Journal of Nonlinear Analysis and Optimization Volume 11(2) (2020) http://www.math.sci.nu.ac.th

ISSN: 1906-9685



J. Nonlinear Anal. Optim.

# SOME FIXED POINT THEOREMS OF HARDY-ROGER CONTRACTION IN COMPLEX VALUED B-METRIC SPACES

WARINSINEE CHANTAKUN\* AND JARUWAN PRASERT

Department of Mathematics, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit, THAILAND

**ABSTRACT.** The aim of this paper is to prove the existence and uniqueness of a fixed point of a mapping satisfying the Hardy-Rogers contraction in complex valued b-metric space, we have obtained some fixed point theorems in complex-valued b-metric spaces. This work is generalized and improved some results of Hasanah [5], and well known results in the literature.

**KEYWORDS**: b-metric space, complex valued b-metric space, Hardy-Rogers contraction, fixed point.

AMS Subject Classification: :46C05, 47D03, 47H09, 47H10, 47H20.

## 1. Introduction

The axiomatic development of a metric space was essentially carried out by French mathematician Frechet in the year 1906 [4]. After the Banach contraction principle, because of various applications. Many mathematics used the Banach contractive principle to study an existence and uniqueness of fixed points. Banach fixed point theorem in a complete metric space introduced by Banach [2], because it was generalized in many spaces. In 1973, Hardy and Rogers [6], define the generalized Kannan contraction and prove some fixed point theorem in metric space. In 2011 Azam et.al [1], introduced the notion of complex valued metric space and established sufficient conditions for the existence of common fixed point of a pair of mappings satisfying a contractive condition. In 2012, Sintunavarat and Kumam [10] introduced new spaces called the complex valued metric spaces and established the existence of fixed point theorems under the contraction condition. One year later, Sintunavarat, Cho and Kumam, [11] established the existence of fixed point theorems under the contractive condition in complex valued metric spaces, they introduce the concepts of a C-Cauchy sequence and C-complete in

<sup>\*</sup>Corresponding author. This research was supported by Uttaradit Rajabhat University. Email address: warinsinee@hotmail.com.
Article history: Received 21 June 2019; Accepted 4 June 2020.

complex-valued metric spaces and establish the existence of common fixed point theorems in C-complete complex-valued metric spaces. In 2015, Jleli and Samet [7] introduced a very interesting concept of a generalized metric space, which covers different well-known metric structures including classical metric spaces, b-metric spaces, dislocated metric spaces, modular spaces, and so on.

In 2017, Hasanah [5], study the existence and proved the uniqueness of fixed point of some contractive condition in complete complex valued b-metric spaces.

Motivate by Hasanah [5] and Hardy and Rogers [6], we introduce the Hardy-Rogers contraction it has generalized than the contractive condition of [5], and then we proved the existence and uniqueness of fixed point in complete complex valued b-metric space.

#### 2. Preliminaries

In this section, we suppose some definitions and define the definition of b-metric space in the complex plane, and suppose some lemmas for study in this work.

**Definition 2.1.** Let X be a nonempty set. A function  $d: X \times X \to [0, \infty]$  is called a metric space if for  $x, y, z \in X$  the following conditions are satisfied.

```
(i) d(x,y) = 0 if and only if x = y;
```

(ii) d(x,y) = d(y,x);

$$(iii) \ d(x,z) \le d(x,y) + d(y,z).$$

The pair (X, d) is called a metric space, and d is called a matric on X.

Next, we provide the definition of b-metric space, this space is generalized than metric space.

**Definition 2.2.** [3] Let X be a nonempty set and let  $s \ge 1$  be a given real number. A function  $d: X \times X \to [0, \infty)$  is called a b-metric if for all  $x, y, z \in X$  the following conditions are satisfied.

```
(i) d(x,y) = 0 if and only if x = y;
```

- $(ii) \ d(x,y) = d(y,x);$
- $(iii) \ d(x,y) \le s[d(x,z) + d(z,y)].$

The pair (X, d) is called a b-metric space. The number  $s \ge 1$  is called the coefficient of (X, d).

