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1. INTRODUCTION

A mapping T on a subset E of Banach space X is said to be nonexpansive if
∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ E. We denote by F (T ) the set of fixed points of
T, i.e., F (T ) = {x ∈ E : Tx = x}. A mapping T is said to be quasi­nonexpansive
if F (T ) ̸= ∅ and ∥Tx − z∥ ≤ ∥x − z∥ for all x ∈ E and z ∈ F (T ). In 2008, Suzuki
[1] introduced condition (C) as follows:
A mapping T on a subset E of Banach space X is said to satisfy the condition (C)
(or Suzuki’s generalized nonexpansive) on E if

1

2
∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥,

for all x, y ∈ E. Moreover, he obtained some interesting fixed point theorems and
convergence theorems for such mappings. In 2012, Nanjaras et al. [2] extend
Suzuki’s results on fixed point theorems and △−convergence theorems for such
mappings in CAT(0) spaces. In 2013, Salahifard et al. [3] introduced fundamentally
nonexpansive mapping which generalizes the Suzuki’s generalized nonexpansive
mapping and proved some fixed point theorems for this kind of mappings in CAT(0)
spaces.

Fixed point theory in CAT(k) spaces was first studied by Kirk [4, 5]. His works
were followed by a series of new works by many authors, mainly focusing on CAT(0)
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spaces (see e.g., [2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]). Since
any CAT(k) space is a CAT(k′) space for k′ ≥ k, all results for CAT(0) spaces
immediately apply to any CAT(k) space with k ≤ 0. However, there are only a few
articles that contain fixed point results in the setting of CAT(k) spaces with k > 0.
In this paper, we extend the results of Salahifard et al. [3] to the general setting of
CAT(k) spaces with k > 0.

2. PRELIMINARIES AND NOTATIONS

Let (X, ρ) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such
that c(0) = x, c(l) = y, and ρ (c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c
is an isometry and ρ(x, y) = l. The image c ([0, l]) of c is called a geodesic segment
joining x and y. Write c(α0 + (1 − α)l) = αx ⊕ (1 − α)y for α ∈ (0, 1). When it is
unique this geodesic segment is denoted by [x, y]. This means that z ∈ [x, y] if and
only if there exists α ∈ [0, 1] such that

ρ(x, z) = (1− α)ρ(x, y) and ρ(y, z) = αρ(x, y).

In this case, we write z = αx ⊕ (1 − α)y. Let D be a positive constant. A metric
space (X, ρ) is said to be a geodesic space (D­geodesic space) if every two points of
X (every two points of distance smaller than D) are joined by a geodesic, and X is
said to be uniquely geodesic (D­uniquely geodesic) if there is exactly one geodesic
joining x and y for each x, y ∈ X (for x, y ∈ X with ρ(x, y) < D). A subset E of
X is said to be convex if E includes every geodesic segment joining any two of its
points. If this condition holds for any two points in E with distance smaller than
D, E is said to be D­convex. The set E is said to be bounded if

diam(E) := sup{ρ(x, y) : x, y ∈ E} < ∞.

Now we introduce the model spaces Mn
k , for more details on these spaces the

reader is referred to [21]. Let n ∈ N. We denote by En the metric space Rn endowed
with the usual Euclidean distance. We denote by (·|·) the Euclidean scalar product
in Rn, that is,

(x|y) = x1y1 + ...+ xnyn where x = (x1, ..., xn), y = (y1, ..., yn).

Let Sn denote the n−dimensional sphere defined by

Sn = {x = (x1, ..., xn+1) ∈ Rn+1 : (x|x) = 1},

with metric dSn(x, y) = arccos(x|y), x, y ∈ Sn.
Let En,1 denote the vector space Rn+1 endowed with the symmetric bilinear

form which associates to vectors u = (u1, ..., un+1) and v = (v1, ..., vn+1), the real
number ⟨u|v⟩ is defined by

⟨u|v⟩ = −un+1vn+1 +
n∑

i=1

uivi.

