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ABSTRACT. The local convergence of an eighth order solver is established using only
the first derivative for Banach space valued operators. Earlier studies have used up to the
ninth order derivatives, which limit the applicability of the solver. The results are tested
using numerical experiments.

KEYWORDS: Banach space, Newton-type, local convergence, Fréchet derivative.
AMS Subject Classification: 65F08, 37F50, 656N12.

1. INTRODUCTION

Let Q2 C By be nonempty, open, and By, B2 be Banach spaces. One of the greatest
challenges in Computational Mathematics is to find a solution z, of the equation
[1,2,3,4,6,7, 11, 12, 13, 14, 15, 16, 17]

F(x) =0, (1.1)

where F : Q0 — By is Fréchet differentiable operator.
In this study, we are concerned with the local convergence of the Newton-type
solver given as

xo € Q,
Yo = xn—F (vn) ' F(2n)
o= [T 5P ) F ) + ) F () P )™ Fn)
tait = 2= [T 3 ) F ) ) F ) (1.2

Methods (1.2) was studied in [6], but for the case B; = By = R* (k a natural
number). Using conditions on ninth order derivative, and Taylor series( although
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these derivatives do not appear in solver (1.2)), the eighth convergence order was
established. The hypotheses on higher order derivatives limit the usage of solver
(1.2).
As an academic example: Let By = By =R, Q = [f%, %} Define F on 2 by
F(z) = 2*loga?® + 2° — z*

Then, we have x, = 1, and

F'(x) = 32 log 2? + 5x* — da® + 222,

F"(x) = 6xlogz? + 202°* — 1227 + 10z,

F"(x) = 6logz* 4+ 602 = 24x + 22.

Obviously F"/(x) is not bounded on Q. So, the convergence of solver (1.2) not
guaranteed by the analysis in [6, 7, 8, 9, 11, 15].

Other problems with the usage of solver (1.2) are: no information on how to
choose xg; bounds on ||z, — z.| and information on the location of x,. All these are
addressed in this paper by only using conditions on the first derivative, and in the
more general setting of Banach space valued operators. That is how, we expand the
applicability of solver (1.2). To avoid the usage of Taylor series and high convergence
order derivatives, we rely on the computational order of convergence (COC) or the
approximate computational order of convergence (ACOC) [1, 6, 10].

The layout of the rest of the paper includes: the local convergence in Section 2,
and the example in Section 3.

2. BALL CONVERGENCE

We introduce some scalar functions and parameters for the convenience of our
convergence analysis of solver (1.2). Let wy : [0,00) — [0, 00) be an increasing and
continuous function with w(0) = 0. Suppose that equation

wo(t) =1 (2.1)

has at least one positive solution. Denote by p; the smallest such solution. Let
w : [0,p1) — [0,00) and wy : [0,p1) — [0,00) be increasing and continuous
functions with w(0) = 0. Define functions ; and v, on the interval [0, p1) by

(1) = JW

and

P1(t) =¥ (t) — 1.
We have 11 (0) = —1 and 1), (t) — oo as t —> p; . The intermediate value theorem
assures that equation 11 (t) = 0 has at least one solution in (0, p;). Denote by R;
the smallest such solution. Suppose that equation

wo(¢1(t)t) =1 (22)
has at least one positive solution. Denote by py the smallest such solution. Set
po = min{p1, p2}. Define functions ¥, and 95 on [0, pg) by

[ o =0yt
vt = { T— w0
(wo(t1(1)0) + wo(t)) Jy wn (B (1))d6
(1 = wo(¥r(1)1)) (1 — wo(t))




HIGH CONVERGENCE ORDER SOLVERS IN BANACH SPACE 113

41 [(wo(T/fl(t)t) + wo(t))?

4 (T—wo(yr(t)t))?
2(wo (Y1 (H)t) + wo(t))]
1 —wo(¢1(t)?)

b wl(ﬁwl(t)t)dﬂ}

1— ’wo(t)

and Vo (t) = () — 1. We get 12(0) = —1 and p3(t) — o0 as t — pg . Denote by
R5 the smallest solution of equation 5 (t) = 0 in (0, p2). Suppose that

wo(Ws(t)1) = 1 (2.3)

has at least one positive solution. Denote by p3 the smallest such solution. Set
p = min{ps, p3}. Define functions 5 and 3 on the interval [0, p) by

Jo w Pa(t)t)do
1/)3(15) = { . 1_w0(1/)2())
(wo (12 (£)t) + wo(t)) fiy wi(Oa(t
(1 —wo(¢2()t)) (1 — wo(t ))
41 [(WO(%( )t) + wo(t))?
(1 —wo(¢r(t)t))?