We give some example for b-metric space.

**Example 2.3.** Let (X, d) be a metric space. The funcion  $\rho(x, y)$  is defined by  $\rho(x, y) = (d(x, y))^2$ . Then  $(X, \rho)$  is a b-metric space with coefficient s = 2. This can be seen from the nonnegativity property and triangle inequality of metric to prove the property (iii).

Since in real numbers which has completeness property, order is not welll-defined in complex numbers. Before giving the definition of complex valued metric spaces and complex valued b-metric spaces, we define partial order in complex numbers (see [8]). Let  $\mathbb{C}$  be the set of complex numbers and  $z_1, z_2 \in \mathbb{C}$ . Define partial order  $\leq$  on  $\mathbb{C}$  as follows;

```
z_1 \leq z_2 if and only if Re(z_1) \leq Re(z_2) and Im(z_1) \leq Im(z_2).
```

This means that we would have  $z_1 \leq z_2$  if and only if one of the following conditions holds:

```
(i) Re(z_1) = Re(z_2) and Im(z_1) = Im(z_2),
```

(ii) 
$$Re(z_1) < Re(z_2)$$
 and  $Im(z_1) = Im(z_2)$ ,

```
(iii) Re(z_1) = Re(z_2) and Im(z_1) < Im(z_2),
```

(iv) 
$$Re(z_1) < Re(z_2)$$
 and  $Im(z_1) < Im(z_2)$ .

If one of the conditions (ii), (iii), and (iv) holds, then we write  $z_1 \nleq z_2$ . Particularly, we have  $z_1 \prec z_2$  if the condition (iv) is satisfied.

**Remark 2.4.** We can easily check the following:

```
(i) If a, b \in \mathbb{R}, 0 \le a \le b and z_1 \le z_2 then az_1 \le bz_2, \forall z_1, z_2 \in \mathbb{C}.
```

```
(ii) 0 \preccurlyeq z_1 \preceq z_2 \Rightarrow |z_1| < |z_2|.
```

(iii) 
$$z_1 \preccurlyeq z_2$$
 and  $z_2 \prec z_3 \Rightarrow z_1 \prec z_3$ .

(iv) If  $z \in \mathbb{C}$ ,  $a, b \in \mathbb{R}$  and  $a \leq b$ , then  $az \leq bz$ .

A b-metric on a b-metric sapce is a funcion having real value. Based on the definition of partial order on complex number, real valued b-metric can be generalized into complex valued b-metric as follows.

**Definition 2.5.** [1] Let X be a nonmpty set. A function  $d: X \times X \to \mathbb{C}$  is called a complex valued metric on X if for all  $x, y, z \in \mathbb{C}$ , the following conditions are satisfied:

```
(i) 0 \leq d(x,y)
```

- (ii) d(x,y) = 0 if and only if x = y,
- $(iii) \ d(x,y) = d(y,x),$
- $(iv) d(x,z) \leq d(x,y) + d(y,z).$

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Next, we give the definition of complex valued b-metric space.

**Definition 2.6.** [9] Let X be a nonmpty set and let  $s \ge 1$  be a given real number. A function  $d: X \times X \to \mathbb{C}$  is called a complex valued b-metric on X if, for all  $x, y, z \in \mathbb{C}$ , the following conditions are satisfied:

- $(i) \ 0 \leq d(x,y)$
- (ii) d(x,y) = 0 if and only if x = y,
- $(iii) \ d(x,y) = d(y,x),$
- (iv)  $d(x,y) \leq s[d(x,z) + d(z,y)].$

The pair (X, d) is called a complex valued b-metric space. We see that if s = 1 then (X, d) is complex valued metric space is defined in Definition 2.5.

For Definition 2.6, we can suppose some example of complex valued b-metric space.

**Example 2.7.** Let  $X = \mathbb{C}$ . Define the mapping  $d : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$  by  $d(x,y) = |x-y|^2 + i|x-y|^2$  for all  $x,y \in X$ . Then  $(\mathbb{C},d)$  is complex valued b-metriic space with s=2.