Let Hn denote the hyperbolic n−space defined by

Hn = {u = (u1, ..., un+1) ∈ En,1 : ⟨u|u⟩ = −1, un+1 > 0},

with metric dHn such that

cosh dHn(x, y) = −⟨x|y⟩, x, y ∈ Hn.
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Definition 2.1. Given k ∈ R, we denote by Mn
k the following metric spaces:

(i) if k = 0 then Mn
0 is the Euclidean space En;

(ii) if k > 0 then Mn
k is obtained from the spherical space Sn by multiplying the

distance function by the constant 1/
√
k;

(iii) if k < 0 then Mn
k is obtained from the hyperbolic space Hn by multiplying

the distance.

A geodesic triangle △(x, y, z) in a geodesic space (X, ρ) consists of three points
x, y, z in X (the vertices of △) and three geodesic segments between each pair of
vertices (the edges of △). A comparison triangle for a geodesic triangle △(x, y, z) in
(X, ρ) is a triangle △(x, y, z) in M2

k such that

ρ(x, y) = dM2
k
(x, y), ρ(y, z) = dM2

k
(y, z) and ρ(z, x) = dM2

k
(z, x).

If k ≤ 0 then such a comparison triangle always exists in M2
k . If k > 0 then such

a triangle exists whenever ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dk, where Dk = π/
√
k. A

point p ∈ [x, y] is called a comparison point for p ∈ [x, y] if ρ(x, p) = dM2
k
(x, p).

A geodesic triangle △(x, y, z) in X is said to satisfy the CAT(k) inequality if for
any p, q ∈ △(x, y, z) and for their comparison points p, q ∈ △(x, y, z), one has

ρ(p, q) ≤ dM2
k
(p, q).

Definition 2.2. If k ≤ 0, then X is called a CAT(k) space if X is a geodesic space
such that all of its geodesic triangles satisfy the CAT(k) inequality.

If k > 0, then X is called a CAT(k) space if X is Dk−geodesic and any geodesic
triangle △(x, y, z) in X with ρ(x, y) + ρ(y, z) + ρ(z, x) < 2Dk satisfies the CAT(k)
inequality.

In a CAT(0) space (X, ρ), if x, y, z ∈ X then the CAT(0) inequality implies

ρ2
(
x,

1

2
y ⊕ 1

2
z

)
≤ 1

2
ρ2(x, y) +

1

2
ρ2(x, z)− 1

4
ρ2(y, z). (CN)

This is the (CN) inequality of Bruhat and Tits [22]. This inequality is extended by
Dhompongsa and Panyanak [19] as

ρ2(x, (1− α)y ⊕ αz) ≤ (1− α)ρ2(x, y) + αρ2(x, z)− α(1− α)ρ2(y, z) (CN*)

for all α ∈ [0, 1] and x, y, z ∈ X. In fact, if X is a geodesic space then the following
statements are equivalent:

(i) X is a CAT(0) space;
(ii) X satisfies (CN);
(iii) X satisfies (CN*).

Let R ∈ (0, 2]. Recall that a geodesic space (X, ρ) is said to be R−convex for R
(see [23]) if for any three points x, y, z ∈ X, we have

ρ2(x, (1− α)y ⊕ αz) ≤ (1− α)ρ2(x, y) + αρ2(x, z)− R

2
α(1− α)ρ2(y, z). (1)

It follows from (CN*) that a geodesic space (X, ρ) is a CAT(0) space if and only if
(X, ρ) is R−convex for R = 2. The following lemma is a consequence of Proposition
3.1 in [23].

Lemma 2.3. Let k > 0 and (X, ρ) be a CAT(k) space with diam(X) ≤ π/2−ε√
k

for

some ε ∈ (0, π/2). Then (X, ρ) is R−convex for R = (π − 2ε) tan(ε).

The following lemma is also needed.
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Lemma 2.4. ([21, p.176]) Let k > 0 and (X, ρ) be a complete CAT(k) space with

diam(X) ≤ π/2−ε√
k

for some ε ∈ (0, π/2). Then

ρ (x, αy ⊕ (1− α)z) ≤ αρ(x, y) + (1− α)ρ(x, z).

for all x, y, z ∈ X and α ∈ [0, 1].

Let {xn} be a bounded sequence in a CAT(k) space (X, ρ). For x ∈ X, we set

r(x, {xn}) = lim sup
n−→∞

ρ(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
It is known from Proposition 4.1 of [11] that in a CAT(k) space X with diameter

smaller than π
2
√
k
, A({xn}) consists of exactly one point. We now give the concept

of △−convergence and collect some of its basic properties.

