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ABSTRACT. The local convergence of an eighth order solver is established using only
the first derivative for Banach space valued operators. Earlier studies have used up to the
ninth order derivatives, which limit the applicability of the solver. The results are tested
using numerical experiments.
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1. Introduction

Let Ω ⊂ B1 be nonempty, open, and B1,B2 be Banach spaces. One of the greatest
challenges in Computational Mathematics is to find a solution x∗ of the equation
[1, 2, 3, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17]

F(x) = 0, (1.1)
where F : Ω −→ B2 is Fréchet differentiable operator.

In this study, we are concerned with the local convergence of the Newton-type
solver given as

x0 ∈ Ω,

yn = xn −F ′(xn)
−1F(xn)

zn = xn − [
1

4
I +

1

2
F ′(yn)

−1F(xn) +
1

4
(F ′(yn)

−1F ′(xn))
2]F ′(xn)

−1F(yn)

xn+1 = zn − [
1

2
I +

1

2
(F ′(yn)

−1F ′(xn))
2]F ′(xn)

−1F(zn). (1.2)

Methods (1.2) was studied in [6], but for the case B1 = B2 = Rk (k a natural
number). Using conditions on ninth order derivative, and Taylor series( although
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these derivatives do not appear in solver (1.2)), the eighth convergence order was
established. The hypotheses on higher order derivatives limit the usage of solver
(1.2).

As an academic example: Let B1 = B2 = R, Ω = [− 1
2 ,

3
2 ]. Define F on Ω by

F(x) = x3 log x2 + x5 − x4

Then, we have x∗ = 1, and
F ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 log x2 + 60x2 = 24x+ 22.

Obviously F ′′′(x) is not bounded on Ω. So, the convergence of solver (1.2) not
guaranteed by the analysis in [6, 7, 8, 9, 11, 15].

Other problems with the usage of solver (1.2) are: no information on how to
choose x0; bounds on ∥xn−x∗∥ and information on the location of x∗. All these are
addressed in this paper by only using conditions on the first derivative, and in the
more general setting of Banach space valued operators. That is how, we expand the
applicability of solver (1.2). To avoid the usage of Taylor series and high convergence
order derivatives, we rely on the computational order of convergence (COC) or the
approximate computational order of convergence (ACOC) [1, 6, 10].

The layout of the rest of the paper includes: the local convergence in Section 2,
and the example in Section 3.

2. Ball convergence

We introduce some scalar functions and parameters for the convenience of our
convergence analysis of solver (1.2). Let w0 : [0,∞) −→ [0,∞) be an increasing and
continuous function with w0(0) = 0. Suppose that equation

w0(t) = 1 (2.1)
has at least one positive solution. Denote by ρ1 the smallest such solution. Let
w : [0, ρ1) −→ [0,∞) and w1 : [0, ρ1) −→ [0,∞) be increasing and continuous
functions with w(0) = 0. Define functions ψ1 and ψ̄1 on the interval [0, ρ1) by

ψ1(t) =

∫ 1

0
w((1− θ)t)dθ

1− w0(t)

and
ψ̄1(t) = ψ1(t)− 1.

We have ψ̄1(0) = −1 and ψ̄1(t) −→ ∞ as t −→ ρ−1 . The intermediate value theorem
assures that equation ψ̄1(t) = 0 has at least one solution in (0, ρ1). Denote by R1

the smallest such solution. Suppose that equation
w0(ψ1(t)t) = 1 (2.2)

has at least one positive solution. Denote by ρ2 the smallest such solution. Set
ρ0 = min{ρ1, ρ2}. Define functions ψ2 and ψ̄2 on [0, ρ0) by

ψ2(t) =

{∫ 1

0
w((1− θ)ψ1(t)t)dθ

1− w0(ψ1(t)t)

+
(w0(ψ1(t)t) + w0(t))

∫ 1

0
w1(θψ1(t)t)dθ

(1− w0(ψ1(t)t))(1− w0(t))



HIGH CONVERGENCE ORDER SOLVERS IN BANACH SPACE 113

+
1

4

[
(w0(ψ1(t)t) + w0(t))