**Definition 2.8.** [9] Let (X, d) be a complex valued b-metric space.

- (i) A point  $x \in X$  is called interior point of set  $A \subseteq X$  if there exists  $0 \prec r \in \mathbb{C}$  such that  $B(x,r) = y \in Y : d(x,y) \prec r \subseteq A$ .
- (ii) A point  $x \in X$  is called limit point of a set A if for every  $0 \prec r \in \mathbb{C}, B(x,r) \cap (A-x) \neq \emptyset$ 
  - (iii) A subset  $A \subseteq X$  is open if each element of A is an interior point of A.
  - (iv) A subset  $A \subseteq X$  is closed if each limit point of A is contained in A.

For study this work we suppose the definition of convergent sequence, Cauchy sequence and complete complex space.

**Definition 2.9.** [9] Let (X, d) be complex valued b-metric space,  $\{x_n\}$  be a sequence in X and  $x \in X$ .

- (i)  $\{x_n\}$  is convergent to  $x \in X$  if for every  $0 \prec r \in \mathbb{C}$  there exists  $N \in \mathbb{N}$  such that for all  $n \geq N, d(x_n, x) \prec r$ . Thus x is the limit of  $\{x_n\}$  and we write  $\lim_{n\to\infty} x_n = x$  or  $x_n \to x$  as  $n \to \infty$ .
- (ii)  $\{x_n\}$  is said to be Cauchy sequence if for ever  $0 \prec r \in \mathbb{C}$  there exists  $N \in \mathbb{N}$  such that for all  $n \geq N$ ,  $d(x_n, x_{n+m}) \prec r$ , where  $m \in \mathbb{N}$ .
- (iii) If for every Cauchy sequence in X is convergent, then (X, d) is said to be a complete complex valued b-metric space.

Finally, we give some lemmas for proof the main theorems.

**Lemma 2.10.** [9] Let (X, d) be a complex valued b-metric space and let  $\{x_n\}$  be a sequence in X. Then  $\{x_n\}$  converges to x if and only if  $|d(x_n, x)| \to 0$  as  $n \to \infty$ .

**Lemma 2.11.** [9] Let (X,d) be a complex valued b-metric space and let  $\{x_n\}$  be a sequence in X. Then  $\{x_n\}$  is a Cauchy sequence if and only if  $|d(x_n, x_{n+m})| \to 0$  as  $n \to \infty$ , where  $m \in \mathbb{N}$ .

### 3. Main Results

In this section we give some comditions and prove the existence theorem and unique fixed point of Hardy-Rogers contraction in complete complex valued b-metric space.

**Theorem 3.1.** Let (X, d) be a complete complex valued b-metric space with constant  $s \ge 1$ , and let  $T: X \to X$  be a mapping with satisfying Hardy-Rogers contraction, that is

$$d(Tx,Ty) \leq \lambda_1 d(x,y) + \lambda_2 d(x,Tx) + \lambda_3 d(y,Ty) + \lambda_4 d(y,Tx) + \lambda_5 d(x,Ty)$$

for all  $x, y \in X$  and  $\lambda_i$  are nonegative real number with  $\Sigma_{i=1}^5 \lambda_i \in [0, \frac{1}{s})$  and  $\lambda_4 \leq \frac{\lambda_5}{2s-1}$ . Then T has a unique fixed point.

*Proof.* Let  $x_0 \in X$  from  $T: X \to X$ , we have there exists  $x_1 \in X$  such that  $x_1 = Tx_0$ . From  $x_1 \in X$ , there exists  $x_2 \in X$  such that  $x_2 = Tx_1$ . By induction of this process, we have the sequence  $\{x_n\} \subseteq X$  such that,

$$x_n = Tx_{n-1} = T^n x_0, \forall n \in \mathbb{N}.$$

Note that for all  $n \in \mathbb{N}$ , we have

$$(1 - (\lambda_2 + \lambda_4 s))d(x_{n+2}, x_{n+1}) \quad \leq \quad \lambda_1 d(x_{n+1}, x_n) + \lambda_3 d(x_{n+1}, x_n) + \lambda_4 s d(x_n, x_{n+1})$$
$$d(x_{n+2}, x_{n+1}) \quad \leq \quad \frac{\lambda_1 + \lambda_3 + \lambda_4 s}{1 - (\lambda_2 + \lambda_4 s)} d(x_{n+1}, x_n).$$