Definition 2.5. ([9], [24]) A sequence {xn} in X is said to ∆−converge to x ∈ X if
x is the unique asymptotic center of {un} for every subsequence {un} of {xn}. In
this case we write ∆− limn xn = x and call x the ∆−limit of {xn}.
Lemma 2.6. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Then the following statements hold:

(i) [11, Corollary 4.4] every sequence in X has a ∆−convergence subsequence;
(ii) [11, Proposition 4.5] if {xn} ⊂ X and∆−limn xn = x, then x ∈ ∩∞

k=1conv{xk,
xk+1, ...}, where conv(A) = ∩{B : B ⊇ A and B is closed and convex}.

By the uniqueness of asymptotic centers, we can obtain the following lemma (cf.
[19, Lemma 2.8]).

Lemma 2.7. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). If {xn} is a sequence in X with A({xn}) = {x} and

let {un} is a subsequence of {xn} with A({un}) = {u} and the sequence {ρ(xn, u)}
converges, then x = u.

Definition 2.8. [3] Let E be a nonempty subset of a CAT(k) space (X, ρ). A mapping
T : E −→ E is said to be fundamentally nonexpansive if

ρ(T 2(x), T (y)) ≤ ρ(T (x), y),

for all x, y ∈ E.

Proposition 2.9. [3] Every mapping which satisfies condition (C) is fundamentally
nonexpansive, but the inverse is not true.

3. MAIN RESULTS

Let X be a uniformly convex Banach space, K be a nonempty closed convex
subset of X.

In this section, we prove our main theorems.

Lemma 3.1. Let E be a nonempty subset of a CAT(k) space (X, ρ), and T : E −→ E
be a fundamentally nonexpansive mapping. Then

ρ(x, T (y)) ≤ 3ρ(T (x), x) + ρ(x, y),

for all x, y ∈ E.
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Proof. Since T is fundamentally nonexpansive, we have

ρ(x, T (y)) ≤ ρ(x, T (x)) + ρ(T (x), T 2(x)) + ρ(T 2(x), T (y))

≤ 2ρ(x, T (x)) + ρ(T (x), y)

≤ 3ρ(x, T (x)) + ρ(x, y).

This completes the proof. �

The following lemma is a consequence of Lemma 3.4 of [16].

Lemma 3.2. Let k > 0 and (X, ρ) be a CAT(k) space such that diam(X) ≤ π/2−ε√
k

for some ε ∈ (0, π/2) and let {zn} and {wn} be two sequences in X. Let {βn}
be a sequence in [0, 1] such that 0 < lim infn βn ≤ lim supn βn < 1. Suppose that
zn+1 = βnzn+(1−βn)wn for all n ∈ N and lim supn(ρ(wn+1, wn)−ρ(zn+1, zn)) ≤ 0.
Then limn ρ(wn, zn) = 0.

Lemma 3.3. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping. Define a sequence {xn}
by x1 ∈ E and xn+1 = αnT (xn)⊕ (1−αn)xn for all n ∈ N where {αn} ⊂ [0, 1] such
that 0 < lim infn αn ≤ lim supn αn < 1. Then limn−→∞ ρ(T (xn), xn) = 0.

Proof. Since T is fundamentally nonexpansive, we have

ρ(T (xn+1), T (xn)) = αnρ(T
2(xn), T (xn)) ≤ αnρ(T (xn), xn) = ρ(xn+1, xn)

for all n ∈ N and hence

ρ(T (xn+1), T (xn)) ≤ ρ(xn+1, xn).

This implies that

lim sup
n−→∞

(ρ(Txn+1, Txn)− ρ(xn+1, xn)) ≤ 0.

So, by Lemma 3.2, we have

lim
n−→∞

ρ(T (xn), xn) = 0.

This completes the proof. �

Theorem 3.1. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping. Then F (T ) is nonempty.

Proof. Define a sequence {xn} by x1 ∈ E and xn+1 = 1
2Txn ⊕ 1

2xn for all n ∈ N.
Suppose that A({xn}) = {z}. Then by Lemma 2.6, z ∈ E. By Lemma 3.3, we have
limn ρ(T (xn), xn) = 0 and by Lemma 3.1,

ρ(xn, T (z)) ≤ 3ρ(T (xn), xn) + ρ(xn, z).

