, x0, y0),

(
F (z0, x0, y0, ), F (x0, y0, z0), F (y0, z0, x0)

))
> 1
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(iii) and F is continuous.
Then, F has a tripled fixed point, that is, there exists (x∗, y∗, z∗) ∈ X ×X ×X such
that x∗ = F (x∗, y∗, z∗) and y∗ = F (y∗, z∗, x∗) and z∗ = F (z∗, x∗, y∗).

Proof. The idea consists in transporting the problem to the complete metric space
(Y, δ) where Y = X ×X ×X and δ

(
(x, y, z), (u, v, w)

)
= d(x, u) + d(y, v) + d(z, w)

for all (x, y, z), (u, v, w) ∈ X ×X ×X. also we have

α
(
(x, y, z), (u, v, w)

)
d
(
F (x, y, z), F (u, v, w)

)
6 1

3
ψ
(
δ
(
(x, y, z), (u, v, w)

))
(2.59)

and

α
(
(v, w, u), (y, z, x)

)
d
(
F (v, w, u), F (y, z, x)

)
6 1

3
ψ
(
δ
(
(v, w, u), (y, z, x)

))
(2.60)

and

α
(
(z, x, y), (w, u, v)

)
d
(
F (z, x, y), F (w, u, v)

)
6 1

3
ψ
(
δ
(
(z, x, y), (w, u, v)

))
. (2.61)

Now if T : Y → Y is defined by

T (τ1, τ2, τ3) =
(
F (τ1, τ2, τ3), F (τ2, τ3, τ1), F (τ3, τ1, τ2)

)
. (2.62)

for all (τ1, τ2, τ3) ∈ Y , and β : Y × Y → [0,∞) is the function defined by

β
(
(ξ1, ξ2, ξ3), (η1, η2, η3)

)
=

min
{
α
(
(x, y, z), (u, v, w)

)
, α

(
(v, w, u), (y, z, x)

)
, α

(
(z, x, y), (w, u, v)

)}
,

Then by summing up the inequalities (2.59)­(2.61), and using of (2.62) we get

β(ξ, η)δ(T (x, y, z), T (u, v, w)) 6 ψ
(
δ((x, y, z), (u, v, w))

)
. (2.63)

for all ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3) ∈ Y . Then T is continuous and β −
ψ−contractive mapping and β(ξ, η) > 1. It is easy to check that T is β−admissible
and we know that there exists (x0, y0, z0) ∈ Y such that

β
(
(x0, y0, z0), T (x0, y0, z0)

)
> 1.

All the hypotheses of 1.9 are satisfied, and so we deduce the existence of a fixed
point of T. �

Example 2.3. Let X = [0,+∞) equipped with the standard metric d(x, y) = |x−y|
for all x, y ∈ X. Then (X,d) is complete metric space. Define the mapping F :
X ×X ×X → X by

F (x, y, z) =

{
x−y−z

6 x ≥ y ≥ z
0 otherwise

Clearly F is continuous mapping. Define α : X3 ×X3 → [0,+∞) by

α
(
(x, y, z), (u, v, w)

)
=

{
1 u ≥ v ≥ w
0 otherwise

Then, (2.58) is satisfied with ψ(t) = t
2 for all t ≥ 0. Also it is easy to check that

α
(
(x, y, z), (u, v, w)

)
≥ 1 implies

α
((
F (x, y, z), F (y, z, x), F (z, x, y)

)
,
(
F (u, v, w), F (v, w, u), F (w, u, v)

))
≥ 1,

for all (x, y, z), (u, v, w)
∈ X ×X ×X. On the other hand, the condition (ii) of Theorem (2.3) is satisfied
with (x0, y0, z0) = (0, 0, 0). All the required hypotheses of same Theorem are true
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and so we deduce the existence of a tripled fixed point of F . Hence (0, 0, 0) is a
tripled fixed point of F .

Corollary 2.4. Let (X, d) be a complete metric space and F : X ×X ×X → X be a
mapping having the mixed monotone property on X. Suppose that there exist ψ ∈ Ψ
and φ ∈ ϕ and a function α : X3 ×X3 → [0,∞) such that

α
(
(x, y, z), (u, v, w)

)
φ
(
d
(
F (x, y, z), F (u, v, w)

))
6 1

3
φ
(
d(x, u) + d(y, v) + d(z, w)

)
− ψ

(d(x, u) + d(y, v) + d(z, w)

3

)
. (2.64)

If F is α−admissible mapping satisfying the following conditions
(i) For all (x, y, z), (u, v, w) ∈ X ×X ×X, we have
α
(
(x, y, z), (u, v, w)

)
> 1 ⇒

α
((
F (x, y, z), F (y, z, x), F (z, x, y)

)
,
(
F (u, v, w), F (v, w, u), F (w, u, v)

))
> 1.