If we take  $\gamma = \frac{\lambda_1 + \lambda_3 + \lambda_4 s}{1 - (\lambda_2 + \lambda_4 s)}$  and continuing this process, then we have

$$d(x_{n+2}, x_{n+1}) \preccurlyeq \gamma d(x_{n+1}, x_n).$$

It follows that,

$$d(x_{n+1}, x_n) \preccurlyeq \gamma d(x_n, x_{n-1})$$

and

$$d(x_n, x_{n-1}) \preccurlyeq \gamma d(x_{n-1}, x_{n-2})$$
:

$$d(x_{n+1}, x_n) \preccurlyeq \gamma^n d(x_1, x_0),$$

for all  $n \in \mathbb{N}$ . Hence,  $d(x_{n+2}, x_{n+1}) \preceq \gamma^{n+1} d(x_1, x_0)$ . For  $m \in \mathbb{N}$ , we have

$$d(x_{n}, x_{n+m}) \leq s[d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+m})]$$

$$\leq sd(x_{n}, x_{n+1}) + sd(x_{n+1}, x_{n+m})$$

$$\leq sd(x_{n}, x_{n+1}) + s(s[d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_{n+m})])$$

$$\leq sd(x_{n}, x_{n+1}) + s^{2}d(x_{n+1}, x_{n+2}) + s^{2}(s[d(x_{n+2}, x_{n+3}) + d(x_{n+3}, x_{n+m})])$$

$$\leq sd(x_{n}, x_{n+1}) + s^{2}d(x_{n+1}, x_{n+2}) + s^{3}d(x_{n+2}, x_{n+3} + \cdots + s^{m}d(x_{n+m-1}, x_{n+m})$$

$$\leq s\gamma^{n}d(x_{0}, x_{1}) + s^{2}\gamma^{n+1}d(x_{0}, x_{1}) + s^{3}\gamma^{n+2}d(x_{0}, x_{1}) + \cdots + s^{m}\gamma^{n+m-1}d(x_{0}, x_{1})$$

$$\leq s\gamma^{n}d(x_{0}, x_{1})[1 + s\gamma + (s\gamma)^{2} + \cdots + (s\gamma)^{m-1}].$$

It follows that

$$d(x_n, x_{n+m}) \leq s\gamma^n d(x_0, x_1)[1 + s\gamma + (s\gamma)^2 + \dots + (s\gamma)^{m-1}].$$

By Remark 2.4, taking absolute value on both sides, we have

$$|d(x_n, x_{n+m})| \leq |s\gamma^n d(x_0, x_1)[1 + s\gamma + (s\gamma)^2 + \dots + (s\gamma)^{m-1}]|$$
  

$$\leq |s\gamma^n||d(x_0, x_1)[1 + s\gamma + (s\gamma)^2 + \dots + (s\gamma)^{m-1}]|$$
  

$$= s\gamma^n |d(x_0, x_1)|[1 + s\gamma + (s\gamma)^2 + \dots + (s\gamma)^{m-1}].$$

Since,  $\Sigma_{i=1}^5 \lambda_i \in [0, \frac{1}{s})$  for  $s \geq 1$  and  $\lambda_4 \leq \frac{\lambda_5}{2s-1}$  then  $\gamma < 1$  and  $s\gamma < 1$ . Since  $d(x_0, x_1) \in \mathbb{C}$  and  $[1 + s\gamma + (s\gamma)^2 + \dots + (s\gamma)^{m-1}]$  exists, taking limit  $n \to \infty$  we have  $\gamma^n \to 0$ . This implies  $|d(x_n, x_{n+m})| \to 0$  as  $n \to \infty$ . By Lemma 2.11, the sequence  $\{x_n\}$  is a Cauchy sequence in X. Since, X is a complete complex valued b-metric space then  $\{x_n\}$  is a convergent sequence. It follows that  $\{x_n\}$  converges to u for some  $u \in X$ . Next, we can show that u is a fixed point of T. Consider,