Taking the limit superior on both sides in the above inequality, we obtain

lim sup
n−→∞

d(xn, T (z)) ≤ lim sup
n−→∞

d(xn, z).

Since A({xn}) = {z}, it must be the case that z = T (z). �

The following corollary shows that how we derive a result for CAT(0) spaces from
Theorem 3.1.
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Corollary 3.4. Let (X, ρ) be a complete CAT(0) space, E be a nonempty bounded
closed convex subset of X, and T : E −→ E be a fundamentally nonexpansive
mapping. Then F (T ) is nonempty.

Proof. It well known that every convex subset of a CAT(0) space, equipped with the
included metric, is a CAT(0) space (cf. [21]). Then (E, ρ) is a CAT(0) space and hence
it is a CAT(k) space for all k > 0. Notice also that E is R−convex for R = 2. Since
E is bounded, we can choose ε ∈ (0, π/2) and k > 0 so that diam(E) ≤ π/2−ε√

k
. The

conclusion follows from Theorem 3.1. �

Theorem 3.2. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping and F (T ) ̸= ∅. Then F (T )
is closed and convex.

Proof. We can prove by following the steps of the Theorem 4.1 of [3]. �

Theorem 3.3. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping. Let {xn} be a sequence in
E with limn ρ(T (xn), xn) = 0 and ∆− limn xn = z. Then z ∈ E and z = T (z).

Proof. Since ∆− limn xn = z, by Lemma 2.6, we have z ∈ E. It follows from Lemma
3.1 that

ρ(xn, T (z)) ≤ 3ρ(T (xn), xn) + ρ(xn, z).

Taking the limit superior on both sides in the above inequality, we obtain

lim sup
n−→∞

ρ(xn, T (z)) ≤ lim sup
n−→∞

ρ(xn, z).

By the uniqueness of asymptotic center, we obtain z = T (z). �

The following corollary shows that how we derive a result for CAT(0) spaces from
Theorem 3.3.

Corollary 3.5. Let (X, ρ) be a complete CAT(0) space, E be a nonempty bounded
closed convex subset of X, and T : E −→ E be a fundamentally nonexpansive
mapping. Let {xn} be a sequence in E with limn ρ(T (xn), xn) = 0 and ∆−limn xn =
z. Then z ∈ E and z = T (z).

Proof. It well known that every convex subset of a CAT(0) space, equipped with the
included metric, is a CAT(0) space (cf. [21]). Then (E, ρ) is a CAT(0) space and hence
it is a CAT(k) space for all k > 0. Notice also that E is R−convex for R = 2. Since
E is bounded, we can choose ε ∈ (0, π/2) and k > 0 so that diam(E) ≤ π/2−ε√

k
. The

conclusion follows from Theorem 3.3. �

Lemma 3.6. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X,

and T : E −→ E be a fundamentally nonexpansive mapping. Suppose {xn} is
a sequence in E such that limn ρ(T (xn), xn) = 0 and {ρ(xn, v)} converges for all
v ∈ F (T ), then ωw(xn) ⊂ F (T ). Here ωw(xn) :=

∪
A ({un}) where the union is

taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists of exactly one
point.
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Proof. Let u ∈ ωw(xn). Then there exists a subsequence {un} of {xn} such that
A({un}) = {u}. By Lemma 2.6, there exists a subsequence {vn} of {un} such that
∆− limn vn = v ∈ E. By Theorem 3.3, v ∈ F (T ). By Lemma 2.7, u = v. This shows
that ωw(xn) ⊂ F (T ). Next, we show that ωw(xn) consists of exactly one point. Let
{un} be subsequence of {xn} with A({un}) = {u} and let A({xn}) = {x}. Since
u ∈ ωw(xn) ⊂ F (T ), we have {ρ(xn, u)} converges. Again, by Lemma 2.7, x = u.
This completes the proof. �

Theorem 3.4. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping. Define a sequence {xn}
by x1 ∈ E and xn+1 = αnT (xn)⊕ (1−αn)xn for all n ∈ N where {αn} ⊂ [0, 1] such
that 0 < lim infn αn ≤ lim supn αn < 1. Then {xn} ∆− converges to a fixed point of
T.

