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ABSTRACT. In this paper, we propose Mann-Kirk type implicit iteration for a finite family
of pseudocontractive mappings, and prove strong convergence of proposed iteration to a
common fixed point in Banach spaces. The results in the paper extend and generalize well
known corresponding results.
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1. INTRODUCTION

Let E be a real Banach space, K be a closed convex subset of E and let J denote
the normalized duality pairing from E into 2E

∗
given by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖ ‖f‖ , ‖x‖ = ‖f‖ } , ∀x ∈ E ,
whereE∗ denotes the dual space ofE and 〈·, ·〉 denotes the generalized duality pair-
ing. We shall denote elements in Jx by j(x) and define Fix(T ) = {x ∈ E : Tx = x}
to be the fixed point set of a mapping T . When {xn} is a sequence in E, then
xn −→ x ( xn ⇀ x) will denote strong (weak) convergence of the sequence {xn} to
x.

Let T be a mapping with domain D(T ) and range R(T ) in E. Then T is called
• Nonexpansive, if for any x, y ∈ D(T )

‖Tx− Ty‖ ≤ ‖x− y‖ .
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• Accretive, if for any x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ 0 .

• Pseudocontractive, if for any x, y ∈ D(T ), there exists j(x− y) ∈ J(x− y)
such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 .
• Hemicontractive, if for any x ∈ D(T ) and x∗ ∈ Fix(T ), there exists j(x −
x∗) ∈ J(x− x∗) such that

〈Tx− x∗, j(x− x∗)〉 ≤ ‖x− x∗‖2 .
• Strongly pseudocontractive, if for any x, y ∈ D(T ), there exists j(x− y) ∈
J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ α ‖x− y‖2 , for some 0 < α < 1 .

• Strictly pseudocontractive, if for any x, y ∈ D(T ), there exists j(x − y) ∈
J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ ‖(x− y)− (Tx− Ty)‖2 ,
for some 0 < λ < 1 .

The class of pseudocontractive mappings has close relations with the class of
nonexpansive mappings and the class of accretive mappings. It is easy to see that
if T is a pseudocontractive mapping, then I − T is accretive.
If we define A = (2I − T )−1, then Fix(A) = Fix(T ) and we have the following
result :

Lemma 1.1 (Martin[18]). A is a nonexpansive self mapping on K.

Regarding iterative approximation of fixed points of nonexpansive mappings, it
is well known that Picard (successive) iteration may fail to produce a norm con-
vergence sequence {xn} for nonexpansive mappings. Thus when a fixed point
of nonexpansive mappings exists, other approximation techniques are needed to
approximate it. One such technique is to form a mapping

Sλ = λI + (1− λ)T (0 < λ < 1) ,

and then show that under certain circumstances the Picard iterates of Sλ converges
to a fixed point of T . The first such result was obtained by Krasnoselskii [14] in
a uniformly convex Banach space for λ = 1

2 . Schaefer [22] noted that this result
holds for arbitrary λ ∈ (0, 1). Edelstein [9] proved corresponding result in strictly
convex Banach spaces.

Kirk [13] defined a more general mapping than those of Sλ. Let K be a closed
convex subset of a Banach space, and T be a nonexpansive mapping of K into
itself. Define the mapping S : K −→ K by

S = λ0I + λ1T + λ2T
2 + · · ·+ λkT

k ,

where λi ≥ 0, λ1 > 0 and
∑k
i=1 λi = 1.

He proved that for arbitrary x0 ∈ K, the sequence {Snx0} converges weakly to a
fixed point of T in K.

Maiti and Saha [16] extended this result of Kirk and proved the strong conver-
gence of the sequence {Snx0}.
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Liu et al. [15] extended Kirk’s idea to finite family of nonexpansive mappings.

Let Ti : K −→ K (i = 1, 2, . . . , k) be nonexpansive mappings and let

S = λ0I + λ1T1 + λ2T2 + · · ·+ λkTk ,

where λi ≥ 0, λ0 > 0, λ1 > 0, and
∑k
i=1 λi = 1.

They proved that for arbitrary x0 ∈ K, the sequence {Snx0} converges to a com-
mon fixed point of Ti in K.