(ii) there exists (x0, y0, z0) ∈ X ×X ×X such that

α
(
(x0, y0, z0),

(
F (x0, y0, z0), F (y0, z0, x0), F (z0, x0, y0)

))
> 1,

α
((
F (y0, z0, x0), F (z0, x0, y0), F (x0, y0, z0)

)
, (y0, z0, x0)

)
> 1,

α
(
(z0, x0, y0),

(
F (z0, x0, y0, ), F (x0, y0, z0), F (y0, z0, x0)

))
> 1.

(iii) There exists x0, y0, z0 ∈ X such that
x0 6 F (x0, y0, z0) y0 > F (y0, z0, x0) and z0 6 F (z,x0, y0),

(iv) for x, y, z, u, v, w ∈ X with x > u, y 6 v, z > w,
(v) F is continuous or
(a) If a non­decreasing sequence {xn} → x, then xn 6 x for all n,
(b) If a non­increasing sequence {yn} → y, then yn > y for all n,
(c) If a non­decreasing sequence {zn} → z, then zn 6 z for all n. Then F has tripled
fixed point in X.

3. Application

In this section, we study the existence of a solution to a nonlinear integral
equation, as an application to the fixed point theorem.
let Θ denote the class of those functions θ : [0,∞) → [0,∞) which satisfies the
following conditions:
(i) θ is increasing.
(ii) There exists ψ ∈ Ψ such that θ(x) = x

2 − ψ(x2 ) for all x ∈ [0,∞).
For example, θ(x) = kx, where 0 ≤ k ≤ 1

2 , θ(x) =
x2

2(x+1) , θ(x) =
x
2 − ln(x+1)

2 are in
Θ.
Consider the following integral equation

x(t) =

∫ b

a

(K1(t, s) +K2(t, s))(f(s, x(s)) + g(s, x(s))ds+ h(t) (3.1)

t ∈ I = [a, b].
We assume that K1,K2, f, g, e satisfy the following conditions (i) K1(t, s) ≥ 0 and
K2(t, s) ≤ 0 for all t, s ∈ [a, b].
(ii) There exist λ, µ > 0 and θ ∈ Θ such that for all x, y ∈ R, x ≥ y.
0 ≤ f(t, x)− f(t, y) ≤ λθ(x− y)
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and
−µθ(x− y) ≤ g(t, x)− g(t, y) ≤ 0
and Also
max{λ, µ} supt∈I

∫ b

a
(K1(t, s)−K2(t, s))ds ≤ 1

2 .
(iii) Also there exists (x0, y0) ∈ C(I)× C(I)such that for all t ∈ I, we have
e((x0(t), y0(t)), (

∫ b

a
K1(t, s)(f(s, x0(s)) + g(s, y0(s)))ds

+
∫ b

a
K2(t, s)(f(s, y0(s)) + g(s, x0(s)))ds+ h(t),

(
∫ b

a
K1(t, s)(f(s, y0(s)) + g(s, x0(s)))ds +

∫ b

a
K2(t, s)(f(s, x0(s)) + g(s, y0(s)))ds +

h(t)))) ≥ 0.
and
((
∫ b

a
(1(t, s)(f(s, y0(s))+g(s, x0(s)))ds+

∫ b

a
K2(t, s)(f(s, x0(s))+g(s, y0(s)))ds+h(t),

(
∫ b

a
K1(t, s)(f(s, x0(s)) + g(s, y0(s)))ds+

∫ b

a
K2(t, s)(f(s, y0(s))

+g(s, x0(s)))ds+ h(t), (y0(t), x0(t))))) ≥ 0.
(v) For all t ∈ I, x, y ∈ C(I), e((x(t), y(t)), (u(t), v(t))) ≥ 0 implies that
e(
∫ b

a
K1(t, s)(f(s, x(s))+ g(s, y(s)))ds+

∫ b

a
K2(t, s)(f(s, y(s))+ g(s, x(s)))ds+h(t),∫ b

a
K1(t, s)(f(s, y(s)) + g(s, x(s)))ds+

∫ b

a
K2(t, s)(f(s, x(s)) + g(s, y(s)))ds+ h(t)),

(
∫ b

a
K1(t, s)(f(s, u(s)) + g(s, v(s)))ds+

∫ b

a
K2(t, s)(f(s, v(s)) + g(s, u(s)))ds+ h(t),∫ b

a
K1(t, s)(f(s, v(s))+g(s, u(s)))ds+

∫ b

a
K2(t, s)(f(s, u(s))+g(s, v(s)))ds+h(t)) ≥

0.