Proof. By Lemma 3.3, we have limn ρ(T (xn), xn) = 0. By Theorem 3.1, F (T ) is
nonempty. Given z ∈ F (T ), by Lemma 3.1 we have

ρ(T (xn), z) ≤ 3ρ(T (z), z) + ρ(xn, z) ≤ ρ(xn, z).

This implies that

ρ(xn+1, z) = ρ(αnT (xn)⊕ (1− αn)xn, z)

≤ αnρ(T (xn), z) + (1− αn)ρ(xn, z)

≤ ρ(xn, z).

That is
ρ(xn+1, z) ≤ ρ(xn, z). (2)

Thus {ρ(xn, z)} is bounded and decreasing for all z ∈ F (T ), and so it is convergent.
By Lemma 3.6, ωw(xn) consists of exactly one point and is contained in F (T ). This
show that {xn} ∆− converges to an element of F (T ). �

Theorem 3.5. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty compact convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping. Define a sequence {xn}
by x1 ∈ E and xn+1 = αnT (xn)⊕ (1−αn)xn for all n ∈ N where {αn} ⊂ [0, 1] such
that 0 < lim infn αn ≤ lim supn αn < 1. Then {xn} converges strongly to a fixed
point of T.

Proof. By Lemma 3.3, we have limn−→∞ ρ(T (xn), xn) = 0. Since E is compact,
there exists a subsequence {xnk

} of {xn} such that limk xnk
= z for some z ∈ E.

It follows from Lemma 3.1 that

ρ(xnk
, T (z)) ≤ 3ρ(T (xnk

), xnk
) + ρ(xnk

, z) for all k ∈ N.

Letting k −→ ∞, we have {xnk
} converges to T (z). This implies that z = T (z), that

is z ∈ F (T ). Following the proof of Theorem 3.4, we obtain limn ρ(xn, z) exists for
all z ∈ F (T ), it must be the case that limn ρ(xn, z) = 0. Therefore we obtain the
desired result. �

Recall that a mapping T : E −→ E is said to satisfy condition (I) if there exists
a nondecreasing function f : [0,∞) −→ [0,∞) with f(0) = 0 and f(r) > 0 for
all r > 0 such that ρ(x, T (x)) ≥ f (ρ(x, F (T ))) for all x ∈ E, where ρ (x, F (T )) =
infz∈F (T ) ρ(x, z).
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Theorem 3.6. Let k > 0 and (X, ρ) be a complete CAT(k) space with diam(X) ≤
π/2−ε√

k
for some ε ∈ (0, π/2). Let E be a nonempty closed convex subset of X, and

T : E −→ E be a fundamentally nonexpansive mapping satisfies the condition
(I). Define a sequence {xn} by x1 ∈ E and xn+1 = αnT (xn) ⊕ (1 − αn)xn for all
n ∈ N where {αn} ⊂ [0, 1] such that 0 < lim infn αn ≤ lim supn αn < 1. Then {xn}
converges strongly to a fixed point of T.

Proof. By condition (I), we have

f (ρ (xn, F (T ))) ≤ ρ(xn, T (xn)) for all n ∈ N.

It follows from Lemma 3.3 that

lim
n−→∞

f (ρ (xn, F (T ))) = 0.

This implies that there exists a subsequence {xnk
} of {xn} such that

ρ(xnk
, zk) ≤

1

2k
for all k ∈ N. (3)

Where {zk} ⊂ F (T ). By (2), we have

ρ(xnk+1
, zk) ≤ ρ(xnk

, zk) ≤
1

2k
.

Hence

ρ(zk+1, zk) ≤ ρ(zk+1, xnk+1
) + ρ(xnk+1

, zk)

≤ 1

2(k+1)
+

1

2k
<

1

2k−1
−→ 0 as k −→ ∞.

This shows that {zk} is a Cauchy in F (T ). Since F (T ) is closed in X, there exists a
point z in F (T ) such that limk−→∞ zk = z. It follows from (3) that limk−→∞ xk = z.
Since limn−→∞ ρ(xn, z) exists, it must be the case that limn−→∞ ρ(xn, z) = 0.
Therefore we obtain the desired result. �
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