2
2(wo (1 (1)t) + wo(t) wl(t)}
(1 = wo(t))(1 — woly1(t)t))

)
Jo wi(Ova(t)t)d
T T }Wt)’

and ¥3(t) = ¥5(t) — 1. We get 13(0) = —1 and 1p3(t) — oo as t — p~. Denote by
R3 smallest solution of equation t3(¢) = 0 in (0, p). Define a radius of convergence
R by

R =min{R,,},m=1,2,3. (2.4)
It follows that for each t € [0, R)
0 < wot) <1, (2.5)
0 < wo(i(t)t) <1, (2.6)
0 < wolee(t)t) <1 (2.7)
and
0 < ¢m(t) <1 (2.8)

Let B(Bi,B2) = {G : By — Bybe bounded and linear}, T'(x,d) = {y € B; :
ly — z|]| < d;d > 0} and T(x,d) = {y € By : ||y — z|| < d;d > 0}. We shall use the
conditions (C) in the local convergence analysis of solver (1.2) that follows:

(cl) F:Q — By a continuously differentiable operator in the sense of Fréchet,
and there exists p € Q such that F(p) =0, and F'(p)~! € B(Bz, By).

(¢2) There exists function wg : [0,00) — [0,00) continuous, and increasing
with wg(0) = 0 such that for each z € Q

17/ () 7 (F () = F'(p) | < wolllz = p)-
Set Qg = QN T(p, p1) where p; is given in (2.1).
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(¢3) There exist functions w : [0, pg) — [0, 00), w1 : [0, p9) —> [0, 00) continu-
ous, and increasing such that for each x,y € Qg

1F" ()1 (F ()] = F' (@)l < w(lly — )
and
1F" () F (@) < wi(flz — pll.
(c4) T(p, R) C Q where R is defined by (2.4) and p1, p2, p3 are given in (2.1)—
(2.3), respectively.
(c5) There exists Ry > R such that fol wo(6R1)db < 1.
Set O = QN T (x., Ry).
Next, the convergence of solver (1.2) follows using preceding notation and the con-
ditions (C).

Theorem 2.1. Suppose that the conditions (C) hold. Then, the sequence {x,}
starting at xg € T (p, R) —{p}, and generated by solver (1.2) is well defined, remains
in T(p, R) for eachn =0,1,2,..., and converges to p. Moreover the following error
bounds hold

1yn =2l < $r(len = pDllen = pll < llzn —pl <, (2.9)
llzn = pll < da(llen = plDllen —pll < llzn = pll; (2.10)
[ent1 = pll < ¢sllzn = plDllan —pll < llon = pl, (2.11)

where functions ; are given previously and R is defined in (2.4). Furthermore, the
limit point p is the only solution of equation F(x) =0 in the set ;.

Proof. We shall use a mathematical induction based proof. Let x € T(p, R) —
{p}. By (2.4), (c1) and (c2), we get that

17/ ()~ (F' () = F' (0))II < wo(llz — pll) < wo(R) <1, (2.12)
so by the Banach lemma on invertible operators [15, 16], we have that F'(x)~! €
B(Bs, B;), and

1
|F' (@) F p)] € - (2.13)
AT (T}

This also shows that yo is well defined. Using (2.4), (2.8) (for m = 1), (c3), (2.13)
and (1.2), we obtain in turn that

lyo =2l < llzo —p — F'(zo) " F' (o)
17 (o) = (F (@)

1
<] / FIp)(F (0 + 0(z0 — p) — F'(20)) (0 — p)db)|

iy w((1 = 0)[|lzo — pl|)db]lzo — p|
1= wo([[zo — pll)
b1 (|0 — pllllwo — pll < llzo — pll < R, (2.14)

50 (2.9) holds for n = 0 and yg € T(p, R), so zp and x; are well defined. By the
second substep of solver (1.2) for n = 0, we can write by (c1) that