$$\begin{array}{rcl} d(u,Tu) & \preccurlyeq & s[d(u,x_n)+d(x_n,Tu)] \\ & = & s[d(u,x_n)+d(Tx_{n-1},Tu)] \\ & \preccurlyeq & s[d(u,x_n)+\lambda_1d(x_{n-1},u)+\lambda_2d(x_{n-1},Tx_{n-1})+\lambda_3d(u,Tu) \\ & & +\lambda_4d(u,Tx_{n-1})+\lambda_5d(x_{n-1},Tu)] \\ (1-s\lambda_3)d(u,Tu) & \preccurlyeq & s[d(u,x_n)+\lambda_1d(x_{n-1},u)+\lambda_2d(x_{n-1},x_n) \\ & & +\lambda_4d(u,x_n)+\lambda_5d(x_{n-1},Tu)]. \end{array}$$

From Remark 2.4, taking absolute value on both sides, we have

$$|(1 - s\lambda_3)d(u, Tu)| \leq |s[d(u, x_n) + \lambda_1 d(x_{n-1}, u) + \lambda_2 d(x_{n-1}, x_n) + \lambda_4 d(u, x_n) + \lambda_5 d(x_{n-1}, Tu)]|$$

$$\leq |s||[d(u,x_n) + \lambda_1 d(x_{n-1},u) + \lambda_2 d(x_{n-1},x_n) + \lambda_4 d(u,x_n) + \lambda_5 d(x_{n-1},Tu)]|$$

$$\leq s[|d(u,x_n)| + |\lambda_1 d(x_{n-1},u)| + |\lambda_2 d(x_{n-1},x_n)| + |\lambda_4 d(u,x_n)| + |\lambda_5 d(x_{n-1},Tu)|]$$

$$(1 - s\lambda_3)|d(u,Tu)| \leq s[|d(u,x_n)| + \lambda_1|d(x_{n-1},u)| + \lambda_2|d(x_{n-1},x_n)| + \lambda_4|d(u,x_n)| + \lambda_5|d(x_{n-1},Tu)|].$$

Taking  $n \to \infty$  implies  $|d(x_n, u)| \to 0$ ,  $|d(x_{n-1}, u)| \to 0$ . From  $\{x_n\}$  is Cauchy sequence in X we have  $|d(x_{n-1}, x_n)| \to 0$  as  $n \to \infty$ , then

$$(1 - s\lambda_3)|d(u, Tu)| \le s\lambda_5|d(u, Tu)|.$$

It follows that  $(1 - s\lambda_3 - \lambda_5)|d(u, Tu)| \le 0$ . From  $\sum_{i=1}^5 \lambda_i \in [0, \frac{1}{s})$ . Thus  $(1 - s\lambda_3 - \lambda_5) > 0$  and then |d(u, Tu)| = 0. Hence u = Tu. Therefore u is a fixed point of T.

Finally, we show the uniqueness of the fixed point of T. We assume that there are two fixed points of T which are x = Tx and y = Ty. Thus,

$$d(x,y) = d(Tx,Ty)$$

$$\leq \lambda_1 d(x,y) + \lambda_2 d(x,Tx) + \lambda_3 d(y,Ty) + \lambda_4 d(y,Tx) + \lambda_5 d(x,Ty)$$

$$\leq \lambda_1 d(x,y) + \lambda_2 d(x,x) + \lambda_3 d(y,y) + \lambda_4 d(y,Tx) + \lambda_5 d(x,Ty)$$

$$\leq \lambda_1 d(x,y) + \lambda_4 d(y,x) + \lambda_5 d(x,y)$$

$$\leq (\lambda_1 + \lambda_4 + \lambda_5) d(x,y).$$

By Remark 2.4, taking the absolute value on both sides, we have

$$|d(x,y)| \leq |(\lambda_1 + \lambda_4 + \lambda_5)d(x,y)|$$
  
$$\leq (\lambda_1 + \lambda_4 + \lambda_5)|d(x,y)|.$$

From,  $\Sigma_{i=1}^5 \lambda_i \in [0, \frac{1}{s})$ . Then  $\lambda_1 + \lambda_4 + \lambda_5 < 1$ , this implies that |d(x, y)| = 0. Hence x = y. This completes the proof.