2

(1− w0(ψ1(t)t))2

+
2(w0(ψ1(t)t) + w0(t))

1− w0(ψ1(t)t)

]
×

∫ 1

0
w1(θψ1(t)t)dθ

1− w0(t)

}
and ψ̄2(t) = ψ2(t)− 1. We get ψ̄2(0) = −1 and ψ̄2(t) −→ ∞ as t −→ ρ−0 . Denote by
R2 the smallest solution of equation ψ̄2(t) = 0 in (0, ρ2). Suppose that

w0(ψ3(t)t) = 1 (2.3)

has at least one positive solution. Denote by ρ3 the smallest such solution. Set
ρ = min{ρ2, ρ3}. Define functions ψ3 and ψ̄3 on the interval [0, ρ) by

ψ3(t) =

{∫ 1

0
w((1− θ)ψ2(t)t)dθ

1− w0(ψ2(t)t)

+
(w0(ψ2(t)t) + w0(t))

∫ 1

0
w1(θψ2(t)t)dθ

(1− w0(ψ2(t)t))(1− w0(t))

+
1

2

[
(w0(ψ1(t)t) + w0(t))

2

(1− w0(ψ1(t)t))2

+
2(w0(ψ1(t)t) + w0(t))w1(t)

(1− w0(t))(1− w0(ψ1(t)t))

]
×

∫ 1

0
w1(θψ2(t)t)dθ

1− w0(t)

}
ψ2(t),

and ψ̄3(t) = ψ3(t)− 1. We get ψ̄3(0) = −1 and ψ̄3(t) −→ ∞ as t −→ ρ−. Denote by
R3 smallest solution of equation ψ̄3(t) = 0 in (0, ρ). Define a radius of convergence
R by

R = min{Rm},m = 1, 2, 3. (2.4)
It follows that for each t ∈ [0, R)

0 ≤ w0(t) < 1, (2.5)
0 ≤ w0(ψ1(t)t) < 1, (2.6)
0 ≤ w0(ψ2(t)t) < 1 (2.7)

and
0 ≤ ψm(t) < 1. (2.8)

Let B(B1,B2) = {G : B1 −→ B2 be bounded and linear}, T (x, d) = {y ∈ B1 :
∥y − x∥ < d; d > 0} and T̄ (x, d) = {y ∈ B1 : ∥y − x∥ ≤ d; d > 0}. We shall use the
conditions (C) in the local convergence analysis of solver (1.2) that follows:

(c1) F : Ω −→ B2 a continuously differentiable operator in the sense of Fréchet,
and there exists p ∈ Ω such that F(p) = 0, and F ′(p)−1 ∈ B(B2,B1).

(c2) There exists function w0 : [0,∞) −→ [0,∞) continuous, and increasing
with w0(0) = 0 such that for each x ∈ Ω

∥F ′(p)−1(F ′(x)− F ′(p))∥ ≤ w0(∥x− p∥).

Set Ω0 = Ω ∩ T (p, ρ1) where ρ1 is given in (2.1).
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(c3) There exist functions w : [0, ρ0) −→ [0,∞), w1 : [0, ρ0) −→ [0,∞) continu-
ous, and increasing such that for each x, y ∈ Ω0

∥F ′(p)−1(F ′(y)]−F ′(x))∥ ≤ w(∥y − x∥)
and

∥F ′(p)−1F ′(x))∥ ≤ w1(∥x− p∥.
(c4) T̄ (p,R) ⊆ Ω where R is defined by (2.4) and ρ1, ρ2, ρ3 are given in (2.1)–

(2.3), respectively.
(c5) There exists R1 ≥ R such that

∫ 1

0
w0(θR1)dθ < 1.

Set Ω1 = Ω ∩ T̄ (x∗, R1).

Next, the convergence of solver (1.2) follows using preceding notation and the con-
ditions (C).