IN

Fla) = Fla) - F(p) = / F(p+ (6(z — p))db(z — p). (2.15)

Then, by the second condition (¢3), and (1.2) we get respectively, that

17" ()~ F ()] S/O w1 (0flz = pl)do]z - pl, (2.16)
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and
20-p = (yo—p—F () "Flyo)) +F (yo) " (F'(z0) = F'(y0))F (z0) " F(yo)
5[ (o)™ (F (o) — F (30)))?
—2(F(yo) 1 (F'(x0) = F' (yo))IF (o)~ F(yo)- (2.17)
Using (2.4), (2.8) (for m = 2), (2.13) (for z = yo), (2.14) and (2.16) (for x = yo)
and (2.17), we obtain in turn that
lzo = pll < llyo—p—F ' (y0) " Flyo)l
HIF (o) T F IIF ()™ (F (yo) = F'(0))
HIF ()~ (F (o) = F' ()
X[ F (o) =" F () IHF (p) ™" F (o)
+3[Hf'(yo)_l]:’(p)\\ (IF" ()~ (F'(zo) = F'(p)l
)

+(IF ()~ (F (o) = F'(p))I)?

+2[1F (yo) = F ) (IF ()~ (F (o) — F'(0))]
HIF ()" (F (o) = F' (0))ID]
><||f’(:vo) YF )IIF ()~ F (o)l

Jy w((1 = 0)]lyo — pll)dp)
= { 1—wo<||yo—p||>
Sy w1(8llyo — pll)d8(wo(llyo — pll) + wo(llzo — plI))
(1 = wo([lzo — pI)) (X = wo(llyo — pI)
+1 {(woﬂxo —pll) + wo(llyo — plI)?
4 (1 - wo(Hyo —P||))2
2(wo(llwo — pll) +wolllyo = pI))] Jo w1@llyo —plDdo |,
T Tl ) 1= wo(flz0 — pI) }” o7
< o(llwo — pl) w0 — pll < llzo — p|l < R, (2.18)

which shows (2.11) for n = 0, and zy € T(p, R). Moreover, by the third substep of
solver (1.2) for n = 0, we have that

-p = (20—p—F(20)" 1]'_(20)
51T = (F(yo) ™ F (o)
= (20 —p—F'(20)" ' F(20)
+F(20) " H(F (w0) — F'(p))F' (x0) ™ F(20)

1

+§[(I — F'(yo) " F'(w0))* 4+ 2(1 = F'(yo) " F'(w0)) F' (yo) " F' (w0)]

X F' (w0) " F(20)- (2.19)
Using (2.4), (2.8) (for m = 3), (2.13) (for = yo, 20), (2.16) (for x = zp), (2.18)
and (2.20), we get in turn that

lor =pll < Nl —p = F'(20) " Fl0)

+HF (20) T F )NIF ()~ (F (20) = F'(0))
HIF ()~ (F (o) = F'(p)]

)+ (F'(20) ™" = F'(w0) ") F(20)
)?1F (o)~ F(20)
)
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X7 o) F )17 ()7 F o)

511G (o) ™ (F (o) = F (o)

2 o) ™ (F (90) — F @)1 (30) " F )]
X1 ()~ F (o)1

X7 o)™ F ()17 () F o)

{ﬁhmuanmpmw

1 = wo(llz0 = pll)

IA

(wo(llzo = pIl) + wolllzo = pII)) Jy w1 (8120 — pll)d6
(1 = wo(l[20 — pI)(1 = wo(llzo — plI))
1 [(WO(HJUO —pl) +wolllyo — pl))*
2 (1 = wo(llyo — pll))?
2(wo([lzo — plI) + wo(llyo — plI)
1 — wo([lzo — pll)
wi(([z0 — pll) }
1 —wo([lyo —pll)
Jo wi(Bll0 — pl)d
l—w(hm—M)}H%_p”
0
< Ys3(llzo — plD)llzo — pll < llzo — pll < R, (2.20)
so (2.11) holds for n = 0 and 21 € T'(p, R). The induction for (2.11) is completed,

if Ty Yy Zm, Tmr1 TePlace o, Yo, 20, €1 in the preceding estimates. Then,in view
of the estimate

[Zm+1 = Pl < Az = pl| < [l2m —pll <R, (2.21)

where A = ¢3(||zo—p||) € [0,1), we deduce that 2,1 € T'(p, R), and lim,;, 00 T, =
p. Further for the uniqueness part, let p. € Qp with F(p.) = 0. Define G =

fol F'(p+ 0(p« — p))db. Then, using (c5), we get

1 1
IW@*@—F@WS‘/mﬂm—mwé/wme<L
0 0

so G! exists, and from

0= F(p) — F(p.) = G(p — p.),

we derive p = p,.