From Theorem 3.1, we have some corollary, as follows:

**Corollary 3.2.** Let (X, d) be a complete complex valued b-metric space with constant  $s \ge 1$  and let  $T: X \to X$  be a function with the following

$$d(Tx, Ty) \leq ad(x, Tx) + bd(y, Ty) + cd(x, y), \forall x, y \in X$$

where a, b, and c are nonnegative real numbers and satisfies s(a + b + c) < 1. Then T has a unique fixed point.

*Proof.* We put  $\lambda_4 = \lambda_5 = 0$ ,  $a = \lambda_2$ ,  $b = \lambda_3$  and  $c = \lambda_1$ . By theorem 3.1, T has a unique fixed point. This complete the proof.

**Corollary 3.3.** Let (X, d) be a complete complex valued b-metric space with constant  $s \ge 1$  and let  $T: X \to X$  be a mapping such that

$$d(Tx, Ty) \leq \alpha d(x, Ty) + \beta d(y, Tx)$$

for every  $x, y \in X$ , where  $\alpha, \beta$  are nonnegative real numbers with  $\alpha + \beta < \frac{1}{s}$  and  $\beta < \frac{\alpha}{2s-1}$ . Then T has a fixed point in X.

*Proof.* We put  $\lambda_1 = \lambda_2 = \lambda_3 = 0$ ,  $\alpha = \lambda_5$  and  $\beta = \lambda_4$ . By theorem 3.1, T has a unique fixed point. This complete the proof.

Next, we can applied Theorem 3.1 to prove the following theorem.

**Theorem 3.4.** Let (X,d) be a complete complex valued b-metric space, with the constant  $s \ge 1$ . Let  $T: X \to X$  be a mapping with satisfying

$$d(T^n x, T^n y) \leq \lambda_1 d(x, y) + \lambda_2 d(x, T^n x) + \lambda_3 d(y, T^n y) + \lambda_4 d(y, T^n x) + \lambda_5 d(x, T^n y)$$

for all  $x, y \in X$  and  $\lambda_i$  are nonegative real number  $\sum_{i=1}^5 \lambda_i \in [0, \frac{1}{s})$  and  $\lambda_4 \leq \frac{\lambda_5}{2s-1}$ . Then T has a unique fixed point.

*Proof.* Suppose  $S = T^n$ , by Theorem 3.1, there exists a fixed point u of S, such that

$$Su = u$$
.

Thus  $T^n u = u$ . We obtain that

$$d(Tu, u) = d(T(T^{n}u), T^{n}u)$$

$$= d(T^{n}(Tu), T^{n}u)$$

$$\leq \lambda_{1}d(Tu, u) + \lambda_{2}d(Tu, T^{n}(Tu)) + \lambda_{3}d(u, T^{n}u)$$

$$+\lambda_{4}d(u, T^{n}(Tu)) + \lambda_{5}d(Tu, T^{n}u)$$

$$= \lambda_{1}d(Tu, u) + \lambda_{2}d(Tu, T(T^{n}u)) + \lambda_{3}d(u, u)$$

$$+\lambda_{4}d(u, T(T^{n}u)) + \lambda_{5}d(Tu, u)$$

$$= \lambda_{1}d(Tu, u) + \lambda_{2}d(Tu, Tu) + \lambda_{3}d(u, u) + \lambda_{4}d(u, Tu)$$

$$+\lambda_{5}d(Tu, u)$$

$$\therefore (1 - \lambda_1 - \lambda_4 - \lambda_5) d(Tu, u) \leq 0.$$

By Remark 2.4, taking absolute value on both side, we have

$$(1 - \lambda_1 - \lambda_4 - \lambda_5)|d(Tu, u)| \le 0.$$

From  $\Sigma_{i=1}^5 \lambda_i < 1$ ,  $(1 - \lambda_1 - \lambda_4 - \lambda_5) > 0$ , then |d(Tu, u)| = 0. It follows that, Tu = u, hence u is a fixed point of T, and then  $Tu = u = T^n u$ .