Definition 3.1. An element (β, γ) ∈ C(I,R) × C(I,R) is called a coupled lower
and upper solution of the integral equation (3.1) if β(t) ≤ γ(t) and

β(t) ≤
∫ b

a
K1(t, s)(f(s, β(s))+g(s, γ(s)))ds+

∫ b

a
K2(t, s)(f(s, γ(s)) +g(s, β(s)))ds+

h(t),
and

γ(t) ≥
∫ b

a
K1(t, s)(f(s, γ(s))+g(s, β(s)))ds+

∫ b

a
K2(t, s)(f(s, β(s)) +g(s, γ(s)))ds+

h(t),
for all t ∈ [a, b].

Theorem 3.2. Consider the integral equation (3.1) with K1,K2 ∈ C(I× I,R), f, g ∈
C(I × R,R) and h ∈ C(I × R,R) and suppose that conditions of (i), (ii), (iii) and
(iv) are satisfied. Then the existence of a coupled lower and upper solution for (3.1)
provides the existence of a solution of (3.1) in C(I,R).

Proof. Let X = C(I,R). X is a partially ordered set if we define the following order
relation in X
x, y ∈ C(I,R) ⇔ x(t) ≤ y(t), for all t ∈ [a, b].
And (X, d) is a complete metric space with metric
d(x, y) = supt∈I |x(t)− y(t)|, x, y ∈ C(I,R)
Suppose {un} is a monotone non­decreasing sequence in X that converges to
u ∈ X. Then for every t ∈ I, the sequence of real numbers
u1(t) ≤ u2(t) ≤ . . . ≤ un(t) ≤ . . .
converges to u(t). Therefore, for all t ∈ I, n ∈ N, un(t) ≤ u(t). Hence un ≤ u, for all
n.
Similarly, we can verify that lim v(t) of a monotone non­increasing sequence vn(t)
in X is a lower bound for all the elements in the sequence. That is, v ≤ vn for all n.
Therefore, condition (b) of Theorem (2.1) holds. Also, X ×X = C(I,R) × C(I,R)
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is a partially ordered set if we define the following order relation in X ×X
(x, y), (u, v) ∈ X ×X, (x, y) ≤ (u, v) ⇔ x(t) ≤ u(t) and y(t) ≥ v(t), ∀t ∈ I.
For any x, y ∈ X,max{x(t), y(t)} and min{x(t), y(t)}, for each t ∈ I, are in X
and are the upper and lower bounds of x, y, respectively. Therefore, for every
(x, y), (u, v) ∈ X ×X, there exists a (max{x, u},min{y, v}) ∈ X ×X that is com­
parable to (x, y) and(u, v). Define F : X ×X → X by

F (x, y)(t) =

∫ b

a

K1(t, s)(f(s, x(s))+g(s, y(s)))ds+

∫ b

a

K2(t, s)(f(s, y(s))+g(s, x(s)))ds+h(t)

for all t ∈ [a, b].
Now we shall show that F has the mixed monotone property. Indeed, for x1 ≤ x2,
that is, x1(t) ≤ x2(t), for all t ∈ [a, b], we have
F (x1, y)(t)− F (x2, y)(t) =

∫ b

a
K1(t, s)(f(s, x1(s)) + g(s, y(s)))ds

+
∫ b

a
K2(t, s)(f(s, y(s)) + g(s, x1(s)))ds+ h(t)

−
∫ b

a
K1(t, s)(f(s, x2(s)) + g(s, y(s)))ds

−
∫ b

a
K2(t, s)(f(s, y(s)) + g(s, x2(s)))ds− h(t)

=
∫ b

a
K1(t, s)(f(s, x1(s)) + f(s, x2(s)))ds

+
∫ b

a
K2(t, s)(g(s, x1(s)) + g(s, x2(s)))ds,

by Assumption (i) and (ii). Hence F (x1, y)(t) ≤ F (x2, y)(t), ∀t ∈ I, that is,

F (x1, y) ≤ F (x2, y).

Similarly, if y1 ≥ y2, that is, y1(t) ≥ y2(t), for all t ∈ [a, b], we have
F (x, y1)(t)− F (x, y2)(t) =

∫ b

a
K1(t, s)(f(s, x(s)) + g(s, y1(s)))ds

+
∫ b

a
K2(t, s)(f(s, y1(s)) + g(s, x(s)))ds+ h(t)

−
∫ b

a
K1(t, s)(f(s, x(s)) + g(s, y2(s)))ds

−
∫ b

a
K2(t, s)(f(s, y2(s)) + g(s, x(s)))ds− h(t)

=
∫ b

a
K1(t, s)(g(s, y1(s))− g(s, y2(s)))ds

+
∫ b

a
K2(t, s)(f(s, y1(s))− f(s, y2(s)))ds ≤ 0,

by Assumption (i) and (ii). Hence F (x, y1)(t) ≤ F (x, y2)(t), ∀t ∈ I, that is,

F (x, y1) ≤ F (x, y2).