Iterative methods for nonexpansive mappings have been extensively investigated
by many researchers, see ([2, 4, 5, 10, 11, 12, 19, 26]) and references there in.

The most popular iterative scheme to approximate a fixed point of a nonexpan-
sive mapping is the following:

x0 ∈ K ; xn+1 = (1− αn)xn + αnTxn , n ≥ 0 , (1.1)

where {αn} ⊂ (0, 1) is a real sequence satisfying appropriate conditions.
Iteration process (1.1) is known as a Mann iteration [17].

Iterative method to approximate a fixed point of a pseudocontractive mapping
was initiated by Browder and Petryshyn [3] in 1965, but iterative methods for
pseudocontractive mappings are far less developed than those for nonexpansive
mappings. In conncection with the iterative approximation of fixed points of pseu-
docontractive mappings, the following question is still open [6]:

Does the Mann iteration process always converge for continuous
pseudocontractive mapping? or for even Lipschitz pseudocontrac-
tive mappings?

Chidume and Mutangadura [7], negatively resolved the above problem by pro-
viding an example of a Lipschitz pseudocontractive mapping with a unique fixed
point for which a Mann iteration process does not converge in a convex compact
subset of a Hilbert space.

Rafiq [21], proposed a Mann type implicit iteration process for hemicontractive
mapping T defined by:

x0 ∈ K ; xn = (1− αn)xn−1 + αnTxn , n ≥ 0 (1.2)

where {αn} is a real sequence such that αn ∈ [δ, 1− δ] for some δ ∈ (0, 1).

Song [24], discovered that the iteration (1.2) for hemicontractive mappings is
not well defined. He observed that for an initial point x0 ∈ K, x1 is defined by the
equation

x1 = α1x0 + (1− αn)Tx1 ,
but the existence of x1 is not established, because for hemicontractive mapping T ,
we do not know whether mapping S1 = α1x0 +(1−α1)T has a fixed point x1 ∈ K.
Similarly the existence of x2, x3, . . . , xn is also doubtful, but the iteration (1.2) is
well defined if we consider continuous pseudocontractive mappings.

Recently, Acedo and Xu [1] defined an iteration scheme in a Hilbert space for
finite family of strict pseudocontractive mappings, where the sequence {xn} is
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generated by the algorithm :

xn+1 = αnxn + (1− αn)
N∑
i=1

λ
(n)
i Tixn ,

under appropriate assumptions on the sequence of weights
{
λ
(n)
i

}N
i=1

.

It is important to note that, when we establish approximation results for pseu-
docontractive mappings, it looks more complicated than the results for strictly
pseudocontractive mappings. Because T may increase distances which is not in
the case of strictly pseudocontractive mappings due to the presence of a constant
λ ∈ (0, 1). In order to overcome this difficulty caused by increasingness of T , one
need to adjust the iteration or to make some additional assumptions.

Motivated by all above facts, in this paper we define a new implicit iteration for
finite family of pseudocontractive mappings where the sequence {xn} is generated
by the algorithm

xn = αnxn−1 + (1− αn)
N∑
i=1

λ
(n)
i Tixn , (1.3)

where the initial guess x0 ∈ K is arbitrary and Ti (i = 1, 2, . . . N) are pseudocon-
tractive mappings, {αn} is a real sequence in (0, 1) and {λ(n)i }Ni=1 is a sequence of
weights satisfying appropriate assumptions. We shall prove strong convergence of
iteration (1.3) to a point x ∈

⋂N
i=1 Fix(Ti).

2. PRELIMINARIES

A Banach space E is said to satisfy Opial’s condition [20] for any sequence
{xn} in E converging weakly to a point x ∈ E, we have lim supn−→∞ ‖xn − x‖ <
lim supn−→∞ ‖xn − y‖ for all y ∈ E with y 6= x.

Now we establish the following result :

Proposition 2.1. Given an integer N ≥ 1, let Ti : K −→ K be a pseudocontractive
mapping for each 1 ≤ i ≤ N . Define S =

∑N
i=1 λiTi, where λi > 0 for all 1 ≤ i ≤ N

such that
∑N
i=1 λi = 1. Then S is a pseudocontractive mapping.