Theorem 2.1. Suppose that the conditions (C) hold. Then, the sequence {xn}
starting at x0 ∈ T (p,R)−{p}, and generated by solver (1.2) is well defined, remains
in T (p,R) for each n = 0, 1, 2, . . . , and converges to p. Moreover the following error
bounds hold

∥yn − p∥ ≤ ψ1(∥xn − p∥)∥xn − p∥ ≤ ∥xn − p∥ < r, (2.9)
∥zn − p∥ ≤ ψ2(∥xn − p∥)∥xn − p∥ ≤ ∥xn − p∥, (2.10)

∥xn+1 − p∥ ≤ ψ3(∥xn − p∥)∥xn − p∥ ≤ ∥xn − p∥, (2.11)
where functions ψi are given previously and R is defined in (2.4). Furthermore, the
limit point p is the only solution of equation F(x) = 0 in the set Ω1.

Proof. We shall use a mathematical induction based proof. Let x ∈ T (p,R) −
{p}. By (2.4), (c1) and (c2), we get that

∥F ′(p)−1(F ′(x)−F ′(p))∥ ≤ w0(∥x− p∥) < w0(R) < 1, (2.12)
so by the Banach lemma on invertible operators [15, 16], we have that F ′(x)−1 ∈
B(B2,B1), and

∥F ′(x)−1F ′(p)∥ ≤ 1

1− w0(∥x− p∥)
. (2.13)

This also shows that y0 is well defined. Using (2.4), (2.8) (for m = 1), (c3), (2.13)
and (1.2), we obtain in turn that

∥y0 − p∥ ≤ ∥x0 − p−F ′(x0)
−1F ′(x0)∥

≤ ∥F ′(x0)
−1(F(p)∥

×∥
∫ 1

0

F ′(p)(F ′(p+ θ(x0 − p))−F ′(x0))(x0 − p)dθ∥

≤
∫ 1

0
w((1− θ)∥x0 − p∥)dθ∥x0 − p∥

1− w0(∥x0 − p∥)
= ψ1(∥x0 − p∥∥x0 − p∥ ≤ ∥x0 − p∥ < R, (2.14)

so (2.9) holds for n = 0 and y0 ∈ T (p,R), so z0 and x1 are well defined. By the
second substep of solver (1.2) for n = 0, we can write by (c1) that

F(x) = F(x)−F(p) =

∫ 1

0

F ′(p+ (θ(x− p))dθ(x− p). (2.15)

Then, by the second condition (c3), and (1.2) we get respectively, that

∥F ′(p)−1F(x)∥ ≤
∫ 1

0

w1(θ∥x− p∥)dθ∥x− p∥, (2.16)
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and
z0 − p = (y0 − p−F ′(y0)

−1F(y0)) + F ′(y0)
−1(F ′(x0)−F ′(y0))F ′(x0)

−1F(y0)

+
1

4
[(F ′(y0)

−1(F ′(x0)−F ′(y0)))
2

−2(F ′(y0)
−1(F ′(x0)−F ′(y0))]F ′(x0)

−1F(y0). (2.17)
Using (2.4), (2.8) (for m = 2), (2.13) (for x = y0), (2.14) and (2.16) (for x = y0)
and (2.17), we obtain in turn that
∥z0 − p∥ ≤ ∥y0 − p−F ′(y0)

−1F(y0)∥
+∥F ′(y0)

−1F ′(p)∥[∥F ′(p)−1(F ′(y0)−F ′(p))∥
+∥F ′(p)−1(F ′(x0)−F ′(p))∥
×∥F ′(x0)

−1F ′(p)∥∥F ′(p)−1F(y0)∥

+
1

4
[∥F ′(y0)

−1F ′(p)∥2(∥F ′(p)−1(F ′(x0)−F ′(p))∥

+(∥F ′(p)−1(F ′(y0)−F ′(p))∥)2

+2∥F ′(y0)
−1F ′(p)∥(∥F ′(p)−1(F ′(x0)−F ′(p))∥

+∥F ′(p)−1(F ′(y0)−F ′(p))∥)]
×∥F ′(x0)

−1F ′(p)∥∥F ′(p)−1F(y0)∥

≤

{∫ 1

0
w((1− θ)∥y0 − p∥)dθ)
1− w0(∥y0 − p∥)

+

∫ 1

0
w1(θ∥y0 − p∥)dθ(w0(∥y0 − p∥) + w0(∥x0 − p∥))

(1− w0(∥x0 − p∥))(1− w0(∥y0 − p∥)