Thus, F (x, y) is monotone non­decreasing in x and monotone non­increasing in y.
Define the function α : C(I)

2 × C(I)
2 → [0,∞) by

α((x, y), (u, v)) =

{
1 e((x(t), y(t)), (u(t), v(t))) ≥ 0, t ∈ I
0 otherwise.

Now, for x ≥ u, y ≤ v, that is, x(t) ≥ u(t), y(t) ≤ v(t) for all t ∈ I, we have
α((x, y), (u, v))d(F (x, y), F (u, v)) ≤ d(F (x, y), F (u, v))
= supt∈I |F (x, y)(t)− F (u, v)(t)|
= supt∈I |

∫ b

a
K1(t, s)(f(s, x(s)) + g(s, y(s)))ds

+
∫ b

a
K2(t, s)(f(s, y(s)) + g(s, x(s)))ds+ h(t)

−(
∫ b

a
K1(t, s)(f(s, u(s)) + g(s, v(s)))ds

+
∫ b

a
K2(t, s)(f(s, v(s)) + g(s, u(s)))ds+ h(t))|

= supt∈I |
∫ b

a
K1(t, s)[(f(s, x(s))− f(s, u(s))) + (g(s, y(s))− g(s, v(s)))]ds

+
∫ b

a
K2(t, s)[(f(s, y(s))− f(s, v(s))) + (g(s, x(s))− g(s, u(s)))]ds|

= supt∈I |
∫ b

a
K1(t, s)[(f(s, x(s))− f(s, u(s)))− (g(s, v(s))− g(s, y(s)))]ds
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−
∫ b

a
K2(t, s)[(f(s, v(s))− f(s, y(s)))− (g(s, x(s))− g(s, u(s)))]ds|

≤ supt∈I |
∫ b

a
K1(t, s)[λθ(x(s)− u(s)) + µθ(v(s)− y(s))]ds

−
∫ b

a
K2(t, s)[λθ(v(s)− y(s)) + µθ(x(s)− u(s))]ds|

≤ max{λ, µ} supt∈I

∫ b

a
(K1(t, s)−K2(t, s))[θ(x(s)− u(s)) + θ(v(s)− y(s))]ds.

As the function θ is increasing and x ≥ u, y ≤ v, then
θ(x(s)− u(s)) ≤ θ(d(x, u)), θ(v(s)− y(s)) ≤ θ(d(v, y)),
for all s ∈ [a, b], we obtain
d(F (x, y), F (u, v)) ≤ max{λ, µ} supt∈I

∫ b

a
(K1(t, s)−K2(t, s))

×[θ(x(s)− u(s)) + θ(v(s)− y(s))]ds.

≤ max{λ, µ}.[θ(d(x, u)) + θ(d(v, y))]. supt∈I

∫ b

a
(K1(t, s)−K2(t, s))ds

≤ 1
2 [θ(d(x, u)) + θ(d(v, y))]

≤ θ(d(x, u)) + θ(d(v, y))

= d(x,u)+d(v,y)
2 − ψ(d(x,u)+d(v,y)

2 ).
Therefore, for x ≥ u, y ≤ v, we have
d(F (x, y), F (u, v)) ≤ d(x,u)+d(v,y)

2 − ψ(d(x,u)+d(v,y)
2 ).

Now, let (β, γ) be a coupled lower and upper solution of the integral equation
(3.1) then we have β(t) ≤ F (β, γ)(t) and γ(t) ≥ F (γ, β)(t) for all t ∈ [a, b], that is,
β ≤ F (β, γ) and γ ≥ F (γ, β).
From condition (iv), for all (x, y), (u, v) ∈ C(I)× C(I),
α((x, y), (u, v)) ≥ 1 =⇒ e((x(t), y(t)), (u(t), v(t))) ≥ 0
=⇒ e((F (x(t), y(t)), F (y(t), x(t))), (F (u(t), v(t)), F (v(t), u(t)))) ≥ 0
=⇒ α((F (x, y), F (y, x)), (F (u, v), F (v, u))) ≥ 1.
Then F is α­admissible.
From (iii), there exists (x0, y0) ∈ C(I)× C(I) such that
α((x0, y0), (F ((x0, y0)), F (y0, x0))) ≥ 1, α((F (y0, x0), F ((x0, y0))), (x0, y0)) ≥ 1.
Finally, Theorem (3.2) give that F has a coupled fixed point (x, y). Since β ≤ γ, then
the hypothesis of Theorem (3.2) is satisfied. Therefore x = y, that is x(t) = y(t),
for all t ∈ [a, b] implying x = F (x, x) and x(t) is the solution of equation (3.1). �
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