Proof. We have for x, y ∈ K,

〈Sx− Sy, j(x− y)〉 =

〈(
N∑
i=1

λiTi

)
x−

(
N∑
i=1

λiTi

)
y, j(x− y)

〉

=

〈
N∑
i=1

λi (Tix− Tiy) , j(x− y)

〉

=

N∑
i=1

λi 〈Tix− Tiy, j(x− y)〉

≤
N∑
i=1

λi ‖x− y‖2
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= ‖x− y‖2
N∑
i=1

λi

= ‖x− y‖2 ,
i.e.

〈Sx− Sy, j(x− y)〉 ≤ ‖x− y‖2 .
Hence S is a pseudocontractive mapping. �

Next, we show that the iteration (1.3), is well defined, we need the following
lemma to prove it :

Lemma 2.2 (Deimling[8]). Let E be a Banach space, K be a nonempty closed
convex subset of E and T : K −→ K be a continuous and strong pseudocontractive
mapping. Then T has a unique fixed point.

Given an integer N ≥ 1, let Ti : K −→ K be a continuous pseudocontractive
mapping for each 1 ≤ i ≤ N with

⋂N
i=1 Fix(Ti) 6= ∅. For any fixed n, define

Sn =
∑N
i=1 λ

(n)
i Ti, where

{
λ
(n)
i

}N
i=1

is a finite sequence of positive numbers such

that
∑N
i=1 λ

(n)
i = 1 for all n and infn≥1 λ

(n)
i > 0 for all 1 ≤ i ≤ N . Then for any

fixed n, by Propostion 2.1, we observe that Sn is a pseudocontractive mapping
which is continuous.
For any u ∈ K and t ∈ (0, 1), define a mapping Gt : K −→ K by

Gtx = tu+ (1− t)Snx .
Now,

〈Gtx−Gty, j(x− y)〉 = (1− t) 〈Snx− Sny, j(x− y)〉

≤ (1− t) ‖x− y‖2 , ∀x, y ∈ K .

Hence Gt is continuous strongly pseudocontractive mapping and by Lemma 2.2,
it has a unique fixed point, i.e. there exists a unique xt ∈ K satisfying the equation

xt = tu+ (1− t)Snxt .
This shows that the implicit iteration scheme (1.3) is well defined and can be em-
ployed to approximate a common fixed point of a finite family of pseudocontractive
self mappings on K.

Now we prove the following result, its proof is motivated from [25] :

Lemma 2.3. Let S be a self mapping on K and limn−→∞ ‖xn − Sxn‖ = 0. If
A = (2I − S)−1, then limn−→∞ ‖xn −Axn‖ = 0 .

Proof. We have

xn − Sxn = (2I − S)xn − xn = A−1xn − xn ,
also,

A−1Axn = xn = AA−1xn .

So,

‖xn −Axn‖ =
∥∥AA−1xn −Axn∥∥

≤
∥∥A−1xn − xn∥∥

= ‖xn − Sxn‖ −→ 0 as n −→∞ .
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Hence,
lim

n−→∞
‖xn −Axn‖ = 0 .

�

3. MAIN RESULTS

Lemma 3.1. Assume for each n, there is a finite sequence
{
λ
(n)
i

}N
i=1

of positive

numbers such that
∑N
i=1 λ

(n)
i = 1 for all n and infn≥1 λ

(n)
i > 0 for all 1 ≤ i ≤ N .

For any fixed n, set Sn =
∑N
i=1 λ

(n)
i Ti. Given x0 ∈ K, let {xn} be generated by the

algorithm (1.3). Assume that {αn} is a real sequence satisfying αn ∈ (0, b] ⊂ (0, 1)
for some constant b ∈ (0, 1), then

(i) for any x∗ ∈
⋂N
i=1 Fix(Ti), limn−→∞ ‖xn − x∗‖ exists,

(ii) {xn} and {Snxn} are bounded.