Finally, we show that u is a unique fixed point of T. Let v be a fixed point of T, we must show that u = v. We see that,

$$d(u,v) = d(T^n u, T^n v)$$

$$\leq \lambda_1 d(u,v) + \lambda_2 d(u, T^n u) + \lambda_3 d(v, T^n u) + \lambda_4 d(v, T^n u)$$

$$+ \lambda_5 d(u, T^n v)$$

$$= \lambda_1 d(u,v) + \lambda_2 d(u,u) + \lambda_3 d(v,v) + \lambda_4 d(v,u)$$

$$+ \lambda_5 d(u,v)$$

$$\therefore (1 - \lambda_1 - \lambda_4 - \lambda_5) d(u, v) \leq 0.$$

By Remark 2.4, taking absolute value on both side, we have

$$(1 - \lambda_1 - \lambda_4 - \lambda_5)|d(u, v)| < 0.$$

Since  $\Sigma_{i=1}^5 \lambda_i < 1$ ,  $(1 - \lambda_1 - \lambda_4 - \lambda_5) > 0$ , then |d(u,v)| = 0. It follows that u = v. Therefore, u is a unique fixed point of T. This complete the proof.

From Thorem 3.4, we can reduce to the following corollary, as follows:

**Corollary 3.5.** Let (X,d) be a complete complex valued b-metric space with the constant  $s \ge 1$ . Let  $T: X \to X$  be a mapping (for some fixed n) satisfying

$$d(T^n x, T^n y) \leq ad(x, T^n x) + bd(y, T^n y) + cd(x, y)$$

for all  $x, y \in X$  where a, b, c are nonnegative real number with s(a + b + c) < 1. Then T has a unique fixed point in X. *Proof.* We put  $\lambda_4 = \lambda_5 = 0$ ,  $a = \lambda_2$ ,  $b = \lambda_3$  and  $c = \lambda_1$  By theorem 3.1, T has a unique fixed point. This complete the proof.

### 4. Acknowledgements

The author would like to thank Uttaradit Rajabhat University for financial support. Moreover, we would like to thank Assoc. Prof. Dr. Issara Inchan for providing valuable suggestions.

#### References

- 1. A. Azam, F. Brain and M. Khan, Common fixed point theorems in complex valued metric space. Numer.Funct.Anal. Optim. 32(3)(2011), 243-253.
- S. Banach, Sur operations dans les ensembles abstraitsetleur application auxequations integrals. Fund. Math. 3(1922), 133-181.
- I. A. Bakhtin: The contraction principle in quasimetric spaces, Functional Annalysis, vol. 30, (1989), 26-37.
- M. Frechet, Sur quelques points du calcul functional.RendicontidelCircoloMathematico di-Palermo.22(1)(1906), 1-72.
- D. Hasanah, Fixed point Theorem in Complex-valued b-metric space. Cauchy-Journal Matlematika Murni Dan Aplikasi. 4(4)(2017), 138-145.
- G. E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16(2)(1973), 201-206.
- M. Jleli and B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 33(2015).
- 8. A. A. Mukheimer, "Some common fixed point theorems in complex valued b-metric spaces," Hindawi Publishing Coorporation. The Scientific World Journal, vol. 2014, (2014).
- 9. K. Rao, P. Swamy and J. Prasad: A common fixed point theorems in complex valued b-metric spaces, Bulletin of Mathematics and Statistics Research, vol. 1, no. 1, (2013).
- W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, Journal of Inequalities and Applications volume 2012, Article number: 84 (2012).
- 11. W. Sintunavarat, Y.J. Cho and P. Kumam, Urysohn integral equations approach by common fixed points in complex valued metric spaces, Advances in Difference Equations, 2013, 2013:49.