]

+
1

4

[
(w0(∥x0 − p∥) + w0(∥y0 − p∥))2

(1− w0(∥y0 − p∥))2

+
2(w0(∥x0 − p∥) + w0(∥y0 − p∥))

1− w0(∥y0 − p∥)

] ∫ 1

0
w1(θ∥y0 − p∥)dθ

1− w0(∥x0 − p∥)

}
∥y0 − p∥

≤ ψ2(∥x0 − p∥)∥x0 − p∥ ≤ ∥x0 − p∥ < R, (2.18)
which shows (2.11) for n = 0, and z0 ∈ T (p,R). Moreover, by the third substep of
solver (1.2) for n = 0, we have that
x1 − p = (z0 − p−F ′(z0)

−1F(z0)) + (F ′(z0)
−1 −F ′(x0)

−1)F(z0)

+
1

2
[I − (F ′(y0)

−1F ′(x0))
2]F ′(x0)

−1F(z0)

= (z0 − p−F ′(z0)
−1F(z0))

+F ′(z0)
−1(F ′(x0)−F ′(p))F ′(x0)

−1F(z0)

+
1

2
[(I −F ′(y0)

−1F ′(x0))
2 + 2(I −F ′(y0)

−1F ′(x0))F ′(y0)
−1F ′(x0)]

×F ′(x0)
−1F(z0). (2.19)

Using (2.4), (2.8) (for m = 3), (2.13) (for x = y0, z0), (2.16) (for x = z0), (2.18)
and (2.20), we get in turn that

∥x1 − p∥ ≤ ∥z0 − p−F ′(z0)
−1F(z0)∥

+∥F ′(z0)
−1F ′(p)∥[∥F ′(p)−1(F ′(z0)−F ′(p))∥

+∥F ′(p)−1(F ′(x0)−F ′(p))∥]
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×∥F ′(x0)
−1F ′(p)∥∥F ′(p)−1F ′(z0)∥

+
1

2
[∥(F ′(y0)

−1(F ′(y0)−F ′(x0))∥2

+2∥F ′(y0)
−1(F ′(y0)−F ′(x0))∥∥F ′(y0)

−1F ′(p)∥
×∥F ′(p)−1F ′(x0)∥]
×∥F ′(x0)

−1F ′(p)∥∥F ′(p)−1F(z0)∥

≤

{∫ 1

0
w((1− θ)∥z0 − p∥)dθ
1− w0(∥z0 − p∥)

+
(w0(∥z0 − p∥) + w0(∥x0 − p∥))

∫ 1

0
w1(θ∥z0 − p∥)dθ

(1− w0(∥z0 − p∥)(1− w0(∥x0 − p∥))
1

2

[
(w0(∥x0 − p∥) + w0(∥y0 − p∥))2

(1− w0(∥y0 − p∥))2
2(w0(∥x0 − p∥) + w0(∥y0 − p∥))

1− w0(∥x0 − p∥)

× w1(∥z0 − p∥)
1− w0(∥y0 − p∥)

]
∫ 1

0
w1(θ∥z0 − p∥)dθ

1− w0(∥x0 − p∥)

}
∥z0 − p∥

≤ ψ3(∥x0 − p∥)∥x0 − p∥ ≤ ∥x0 − p∥ < R, (2.20)

so (2.11) holds for n = 0 and x1 ∈ T (p,R). The induction for (2.11) is completed,
if xm, ym, zm, xm+1 replace x0, y0, z0, x1 in the preceding estimates. Then,in view
of the estimate

∥xm+1 − p∥ ≤ λ∥xm − p∥ ≤ ∥xm − p∥ < R, (2.21)
where λ = ψ3(∥x0−p∥) ∈ [0, 1), we deduce that xm+1 ∈ T (p,R), and limm−→∞ xm =
p. Further for the uniqueness part, let p∗ ∈ Ω1 with F(p∗) = 0. Define G =∫ 1

0
F ′(p+ θ(p∗ − p))dθ. Then, using (c5), we get

∥F ′(p)−1(G−F ′(p))∥ ≤
∫ 1

0

w0(θ∥p∗ − p∥)dθ ≤
∫ 1

0

w0(θR)dθ < 1,

so G−1 exists, and from

0 = F(p)−F(p∗) = G(p− p∗),

we derive p = p∗.
□

Remark 2.1. (a) In the case when w0(t) = L0t, w(t) = Lt and Ω0 = Ω, the
radius ρA = 2

2L0+L was obtained by Argyros in [4] as the convergence
radius for Newton’s solver under condition (2.7)-(2.9). Notice that the
convergence radius for Newton’s solver given independently by Rheinboldt
[16] and Traub [17] is given by

ρTR =
2

3L
< ρA.