Proof. Since x∗ ∈
⋂N
i=1 Fix(Ti), we can see that x∗ ∈ Fix(Sn). Now

‖xn − x∗‖2 = 〈αn (xn−1 − x∗) + (1− αn) (Snxn − x∗) , j(xn − x∗)〉
= αn 〈xn−1 − x∗, j(xn − x∗)〉+ (1− αn) 〈Snxn − x∗, j(xn − x∗)〉

≤ αn ‖xn−1 − x∗‖ ‖xn − x∗‖+ (1− αn) ‖xn − x∗‖2 ,

and
‖xn − x∗‖2 ≤ ‖xn−1 − x∗‖ ‖xn − x∗‖ . (3.1)

Consequently, for each n,

‖xn − x∗‖ ≤ ‖xn−1 − x∗‖ ,

which implies that the sequence {‖xn − x∗‖} is monotone and nonincreasing.
Hence limn−→∞ ‖xn − x∗‖ exists. Hence conclusion (i) is proved.
It follows from (i) that {xn} is bounded. Again from (1.3), we have

‖Snxn‖ =
∥∥∥∥ 1

1− αn
xn −

αn
1− αn

xn−1

∥∥∥∥
≤ 1

1− αn
‖xn‖+

αn
1− αn

‖xn−1‖

≤ 1

1− b
‖xn‖+

b

1− b
‖xn−1‖ .

Hence {Snxn} is bounded. This completes the proof of conclusion (ii). �

Theorem 3.2. Let Sn and {xn} be as in Lemma 3.1. Assume that {αn} ⊂ (0, 1) is
a sequence of real numbers satisfying limn−→∞ αn = 0, then

lim
n−→∞

‖xn − Snxn‖ = 0 .

If in addition E satisfies Opial’s condition and K is weakly compact convex, then
the sequence {xn} converges weakly to a fixed point of S, where S is as in Proposi-
tion 2.1.

Proof. Since limn−→∞ αn = 0 there exists a positive integer M such that αn ∈ (0, b]
for all n ≥ M , b ∈ (0, 1). Hence Lemma 3.1 implies that, {xn} and {Snxn} are
bounded.
Using (1.3), we have

‖xn − Snxn‖ = αn ‖xn−1 − Snxn‖ −→ 0 , as n −→∞ . (3.2)
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By weak compactness of K, there exists a subsequence {xnl
} of {xn} such that

xnl
⇀ x∗ ∈ K as l −→∞ .

With no loss of generality, we may assume that as l −→∞

λ
(nl)
i −→ λi , 1 ≤ i ≤ N . (3.3)

Now for each λi > 0 and
∑N
i=1 λi = 1, for all x ∈ K we have,

Snl
x −→ Sx , as l −→∞ ,

where S =
∑N
i=1 λiTi , and S is pseudocontractive by proposition 2.1.

Since

‖xnl
− Sxnl

‖ = ‖xnl
− Snl

xnl
‖+ ‖Snl

xnl
− Sxnl

‖

≤ ‖xnl
− Snl

xnl
‖+

N∑
i=1

|λnl
i − λi| ‖Tixnl

‖ ,

by (3.2), (3.3) and above inequality, we have

‖xnl
− Sxnl

‖ −→ 0 , as l −→∞ .

Also, by Lemma 2.3, we have

lim
l−→∞

‖xnl
−Axnl

‖ = 0 ,

where A = (2I − S)−1 .
Now we show that x∗ ∈ Fix(S). Suppose x∗ 6= Ax∗. By nonexpansiveness of A
and Opial’s condition, we have

lim sup
l−→∞

‖xnl
− x∗‖ < lim sup

l−→∞
‖xnl

−Ax∗‖

≤ lim sup
l−→∞

{‖xnl
−Axnl

‖+ ‖Axnl
−Ax∗‖}

≤ lim sup
l−→∞

{‖xnl
−Axnl

‖+ ‖xnl
− x∗‖}

≤ lim sup
l−→∞

‖xnl
− x∗‖ ,

i.e.
lim sup
l−→∞

‖xnl
− x∗‖ < lim sup

l−→∞
‖xnl

− x∗‖ ,

which is a contradiction, so x∗ = Ax∗. Since Fix(A) = Fix(S), we have x∗ ∈
Fix(S).
Next, we prove that the sequence {xn} converges weakly to x∗. Suppose {xn} does
not converges weakly to x∗. Then there exists a subsequence {xnk

} of {xn} which
converges weakly to some z 6= x∗. Since limn−→∞ ‖xn − p‖ exists and E satisfies
Opial’s condition, we have

lim
n−→∞

‖xn − x∗‖ = lim
l−→∞

‖xnl
− x∗‖ < lim

l−→∞
‖xnl

− z‖

= lim
k−→∞

‖xnk
− z‖ < lim

k−→∞
‖xnk

− x∗‖

= lim
n−→∞

‖xn − x∗‖

which is a contradiction, so we must have z = x∗. Thus {xn} converges weakly to
x∗ ∈ Fix(S). This completes the proof.