O
Remark 2.1. (a) In the case when wy(t) = Lot,w(t) = Lt and Qg = Q, the
radius py = ﬁ was obtained by Argyros in [1] as the convergence

radius for Newton’s solver under condition (2.7)-(2.9). Notice that the
convergence radius for Newton’s solver given independently by Rheinboldt
[16] and Traub [17] is given by

2
PTR = 3L < pa.

As an example, let us consider the function F(z) = ¢* — 1. Then a* = 0.
Set Q@ = B(0,1). Then, we have that Ly = e —1 < L = e, so prr =
0.24252961 < p4 = 0.324947231.
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(b) The local results can be used for projection solvers such as Arnoldi’s solver,
the generalized minimum residual solver(GMREM), the generalized con-
jugate solver(GCM) for combined Newton/finite projection solvers and in
connection to the mesh independence principle in order to develop the
cheapest and most efficient mesh refinement strategy [2, 3, 4].

(¢) The results can be also be used to solve equations where the operator F’
satisfies the autonomous differential equation [2, 3, 10, 13]:

F'(x) = P(F()),

where P : By — By is a known continuous operator. Since F’(x*) =
P(F(z*)) = P(0), we can apply the results without actually knowing the
solution x*. Let as an example F'(z) = ¢* — 1. Then, we can choose P(z) =
z+1and z* = 0.

(d) Tt is worth noticing that solvers (1.2) is not changing when we use the
conditions of the preceding Theorem instead of the stronger conditions used
in [15]. Moreover, we can compute the computational order of convergence
(COC) defined as

o (Ll (Lol )
[n — @] [2n—1 — @]

or the approximate computational order of convergence (ACOC) [, 0]

& =In (Hxn—H — xn) /In < [Zn — Tn-1l| ) )
[2n — zn—1]l |Tn—1 — pn_2]
This way we obtain in practice the order of convergence, but not higher
order derivatives are used.
3. NUMERICAL EXAMPLE

We present the following example to test the convergence criteria.

Example 3.1. Let By = B; = R?, Q = U(0,1),z, = (0,0,0)” and define F on
by

-1
.F(!L‘) = _F(’U,l,’LLQ,’U,g,) = (e“l — ]_, BT’U/Q2 + ’LLQ,Ug)T. (31)
For the points u = (u1,us,u3)T, the Fréchet derivative is given by
e" 0 0
F'(u) = 0 (e—Dux+1 0
0 0 1

Using the norm of the maximum of the rows z, = (0,0,0)7 and since F'(x.) =
diag(1,1,1), we get by conditions (H) wg(t) = (e — 1)t, w(t) = eﬁuwl(t) =eT.

R; = 0.382692, Ry = 0.227598, R3 = 169362.
Example 3.2. Let B; = By = C[0,1],92 = U(0, 1). Define function F on Q by
1
F(w)(z) = w(z) — 5/ xhw(6)3do.
0

Then, the Fréchet-derivative is given by

F'(w(é))(z) = &(x) — 15/0 Ow(0)2€(0)dh, for each ¢ € Q.
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Then, we have that x* = 0,wg(t) = Lot,w(t) = Lt,w(t) = 2,Lo = 7.5 < L = 15.
Then, the radius of convergence are given by

Ry =0.0667, Ry = 0.0395822 = p, R3 = 0.0297337.

Example 3.3. Returning back to the motivational example given at the introduc-
tion of this study, we can choose wg(t) = w(t) = 96.662907¢, w1 (t) = 1.0631. Then,
the radius of convergence are given by

Ry = 0.00689682, Ry = 0.00457799, R3 =1 = 0.00378481.
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