As an example, let us consider the function F (x) = ex − 1. Then α∗ = 0.
Set Ω = B(0, 1). Then, we have that L0 = e − 1 < L = e, so ρTR =
0.24252961 < ρA = 0.324947231.
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(b) The local results can be used for projection solvers such as Arnoldi’s solver,
the generalized minimum residual solver(GMREM), the generalized con-
jugate solver(GCM) for combined Newton/finite projection solvers and in
connection to the mesh independence principle in order to develop the
cheapest and most efficient mesh refinement strategy [2, 3, 4].

(c) The results can be also be used to solve equations where the operator F ′

satisfies the autonomous differential equation [2, 3, 10, 13]:
F ′(x) = P (F (x)),

where P : B2 −→ B2 is a known continuous operator. Since F ′(x∗) =
P (F (x∗)) = P (0), we can apply the results without actually knowing the
solution x∗. Let as an example F (x) = ex−1. Then, we can choose P (x) =
x+ 1 and x∗ = 0.

(d) It is worth noticing that solvers (1.2) is not changing when we use the
conditions of the preceding Theorem instead of the stronger conditions used
in [15]. Moreover, we can compute the computational order of convergence
(COC) defined as

ξ = ln

(
∥xn+1 − x∗∥
∥xn − x∗∥

)
/ ln

(
∥xn − x∗∥

∥xn−1 − x∗∥

)
or the approximate computational order of convergence (ACOC) [5, 6]

ξ1 = ln

(
∥xn+1 − xn∥
∥xn − xn−1∥

)
/ ln

(
∥xn − xn−1∥

∥xn−1 − xn−2∥

)
.

This way we obtain in practice the order of convergence, but not higher
order derivatives are used.

3. Numerical example

We present the following example to test the convergence criteria.

Example 3.1. Let B1 = B1 = R3, Ω = U(0, 1), x∗ = (0, 0, 0)T and define F on Ω
by

F(x) = F(u1, u2, u3) = (eu1 − 1,
e− 1

2
u2

2 + u2, u3)
T . (3.1)

For the points u = (u1, u2, u3)
T , the Fréchet derivative is given by

F ′(u) =

 eu1 0 0
0 (e− 1)u2 + 1 0
0 0 1

 .

Using the norm of the maximum of the rows x∗ = (0, 0, 0)T and since F ′(x∗) =

diag(1, 1, 1), we get by conditions (H) w0(t) = (e− 1)t, w(t) = e
1

e−1 t, w1(t) = e
1

e−1 .

R1 = 0.382692, R2 = 0.227598, R3 = 169362.

Example 3.2. Let B1 = B2 = C[0, 1],Ω = Ū(0, 1). Define function F on Ω by

F (w)(x) = w(x)− 5

∫ 1

0

xθw(θ)3dθ.

Then, the Fréchet-derivative is given by

F ′(w(ξ))(x) = ξ(x)− 15

∫ 1

0

xθw(θ)2ξ(θ)dθ, for each ξ ∈ Ω.
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Then, we have that x∗ = 0, w0(t) = L0t, w(t) = Lt,w1(t) = 2, L0 = 7.5 < L = 15.
Then, the radius of convergence are given by

R1 = 0.0667, R2 = 0.0395822 = ρ, R3 = 0.0297337.

Example 3.3. Returning back to the motivational example given at the introduc-
tion of this study, we can choose w0(t) = w(t) = 96.662907t, w1(t) = 1.0631. Then,
the radius of convergence are given by

R1 = 0.00689682, R2 = 0.00457799, R3 = 1 = 0.00378481.
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