�



38 B.S.THAKUR, M.S.KHAN/JNAO : VOL. 7, NO. 1, (2016), 31-40

Theorem 3.3. Let Sn and {xn} be as in Lemma 3.1. Assume that K be compact
convex subset of E, and {αn} ⊂ (0, 1) is a sequence of real numbers satisfying
limn−→∞ αn = 0. Then the sequence {xn} converges strongly to a fixed point of S,
where S is as in Proposition 2.1.

Proof. By Lemma 3.1, sequence {xn} is bounded, since K is compact, there exists
a subsequence {xnl

} of {xn} such that xnl
−→ x∗ ∈ K. By (3.2), we have

lim
l−→∞

‖xnl
− Snl

xnl
‖ = 0 ,

by repeating the arguments in the proof of Theorem 3.2, we get that

lim
l−→∞

‖xnl
− Sxnl

‖ = 0 . (3.4)

By the continuity of the mapping S and the norm ‖·‖, together with (3.4), we have

‖x∗ − Sx∗‖ = lim
l−→∞

‖xnl
− Sxnl

‖ = 0 .

Therefore x∗ = Sx∗. Since {‖xn − x∗‖} is nonincreasing by Lemma 3.1, so x∗ is
the strong limit of the sequence {xn} itself. This completes the proof. �

We recall the following definition:

Definition 3.4 ( Senter and Dotson [23]). A mapping T : K −→ K with Fix(T ) 6=
∅ is said to satisfy condition (I) on K if there exists a nondecreasing function
f : [0,∞) −→ [0,∞) with f(0) = 0 and f(r) > r for all r ∈ (0,∞) such that for all
x ∈ K

‖x− Tx‖ ≥ f(d(x, F ix(T ))) ,
where d(x, F ix(T )) = inf{‖x− p‖ : p ∈ Fix(T )}.

Definition 3.5. We shall say that a finite family {T1, T2, ...TN} of N self mappings
of K with F =

⋂N
i=1 Fix(Ti) 6= ∅ satisfies Condition (BS), if there exist f and d as

in definition 3.4 such that

‖x− Sx‖ ≥ f(d(x, F )) , ∀x ∈ K ,

where S =
∑N
i=1 λiTi and {λi}Ni=1 is a sequence of positive number such that∑N

i=1 λi = 1.

Definition 3.6. We shall say that a finite family {T1, T2, ...TN} of N self mappings
of K with F =

⋂N
i=1 Fix(Ti) 6= ∅ satisfies Condition (BT ), if there exist f and d as

in definition 3.4 such that

‖x− Snx‖ ≥ f(d(x, F )) , ∀x ∈ K ,

where Sn =
∑N
i=1 λ

(n)
i Ti and

{
λ
(n)
i

}N
i=1

is a sequence of positive number such that∑N
i=1 λ

(n)
i = 1 for all n and infn≥1 λ

(n)
i > 0 for all 1 ≤ i ≤ N .

Condition (BT ) reduces to condition (BS) when sequence
{
λ
(n)
i

}N
i=1

is indepen-

dent of iteration step n. Condition (BT ) is identical to Condition (I) when λ(n)i = 0
for i = 2, 3, . . . , N .

We now establish the main result of paper :

Theorem 3.7. IfK, Sn and {xn} be as in Lemma 3.1. Let Ti satisfy condition (BT ),
then {xn} converges strongly to a member of F .
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Proof. Since Ti, i = 1, 2, . . . , N satisfies condition (BT ), we have

‖xn − Snxn‖ ≥ f (d(xn, F )) , for all n ≥ 0 .

Let x∗ ∈ F , then by Lemma 3.1, ‖xn − x∗‖ ≤ ‖xn−1 − x∗‖ and limn−→∞ ‖xn − x∗‖
exists. This implies that d(xn, F ) ≤ d(xn−1, F ), so {d(xn, F )} is decreasing, it
follows from Theorem 3.2, that

lim
n−→∞

f (d(xn, F )) = 0 .

By the nature of function f and the fact that limn−→∞ d(xn, F ) exists, we have

lim
n−→∞

d(xn, F ) = 0 .

We can thus choose a subsequence say {xnl
} of {xn} such that

‖xnl
− x∗l ‖ < 2−l ,

for all integer l ≥ 1 and some sequence {x∗l } in Fix(T ). Again by Lemma 3.1, we
have

‖xnl
− x∗l ‖ ≤ ‖xnl−1 − x∗l ‖ < 2−l ,

and hence ∥∥x∗l − x∗l−1∥∥ ≤ ‖x∗l − xnl−1‖+
∥∥xnl−1 − x∗l−1

∥∥
≤ 2−(l+1) + 2−l

< 2−l+1 .

Which shows that {x∗l } is Cauchy and therefore converges strongly to a point
x∗ ∈ K, since F is closed, x∗ ∈ F . Since limn−→∞ ‖xn − x∗‖ exists, {xn} converges
strongly to x∗. This completes the proof.

�

Acknowledgment
The authors are grateful to the anonymous referee for careful reading and valuable
suggestions which helps to improve the manuscript.

References

1. G.L.Acedo, H.K.Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear
Anal. 67 (2007), 2258–2271.

2. H.Bauschke, The approximation of fixed points of compositions on nonexpansive mappings in Hilbert
space, J. Math. Anal. Appl. 202 (1996), 150–159.

3. F.E.Browder, W.V.Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces,
J. Math. Anal. Appl. 20 (1967), 197–228.

4. C.Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruc-
tion, Inverse Problems 20 (2004), 103–120.

5. C.E.Chidume, J.Li, A.Udomene, Convergence of paths and approximation of fixed points of asymp-
totically nonexpansive mappings, Proc. Amer. Math. Soc. 133 (2004), 473–480.

6. C.E.Chidume, C.Moore, Fixed point iteration for pseudo-contractive maps, Proc. Amer. Math. Soc.
127 (1999), 1163–1170.

7. C.E.Chidume, S.A.Mutangadura, An example on the Mann iteration method for Lipschitz pseudo-
contractions, Proc. Amer. Math. Soc. 129 (2001), 2359–2363.

8. K.Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365–374.
9. M.Edelstein, A remark on a theorem of M.A.Krasnoselskii, Amer. Math. Monthly 73 (1966), 509–510.
10. K.Goebel, W.A.Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990.
11. K.Goebel, S.Reich, Univorm Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel

Dekker, 1984.
12. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
13. W.A.Kirk, On successive approximation for nonexpansive mappings in Banach spaces, Glasgow

Math. J. 12 (1971), 6–9.



40 B.S.THAKUR, M.S.KHAN/JNAO : VOL. 7, NO. 1, (2016), 31-40

14. M.A. Krasnoselskii, Two remarks about the method of successive approximations, Uspehi. Mat.
Nauk 10 (1955), 123–127.

15. G.Liu, D.Lei, S.Li, Approximating fixed points of nonexpansive mappings, Int. J. Math. Math. Sci..
24 (2000), 173–177.

16. M.Maiti, B.Saha, Approximating fixed points of nonexpansive and generalized nonexpansive map-
pings, Int. J. Math. Math. Sci. 16 (1993), 81–86.

17. W.R.Mann, Mean value methods in iteration, Proc. Amer. math. Soc. 4 (1953), 506–510.
18. R.H.Martin, Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc.

179 (1973), 399–414.
19. K.Nakajo, W.Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpan-

sive semigroups, J. Math. Anal. Appl. 279 (2003), 372–379.
20. Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive map-

pings, Bull. Amer. Math. Soc. 76 (1967), 591–597.
21. A. Rafiq, On Mann iteration in Hilbert spaces, Nonlinear Anal. 66 (2007), 2230–2236.
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